JP5306443B2 - Device mounting substrate, device mounting substrate manufacturing method, semiconductor module, and semiconductor module manufacturing method - Google Patents

Device mounting substrate, device mounting substrate manufacturing method, semiconductor module, and semiconductor module manufacturing method Download PDF

Info

Publication number
JP5306443B2
JP5306443B2 JP2011285081A JP2011285081A JP5306443B2 JP 5306443 B2 JP5306443 B2 JP 5306443B2 JP 2011285081 A JP2011285081 A JP 2011285081A JP 2011285081 A JP2011285081 A JP 2011285081A JP 5306443 B2 JP5306443 B2 JP 5306443B2
Authority
JP
Japan
Prior art keywords
protruding electrode
electrode
insulating resin
resin layer
protruding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011285081A
Other languages
Japanese (ja)
Other versions
JP2012064981A (en
Inventor
真弓 中里
克実 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011285081A priority Critical patent/JP5306443B2/en
Publication of JP2012064981A publication Critical patent/JP2012064981A/en
Application granted granted Critical
Publication of JP5306443B2 publication Critical patent/JP5306443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

本発明は、素子搭載用基板およびその製造方法、半導体モジュールおよびその製造方法、ならびに携帯機器に関する。   The present invention relates to an element mounting substrate and a manufacturing method thereof, a semiconductor module and a manufacturing method thereof, and a portable device.

近年、電子機器の小型化、高機能化に伴い、電子機器に使用される半導体素子の、さらなる小型化が求められている。半導体素子の小型化に伴い、配線基板に実装するための電極間の狭ピッチ化が不可欠となっている。半導体素子の表面実装方法として、半導体素子の電極にはんだバンプを形成し、はんだバンプと配線基板の電極パッドとをはんだ付けするフリップチップ実装方法が知られている。フリップチップ実装方法では、はんだバンプ自体の大きさや、はんだ付け時のブリッジ発生などが制約となり、電極の狭ピッチ化に限界があった。このような限界を克服するための構造として、基材に形成した突起構造を電極またはビアとし、基材にエポキシ樹脂などの絶縁樹脂層を介して半導体素子を実装し、突起構造に半導体素子の電極を接続する構造が知られている(特許文献1参照)。   In recent years, with the miniaturization and high functionality of electronic devices, there is a demand for further miniaturization of semiconductor elements used in electronic devices. With the miniaturization of semiconductor elements, it is essential to narrow the pitch between electrodes for mounting on a wiring board. As a surface mounting method of a semiconductor element, a flip chip mounting method is known in which solder bumps are formed on electrodes of a semiconductor element, and the solder bumps and electrode pads of a wiring board are soldered. In the flip chip mounting method, the size of the solder bump itself and the generation of a bridge during soldering are limited, and there is a limit to narrowing the pitch of the electrodes. As a structure for overcoming such limitations, a protrusion structure formed on a base material is used as an electrode or a via, a semiconductor element is mounted on the base material via an insulating resin layer such as an epoxy resin, and the semiconductor element is mounted on the protrusion structure. A structure for connecting electrodes is known (see Patent Document 1).

特開2004−193297号公報JP 2004-193297 A

しかしながら、一般に突起構造を構成する材料には導電性を有する銅などの金属が採用されるため、突起構造と絶縁樹脂層とでは熱膨張係数が異なる。そのため、熱処理や使用環境における温度変化によって突起構造と絶縁樹脂層の界面には熱応力が発生し、突起構造と絶縁樹脂層との間の密着性が低下してしまうおそれがあった。そして、これにより、突起構造と半導体素子の電極との間の接続信頼性が低下してしまうおそれがあった。   However, since a metal such as copper having conductivity is generally used as the material constituting the protrusion structure, the protrusion structure and the insulating resin layer have different thermal expansion coefficients. For this reason, thermal stress is generated at the interface between the protruding structure and the insulating resin layer due to a heat treatment or a temperature change in the use environment, and the adhesion between the protruding structure and the insulating resin layer may be reduced. As a result, the connection reliability between the protrusion structure and the electrode of the semiconductor element may be reduced.

本発明はこうした状況に鑑みてなされたものであり、その目的は、突起構造と半導体素子の電極とを接続する構造において、突起構造と半導体素子の電極との間の接続信頼性を向上させる技術の提供にある。   The present invention has been made in view of such circumstances, and an object of the present invention is to improve the connection reliability between the protrusion structure and the electrode of the semiconductor element in the structure in which the protrusion structure and the electrode of the semiconductor element are connected. Is in the provision of.

上記課題を解決するために、本発明のある態様は素子搭載用基板である。この素子搭載用基板は、絶縁樹脂層と、絶縁樹脂層の一方の主表面に設けられた配線層と、配線層と電気的に接続され、配線層から絶縁樹脂層側に突出している突起電極と、を備え、突起電極の側面に凹凸が形成され、突起電極の頂部面よりも側面の方が表面粗さが大きい。   In order to solve the above problems, an aspect of the present invention is an element mounting substrate. The element mounting substrate includes an insulating resin layer, a wiring layer provided on one main surface of the insulating resin layer, and a protruding electrode that is electrically connected to the wiring layer and protrudes from the wiring layer to the insulating resin layer side And the bumps are formed on the side surface of the bump electrode, and the side surface has a larger surface roughness than the top surface of the bump electrode.

この態様によれば、上記態様の素子搭載用基板に半導体素子が積層された場合に、突起電極と半導体素子の素子電極との間の接続信頼性が向上する。   According to this aspect, when the semiconductor element is laminated on the element mounting substrate of the above aspect, the connection reliability between the protruding electrode and the element electrode of the semiconductor element is improved.

上記態様において、凹凸は、側面上の任意の2点間の直線距離に対する、2点間の凹凸の表面に沿った道のりの割合が、1.22より大きいものであってもよい。   In the above aspect, the unevenness may be such that the ratio of the distance along the surface of the unevenness between two points to the linear distance between any two points on the side surface is larger than 1.22.

上記態様において、側面の表面粗さRmaxは、1.0〜2.0μmであってもよい。   In the above embodiment, the surface roughness Rmax of the side surface may be 1.0 to 2.0 μm.

上記態様において、突起電極は、圧延金属からなるものであってもよい。   In the above aspect, the protruding electrode may be made of a rolled metal.

本発明の他の態様は、半導体モジュールである。この半導体モジュールは、上述したいずれかの態様の素子搭載用基板と、突起電極に対向する素子電極が設けられた半導体素子と、を備え、突起電極が絶縁樹脂層を貫通し、突起電極と前記素子電極とが電気的に接続されている。   Another embodiment of the present invention is a semiconductor module. The semiconductor module includes an element mounting substrate according to any one of the above-described aspects, and a semiconductor element provided with an element electrode facing the protruding electrode. The protruding electrode penetrates the insulating resin layer, and the protruding electrode The device electrode is electrically connected.

本発明のさらに他の態様は、携帯機器である。この携帯機器は、上述したいずれかの態様の半導体モジュールを搭載している。   Yet another embodiment of the present invention is a portable device. This portable device is equipped with the semiconductor module according to any one of the above-described aspects.

本発明のさらに他の態様は、素子搭載用基板の製造方法である。この素子搭載用基板の製造方法は、突起電極が突設され、圧延金属からなる金属板を準備する工程と、突起電極の側面に凹凸を形成する粗化工程と、突起電極が形成された側の金属板の主表面に絶縁樹脂層を積層する工程と、金属板を選択的に除去して配線層を形成する工程と、を含む。   Yet another embodiment of the present invention is a method for manufacturing an element mounting substrate. The element mounting substrate manufacturing method includes a step of providing a protruding electrode and preparing a metal plate made of rolled metal, a roughening step of forming irregularities on the side surface of the protruding electrode, and a side on which the protruding electrode is formed. A step of laminating an insulating resin layer on the main surface of the metal plate, and a step of selectively removing the metal plate to form a wiring layer.

