JP5306766B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5306766B2
JP5306766B2 JP2008268881A JP2008268881A JP5306766B2 JP 5306766 B2 JP5306766 B2 JP 5306766B2 JP 2008268881 A JP2008268881 A JP 2008268881A JP 2008268881 A JP2008268881 A JP 2008268881A JP 5306766 B2 JP5306766 B2 JP 5306766B2
Authority
JP
Japan
Prior art keywords
gas
liquid separator
refrigerant
compressor
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008268881A
Other languages
Japanese (ja)
Other versions
JP2010096451A (en
Inventor
誠 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2008268881A priority Critical patent/JP5306766B2/en
Priority to CN2009201797612U priority patent/CN201582916U/en
Publication of JP2010096451A publication Critical patent/JP2010096451A/en
Application granted granted Critical
Publication of JP5306766B2 publication Critical patent/JP5306766B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The utility model discloses an air conditioner. A cooling circulation is formed in the air conditioner, a gas-liquid separator is communicated with a compressor by using a bypass loop comprising a bypass open and close valve and capillaries, and the gas-liquid separator is adjoined with a connecting pipeline group PG formed by a connecting pipeline PA, a connecting pipeline PB, a connecting pipeline PC, a connecting pipeline PD and a connecting pipeline PE, and is arranged in an upper portion space separated from a machine chamber bottom board of an outdoor unit. The connecting pipeline PA connects an outlet component of an outdoor heat exchanger with an inlet component b of an electric expansion valve. The connecting pipeline PB connects an outlet component c of the electric expansion valve with an inlet component d of the gas-liquid separator. The connecting pipeline PC connects a lateral outlet component e of the gas-liquid separator with a liner valve 7b. The connecting pipeline PD connects a lateral outlet component f of the gas-liquid separator with an inlet component g of the bypass open and close valve of the bypass loop. The connecting pipeline PE connects an outlet component h of the bypass open and close valve with a refrigerant pipeline P of the i side of a suction component of the compressor.

Description

本発明は、気液分離器の支持構造を改良した室外機を備える空気調和機に関する。   The present invention relates to an air conditioner including an outdoor unit with an improved support structure for a gas-liquid separator.

[特許文献1]には、圧縮機の吸入冷媒を気液分離する第1気液分離器と、中間圧冷媒を気液分離する第2気液分離器を搭載した冷凍ユニットが開示されている。第1気液分離器は圧縮機の側方に、圧縮機と隣接して配置され、第2気液分離器は圧縮機と第1気液分離器との間に生じる隙間部に配置されることを特徴としている。   [Patent Document 1] discloses a refrigeration unit equipped with a first gas-liquid separator that separates refrigerant sucked from a compressor and a second gas-liquid separator that gas-liquid separates an intermediate pressure refrigerant. . The first gas-liquid separator is disposed on the side of the compressor and adjacent to the compressor, and the second gas-liquid separator is disposed in a gap formed between the compressor and the first gas-liquid separator. It is characterized by that.

具体的には、第1気液分離器の上端から出口管が上方へ延び、圧縮機下部の低圧冷媒吸入口に接続され、第1気液分離器は出口管によって圧縮機に支持される。第2気液分離器のインジェクション通路を構成する出口管もこの上端から上方へ延びて、圧縮機のインジェクションポートに接続され、第2の気液分離器も出口管によって圧縮機に支持される。
特開平10−160201号公報
Specifically, the outlet pipe extends upward from the upper end of the first gas-liquid separator and is connected to the low-pressure refrigerant suction port at the lower part of the compressor, and the first gas-liquid separator is supported by the compressor by the outlet pipe. The outlet pipe constituting the injection passage of the second gas-liquid separator also extends upward from this upper end and is connected to the injection port of the compressor, and the second gas-liquid separator is also supported by the compressor by the outlet pipe.
JP-A-10-160201

しかしながら、[特許文献1]のように配管を介して各気液分離器を圧縮機に支持すると、圧縮機の運転にともなう振動が直接、各気液分離器に加わり、気液分離器が振動して、分離した液冷媒の貯留に悪影響が生じる。そこで、気液分離器の高さを圧縮機と同等とし、気液分離器内で液冷媒とガス冷媒を上下に完全分離させている。   However, when each gas-liquid separator is supported by a compressor via a pipe as in [Patent Document 1], vibration due to the operation of the compressor is directly applied to each gas-liquid separator, and the gas-liquid separator vibrates. This adversely affects the storage of the separated liquid refrigerant. Therefore, the height of the gas-liquid separator is made equal to that of the compressor, and the liquid refrigerant and the gas refrigerant are completely separated vertically in the gas-liquid separator.

このような構成では、圧縮機の側部に、比較的大きな容器である気液分離器が存在する。したがって、圧縮機と気液分離器を収容する機械室の配置スペースを大きくとる必要があるとともに、他の配管との接続スペースが別途必要となり、室外機全体の大きさが大きくなってしまう。   In such a configuration, a gas-liquid separator, which is a relatively large container, exists on the side of the compressor. Therefore, it is necessary to increase the arrangement space of the machine room that accommodates the compressor and the gas-liquid separator, and an additional connection space with other piping is required, which increases the size of the entire outdoor unit.

また、圧縮機の振動が気液分離器に伝達しないよう、専用の固定金具を用意して、機械室の底板上に固定金具を介して気液分離器を取付け固定する構成も採用されている。この場合は、機械室底板上に固定金具を取付けるためのスペースと、取付け作業に必要な作業スペースを確保しなければならず、室外機の大型化が避けられない。   Also, a special fixing bracket is prepared so that the vibration of the compressor is not transmitted to the gas-liquid separator, and the gas-liquid separator is mounted and fixed on the bottom plate of the machine room via the fixing bracket. . In this case, a space for mounting the fixing bracket on the machine room bottom plate and a work space necessary for the mounting work must be secured, and an increase in the size of the outdoor unit is inevitable.

本発明は上記事情にもとづきなされたものであり、その目的とするところは、圧縮機の運転にともなう振動の影響を受けずに、かつ専用の固定具を必要としないで気液分離器を取付けることができ、気液分離器に対する信頼性の向上を得られるとともに、室外機の大型化抑制を図った空気調和機を提供しようとするものである。   The present invention has been made based on the above circumstances, and its object is to install a gas-liquid separator without being affected by vibrations caused by the operation of the compressor and without requiring a dedicated fixture. Therefore, it is an object of the present invention to provide an air conditioner that can improve the reliability of the gas-liquid separator and suppress the enlargement of the outdoor unit.