本発明のさらに他の態様もまた、素子搭載用基板の製造方法である。この素子搭載用基板の製造方法は、金属板の一方の主表面における所定の領域に金属層を形成する工程と、金属層をマスクとして、金属層が形成された側の金属板の主表面を選択的に除去して突起電極を形成する工程と、突起電極の側面に凹凸を形成する粗化工程と、突起電極が形成された側の金属板の主表面に絶縁樹脂層を積層する工程と、金属板を選択的に除去して配線層を形成する工程と、を含む。   Yet another embodiment of the present invention is also a method for manufacturing an element mounting substrate. The element mounting substrate manufacturing method includes a step of forming a metal layer in a predetermined region on one main surface of the metal plate, and the main surface of the metal plate on the side where the metal layer is formed using the metal layer as a mask. A step of selectively removing and forming the protruding electrode; a roughening step of forming irregularities on the side surface of the protruding electrode; and a step of laminating an insulating resin layer on the main surface of the metal plate on the side where the protruding electrode is formed; And a step of selectively removing the metal plate to form a wiring layer.

本発明のさらに他の態様は、半導体モジュールの製造方法である。この半導体モジュールの製造方法は、突起電極が突設され、圧延金属からなる金属板を準備する工程と、突起電極の側面に凹凸を形成する粗化工程と、金属板と、突起電極に対応する素子電極が設けられた半導体素子とを、絶縁樹脂層を介して圧着し、突起電極が絶縁樹脂層を貫通することにより、突起電極と素子電極とを電気的に接続させる圧着工程と、金属板を選択的に除去して配線層を形成する工程と、を含む。   Still another embodiment of the present invention is a method for manufacturing a semiconductor module. This method of manufacturing a semiconductor module corresponds to a step of preparing a metal plate made of rolled metal with protruding electrodes, a roughening step of forming irregularities on the side surface of the protruding electrode, a metal plate, and the protruding electrode A crimping step of crimping a semiconductor element provided with an element electrode through an insulating resin layer, and the protruding electrode penetrating the insulating resin layer, thereby electrically connecting the protruding electrode and the element electrode; and a metal plate Forming a wiring layer by selectively removing.

本発明のさらに他の態様もまた、半導体モジュールの製造方法である。この半導体モジュールの製造方法は、金属板の一方の主表面における所定の領域に金属層を形成する工程と、金属層をマスクとして、金属層が形成された側の金属板の主表面を選択的に除去して突起電極を形成する工程と、突起電極の側面に凹凸を形成する粗化工程と、金属板と、突起電極に対応する素子電極が設けられた半導体素子とを、絶縁樹脂層を介して圧着し、突起電極が絶縁樹脂層を貫通することにより、突起電極と素子電極とを電気的に接続させる圧着工程と、金属板を選択的に除去して配線層を形成する工程と、を含む。   Yet another embodiment of the present invention is also a method for manufacturing a semiconductor module. In this method of manufacturing a semiconductor module, a metal layer is formed in a predetermined region on one main surface of the metal plate, and the main surface of the metal plate on the side on which the metal layer is formed is selectively used with the metal layer as a mask. Forming a protruding electrode, a roughening step of forming irregularities on the side surface of the protruding electrode, a metal plate, and a semiconductor element provided with an element electrode corresponding to the protruding electrode. A crimping step of electrically connecting the bump electrode and the element electrode by causing the bump electrode to penetrate the insulating resin layer, and a step of selectively removing the metal plate to form a wiring layer; including.

上記態様において、絶縁樹脂層は、加圧によって塑性流動を起こすものであってもよい。   In the above aspect, the insulating resin layer may cause plastic flow by pressurization.

本発明によれば、突起構造と半導体素子の電極とを接続する構造において、突起構造と半導体素子の電極との間の接続信頼性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, in the structure which connects a protrusion structure and the electrode of a semiconductor element, the connection reliability between a protrusion structure and the electrode of a semiconductor element can be improved.

実施形態1に係る素子搭載用基板および半導体モジュールの構成を示す概略断面図である。1 is a schematic cross-sectional view illustrating configurations of an element mounting substrate and a semiconductor module according to Embodiment 1. FIG. 図2(A)〜(G)は、突起電極の形成方法を示す工程断面図である。2A to 2G are process cross-sectional views illustrating a method for forming a protruding electrode. 図3(A)〜(F)は、配線層の形成方法、突起電極と素子電極との接続方法を示す工程断面図である。3A to 3F are process cross-sectional views illustrating a method for forming a wiring layer and a method for connecting a protruding electrode and an element electrode. 図4(A)〜(E)は、実施形態2における突起電極の形成方法を示す工程断面図である。4A to 4E are process cross-sectional views illustrating a method for forming a protruding electrode according to the second embodiment. 実施形態3に係る携帯電話の構成を示す図である。6 is a diagram illustrating a configuration of a mobile phone according to Embodiment 3. FIG. 携帯電話の部分断面図である。It is a fragmentary sectional view of a mobile phone.

以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。   The present invention will be described below based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

(実施形態1)
図1は、実施形態1に係る素子搭載用基板10およびこれを用いた半導体モジュール30の構成を示す概略断面図である。半導体モジュール30は、素子搭載用基板10およびこれに搭載された半導体素子50を備える。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing a configuration of an element mounting substrate 10 and a semiconductor module 30 using the same according to the first embodiment. The semiconductor module 30 includes an element mounting substrate 10 and a semiconductor element 50 mounted thereon.

素子搭載用基板10は、絶縁樹脂層12と、絶縁樹脂層12の一方の主表面に設けられた配線層14と、配線層14と電気的に接続され、配線層14から絶縁樹脂層12側に突出している突起電極16とを備える。   The element mounting substrate 10 is electrically connected to the insulating resin layer 12, the wiring layer 14 provided on one main surface of the insulating resin layer 12, and the wiring layer 14, and from the wiring layer 14 to the insulating resin layer 12 side. And a protruding electrode 16 protruding from the surface.

絶縁樹脂層12は、絶縁性の樹脂からなり、たとえば加圧したときに塑性流動を引き起こす材料で形成されている。加圧したときに塑性流動を引き起こす材料としては、エポキシ系熱硬化型樹脂が挙げられる。絶縁樹脂層12に用いられるエポキシ系熱硬化型樹脂は、たとえば、温度160℃、圧力8Mpaの条件下で、粘度が1kPa・sの特性を有する材料であればよい。また、このエポキシ系熱硬化型樹脂は、たとえば温度160℃の条件下で、5〜15Mpaで加圧した場合に、加圧しない場合と比較して、樹脂の粘度が約1/8に低下する。これに対して、熱硬化前のBステージのエポキシ樹脂は、ガラス転移温度Tg以下の条件下では、樹脂を加圧しない場合と同程度に、粘性がなく、加圧しても粘性は生じない。また、このエポキシ系熱硬化型樹脂は、約3〜4の誘電率を有する誘電体である。   The insulating resin layer 12 is made of an insulating resin, and is formed of a material that causes plastic flow when pressed, for example. An example of a material that causes plastic flow when pressed is an epoxy thermosetting resin. The epoxy thermosetting resin used for the insulating resin layer 12 may be any material having a viscosity of 1 kPa · s under conditions of a temperature of 160 ° C. and a pressure of 8 Mpa, for example. In addition, this epoxy thermosetting resin has a viscosity of about 1/8 when the resin is pressurized at 5 to 15 Mpa, for example, at a temperature of 160 ° C., compared to the case where no pressure is applied. . On the other hand, the B stage epoxy resin before thermosetting is not as viscous as when the resin is not pressurized under the condition of the glass transition temperature Tg or lower, and does not cause viscosity even when pressurized. The epoxy thermosetting resin is a dielectric having a dielectric constant of about 3-4.