上記目的を満足するため本発明は、室外機内に収容される圧縮機、室外熱交換器、電動膨張弁(PMV)と、室内機内に収容される室内熱交換器とを順次、冷媒配管を介して接続して冷凍サイクルを構成し、室外機に電動膨張弁と室内熱交換器とを連結する冷媒配管に設けた気液分離器を収容し、この気液分離器で気液分離されたガス冷媒はバイパス回路を介して圧縮機へ戻し、バイパス開閉弁およびキャピラリチューブをバイパス回路に備えた空気調和機において、
室外熱交換器出口部と電動膨張弁入口部とを連結する接続配管PAと、電動膨張弁出口部と気液分離器入口部とを連結する接続配管PBと、気液分離器の液側出口部と室内機に接続されるパックドバルブとを連結する接続配管PCと、気液分離器のガス側出口部とバイパス回路におけるバイパス開閉弁入口部とを連結する接続配管PDと、バイパス回路におけるバイパス開閉弁出口部とキャピラリチューブを介して圧縮機吸込み部側の冷媒配管とを連結する接続配管PEとを備え、気液分離器は圧縮機を収容する室外機の機械室底板と離間した上部スペースに接続配管PA〜PEからなる接続配管群と隣接して配置する。
そして、電動膨張弁の開度を制御するための冷媒温度を検知する温度センサを、圧縮機吸込み部側の冷媒配管における、接続配管PEの接続部位よりも上流側に取付けた。
In order to satisfy the above-described object, the present invention sequentially includes a compressor accommodated in an outdoor unit, an outdoor heat exchanger, an electric expansion valve (PMV), and an indoor heat exchanger accommodated in the indoor unit via refrigerant piping. The gas-liquid separator provided in the refrigerant pipe connecting the electric expansion valve and the indoor heat exchanger to the outdoor unit is accommodated in the refrigeration cycle and connected to the outdoor unit, and the gas and liquid separated by this gas-liquid separator Refrigerant is returned to the compressor through the bypass circuit, and in the air conditioner equipped with the bypass opening and closing valve and the capillary tube in the bypass circuit,
Connection pipe PA for connecting the outdoor heat exchanger outlet and the electric expansion valve inlet, connection pipe PB for connecting the electric expansion valve outlet and the gas-liquid separator inlet, and the liquid-side outlet of the gas-liquid separator Connecting pipe PC that connects the part and the packed valve connected to the indoor unit, connecting pipe PD that connects the gas side outlet of the gas-liquid separator and the bypass opening and closing valve inlet in the bypass circuit, and bypass in the bypass circuit A connecting pipe PE that connects the on-off valve outlet part and the refrigerant pipe on the compressor suction part side via a capillary tube, and the gas-liquid separator is an upper space separated from the machine room bottom plate of the outdoor unit housing the compressor Are arranged adjacent to the connection piping group consisting of the connection piping PA to PE.
And the temperature sensor which detects the refrigerant | coolant temperature for controlling the opening degree of an electric expansion valve was attached to the upstream of the connection site | part of the connection piping PE in the refrigerant | coolant piping by the side of a compressor suction part.

本発明によれば、気液分離器に対する信頼性の向上を得られるとともに、室外機の大型化抑制を図れる等の効果を奏する。   According to the present invention, an improvement in the reliability of the gas-liquid separator can be obtained, and the effect of suppressing the increase in the size of the outdoor unit can be achieved.

以下、本発明の実施の形態を、図面にもとづいて説明する。
図1は、空気調和機の冷凍サイクル構成図である。
空気調和機は、室外機1Aと室内機1Bとから構成される。室外機1Aには、圧縮機2と、四方切換え弁3と、室外熱交換器4と、電動膨張弁(PMV)5が収容され、室内機1Bには室内熱交換器6が収容される。図示していないが、室外熱交換器4と対向して室外送風機が配置され、室内熱交換器6と対向して室内送風機が配置される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a refrigeration cycle of an air conditioner.
The air conditioner includes an outdoor unit 1A and an indoor unit 1B. The outdoor unit 1A contains a compressor 2, a four-way switching valve 3, an outdoor heat exchanger 4, and an electric expansion valve (PMV) 5, and the indoor unit 1B contains an indoor heat exchanger 6. Although not shown, an outdoor fan is disposed facing the outdoor heat exchanger 4, and an indoor fan is disposed facing the indoor heat exchanger 6.

上記した圧縮機2、四方切換え弁3、室外熱交換器4、電動膨張弁5、室内熱交換器6は、順次、冷媒配管Pを介して接続され、これらでヒートポンプ式の冷凍サイクルが構成される。なお、室内機1Bの室内熱交換器6に接続される2本の冷媒配管Pは、室外機1Aに設けられるパックドバルブ7a,7bに接続される。   The compressor 2, the four-way switching valve 3, the outdoor heat exchanger 4, the electric expansion valve 5, and the indoor heat exchanger 6 are sequentially connected via the refrigerant pipe P, and these constitute a heat pump refrigeration cycle. The The two refrigerant pipes P connected to the indoor heat exchanger 6 of the indoor unit 1B are connected to packed valves 7a and 7b provided in the outdoor unit 1A.

一方のパックドバルブ7aは、四方切換え弁3から延出する冷媒配管Pに連結される。他方のパックドバルブ7bは電動膨張弁5から延出する冷媒配管Pに連結される。このパックドバルブ7bと電動膨張弁5とを接続する冷媒配管Pに、後述する気液分離器8が設けられていて、気液分離器8は室外機1Aに収容される。   One packed valve 7 a is connected to a refrigerant pipe P extending from the four-way switching valve 3. The other packed valve 7 b is connected to a refrigerant pipe P extending from the electric expansion valve 5. A gas / liquid separator 8 described later is provided in the refrigerant pipe P connecting the packed valve 7b and the electric expansion valve 5, and the gas / liquid separator 8 is accommodated in the outdoor unit 1A.

上記気液分離器8にはバイパス回路10が連結される。このバイパス回路10には、電磁二方弁であるバイパス開閉弁11と、キャピラリチューブ12が設けられる。そして、バイパス回路10は後述するように、圧縮機2の吸込み側の冷媒配管Pに接続される。   A bypass circuit 10 is connected to the gas-liquid separator 8. The bypass circuit 10 is provided with a bypass on-off valve 11 that is an electromagnetic two-way valve and a capillary tube 12. The bypass circuit 10 is connected to a refrigerant pipe P on the suction side of the compressor 2 as will be described later.

説明の都合上、冷房運転時の冷凍サイクルを基準として、室外熱交換器4の出口部aと、電動膨張弁5の入口部bとを連結する冷媒配管を、「接続配管PA」と呼ぶ。電動膨張弁5の出口部cと、気液分離器8の入口部dとを連結する冷媒配管を、「接続配管PB」と呼ぶ。   For convenience of explanation, the refrigerant pipe that connects the outlet part a of the outdoor heat exchanger 4 and the inlet part b of the electric expansion valve 5 on the basis of the refrigeration cycle during the cooling operation is referred to as “connection pipe PA”. The refrigerant pipe that connects the outlet part c of the electric expansion valve 5 and the inlet part d of the gas-liquid separator 8 is referred to as “connection pipe PB”.

気液分離器8の液側出口部eと、前記室内機1Bに接続されるうちの一方のパックドバルブ7bとを連結する冷媒配管を、「接続配管PC」と呼ぶ。気液分離器8のガス側出口部fと、前記バイパス回路10におけるバイパス開閉弁11の入口部gとを連結する冷媒配管を、「接続配管PD」と呼ぶ。   A refrigerant pipe connecting the liquid side outlet e of the gas-liquid separator 8 and one packed valve 7b connected to the indoor unit 1B is referred to as a “connection pipe PC”. A refrigerant pipe connecting the gas side outlet f of the gas-liquid separator 8 and the inlet g of the bypass on-off valve 11 in the bypass circuit 10 is referred to as “connection pipe PD”.

前記バイパス回路10におけるバイパス開閉弁11の出口部hと、キャピラリチューブ12を介して圧縮機2の吸込み部i側の冷媒配管Pとを連結する冷媒配管を、「接続配管PE」と呼ぶ。これら接続配管PA〜PEからなる接続配管群PGおよび上記気液分離器8は、後述するように室外機1Aの機械室に収容される。   A refrigerant pipe connecting the outlet h of the bypass on-off valve 11 in the bypass circuit 10 and the refrigerant pipe P on the suction part i side of the compressor 2 via the capillary tube 12 is referred to as “connection pipe PE”. The connection pipe group PG composed of these connection pipes PA to PE and the gas-liquid separator 8 are accommodated in the machine room of the outdoor unit 1A as described later.

上記気液分離器8は、図2に示すような、たとえばPCT出願のWO2007/055386A1に開示される表面張力型気液分離器が用いられる。
この気液分離器8の概略構成を説明すると、容器本体(外郭体)9と、この容器本体9内に気液二相を導入可能な入口部dと、この入口部dと流体導通可能に連結され気液二相を気相と液相に分離する気液分離室を容器本体9内部に備えている。
As the gas-liquid separator 8, a surface tension type gas-liquid separator disclosed in, for example, PCT application WO2007 / 055386A1 as shown in FIG. 2 is used.
The schematic configuration of the gas-liquid separator 8 will be described. A container main body (outer body) 9, an inlet part d capable of introducing a gas-liquid two-phase into the container main body 9, and fluid communication with the inlet part d. A gas-liquid separation chamber that is connected and separates the gas-liquid two phases into a gas phase and a liquid phase is provided inside the container body 9.

さらに、気液分離室と流体導通可能に連結し分離した気相が導かれるガス側出口部fおよび、液相が導かれる液側出口部eが設けられる。上記気液分離室は、入口部dから気液二相流を導入する狭小空間と、この狭小空間に連通する急拡大部および溝付き部を有する。前記溝付き部が、容器本体9と別体の溝付き面をもつ溝付き体である、としている。   Furthermore, a gas side outlet portion f through which the separated gas phase is guided and connected to the gas-liquid separation chamber so as to be in fluid communication and a liquid side outlet portion e through which the liquid phase is guided are provided. The gas-liquid separation chamber has a narrow space for introducing a gas-liquid two-phase flow from the inlet portion d, and a rapidly expanding portion and a grooved portion communicating with the narrow space. The grooved portion is a grooved body having a grooved surface separate from the container body 9.

そして、軸方向を垂直に向けた容器本体9の上端部に入口部dが設けられ、ここに電動膨張弁5の出口部cと連結する接続配管PBが接続される。容器本体9の周面下部には液側出口部eが設けられ、室内機1Bに接続されるうちの一方のパックドバルブ7bとを連結する接続配管PCが接続される。
さらに、容器本体9の下端部にはガス側出口部fが設けられ、バイパス回路10に設けられるバイパス開閉弁11の入口部gとを連結する接続配管PDが接続される。
And the inlet part d is provided in the upper end part of the container main body 9 which turned the axial direction to perpendicular | vertical, and the connection piping PB connected with the outlet part c of the electric expansion valve 5 is connected here. A liquid-side outlet portion e is provided at the lower peripheral surface of the container body 9, and a connection pipe PC that connects one packed valve 7b connected to the indoor unit 1B is connected thereto.
Further, a gas side outlet portion f is provided at the lower end portion of the container main body 9, and a connection pipe PD that connects the inlet portion g of the bypass on-off valve 11 provided in the bypass circuit 10 is connected.

再び図1に示すように、前記電動膨張弁5の開度を制御するための冷媒温度を検知する温度センサ13が、圧縮機2の吸込み部iと四方切換え弁3とを連結する冷媒配管Pに取付けられている。なお説明すると、圧縮機2の吸込み部iと四方切換え弁3とを連結する冷媒配管Pに接続する接続配管PEの接続部位よりも上流側に取付けられる。   As shown in FIG. 1 again, the temperature sensor 13 for detecting the refrigerant temperature for controlling the opening degree of the electric expansion valve 5 connects the suction part i of the compressor 2 and the four-way switching valve 3 to the refrigerant pipe P. Installed on. If it demonstrates, it will be attached to the upstream rather than the connection site | part of the connection piping PE connected to the refrigerant | coolant piping P which connects the suction part i of the compressor 2, and the four-way switching valve 3. FIG.

つぎに、上記室外機1Aにおける実際の配管構成について説明する。
図3は、室外機1Aの内部構造を示す斜視図であり、筐体を構成する底板15を除く筐体各面部と、底板15上に配置される室外送風機は省略している。また、仕切り板16は二点鎖線で示している。
Next, an actual piping configuration in the outdoor unit 1A will be described.
FIG. 3 is a perspective view showing the internal structure of the outdoor unit 1 </ b> A, in which each surface portion of the casing excluding the bottom plate 15 constituting the casing and the outdoor blower arranged on the bottom plate 15 are omitted. Moreover, the partition plate 16 is shown with the dashed-two dotted line.

底板15は平面視で長方矩形状に形成され、長手方向と短手方向のそれぞれ一側辺に沿い、平面視で略L字状に折曲げ形成される室外熱交換器4が配置される。この室外熱交換器4で囲まれる長手方向の他側辺に沿い、室外送風機を支持する架台を位置決めし、かつ取付けるための凹部15aが設けられる。   The bottom plate 15 is formed in a rectangular shape in plan view, and has an outdoor heat exchanger 4 that is formed in a substantially L shape in plan view along one side in the longitudinal direction and the short direction. . Along the other side in the longitudinal direction surrounded by the outdoor heat exchanger 4, there is provided a recess 15a for positioning and mounting a gantry that supports the outdoor fan.