配線層14は、絶縁樹脂層12の一方の主表面に設けられており、導電材料、好ましくは圧延金属、さらには圧延銅により形成される。配線層14には、絶縁樹脂層12側に突起電極16が突設されている。本実施例においては、配線層14と突起電極16とは一体的に形成されているが、特にこれに限定されない。配線層14の絶縁樹脂層12と反対側の主表面には、配線層14の酸化などを防ぐための保護層18が設けられている。保護層18としては、ソルダーレジスト層などが挙げられる。保護層18の所定の領域には開口部18aが形成されており、開口部18aによって配線層14の一部が露出している。開口部18aが形成された位置には外部接続電極としてのはんだバンプ20が形成され、はんだバンプ20と配線層14とが電気的に接続されている。はんだバンプ20を形成する位置、すなわち開口部18aの形成領域は、たとえば再配線を引き回した先の端部である。   The wiring layer 14 is provided on one main surface of the insulating resin layer 12, and is formed of a conductive material, preferably a rolled metal, and further rolled copper. The wiring layer 14 has a protruding electrode 16 protruding from the insulating resin layer 12 side. In the present embodiment, the wiring layer 14 and the protruding electrode 16 are integrally formed, but the invention is not particularly limited to this. A protective layer 18 is provided on the main surface of the wiring layer 14 opposite to the insulating resin layer 12 to prevent the wiring layer 14 from being oxidized. Examples of the protective layer 18 include a solder resist layer. An opening 18a is formed in a predetermined region of the protective layer 18, and a part of the wiring layer 14 is exposed through the opening 18a. Solder bumps 20 as external connection electrodes are formed at the positions where the openings 18a are formed, and the solder bumps 20 and the wiring layer 14 are electrically connected. A position where the solder bump 20 is formed, that is, a region where the opening 18a is formed is, for example, an end portion where the rewiring is routed.

突起電極16は平面視で丸型であり、頂部に近づくにつれて径が細くなるように形成された側面を備えている。なお、突起電極16の形状は特に限定されず、たとえば、所定の径を有する円柱状であってもよい。また、平面視で四角形などの多角形であってもよい。また、突起電極16は、その側面に凹凸が形成されており、突起電極16の頂部面よりも側面の方が表面粗さが大きくなっている。ここで、側面の凹凸は、側面上の任意の2点間の直線距離に対する、2点間の凹凸の表面に沿った道のりの割合が、1.22より大きいことが好ましい。ここで、側面の凹凸が、側面上の任意の2点間の直線距離に対する2点間の凹凸の表面に沿った道のりの割合が1.22以下となる程度のものであった場合には、突起電極16と絶縁樹脂層12との間の密着性を向上させることができる所望のアンカー効果が得られにくくなる。そのため、凹凸は、2点間の距離に対する道のりの割合が1.22より大きいことが好ましい。   The protruding electrode 16 has a round shape in plan view, and includes a side surface formed so that the diameter becomes smaller as it approaches the top. Note that the shape of the protruding electrode 16 is not particularly limited, and may be, for example, a cylindrical shape having a predetermined diameter. Further, it may be a polygon such as a rectangle in plan view. Further, the bump electrode 16 has irregularities formed on the side surface thereof, and the surface roughness of the side surface is larger than the top surface of the bump electrode 16. Here, as for the unevenness | corrugation of a side surface, it is preferable that the ratio of the path along the surface of the unevenness | corrugation between two points with respect to the linear distance between two arbitrary points on a side surface is larger than 1.22. Here, when the unevenness on the side surface is such that the ratio of the path along the surface of the unevenness between the two points to the linear distance between any two points on the side surface is about 1.22 or less, It becomes difficult to obtain a desired anchor effect that can improve the adhesion between the protruding electrode 16 and the insulating resin layer 12. Therefore, it is preferable that the unevenness has a path ratio with respect to the distance between the two points greater than 1.22.

また、突起電極16の側面の表面粗さRmaxは、1.0〜2.0μmとなっている。ここで、側面の表面粗さがRmaxで1.0μmよりも小さい場合には、突起電極16と絶縁樹脂層12との間の密着性を向上させることができる所望のアンカー効果が得られにくく、2.0μmよりも大きい場合には絶縁樹脂層12が凹部内に入り込めずに、突起電極16と絶縁樹脂層12との間に空間ができてしまうおそれがある。そして、その空間の発達により、熱応力が生じた際に、そこから突起電極16と絶縁樹脂層12とが剥離しやすくなってしまう。そのため、凹凸は上記範囲内のものであることが好ましい。また所望のアンカー効果が得られる凹凸の程度は、実験によって求めることができる。   Further, the surface roughness Rmax of the side surface of the protruding electrode 16 is 1.0 to 2.0 μm. Here, when the surface roughness of the side surface is less than 1.0 μm in Rmax, it is difficult to obtain a desired anchor effect that can improve the adhesion between the protruding electrode 16 and the insulating resin layer 12, If it is larger than 2.0 μm, the insulating resin layer 12 cannot enter the recess, and there is a possibility that a space is formed between the protruding electrode 16 and the insulating resin layer 12. Then, due to the development of the space, when thermal stress is generated, the protruding electrode 16 and the insulating resin layer 12 are easily peeled from there. Therefore, the unevenness is preferably within the above range. In addition, the degree of unevenness that provides the desired anchor effect can be determined by experiment.

突起電極16の表面には、たとえば電解めっき法あるいは無電解めっき法により形成された、ニッケル(Ni)/金(Au)めっき層などの金属層17が被覆されている。なお、金属層17は設けなくてもよい。   The surface of the protruding electrode 16 is covered with a metal layer 17 such as a nickel (Ni) / gold (Au) plating layer formed by, for example, an electrolytic plating method or an electroless plating method. The metal layer 17 may not be provided.

上述の構成を備えた素子搭載用基板10に半導体素子50が搭載されて半導体モジュール30が形成される。本実施形態の半導体モジュール30は、素子搭載用基板10の突起電極16と、半導体素子50の素子電極52とが絶縁樹脂層12を介して電気的に接続された構造である。   The semiconductor element 50 is mounted on the element mounting substrate 10 having the above-described configuration, and the semiconductor module 30 is formed. The semiconductor module 30 of the present embodiment has a structure in which the protruding electrode 16 of the element mounting substrate 10 and the element electrode 52 of the semiconductor element 50 are electrically connected via the insulating resin layer 12.

半導体素子50は、突起電極16のそれぞれに対向する素子電極52を有する。また、絶縁樹脂層12に接する側の半導体素子50の主表面には、素子電極52が露出するように開口が設けられた素子保護層54が積層されている。素子電極52の表面には、Ni/Auめっき層などの金属層56が被覆されていている。なお、金属層56は設けなくてもよい。半導体素子50の具体例としては、集積回路(IC)、大規模集積回路(LSI)などの半導体チップが挙げられる。素子保護層54の具体例としては、ポリイミド層が挙げられる。また、素子電極52には、たとえばアルミニウム(Al)が用いられる。   The semiconductor element 50 has an element electrode 52 that faces each of the protruding electrodes 16. In addition, an element protection layer 54 having an opening provided so as to expose the element electrode 52 is laminated on the main surface of the semiconductor element 50 on the side in contact with the insulating resin layer 12. The surface of the element electrode 52 is covered with a metal layer 56 such as a Ni / Au plating layer. Note that the metal layer 56 may not be provided. Specific examples of the semiconductor element 50 include semiconductor chips such as an integrated circuit (IC) and a large scale integrated circuit (LSI). A specific example of the element protective layer 54 is a polyimide layer. Further, for example, aluminum (Al) is used for the element electrode 52.