室外熱交換器4の長手方向に折曲げられた端部から、室外送風機を取付けるための凹部15a側面に沿って上記仕切り板16が設けられる。この仕切り板16から室外熱交換器4と凹部15a側に仕切られた空間スペースを熱交換室Raと呼び、熱交換室Raの反対側に仕切られた空間スペースを機械室Rbと呼ぶ。   The partition plate 16 is provided from the end of the outdoor heat exchanger 4 that is bent in the longitudinal direction along the side surface of the recess 15a for mounting the outdoor fan. A space space partitioned from the partition plate 16 to the outdoor heat exchanger 4 and the recessed portion 15a side is referred to as a heat exchange chamber Ra, and a space space partitioned to the opposite side of the heat exchange chamber Ra is referred to as a machine room Rb.

上記機械室Rbには、圧縮機2と、気液分離器8と、パックドバルブ7a,7bおよび後述する接続配管群PGが収容される。接続配管群PGには上記四方切換え弁3と、マフラ17および上記電動膨張弁5が含まれていて、先に図1の冷凍サイクル構成で説明した室外機1Aにおける構成部品を連結する全ての冷媒配管Pからなる。   The machine room Rb accommodates the compressor 2, the gas-liquid separator 8, the packed valves 7a and 7b, and a connection pipe group PG described later. The connection piping group PG includes the four-way switching valve 3, the muffler 17, and the electric expansion valve 5, and all the refrigerants that connect the components in the outdoor unit 1A described in the refrigeration cycle configuration of FIG. It consists of piping P.

上記室外熱交換器4は、両側部に端板tが設けられ、これら端板t間には複数枚のフィンFが所定の間隔を存して並設され、これらフィンFと端板tを貫通して熱交換パイプNが設けられてなる。上記仕切り板16の端部は一方の端板tに重ねられた状態で取付けられ、したがって端板tと仕切り板16から熱交換パイプNの一部が突出する。   The outdoor heat exchanger 4 is provided with end plates t on both sides, and a plurality of fins F are arranged side by side with a predetermined interval between the end plates t. A heat exchange pipe N is provided therethrough. The end portion of the partition plate 16 is attached in a state where it is overlapped with the one end plate t. Therefore, a part of the heat exchange pipe N protrudes from the end plate t and the partition plate 16.

図4は、上記接続配管群PGの主要部を拡大して示す斜視図である。
ここでは図示しない室外熱交換器4の端板tと仕切り板16端部との重ね部分から、室外熱交換器4を構成する2本の熱交換パイプが水平方向に延出される。それぞれの熱交換パイプに冷媒配管Pが接続されていて、所定の部位で上方へ折り曲げられ、その一方は水平方向へ折り曲げられてから下方に屈曲されキャピラリチューブ18に接続される。
FIG. 4 is an enlarged perspective view showing the main part of the connection pipe group PG.
Here, two heat exchange pipes constituting the outdoor heat exchanger 4 are extended in a horizontal direction from a portion where the end plate t of the outdoor heat exchanger 4 and the end of the partition plate 16 are not shown. Refrigerant pipes P are connected to the respective heat exchange pipes, bent upward at predetermined locations, one of which is bent horizontally and then bent downward and connected to the capillary tube 18.

このキャピラリチューブ18に対して分流器19が垂直方向に直状に連結される。上記他方の冷媒配管Pは一方の冷媒配管と同様に折り曲げられてから分流器19に直接、接続される。したがって、この分流器19にて2本の冷媒配管Pが合流することになる。   A shunt 19 is connected to the capillary tube 18 in the vertical direction. The other refrigerant pipe P is bent in the same manner as the one refrigerant pipe and then directly connected to the flow divider 19. Therefore, the two refrigerant pipes P join at the flow divider 19.

上記分流器19の下端部から延出される冷媒配管Pは略U字状に折り曲げられ、他の冷媒配管および構成部品と接触しないよう上方へ延出されて、軸方向を垂直に向けられた電動膨張弁5の下端部に接続される。すなわち、先に図1で説明した室外熱交換器4の出口部aと電動膨張弁5の入口部bとを接続する接続配管PAである。   The refrigerant pipe P extending from the lower end of the flow divider 19 is bent in a substantially U shape, extended upward so as not to come into contact with other refrigerant pipes and components, and electrically driven with the axial direction oriented vertically. Connected to the lower end of the expansion valve 5. That is, the connection pipe PA connects the outlet part a of the outdoor heat exchanger 4 and the inlet part b of the electric expansion valve 5 described above with reference to FIG.

上記電動膨張弁5の側部から延出される冷媒配管Pは下方に折曲げられ、軸方向を垂直に向けられたマフラ17の上端部に連結される。さらに、マフラ17の下端から延出される冷媒配管Pは、所定の部位で略U字状に曲成されて上方へ延出される。   The refrigerant pipe P extending from the side portion of the electric expansion valve 5 is bent downward and connected to the upper end portion of the muffler 17 whose axial direction is directed vertically. Further, the refrigerant pipe P extending from the lower end of the muffler 17 is bent in a substantially U shape at a predetermined portion and extends upward.

そして、電動膨張弁5の近傍位置にて逆略U字状に曲成され、垂直方向に向けられて気液分離器8の上端部に接続される。すなわち、先に図1で説明した電動膨張弁5の出口部cと気液分離器8の入口部dとを連結する接続配管PBである。   Then, it is bent in a substantially U-shape in the vicinity of the electric expansion valve 5 and is directed in the vertical direction to be connected to the upper end portion of the gas-liquid separator 8. That is, it is a connecting pipe PB that connects the outlet c of the electric expansion valve 5 described above with reference to FIG. 1 and the inlet d of the gas-liquid separator 8.

気液分離器8も、図2で説明したように軸方向を垂直に向けられていて、この側部から延出される冷媒配管Pは一旦水平方向に向けられ、所定部位で下方に折曲げられる。さらに、所定部位で水平方向に折曲げられ、途中に屈曲部を介してパックドバルブ7bに接続される。
すなわち、先に図1で説明した気液分離器8の液側出口部eと、室内機1Bに接続されるパックドバルブ7bとを連結する接続配管PCである。
As described with reference to FIG. 2, the gas-liquid separator 8 is also oriented in the vertical direction, and the refrigerant pipe P extending from the side portion is once oriented in the horizontal direction and bent downward at a predetermined portion. . Furthermore, it is bent in the horizontal direction at a predetermined site, and is connected to the packed valve 7b via a bent portion in the middle.
That is, it is a connection pipe PC that connects the liquid side outlet e of the gas-liquid separator 8 described above with reference to FIG. 1 and the packed valve 7b connected to the indoor unit 1B.