本実施形態においては、絶縁樹脂層12が、素子搭載用基板10と半導体素子50との間に設けられ、素子搭載用基板10が絶縁樹脂層12の一方の主表面に圧着され、半導体素子50が他方の主表面に圧着されている。そして、突起電極16が、絶縁樹脂層12を貫通して、半導体素子50に設けられた素子電極52と電気的に接続されている。絶縁樹脂層12は、加圧により塑性流動を起こす材料からなるため、素子搭載用基板10、絶縁樹脂層12および半導体素子50がこの順で一体化された状態において、突起電極16と素子電極52との間に絶縁樹脂層12の残膜が介在することが抑制され、接続信頼性の向上が図られる。また、突起電極16および素子電極52の表面には、それぞれ金属層17および金属層56が被覆されている。そのため、突起電極16と素子電極52とは、互いの最表面に配置された金同士が接合(金−金接合)するため、突起電極16と素子電極52との接続信頼性がさらに向上する。   In the present embodiment, the insulating resin layer 12 is provided between the element mounting substrate 10 and the semiconductor element 50, and the element mounting substrate 10 is pressure-bonded to one main surface of the insulating resin layer 12. Is crimped to the other main surface. The protruding electrode 16 penetrates the insulating resin layer 12 and is electrically connected to the element electrode 52 provided on the semiconductor element 50. Since the insulating resin layer 12 is made of a material that causes plastic flow when pressed, the protruding electrode 16 and the element electrode 52 are obtained in a state where the element mounting substrate 10, the insulating resin layer 12, and the semiconductor element 50 are integrated in this order. The remaining film of the insulating resin layer 12 is suppressed between the two and the connection reliability is improved. Further, the surfaces of the protruding electrode 16 and the element electrode 52 are covered with the metal layer 17 and the metal layer 56, respectively. For this reason, the protrusion electrode 16 and the element electrode 52 are joined together by gold (gold-gold bond) disposed on the outermost surfaces, so that the connection reliability between the protrusion electrode 16 and the element electrode 52 is further improved.

(素子搭載用基板および半導体モジュールの製造方法)
図2(A)〜(G)は、本実施形態における突起電極16の形成方法を示す工程断面図である。
(Element mounting substrate and semiconductor module manufacturing method)
2A to 2G are process cross-sectional views illustrating a method for forming the protruding electrode 16 in the present embodiment.

図2(A)に示すように、少なくとも、突起電極16の高さと配線層14の厚さとの和より大きい厚さを有する金属板としての銅板13を用意する。ここで、銅板13は圧延銅からなるものである。   As shown in FIG. 2A, a copper plate 13 is prepared as a metal plate having a thickness that is at least greater than the sum of the height of the protruding electrode 16 and the thickness of the wiring layer 14. Here, the copper plate 13 is made of rolled copper.

次に、図2(B)に示すように、リソグラフィ法により、銅板13の一方の主表面に突起電極16のパターンに合わせてレジスト70を選択的に形成する。具体的には、ラミネーター装置を用いて銅板13に所定膜厚のレジスト膜を貼り付け、突起電極16のパターンを有するフォトマスクを用いて露光した後、現像することによって、銅板13の上にレジスト70を選択的に形成する。なお、レジストとの密着性向上のために、レジスト膜のラミネート前に、銅板13の表面に研磨、洗浄等の前処理を必要に応じて施すことが望ましい。   Next, as shown in FIG. 2B, a resist 70 is selectively formed on one main surface of the copper plate 13 in accordance with the pattern of the protruding electrodes 16 by lithography. Specifically, a resist film having a predetermined film thickness is attached to the copper plate 13 using a laminator, exposed using a photomask having a pattern of the protruding electrodes 16, and then developed to form a resist on the copper plate 13. 70 is selectively formed. In order to improve the adhesion to the resist, it is desirable to perform pretreatment such as polishing and washing on the surface of the copper plate 13 as necessary before laminating the resist film.

次に、図2(C)に示すように、レジスト70をマスクとして、銅板13に所定のパターンの突起電極16を形成する。具体的には、レジスト70をマスクとして銅板13をエッチングすることにより、所定のパターンを有する突起電極16を形成する。   Next, as shown in FIG. 2C, a bump electrode 16 having a predetermined pattern is formed on the copper plate 13 using the resist 70 as a mask. Specifically, the bump electrode 16 having a predetermined pattern is formed by etching the copper plate 13 using the resist 70 as a mask.

次に、図2(D)に示すように、レジスト70を剥離剤を用いて剥離した後、突起電極16の頂部面よりも側面の方が表面粗さが大きくなるように、側面に凹凸を形成すべく突起電極16の表面に粗化処理を施す。粗化処理としては、たとえば、CZ処理(登録商標)などの薬液処理、プラズマ処理などが挙げられる。CZ処理では、たとえばギ酸と塩酸の混合液などからなる薬液に銅板13を浸漬し、突起電極16の表面をエッチングすることで突起電極16の表面を粗化する。本実施形態では、銅板13が圧延銅からなるため、突起電極16を形成する銅の結晶粒は、その長軸が突起電極16の頂部面に平行に、短軸が突起電極16の頂部面に略垂直となるように並んでいる。このため、突起電極16表面の粗化処理によって、突起電極16の側面に銅の結晶粒に応じた凹凸を形成するとともに、頂部面を略平坦に保つことができる。また、プラズマ処理の場合は、たとえば600Wの高周波出力、圧力が1.5Paの条件下で、銅板13を所定時間酸素40sccm、塩素60sccmからなるプラズマガス雰囲気に曝し、突起電極16の表面をエッチングすることで突起電極16の表面を粗化する。なお、プラズマ処理の場合には、突起電極16の頂部面を被覆して頂部面が粗化されないようにしておく。   Next, as shown in FIG. 2 (D), the resist 70 is stripped using a stripping agent, and then the side surfaces are roughened so that the surface roughness is larger on the side surface than on the top surface of the bump electrode 16. A roughening process is performed on the surface of the bump electrode 16 so as to be formed. Examples of the roughening treatment include chemical treatment such as CZ treatment (registered trademark), plasma treatment, and the like. In the CZ process, for example, the surface of the bump electrode 16 is roughened by immersing the copper plate 13 in a chemical solution composed of a mixed solution of formic acid and hydrochloric acid and etching the surface of the bump electrode 16. In this embodiment, since the copper plate 13 is made of rolled copper, the major axis of the copper crystal grains forming the bump electrode 16 is parallel to the top surface of the bump electrode 16 and the minor axis is on the top surface of the bump electrode 16. They are lined up so that they are almost vertical. For this reason, by roughening the surface of the bump electrode 16, irregularities corresponding to the copper crystal grains can be formed on the side surface of the bump electrode 16, and the top surface can be kept substantially flat. In the case of plasma processing, the surface of the bump electrode 16 is etched by exposing the copper plate 13 to a plasma gas atmosphere composed of oxygen 40 sccm and chlorine 60 sccm for a predetermined time under a high-frequency output of 600 W and a pressure of 1.5 Pa, for example. As a result, the surface of the bump electrode 16 is roughened. In the case of plasma processing, the top surface of the bump electrode 16 is covered so that the top surface is not roughened.

次に、図2(E)に示すように、リソグラフィ法により、突起電極16の頂部面が露出するようにレジスト71を選択的に形成する。   Next, as shown in FIG. 2E, a resist 71 is selectively formed by lithography so that the top surface of the protruding electrode 16 is exposed.

次に、図2(F)に示すように、突起電極16の頂部面に、たとえば電解めっき法あるいは無電解めっき法により、ニッケル(Ni)/金(Au)めっき層などの金属層17を形成する。前述のように、突起電極16表面の粗化処理によっても突起電極16の頂部面は略平坦に保たれているため、頂部面上に略平坦で厚さムラのない金属層17を形成することができる。   Next, as shown in FIG. 2F, a metal layer 17 such as a nickel (Ni) / gold (Au) plating layer is formed on the top surface of the bump electrode 16 by, for example, an electrolytic plating method or an electroless plating method. To do. As described above, the top surface of the bump electrode 16 is maintained substantially flat even by the roughening treatment of the surface of the bump electrode 16, and therefore, the metal layer 17 having a substantially flat thickness and no unevenness in thickness is formed on the top surface. Can do.

次に、図2(G)に示すように、レジスト71を剥離して除去する。以上説明した工程により、銅板13に突起電極16が形成される。突起電極16における基底部の径、頂部の径、高さは、たとえばそれぞれ、50〜150μmφ、45〜100μmφ、20μmである。また、金属層17のNi層およびAu層の厚さは、たとえばそれぞれ、3.0μm、0.5μmである。   Next, as shown in FIG. 2G, the resist 71 is removed by peeling. Through the steps described above, the bump electrode 16 is formed on the copper plate 13. The diameter of the base portion, the diameter of the top portion, and the height of the protruding electrode 16 are, for example, 50 to 150 μmφ, 45 to 100 μmφ, and 20 μm, respectively. The thicknesses of the Ni layer and the Au layer of the metal layer 17 are, for example, 3.0 μm and 0.5 μm, respectively.

図3(A)〜(F)は、配線層14の形成方法、突起電極16と素子電極52との接続方法を示す工程断面図である。   3A to 3F are process cross-sectional views illustrating a method for forming the wiring layer 14 and a method for connecting the protruding electrode 16 and the element electrode 52.

図3(A)に示すように、突起電極16が絶縁樹脂層12側を向くようにして、銅板13を絶縁樹脂層12の一方の主表面側に配置する。また、突起電極16に対向する素子電極52が設けられた半導体素子50を、絶縁樹脂層12の他方の主表面に配置する。素子電極52には、たとえばNi/Auめっき層などの金属層56が被覆されている。絶縁樹脂層12の厚さは突起電極16の高さ程度であり、約20μmである。そして、プレス装置を用いて、銅板13と半導体素子50とを、絶縁樹脂層12を介して圧着する。プレス加工時の圧力および温度は、それぞれ約5Mpaおよび180℃である。   As shown in FIG. 3A, the copper plate 13 is disposed on one main surface side of the insulating resin layer 12 so that the protruding electrodes 16 face the insulating resin layer 12 side. Further, the semiconductor element 50 provided with the element electrode 52 facing the protruding electrode 16 is disposed on the other main surface of the insulating resin layer 12. The element electrode 52 is covered with a metal layer 56 such as a Ni / Au plating layer. The thickness of the insulating resin layer 12 is about the height of the protruding electrode 16 and is about 20 μm. And the copper plate 13 and the semiconductor element 50 are crimped | bonded via the insulating resin layer 12 using a press apparatus. The pressure and temperature during pressing are about 5 Mpa and 180 ° C., respectively.

プレス加工により、絶縁樹脂層12が塑性流動を起こし、突起電極16が絶縁樹脂層12を貫通する。そして、図3(B)に示すように、銅板13、絶縁樹脂層12および半導体素子50が一体化され、突起電極16と素子電極52とが圧着して、突起電極16と素子電極52とが電気的に接続される。突起電極16と素子電極52とにはそれぞれ金属層17および金属層56が被覆されているため、突起電極16と素子電極52とは金−金接合する。また、突起電極16は、その全体的な形状が先端に近づくにつれて径が細くなるような形状であるため、突起電極16が絶縁樹脂層12をスムースに貫通する。本実施形態では、銅板13を絶縁樹脂層12に圧着することで、突起電極16が形成された側の銅板13の主表面に絶縁樹脂層12を積層している。   By press working, the insulating resin layer 12 causes plastic flow, and the protruding electrodes 16 penetrate the insulating resin layer 12. Then, as shown in FIG. 3B, the copper plate 13, the insulating resin layer 12, and the semiconductor element 50 are integrated, and the protruding electrode 16 and the element electrode 52 are pressure-bonded so that the protruding electrode 16 and the element electrode 52 are connected. Electrically connected. Since the protruding electrode 16 and the element electrode 52 are covered with the metal layer 17 and the metal layer 56, respectively, the protruding electrode 16 and the element electrode 52 are gold-gold bonded. Further, since the protruding electrode 16 has a shape such that the diameter of the protruding electrode 16 becomes smaller as it approaches the tip, the protruding electrode 16 smoothly penetrates the insulating resin layer 12. In the present embodiment, the insulating resin layer 12 is laminated on the main surface of the copper plate 13 on the side where the protruding electrodes 16 are formed by pressure-bonding the copper plate 13 to the insulating resin layer 12.

次に、図3(C)に示すように、リソグラフィ法により、絶縁樹脂層12と反対側の銅板13の主表面に、配線層14のパターンに合わせてレジスト72を選択的に形成する。   Next, as shown in FIG. 3C, a resist 72 is selectively formed on the main surface of the copper plate 13 opposite to the insulating resin layer 12 according to the pattern of the wiring layer 14 by lithography.

次に、図3(D)に示すように、レジスト72をマスクとして銅板13の主表面をエッチングして、銅板13に所定のパターンの配線層14を形成する。その後、レジスト72を剥離する。本実施形態における配線層14の厚さは約20μmである。   Next, as shown in FIG. 3D, the main surface of the copper plate 13 is etched using the resist 72 as a mask to form a wiring layer 14 having a predetermined pattern on the copper plate 13. Thereafter, the resist 72 is peeled off. The thickness of the wiring layer 14 in this embodiment is about 20 μm.

次に、図3(E)に示すように、リソグラフィー法により、はんだバンプ20の形成位置に対応する領域に開口部18aを有する保護層18を、絶縁樹脂層12と反対側の配線層14の主表面に形成する。   Next, as shown in FIG. 3E, the protective layer 18 having the opening 18a in the region corresponding to the position where the solder bump 20 is formed is formed on the wiring layer 14 opposite to the insulating resin layer 12 by lithography. Form on the main surface.

次に、図3(F)に示すように、開口部18a内にはんだバンプ20を形成する。   Next, as shown in FIG. 3F, solder bumps 20 are formed in the openings 18a.

以上説明した製造工程により、半導体モジュール30が形成される。また、半導体素子50を搭載しなかった場合には、素子搭載用基板10が得られる。   The semiconductor module 30 is formed by the manufacturing process described above. Further, when the semiconductor element 50 is not mounted, the element mounting substrate 10 is obtained.

(熱衝撃試験信頼性の評価)
上述の手順により形成した半導体モジュール30(実施例)と、突起電極の表面に粗化処理を施さなかった半導体モジュール(比較例)について、JIS C 0025に規定されている熱衝撃試験を行った結果を表1に示す。表1において、実施例および比較例における表面の凹凸の程度は、以下のようにして測定した。すなわち、まず突起電極の側断面のSEM(走査型電子顕微鏡)画像上で、突起電極の側面および頂部面について、それぞれ任意の10箇所に2点間の直線距離が5μmとなるように2点を設定した。そして、設定した2点間の突起電極表面に沿った道のりを実測した。そして、実測された道のりの値を5μmで除して凹凸の程度を求めた。
(Evaluation of thermal shock test reliability)
Results of conducting a thermal shock test specified in JIS C 0025 on the semiconductor module 30 (Example) formed by the above-described procedure and the semiconductor module (Comparative Example) in which the surface of the protruding electrode was not roughened Is shown in Table 1. In Table 1, the degree of surface irregularities in Examples and Comparative Examples was measured as follows. That is, first, on the SEM (scanning electron microscope) image of the side cross section of the protruding electrode, two points are set so that the linear distance between the two points is 5 μm at any 10 positions on the side surface and the top surface of the protruding electrode. Set. Then, the distance along the surface of the protruding electrode between the two set points was measured. Then, the actually measured road value was divided by 5 μm to obtain the degree of unevenness.

Figure 0005306443
熱衝撃試験を行った結果、比較例の突起電極では絶縁樹脂層12との間の剥離が見られたのに対し、実施例の突起電極16では絶縁樹脂層12との間の剥離は見られなかった。
Figure 0005306443
As a result of the thermal shock test, peeling between the insulating resin layer 12 was observed in the protruding electrode of the comparative example, whereas peeling from the insulating resin layer 12 was observed in the protruding electrode 16 of the example. There wasn't.