気液分離器8の下端部から延出される冷媒配管Pは所定の部位で略U字状に曲成され上方へ延出される。この冷媒配管Pは他の冷媒配管および構成部品と接触しないよう斜めに折り曲げられるとともに、気液分離器8の上方部位において水平方向に折り曲げられる。   The refrigerant pipe P extending from the lower end of the gas-liquid separator 8 is bent into a substantially U shape at a predetermined portion and extends upward. The refrigerant pipe P is bent obliquely so as not to come into contact with other refrigerant pipes and components, and is bent in the horizontal direction at an upper portion of the gas-liquid separator 8.

気液分離器8の上方部位にはバイパス開閉弁11が垂直方向に向けられていて、この側部に前記冷媒配管Pが連結される。すなわち、先に図1で説明した気液分離器8のガス側出口部fと、バイパス回路10におけるバイパス開閉弁11の入口部gとを連結する接続配管PDである。   A bypass opening / closing valve 11 is directed vertically above the gas-liquid separator 8, and the refrigerant pipe P is connected to this side portion. That is, the connection pipe PD connects the gas side outlet f of the gas-liquid separator 8 described above with reference to FIG. 1 and the inlet g of the bypass on-off valve 11 in the bypass circuit 10.

バイパス開閉弁11の下端部から延出される冷媒配管Pは下方に延出され、気液分離器8の側部に設けられるキャピラリチューブ12の一端部に連結される。このキャピラリチューブ12は円形コイル状に曲成されていて、他端部は上方へ向けられる。   A refrigerant pipe P extending from the lower end of the bypass on-off valve 11 extends downward and is connected to one end of a capillary tube 12 provided on the side of the gas-liquid separator 8. The capillary tube 12 is bent in a circular coil shape, and the other end is directed upward.

キャピラリチューブ12の他端部に連結される冷媒配管Pは、一旦水平方向に折曲げられてから上方へ折曲げられ、さらに下方に曲成され、ここでは図示しない圧縮機2の吸込み部iと連通する冷媒配管Pの中途部に連結される。
すなわち、先に図1で説明したバイパス回路10におけるバイパス開閉弁11の出口部hと、キャピラリチューブ12を介して圧縮機2の吸込み部i側の冷媒配管Pとを接続する接続配管PEである。
The refrigerant pipe P connected to the other end of the capillary tube 12 is once bent in the horizontal direction, then bent upward, and further bent downward. Here, the suction pipe i of the compressor 2 (not shown) It connects with the middle part of the refrigerant | coolant piping P which connects.
That is, the connection pipe PE connects the outlet h of the bypass on-off valve 11 in the bypass circuit 10 described above with reference to FIG. 1 and the refrigerant pipe P on the suction part i side of the compressor 2 via the capillary tube 12. .

このようにして気液分離器8、マフラ17、電動膨張弁5およびバイパス開閉弁11の全てが軸方向を垂直に向けられ、これら構成部品に接続される接続配管群PGも、主として垂直方向に向けられた状態となっている。
特に、気液分離器8は、他の構成部品と接続配管群PGの中間部に位置し、周囲面を接続配管群PGに隣接した状態で、底板15から上方に離間した位置のスペース上に配置されている。
In this way, the gas-liquid separator 8, the muffler 17, the electric expansion valve 5 and the bypass on-off valve 11 are all oriented in the axial direction, and the connecting pipe group PG connected to these components is also mainly in the vertical direction. It is in a directed state.
In particular, the gas-liquid separator 8 is located in an intermediate portion between the other component parts and the connection pipe group PG, and on a space at a position spaced upward from the bottom plate 15 with the peripheral surface adjacent to the connection pipe group PG. Has been placed.

さらに、気液分離器8を構成する容器本体9の外周面と上記接続配管PBとに亘って一体に帯状部材である結束バンド(タイラップ)20aで結束され、気液分離器8と接続配管PBとが互いに固定される。   Furthermore, the outer peripheral surface of the container main body 9 constituting the gas-liquid separator 8 and the connection pipe PB are integrally bound by a binding band (tie wrap) 20a which is a band-shaped member, and the gas-liquid separator 8 and the connection pipe PB. Are fixed to each other.

気液分離器8下端部において、接続配管PDと、上記パックドバルブ7bに近い部位の接続配管PCとが結束バンド20bで結束され、これら接続配管PD,PC相互が互いに固定される。気液分離器8の上端部において、接続配管PBと接続配管PEの中途部が結束バンド20cで結束され、これら接続配管PB、PE相互が互いに固定される。   At the lower end of the gas-liquid separator 8, the connection pipe PD and the connection pipe PC near the packed valve 7b are bound by a binding band 20b, and the connection pipes PD and PC are fixed to each other. At the upper end of the gas-liquid separator 8, the middle part of the connection pipe PB and the connection pipe PE is bound by a binding band 20c, and the connection pipes PB and PE are fixed to each other.

特に、接続配管PEにおいて、キャピラリチューブ12の両側部が固定される。気液分離器8の側部において、接続配管PCと接続配管PEのキャピラリチューブ12とが結束バンド20dで結束され、これら接続配管PC,PE相互が互いに固定される。   In particular, both sides of the capillary tube 12 are fixed in the connection pipe PE. At the side of the gas-liquid separator 8, the connection pipe PC and the capillary tube 12 of the connection pipe PE are bound by a binding band 20d, and the connection pipes PC and PE are fixed to each other.

結局、気液分離器8における容器本体9自体と、入口部dに接続する接続配管PDと、液側出口部eに接続する接続配管PCと、ガス側出口部fに接続する接続配管PDの4箇所は、互い同士、もしくは隣接する接続配管と帯状部材である結束バンド(タイラップ)20a〜20dで結束固定される。   Eventually, the container main body 9 itself in the gas-liquid separator 8, the connection pipe PD connected to the inlet part d, the connection pipe PC connected to the liquid side outlet part e, and the connection pipe PD connected to the gas side outlet part f. The four places are bound and fixed by binding bands (tie wraps) 20a to 20d which are mutually or adjacent connecting pipes and band-like members.

つぎに、冷房運転について説明する。
圧縮機2が駆動され、液相分を含む気液二相流である高圧高温のガス冷媒が冷媒配管Pへ吐出される。図1に、太い破線矢印で示すように、四方切換え弁3を介して室外熱交換器4に導かれ、凝縮液化する。ただし、この液冷媒中にもガス相分が含まれた気液二相流の状態で、接続配管PAに導出され、電動膨張弁5に導かれて断熱膨張する。
Next, the cooling operation will be described.
The compressor 2 is driven, and a high-pressure and high-temperature gas refrigerant that is a gas-liquid two-phase flow including the liquid phase is discharged to the refrigerant pipe P. In FIG. 1, as indicated by a thick broken line arrow, it is led to the outdoor heat exchanger 4 via the four-way switching valve 3 to be condensed and liquefied. However, in a gas-liquid two-phase flow state in which the liquid phase component is also included in the liquid refrigerant, the liquid refrigerant is led out to the connection pipe PA and led to the electric expansion valve 5 to be adiabatically expanded.