以上説明したように、本実施形態の素子搭載用基板10は、突起電極16の側面に粗化処理を施して凹凸を形成して、頂部面に対して側面の表面粗さを大きくしている。このため、凹凸によるアンカー効果によって、突起電極16と絶縁樹脂層12との間の密着性が向上する。これにより、半導体モジュール30の製造工程や、半導体モジュール30のプリント配線基板への実装工程、あるいは使用環境下などにおける温度変化によって熱応力が発生した場合であっても、突起電極16と絶縁樹脂層12との剥離を抑えることができる。   As described above, in the element mounting substrate 10 of the present embodiment, the side surface of the protruding electrode 16 is subjected to a roughening process to form irregularities, thereby increasing the surface roughness of the side surface relative to the top surface. . For this reason, the adhesion between the protruding electrode 16 and the insulating resin layer 12 is improved by the anchor effect due to the unevenness. As a result, even if thermal stress is generated due to temperature changes in the manufacturing process of the semiconductor module 30, the mounting process of the semiconductor module 30 on the printed wiring board, or the usage environment, the protruding electrode 16 and the insulating resin layer 12 can be prevented from peeling.

その結果、素子搭載用基板10に半導体素子50を積層した場合において、突起電極16と素子電極52との間に断線が生じにくくなり、突起電極16と素子電極52との間の接続信頼性が向上する。また、突起電極16の位置決めが確実にできることからも、突起電極16と素子電極52との間の接続信頼性が向上する。さらに、突起電極16表面に粗化処理を施しても突起電極16の頂部面は平坦に保たれるため、突起電極16と素子電極52との間の接触性の低下を防ぐことができ、両者の接続信頼性が向上する。そして、突起電極16と素子電極52との間の接続信頼性が向上するため、半導体モジュール30をプリント配線基板に実装した場合に、半導体モジュール30のプリント配線基板への実装信頼性が向上する。   As a result, when the semiconductor element 50 is stacked on the element mounting substrate 10, disconnection is less likely to occur between the protruding electrode 16 and the element electrode 52, and the connection reliability between the protruding electrode 16 and the element electrode 52 is improved. improves. In addition, since the protruding electrode 16 can be positioned reliably, the connection reliability between the protruding electrode 16 and the element electrode 52 is improved. Furthermore, since the top surface of the protruding electrode 16 is kept flat even when the surface of the protruding electrode 16 is roughened, the contact between the protruding electrode 16 and the element electrode 52 can be prevented from being lowered. Connection reliability is improved. Since the connection reliability between the protruding electrode 16 and the element electrode 52 is improved, the mounting reliability of the semiconductor module 30 on the printed wiring board is improved when the semiconductor module 30 is mounted on the printed wiring board.

(実施形態2)
上述の実施形態1では、金属板として圧延銅からなる銅板13を用いたが、本実施形態では金属板として圧延金属だけでなく電解金属を用いることができる点が実施形態1と異なる。以下、本実施形態について説明する。なお、突起電極16と素子電極52の接続方法は実施形態1と同様であり、実施形態1と同一の構成については同一の符号を付し、その説明は省略する。
(Embodiment 2)
In the first embodiment, the copper plate 13 made of rolled copper is used as the metal plate. However, in the present embodiment, not only the rolled metal but also an electrolytic metal can be used as the metal plate. Hereinafter, this embodiment will be described. In addition, the connection method of the protruding electrode 16 and the element electrode 52 is the same as that of the first embodiment, and the same components as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted.

図4(A)〜(E)は、実施形態2における突起電極16の形成方法を示す工程断面図である。   4A to 4E are process cross-sectional views illustrating a method for forming the protruding electrode 16 in the second embodiment.

図4(A)に示すように、少なくとも、突起電極16の高さと配線層14の厚さとの和より大きい厚さを有する金属板としての銅板13を用意する。ここで、銅板13は圧延銅あるいは電解銅からなるものである。   As shown in FIG. 4A, a copper plate 13 is prepared as a metal plate having a thickness that is at least greater than the sum of the height of the protruding electrode 16 and the thickness of the wiring layer 14. Here, the copper plate 13 is made of rolled copper or electrolytic copper.

次に、図4(B)に示すように、リソグラフィ法により、銅板13の一方の主表面に突起電極16の形成予定領域に開口部73aを有するレジスト73を選択的に形成する。   Next, as shown in FIG. 4B, a resist 73 having an opening 73a in a region where the projected electrode 16 is to be formed is selectively formed on one main surface of the copper plate 13 by lithography.

次に、図4(C)に示すように、開口部73aにおいて露出している銅板13の表面に、たとえば電解めっき法あるいは無電解めっき法により、ニッケル(Ni)/金(Au)めっき層などの金属層17を形成する。銅板13の表面は、粗化処理前であるため略平坦に保たれている。そのため、銅板13の表面に平坦で厚さムラのない金属層17を形成することができる。   Next, as shown in FIG. 4C, a nickel (Ni) / gold (Au) plating layer or the like is formed on the surface of the copper plate 13 exposed in the opening 73a by, for example, electrolytic plating or electroless plating. The metal layer 17 is formed. Since the surface of the copper plate 13 is before the roughening treatment, it is kept substantially flat. Therefore, the metal layer 17 which is flat and has no thickness unevenness can be formed on the surface of the copper plate 13.

次に、図4(D)に示すように、レジスト73を剥離する。   Next, as shown in FIG. 4D, the resist 73 is removed.

次に、図4(E)に示すように、金属層17をマスクとして、銅板13に所定のパターンの突起電極16を形成する。続いて、突起電極16の頂部面よりも側面の方が表面粗さが大きくなるように、側面に凹凸を形成すべく突起電極16の表面に粗化処理を施す。ここで、銅板13として電解銅が用いられた場合、突起電極16を形成する銅の結晶粒は、突起電極16の頂部面に対して垂直に並んでいる。そのため、実施形態1と同様に金属層17を形成する前に突起電極16表面に粗化処理を施すと、頂部面にも凹凸が形成されてしまう。その結果、平坦な金属層17が形成されず、素子電極52との間の接続信頼性が低下してしまう。しかしながら、本実施形態では、粗化処理前に金属層17を形成しているため、銅板13が電解銅からなる場合であっても、突起電極16の頂部面を平坦に保つことができ、その結果、素子電極52との接触面が平坦に保たれる。   Next, as shown in FIG. 4E, a bump electrode 16 having a predetermined pattern is formed on the copper plate 13 using the metal layer 17 as a mask. Subsequently, a roughening process is performed on the surface of the protruding electrode 16 so as to form irregularities on the side surface so that the surface roughness is larger on the side surface than on the top surface of the protruding electrode 16. Here, when electrolytic copper is used as the copper plate 13, the copper crystal grains forming the protruding electrode 16 are aligned vertically to the top surface of the protruding electrode 16. Therefore, when the surface of the bump electrode 16 is roughened before the metal layer 17 is formed as in the first embodiment, irregularities are also formed on the top surface. As a result, the flat metal layer 17 is not formed, and the connection reliability with the element electrode 52 is lowered. However, in this embodiment, since the metal layer 17 is formed before the roughening treatment, the top surface of the protruding electrode 16 can be kept flat even when the copper plate 13 is made of electrolytic copper. As a result, the contact surface with the element electrode 52 is kept flat.

以上説明した工程により、銅板13に突起電極16が形成される。   Through the steps described above, the bump electrode 16 is formed on the copper plate 13.

本実施形態によれば、実施形態1の上述の効果に加えて、さらに次のような効果が得られる。すなわち、本実施形態では、突起電極16表面に粗化処理を施す前に、突起電極16の頂部面に金属層17を形成しているため、銅板13に電解銅を用いた場合であっても、突起電極16の頂部面を平坦に保つことができる。そのため、銅板13に電解銅を用いた場合であっても、突起電極16と絶縁樹脂層12との密着性を向上させつつ、突起電極16と素子電極52との接続信頼性を向上させることができる。また、金属層17を突起電極16形成時のマスクとして用いているため、素子搭載用基板10の製造工程数を削減することができる。   According to the present embodiment, in addition to the above-described effects of the first embodiment, the following effects are further obtained. That is, in this embodiment, since the metal layer 17 is formed on the top surface of the bump electrode 16 before the surface of the bump electrode 16 is roughened, even when electrolytic copper is used for the copper plate 13. The top surface of the protruding electrode 16 can be kept flat. Therefore, even when electrolytic copper is used for the copper plate 13, it is possible to improve the connection reliability between the protruding electrode 16 and the element electrode 52 while improving the adhesion between the protruding electrode 16 and the insulating resin layer 12. it can. In addition, since the metal layer 17 is used as a mask when forming the bump electrodes 16, the number of manufacturing steps of the element mounting substrate 10 can be reduced.

(実施形態3)
次に、本発明の半導体モジュールを備えた携帯機器について説明する。なお、携帯機器として携帯電話に搭載する例を示すが、たとえば、個人用携帯情報端末(PDA)、デジタルビデオカメラ(DVC)、及びデジタルスチルカメラ(DSC)といった電子機器であってもよい。
(Embodiment 3)
Next, a portable device provided with the semiconductor module of the present invention will be described. In addition, although the example mounted in a mobile telephone is shown as a portable apparatus, electronic devices, such as a personal digital assistant (PDA), a digital video camera (DVC), and a digital still camera (DSC), may be sufficient, for example.

図5は本発明の実施形態に係る半導体モジュール30を備えた携帯電話の構成を示す図である。携帯電話111は、第1の筐体112と第2の筐体114が可動部120によって連結される構造になっている。第1の筐体112と第2の筐体114は可動部120を軸として回動可能である。第1の筐体112には文字や画像等の情報を表示する表示部118やスピーカ部124が設けられている。第2の筐体114には操作用ボタンなどの操作部122やマイク部126が設けられている。なお、本発明の各実施形態に係る半導体モジュール30はこうした携帯電話111の内部に搭載されている。   FIG. 5 is a diagram showing a configuration of a mobile phone including the semiconductor module 30 according to the embodiment of the present invention. The mobile phone 111 has a structure in which a first housing 112 and a second housing 114 are connected by a movable portion 120. The first housing 112 and the second housing 114 can be rotated about the movable portion 120 as an axis. The first housing 112 is provided with a display unit 118 and a speaker unit 124 that display information such as characters and images. The second housing 114 is provided with an operation unit 122 such as operation buttons and a microphone unit 126. The semiconductor module 30 according to each embodiment of the present invention is mounted inside such a mobile phone 111.

図6は図5に示した携帯電話の部分断面図(第1の筐体112の断面図)である。本発明の各実施形態に係る半導体モジュール30は、はんだバンプ20を介してプリント基板128に搭載され、こうしたプリント基板128を介して表示部118などと電気的に接続されている。また、半導体モジュール30の裏面側(はんだバンプ20とは反対側の面)には金属基板などの放熱基板116が設けられ、たとえば、半導体モジュール30から発生する熱を第1の筐体112内部に篭もらせることなく、効率的に第1の筐体112の外部に放熱することができるようになっている。   6 is a partial cross-sectional view (cross-sectional view of the first casing 112) of the mobile phone shown in FIG. The semiconductor module 30 according to each embodiment of the present invention is mounted on the printed board 128 via the solder bumps 20 and is electrically connected to the display unit 118 and the like via the printed board 128. Further, a heat radiating substrate 116 such as a metal substrate is provided on the back surface side of the semiconductor module 30 (the surface opposite to the solder bumps 20). For example, heat generated from the semiconductor module 30 is transferred into the first housing 112. It is possible to efficiently dissipate heat to the outside of the first housing 112 without stagnation.

本発明の実施形態に係る素子搭載用基板10および半導体モジュール30によれば、半導体モジュール30のプリント配線基板への実装信頼性が向上する。そのため、こうした半導体モジュール30を搭載した本実施形態に係る携帯機器については、その信頼性が向上する。   According to the element mounting substrate 10 and the semiconductor module 30 according to the embodiment of the present invention, the mounting reliability of the semiconductor module 30 on the printed wiring board is improved. Therefore, the reliability of the portable device according to the present embodiment on which such a semiconductor module 30 is mounted is improved.

本発明は、上述の各実施形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれうるものである。   The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art, and the embodiments to which such modifications are added are also possible. It can be included in the scope of the present invention.

たとえば、上述の実施形態では、素子搭載用基板の配線層は単層であったが、これに限定されず、配線層はさらに多層化したものであってもよい。また、配線層の最外面にはんだバンプが形成されているが、これに限定されない。たとえば、配線層にMOSトランジスタを接着し、MOSトランジスタのソース電極、ドレイン電極およびゲート電極を配線層に電気的に接続してもよい。   For example, in the above-described embodiment, the wiring layer of the element mounting substrate is a single layer, but is not limited to this, and the wiring layer may be further multilayered. Moreover, although solder bumps are formed on the outermost surface of the wiring layer, the present invention is not limited to this. For example, a MOS transistor may be bonded to the wiring layer, and the source electrode, drain electrode, and gate electrode of the MOS transistor may be electrically connected to the wiring layer.

また、本発明の構成は、ウエハレベルCSP(Chip Size Package)プロセスと呼ばれる半導体パッケージの製造プロセスに適用することができる。これによれば、半導体モジュールの薄型化・小型化を図ることができる。   Further, the configuration of the present invention can be applied to a semiconductor package manufacturing process called a wafer level CSP (Chip Size Package) process. According to this, the semiconductor module can be reduced in thickness and size.

10 素子搭載用基板、 12 絶縁樹脂層、 14 配線層、 16 突起電極、 18 保護層、 20 はんだバンプ、 30 半導体モジュール、 50 半導体素子、 52 素子電極、 54 素子保護層。   10 element mounting substrate, 12 insulating resin layer, 14 wiring layer, 16 protruding electrode, 18 protective layer, 20 solder bump, 30 semiconductor module, 50 semiconductor element, 52 element electrode, 54 element protective layer.

Claims (7)

絶縁樹脂層と、
前記絶縁樹脂層の一方の主表面に設けられた圧延銅からなる配線層と、
前記配線層と一体的に形成され、前記配線層から前記絶縁樹脂層側に突出している突起電極と、を備え、
前記突起電極の側面に、前記圧延銅の結晶粒の並びに起因する凹凸が形成され、前記突起電極の頂部面、及び前記配線層の前記突起電極側の主表面よりも前記突起電極の側面の方が表面粗さが大きいことを特徴とする素子搭載用基板。
An insulating resin layer;
A wiring layer made of rolled copper provided on one main surface of the insulating resin layer;
A protruding electrode formed integrally with the wiring layer and protruding from the wiring layer toward the insulating resin layer,
Concavities and convexities resulting from the alignment of the rolled copper crystal grains are formed on the side surface of the protruding electrode, and the side surface of the protruding electrode is more than the top surface of the protruding electrode and the main surface of the wiring layer on the protruding electrode side. A device mounting board characterized by having a large surface roughness.
前記凹凸は、前記側面上の任意の2点間の直線距離に対する、前記2点間の凹凸の表面に沿った道のりの割合が、1.22より大きいものであることを特徴とする請求項1に記載の素子搭載用基板。   The ratio of the path along the surface of the unevenness between the two points to the linear distance between any two points on the side surface is greater than 1.22 in the unevenness. The element mounting substrate described in 1. 前記側面の表面粗さRmaxは、1.0〜2.0μmであることを特徴とする請求項1に記載の素子搭載用基板。   The element mounting substrate according to claim 1, wherein a surface roughness Rmax of the side surface is 1.0 to 2.0 μm. 請求項1ないし3のいずれか1項に記載の素子搭載用基板と、前記突起電極に対向する素子電極が設けられた半導体素子と、を備え、
前記突起電極が前記絶縁樹脂層を貫通し、前記突起電極と前記素子電極とが電気的に接続されていることを特徴とする半導体モジュール。
An element mounting substrate according to any one of claims 1 to 3 , and a semiconductor element provided with an element electrode facing the protruding electrode,
The semiconductor module, wherein the protruding electrode penetrates the insulating resin layer, and the protruding electrode and the element electrode are electrically connected.
突起電極が一体的に突設され、圧延銅からなる金属板を準備する工程と、
前記突起電極の側面に、前記圧延銅の結晶粒の並びに起因する凹凸を形成し、当該側面の表面粗さを前記突起電極の頂部面、及び前記金属板の前記突起電極側の主表面の表面粗さよりも大きくする粗化工程と、
前記突起電極が形成された側の前記金属板の主表面に絶縁樹脂層を積層する工程と、
前記金属板を選択的に除去して配線層を形成する工程と、
を含むことを特徴とする素子搭載用基板の製造方法。
A step in which protruding electrodes are integrally projected and a metal plate made of rolled copper is prepared;
On the side surface of the protruding electrode, irregularities resulting from the alignment of the crystal grains of the rolled copper are formed, and the surface roughness of the side surface is determined from the top surface of the protruding electrode and the surface of the main surface of the metal plate on the protruding electrode side. A roughening step that is larger than the roughness,
Laminating an insulating resin layer on the main surface of the metal plate on the side where the protruding electrodes are formed;
Forming the wiring layer by selectively removing the metal plate;
A method for manufacturing an element mounting board, comprising:
突起電極が一体的に突設され、圧延銅からなる金属板を準備する工程と、
前記突起電極の側面に、前記圧延銅の結晶粒の並びに起因する凹凸を形成し、当該側面の表面粗さを前記突起電極の頂部面、及び前記金属板の前記突起電極側の主表面の表面粗さよりも大きくする粗化工程と、
前記金属板と、前記突起電極に対応する素子電極が設けられた半導体素子とを、絶縁樹脂層を介して圧着し、前記突起電極が前記絶縁樹脂層を貫通することにより、前記突起電極と前記素子電極とを電気的に接続させる圧着工程と、
前記金属板を選択的に除去して配線層を形成する工程と、
を含むことを特徴とする半導体モジュールの製造方法。
A step in which protruding electrodes are integrally projected and a metal plate made of rolled copper is prepared;
On the side surface of the protruding electrode, irregularities resulting from the alignment of the crystal grains of the rolled copper are formed, and the surface roughness of the side surface is determined from the top surface of the protruding electrode and the surface of the main surface of the metal plate on the protruding electrode side. A roughening step that is larger than the roughness,
The metal plate and a semiconductor element provided with an element electrode corresponding to the protruding electrode are pressure-bonded via an insulating resin layer, and the protruding electrode penetrates the insulating resin layer. A crimping step for electrically connecting the device electrodes;
Forming the wiring layer by selectively removing the metal plate;
A method for manufacturing a semiconductor module, comprising:
前記絶縁樹脂層は、加圧によって塑性流動を起こすことを特徴とする請求項6に記載の半導体モジュールの製造方法。 The method for manufacturing a semiconductor module according to claim 6 , wherein the insulating resin layer causes plastic flow by pressurization.
JP2011285081A 2011-12-27 2011-12-27 Device mounting substrate, device mounting substrate manufacturing method, semiconductor module, and semiconductor module manufacturing method Active JP5306443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285081A JP5306443B2 (en) 2011-12-27 2011-12-27 Device mounting substrate, device mounting substrate manufacturing method, semiconductor module, and semiconductor module manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011285081A JP5306443B2 (en) 2011-12-27 2011-12-27 Device mounting substrate, device mounting substrate manufacturing method, semiconductor module, and semiconductor module manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008022011A Division JP2009182272A (en) 2008-01-31 2008-01-31 Device mounting board and method of manufacturing same, semiconductor module and method of manufacturing the same, and portable device

Publications (2)

Publication Number Publication Date
JP2012064981A JP2012064981A (en) 2012-03-29
JP5306443B2 true JP5306443B2 (en) 2013-10-02

Family

ID=46060293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285081A Active JP5306443B2 (en) 2011-12-27 2011-12-27 Device mounting substrate, device mounting substrate manufacturing method, semiconductor module, and semiconductor module manufacturing method

Country Status (1)

Country Link
JP (1) JP5306443B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6402217B2 (en) * 2017-03-15 2018-10-10 アオイ電子株式会社 Semiconductor device and manufacturing method of semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769587B2 (en) * 2000-11-01 2006-04-26 株式会社ノース Wiring circuit member, manufacturing method thereof, multilayer wiring circuit board, and semiconductor integrated circuit device
JP2004095911A (en) * 2002-08-30 2004-03-25 Dainippon Printing Co Ltd Printed wiring board, method of manufacturing the same, and conductor plate with bump
JP2004095913A (en) * 2002-08-30 2004-03-25 Dainippon Printing Co Ltd Printed wiring board and its manufacturing method
JP2006310530A (en) * 2005-04-28 2006-11-09 Sanyo Electric Co Ltd Circuit device and its manufacturing process
JP4568215B2 (en) * 2005-11-30 2010-10-27 三洋電機株式会社 CIRCUIT DEVICE AND CIRCUIT DEVICE MANUFACTURING METHOD
JP2009182272A (en) * 2008-01-31 2009-08-13 Sanyo Electric Co Ltd Device mounting board and method of manufacturing same, semiconductor module and method of manufacturing the same, and portable device

Also Published As

Publication number Publication date
JP2012064981A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5091600B2 (en) Semiconductor module, semiconductor module manufacturing method, and portable device
US8438724B2 (en) Method for producing substrate for mounting device and method for producing a semiconductor module
JP5135246B2 (en) Semiconductor module, method for manufacturing the same, and portable device
JP2009182272A (en) Device mounting board and method of manufacturing same, semiconductor module and method of manufacturing the same, and portable device
US7492045B2 (en) Semiconductor module, method for manufacturing semiconductor modules and mobile device
JP2010087229A (en) Semiconductor module, method of manufacturing semiconductor module, and portable device
JP2009224581A (en) Element mounting substrate and method of manufacturing the same, semiconductor module and method of manufacturing the same, electrode structure, and portable device
JP2009158830A (en) Substrate for mounting element and manufacturing method thereof, semiconductor module and manufacturing method thereof, and portable equipment
JP5134899B2 (en) Semiconductor module, semiconductor module manufacturing method, and portable device
JP5028291B2 (en) Device mounting substrate, device mounting substrate manufacturing method, semiconductor module, and semiconductor module manufacturing method
US20100140797A1 (en) Device mounting board and method of manufacturing the board, semiconductor module and method of manufacturing the module
JP5295211B2 (en) Manufacturing method of semiconductor module
JP5306443B2 (en) Device mounting substrate, device mounting substrate manufacturing method, semiconductor module, and semiconductor module manufacturing method
JP5061010B2 (en) Semiconductor module
JP5022963B2 (en) Projection electrode structure, element mounting substrate and manufacturing method thereof, semiconductor module, and portable device
JP5002633B2 (en) Semiconductor module and portable device
JP2009158751A (en) Substrate for mounting element and method of manufacturing the same, semiconductor module and method of manufacturing the same and portable device
JP2009212114A (en) Structure of protruding electrode, substrate for mounting element and its manufacturing method, semiconductor module, and portable device
JP5140565B2 (en) Device mounting substrate, semiconductor module, and portable device
JP2011082447A (en) Substrate for element mounting, semiconductor module, and portable equipment
JP2010010601A (en) Semiconductor module, manufacturing method thereof, and portable device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130625

R151 Written notification of patent or utility model registration

Ref document number: 5306443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151