電動膨張弁5から接続配管PBに導出され、上述したように構成される気液分離器8の入口部dから容器本体9内に導入される。冷媒は気液二相流の状態のままで狭小空間に流入し、さらに気液分離室における急拡大部で流路面積が拡大する。そのあと、溝付き体の溝に沿って導かれ、ここで液相分が表面張力の作用により溝内に保持される。   The electric expansion valve 5 leads to the connection pipe PB and is introduced into the container body 9 from the inlet portion d of the gas-liquid separator 8 configured as described above. The refrigerant flows into the narrow space in the state of the gas-liquid two-phase flow, and further, the flow path area is expanded at the rapidly expanding portion in the gas-liquid separation chamber. After that, it is guided along the groove of the grooved body, where the liquid phase component is held in the groove by the action of surface tension.

気相分は液相分より分離して溝外へ出て行き、ガス側出口部fに導かれる。液相分は容器本体9の内底部に溜ったあと、液側出口部eから導出される。すなわち、気液分離器8から接続配管PCに気液分離された液冷媒が導出され、図に実線矢印に示すようにパックドバルブ7bを介して室内機1Bの室内熱交換器6に導かれる。   The gas phase component is separated from the liquid phase component, goes out of the groove, and is led to the gas side outlet portion f. The liquid phase component is collected at the inner bottom of the container body 9 and then led out from the liquid side outlet e. That is, the liquid refrigerant separated from the gas-liquid separator 8 to the connection pipe PC is led out and led to the indoor heat exchanger 6 of the indoor unit 1B through the packed valve 7b as indicated by the solid line arrow in the figure.

室内熱交換器6で液冷媒は蒸発し、ここに流通する室内空気から蒸発潜熱を奪い冷気に変える。冷気は室内へ吹出され、冷房作用をなす。蒸発した冷媒は室内機1Bを出てパックドバルブ7aに導かれる。   The liquid refrigerant evaporates in the indoor heat exchanger 6, takes away the latent heat of evaporation from the indoor air flowing there, and changes it into cold air. The cold air is blown out into the room and has a cooling effect. The evaporated refrigerant leaves the indoor unit 1B and is guided to the packed valve 7a.

蒸発冷媒は、パックドバルブ7aから再び室外機1Aの冷媒配管Pに導かれ、細い破線矢印で示すように、四方切換え弁3を介して圧縮機2の吸込み部iに吸込まれる。四方切換え弁3から圧縮機吸込み部iに至る間に温度センサ13によって冷媒温度が検知される。圧縮機2に吸込まれた冷媒は再び圧縮され、上述のサイクルを繰り返す。   The evaporated refrigerant is led again from the packed valve 7a to the refrigerant pipe P of the outdoor unit 1A, and is sucked into the suction portion i of the compressor 2 through the four-way switching valve 3, as indicated by a thin broken arrow. The refrigerant temperature is detected by the temperature sensor 13 during the period from the four-way switching valve 3 to the compressor suction part i. The refrigerant sucked into the compressor 2 is compressed again, and the above cycle is repeated.

一方、気液分離器8で気液分離された気相分であるガス冷媒は、後述する所定の条件が揃ってバイパス開閉弁11が開放されるときにのみ、細い破線矢印で示すようにバイパス回路10へ導かれる。このガス冷媒は、気液分離器8から接続配管PDに導かれてバイパス開閉弁11を流通し、さらに接続配管PEに導かれる。   On the other hand, the gas refrigerant, which is the gas phase separated by the gas-liquid separator 8, is bypassed as indicated by a thin broken line arrow only when a predetermined condition described later is met and the bypass on-off valve 11 is opened. Guided to circuit 10. This gas refrigerant is led from the gas-liquid separator 8 to the connection pipe PD, flows through the bypass opening / closing valve 11, and is further led to the connection pipe PE.

接続配管PEにおいて、キャピラリチューブ12により流量を絞られたうえで、接続配管PEから圧縮機2の吸込み部iに連通する冷媒配管Pを介して圧縮機2に吸込まれる。圧縮機2には四方切換え弁3と冷媒配管Pを導かれる蒸発冷媒と、気液分離器8からバイパス回路10を導かれるガス冷媒が吸込まれることとなり、圧縮能力が増大する。   In the connection pipe PE, the flow rate is reduced by the capillary tube 12 and then sucked into the compressor 2 through the refrigerant pipe P communicating with the suction portion i of the compressor 2 from the connection pipe PE. The compressor 2 receives the evaporative refrigerant guided through the four-way switching valve 3 and the refrigerant pipe P and the gas refrigerant guided through the bypass circuit 10 from the gas-liquid separator 8, thereby increasing the compression capacity.

空気調和機として、冷房運転時に一定能力が気液分離器8無しでも確保される場合は、バイパス回路10のバイパス開閉弁11は閉成を保持する。
たとえば、冷房運転時に常時、バイパス開閉弁11を開放し、気液分離器8からバイパス回路10を介して圧縮機2に気液分離したガス冷媒を導くようにすると、圧縮機2が低速の運転周波数で駆動されているときは液戻り量が多くなり信頼性の悪化を招く。上述のように制御することで、圧縮機の信頼性の向上を図れる。
When the air conditioner ensures a certain capacity during the cooling operation without the gas-liquid separator 8, the bypass on-off valve 11 of the bypass circuit 10 is kept closed.
For example, if the bypass on-off valve 11 is always opened during the cooling operation, and the gas refrigerant separated from the gas-liquid separator 8 through the bypass circuit 10 is guided to the compressor 2, the compressor 2 operates at a low speed. When driven at a frequency, the liquid return amount increases, leading to deterioration of reliability. By controlling as described above, it is possible to improve the reliability of the compressor.

また、高い冷房能力を必要とする圧縮機2が高速の運転周波数で駆動されているときは、バイパス開閉弁11を開放して、気液分離器8で分離したガス冷媒を圧縮機2に導くよう制御する。   When the compressor 2 requiring high cooling capacity is driven at a high operating frequency, the bypass on-off valve 11 is opened and the gas refrigerant separated by the gas-liquid separator 8 is guided to the compressor 2. Control as follows.

一方、圧縮機2の駆動にともない振動が生じる。何らの対策も講じなければ、圧縮機2の振動は、圧縮機2周囲に配置される気液分離器8などの構成部品と、圧縮機2に接続される冷媒配管Pに伝播し拡大する。そのまま放置すれば、圧縮機2および気液分離器8などの構成部品と、冷媒配管Pとの接続部が損傷し、ついには破損に至る虞れがある。   On the other hand, vibration is generated as the compressor 2 is driven. If no measures are taken, the vibration of the compressor 2 propagates and expands to components such as the gas-liquid separator 8 disposed around the compressor 2 and the refrigerant pipe P connected to the compressor 2. If it is left as it is, there is a risk that components such as the compressor 2 and the gas-liquid separator 8 and the connection part of the refrigerant pipe P will be damaged and eventually damaged.

ここでは、室外機1Aにおいて接続配管群PA〜PEを含む冷媒配管Pを、基本的に垂直方向に設けることと、この冷媒配管Pに接続する気液分離器8等の構成部品を垂直方向に向けて配置してある。したがって、圧縮機2から冷媒配管Pと構成部品に直接的および間接的に伝達する振動の影響を少なくできる。   Here, in the outdoor unit 1A, the refrigerant pipe P including the connection pipe groups PA to PE is basically provided in the vertical direction, and the components such as the gas-liquid separator 8 connected to the refrigerant pipe P are arranged in the vertical direction. It is arranged toward. Therefore, the influence of vibration transmitted directly and indirectly from the compressor 2 to the refrigerant pipe P and the components can be reduced.

さらに、気液分離器8を機械室Rb内の底板15上方で、室外熱交換器4と圧縮機2とを連結する間の接続配管群PA〜PEの隙間に配置した。そのため、専用の固定具を用いて気液分離器8を取付けるのに必要なスペースが不要となり、機械室Rbの収納スペースがコンパクト化され、室外機1Aの小型化に寄与する。   Furthermore, the gas-liquid separator 8 was disposed above the bottom plate 15 in the machine room Rb and in the gaps between the connection pipe groups PA to PE while connecting the outdoor heat exchanger 4 and the compressor 2. Therefore, a space necessary for attaching the gas-liquid separator 8 using a dedicated fixing tool is not required, and the storage space of the machine room Rb is made compact, which contributes to downsizing of the outdoor unit 1A.

圧縮機2の吸込み部iに連通する冷媒配管Pに、気液分離器8で分離されたガス冷媒を導くバイパス回路10を接続し、電動膨張弁5の開度を制御するための冷媒温度を検知する温度センサ13を、圧縮機2の吸込み部iに連通する冷媒配管Pと気液分離器8からバイパス回路10との接続部位よりも上流側に配置した。   A bypass circuit 10 for guiding the gas refrigerant separated by the gas-liquid separator 8 is connected to the refrigerant pipe P communicating with the suction part i of the compressor 2, and the refrigerant temperature for controlling the opening degree of the electric expansion valve 5 is set. The temperature sensor 13 to be detected is disposed upstream of the connection portion between the refrigerant pipe P communicating with the suction portion i of the compressor 2 and the gas-liquid separator 8 and the bypass circuit 10.

したがって、圧縮機吸込み部iと連通する冷媒配管Pに導かれる冷媒の温度状況で、電動膨張弁5の開度を制御し、冷媒循環量を最適状態に制御する。温度センサ13の取付け位置を特定することで、バイパス回路10を導かれるガス冷媒の温度変動があっても、温度センサ13の検出温度が影響を受けずに済み、電動膨張弁5は常に最適な作用をなす。   Therefore, the opening degree of the electric expansion valve 5 is controlled by the temperature state of the refrigerant guided to the refrigerant pipe P communicating with the compressor suction part i, and the refrigerant circulation amount is controlled to the optimum state. By specifying the mounting position of the temperature sensor 13, even if there is a temperature variation of the gas refrigerant guided through the bypass circuit 10, the temperature detected by the temperature sensor 13 is not affected, and the electric expansion valve 5 is always optimal. It works.

なお、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.

本発明における一実施の形態に係る、空気調和機の冷凍サイクル構成図。The refrigeration cycle block diagram of the air conditioner based on one embodiment in this invention. 同実施の形態に係る、気液分離器の外観斜視図。The external appearance perspective view of the gas-liquid separator based on the embodiment. 同実施の形態に係る、室外機の内部斜視図。The internal perspective view of the outdoor unit based on the embodiment. 同実施の形態に係る、気液分離器と接続配管群の配管構成を説明する斜視図。The perspective view explaining the piping structure of the gas-liquid separator and connection piping group based on the embodiment.

符号の説明Explanation of symbols

1A…室外機、2…圧縮機、4…室外熱交換器、5…電動膨張弁、1B…室内機、6…室内熱交換器、P…冷媒配管、8…気液分離器、10…バイパス回路、11…バイパス開閉弁、12…キャピラリチューブ、Rb…機械室、15…底板、a…室外熱交換器出口部、b…電動膨張弁入口部、c…電動膨張弁出口部、d…気液分離器入口部、e…気液分離器液側出口部、7b…パックドバルブ、f…気液分離器ガス側出口部、g…バイパス開閉弁入口部、h…バイパス開閉弁出口部、i…圧縮機吸込み部、PG…接続配管群、13…温度センサ、20a〜20d…結束バンド(帯状部材)。   DESCRIPTION OF SYMBOLS 1A ... Outdoor unit, 2 ... Compressor, 4 ... Outdoor heat exchanger, 5 ... Electric expansion valve, 1B ... Indoor unit, 6 ... Indoor heat exchanger, P ... Refrigerant piping, 8 ... Gas-liquid separator, 10 ... Bypass Circuit 11, bypass valve, 12 capillary tube, Rb machine room, 15 bottom plate, a outdoor heat exchanger outlet, b electric expansion valve inlet, c electric expansion valve outlet, d gas Liquid separator inlet, e ... Gas-liquid separator liquid side outlet, 7b ... Packed valve, f ... Gas-liquid separator gas side outlet, g ... Bypass on / off valve inlet, h ... Bypass on / off valve outlet, i ... Compressor suction part, PG ... Connection piping group, 13 ... Temperature sensor, 20a-20d ... Bundling band (band-like member).

Claims (1)

室外機内に収容される圧縮機、室外熱交換器、電動膨張弁(PMV)と、室内機内に収容される室内熱交換器とが順次、冷媒配管を介して接続され冷凍サイクルを構成するとともに、前記室外機に、前記電動膨張弁と前記室内熱交換器とを連結する冷媒配管に設けられる気液分離器を収容し、この気液分離器で気液分離されたガス冷媒を前記圧縮機へ戻すバイパス回路を設け、このバイパス回路にバイパス開閉弁およびキャピラリチューブを備えた空気調和機において、
前記室外熱交換器出口部と、前記電動膨張弁入口部とを連結する接続配管PAと、
前記電動膨張弁出口部と、前記気液分離器入口部とを連結する接続配管PBと、
前記気液分離器の液側出口部と、前記室内機に接続されるパックドバルブとを連結する接続配管PCと、
前記気液分離器のガス側出口部と、前記バイパス回路におけるバイパス開閉弁入口部とを連結する接続配管PDと、
前記バイパス回路におけるバイパス開閉弁出口部と、前記キャピラリチューブを介して圧縮機吸込み部側の冷媒配管とを連結する接続配管PEとを備え、
前記気液分離器は、前記圧縮機を収容する前記室外機の機械室底板と離間した上部スペースに、前記接続配管PA〜PEからなる接続配管群と隣接して配置し、
前記電動膨張弁の開度を制御するための冷媒温度を検知する温度センサを、前記圧縮機吸込み部側の冷媒配管における、前記接続配管PEの接続部位よりも上流側に取付けた
ことを特徴とする空気調和機。
A compressor, an outdoor heat exchanger, an electric expansion valve (PMV) accommodated in the outdoor unit, and an indoor heat exchanger accommodated in the indoor unit are sequentially connected via a refrigerant pipe to constitute a refrigeration cycle, A gas-liquid separator provided in a refrigerant pipe connecting the electric expansion valve and the indoor heat exchanger is accommodated in the outdoor unit, and the gas refrigerant separated by the gas-liquid separator is supplied to the compressor. In the air conditioner provided with a return bypass circuit and provided with a bypass opening and closing valve and a capillary tube in the bypass circuit,
A connection pipe PA connecting the outlet portion of the outdoor heat exchanger and the inlet portion of the electric expansion valve;
A connection pipe PB that connects the electric expansion valve outlet and the gas-liquid separator inlet;
A connection pipe PC for connecting the liquid side outlet of the gas-liquid separator and a packed valve connected to the indoor unit;
A connection pipe PD for connecting a gas side outlet of the gas-liquid separator and a bypass on-off valve inlet in the bypass circuit;
A bypass pipe on the bypass circuit, and a connection pipe PE that connects the refrigerant pipe on the compressor suction part side through the capillary tube,
The gas-liquid separator is disposed adjacent to a connection pipe group composed of the connection pipes PA to PE in an upper space separated from a machine room bottom plate of the outdoor unit that houses the compressor .
A temperature sensor for detecting a refrigerant temperature for controlling the opening degree of the electric expansion valve is attached upstream of the connection site of the connection pipe PE in the refrigerant pipe on the compressor suction portion side. An air conditioner characterized by that.
JP2008268881A 2008-10-17 2008-10-17 Air conditioner Expired - Fee Related JP5306766B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008268881A JP5306766B2 (en) 2008-10-17 2008-10-17 Air conditioner
CN2009201797612U CN201582916U (en) 2008-10-17 2009-10-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008268881A JP5306766B2 (en) 2008-10-17 2008-10-17 Air conditioner

Publications (2)

Publication Number Publication Date
JP2010096451A JP2010096451A (en) 2010-04-30
JP5306766B2 true JP5306766B2 (en) 2013-10-02

Family

ID=42258264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008268881A Expired - Fee Related JP5306766B2 (en) 2008-10-17 2008-10-17 Air conditioner

Country Status (2)

Country Link
JP (1) JP5306766B2 (en)
CN (1) CN201582916U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197430A (en) * 2014-09-17 2014-12-10 珠海格力电器股份有限公司 Outdoor unit of air conditioner

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729325B2 (en) * 2012-02-13 2015-06-03 ダイキン工業株式会社 Refrigeration unit heat source unit and manufacturing method thereof
JP5673645B2 (en) * 2012-10-11 2015-02-18 ダイキン工業株式会社 Outdoor unit
CN103322627A (en) * 2013-05-23 2013-09-25 江苏春兰制冷设备股份有限公司 Tube of air conditioner outdoor unit
JP2016161227A (en) * 2015-03-03 2016-09-05 シャープ株式会社 Heat source machine
JP6430465B2 (en) * 2016-12-01 2018-11-28 カルソニックカンセイ株式会社 Gas-liquid separator
JP7308434B2 (en) * 2018-07-31 2023-07-14 パナソニックIpマネジメント株式会社 Outdoor unit
JP7293783B2 (en) * 2019-03-25 2023-06-20 株式会社富士通ゼネラル Outdoor unit for air conditioner
JP7306006B2 (en) * 2019-03-25 2023-07-11 株式会社富士通ゼネラル Outdoor unit for air conditioner
JP7260805B2 (en) * 2021-03-31 2023-04-19 ダイキン工業株式会社 refrigeration equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2902853B2 (en) * 1992-04-27 1999-06-07 三洋電機株式会社 Air conditioner
JP3731065B2 (en) * 2000-07-18 2006-01-05 ダイキン工業株式会社 Air conditioner
JP4082187B2 (en) * 2002-09-25 2008-04-30 ダイキン工業株式会社 Heat source unit of air conditioner
JP4314934B2 (en) * 2003-08-29 2009-08-19 ダイキン工業株式会社 Outdoor unit electric unit and outdoor unit of air conditioner equipped with the same
JP3821153B2 (en) * 2005-02-03 2006-09-13 ダイキン工業株式会社 Air conditioner outdoor unit
JP4758186B2 (en) * 2005-09-14 2011-08-24 ヤンマー株式会社 Engine-driven heat pump for simultaneous cooling and heating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197430A (en) * 2014-09-17 2014-12-10 珠海格力电器股份有限公司 Outdoor unit of air conditioner

Also Published As

Publication number Publication date
JP2010096451A (en) 2010-04-30
CN201582916U (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP5306766B2 (en) Air conditioner
JP5812084B2 (en) Channel switching collective unit and method for manufacturing channel switching collective unit
JP5340382B2 (en) Valve block and valve block unit
JP5783235B2 (en) Refrigerant flow path switching unit and flow path switching collective unit
JP2008039276A (en) Refrigerant flow passage switching unit and air conditioner using this unit
JP2006071137A (en) Refrigeration unit
AU2015201553A1 (en) Rotary Compressor
KR101288745B1 (en) Air conditioner
WO2011099323A1 (en) Reversible receiver, and air conditioner
JP2006308156A (en) Air conditioner
JP2008240699A (en) Compressor displacement control operation mechanism, and air conditioning device provided with same
JP2005061784A (en) Engine heat pump
JP2006242515A (en) Refrigerating device
US11231184B2 (en) Outdoor unit of gas heat pump system
JP2014119146A (en) Air conditioner
JP6399068B2 (en) accumulator
WO2018116613A1 (en) Compressor unit and outdoor unit provided with same
JP2015078777A (en) Pipe assembly and refrigeration device
WO2013027237A1 (en) Two-stage compressor, and heat pump device
JP6144606B2 (en) Piping fixture and outdoor unit of refrigeration apparatus provided with piping fixture
KR20090069994A (en) Cassette type heat-pump air conditioner with stabilized refrigerant-cycle
JP6222493B2 (en) Air conditioner
JP2014037895A (en) Outdoor unit of air-conditioning system
JP2015152241A (en) Outdoor unit of air conditioner
JP4648692B2 (en) Switching valve device for compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5306766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees