JP5304376B2 - Method for producing composite particles - Google Patents
Method for producing composite particles Download PDFInfo
- Publication number
- JP5304376B2 JP5304376B2 JP2009075767A JP2009075767A JP5304376B2 JP 5304376 B2 JP5304376 B2 JP 5304376B2 JP 2009075767 A JP2009075767 A JP 2009075767A JP 2009075767 A JP2009075767 A JP 2009075767A JP 5304376 B2 JP5304376 B2 JP 5304376B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- particles
- iron
- organic solvent
- complex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011246 composite particle Substances 0.000 title claims description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 33
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 225
- 239000002245 particle Substances 0.000 claims description 84
- 229910052742 iron Inorganic materials 0.000 claims description 82
- 239000003960 organic solvent Substances 0.000 claims description 35
- 239000008139 complexing agent Substances 0.000 claims description 32
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 26
- 229930195733 hydrocarbon Natural products 0.000 claims description 23
- 150000002430 hydrocarbons Chemical class 0.000 claims description 23
- 150000002910 rare earth metals Chemical class 0.000 claims description 23
- 229910001004 magnetic alloy Inorganic materials 0.000 claims description 22
- 239000004215 Carbon black (E152) Substances 0.000 claims description 21
- 239000011247 coating layer Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 11
- 150000003973 alkyl amines Chemical class 0.000 claims description 7
- 239000010954 inorganic particle Substances 0.000 claims description 4
- 239000002923 metal particle Substances 0.000 claims description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 2
- PDFUEMBBOLBTRB-UHFFFAOYSA-N iron;pentane Chemical compound [Fe].CCCCC PDFUEMBBOLBTRB-UHFFFAOYSA-N 0.000 claims 1
- 239000002105 nanoparticle Substances 0.000 description 31
- 239000000243 solution Substances 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 21
- 239000000843 powder Substances 0.000 description 20
- 238000005979 thermal decomposition reaction Methods 0.000 description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 16
- 239000001301 oxygen Substances 0.000 description 16
- 229910052760 oxygen Inorganic materials 0.000 description 16
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 12
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 11
- 239000010949 copper Substances 0.000 description 11
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 9
- 238000009835 boiling Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- LAWOZCWGWDVVSG-UHFFFAOYSA-N dioctylamine Chemical compound CCCCCCCCNCCCCCCCC LAWOZCWGWDVVSG-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000011259 mixed solution Substances 0.000 description 7
- 239000002114 nanocomposite Substances 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 230000005415 magnetization Effects 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000009918 complex formation Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910001172 neodymium magnet Inorganic materials 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000006356 dehydrogenation reaction Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229940087654 iron carbonyl Drugs 0.000 description 3
- 239000002122 magnetic nanoparticle Substances 0.000 description 3
- 239000006247 magnetic powder Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- XTAZYLNFDRKIHJ-UHFFFAOYSA-N n,n-dioctyloctan-1-amine Chemical compound CCCCCCCCN(CCCCCCCC)CCCCCCCC XTAZYLNFDRKIHJ-UHFFFAOYSA-N 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000521 B alloy Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000536 complexating effect Effects 0.000 description 2
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000007323 disproportionation reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- LZKLAOYSENRNKR-LNTINUHCSA-N iron;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Fe].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O LZKLAOYSENRNKR-LNTINUHCSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 210000003739 neck Anatomy 0.000 description 2
- RZJRJXONCZWCBN-UHFFFAOYSA-N octadecane Chemical compound CCCCCCCCCCCCCCCCCC RZJRJXONCZWCBN-UHFFFAOYSA-N 0.000 description 2
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- NKJOXAZJBOMXID-UHFFFAOYSA-N 1,1'-Oxybisoctane Chemical compound CCCCCCCCOCCCCCCCC NKJOXAZJBOMXID-UHFFFAOYSA-N 0.000 description 1
- BTOOAFQCTJZDRC-UHFFFAOYSA-N 1,2-hexadecanediol Chemical compound CCCCCCCCCCCCCCC(O)CO BTOOAFQCTJZDRC-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- QVYYOKWPCQYKEY-UHFFFAOYSA-N [Fe].[Co] Chemical compound [Fe].[Co] QVYYOKWPCQYKEY-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- -1 ethylene glycol Chemical class 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229940038384 octadecane Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000002490 spark plasma sintering Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
本発明は、基材粒子の表面が異種材料で被覆された複合粒子の製造方法に関し、特に、基材粒子の表面が鉄で被覆された複合粒子の製造方法に関する。 The present invention relates to a method for producing composite particles in which the surface of base particles is coated with a different material, and more particularly to a method for producing composite particles in which the surfaces of base particles are coated with iron.
Nd−Fe−B系永久磁石に代表される希土類系永久磁石は高い磁気特性を有することから、各種回転機器、磁気共鳴診断装置(MRI)、ハードディスクドライブのボイスコイルモータ(VCM)など幅広い用途で使用されている。近年、更に高い磁気特性を得るために、希土類系合金粉末と鉄や鉄−コバルト合金などの高磁化材料とを複合化したバルクコンポジット磁石またはバルクナノコンポジット磁石が検討されている。ナノコンポジット磁石は交換スプリング磁石と呼ばれることもある。これらの磁石は、磁石中の希土類元素の割合を従来のNd−Fe−B系焼結磁石よりも低くできることから、省希土類の材料としても注目されている。 Since rare earth permanent magnets represented by Nd-Fe-B permanent magnets have high magnetic properties, they can be used in a wide range of applications, including various rotating equipment, magnetic resonance diagnostic equipment (MRI), and voice coil motors (VCM) for hard disk drives. It is used. In recent years, bulk composite magnets or bulk nanocomposite magnets in which a rare earth alloy powder and a highly magnetized material such as iron or iron-cobalt alloy are combined have been studied in order to obtain even higher magnetic properties. Nanocomposite magnets are sometimes called exchange spring magnets. These magnets are attracting attention as rare earth-saving materials because the ratio of rare earth elements in the magnet can be lower than that of conventional Nd—Fe—B based sintered magnets.
特許文献1には、ナノ粒子を用いてナノコンポジット磁石を製造する方法が開示されている。特許文献1に記載の製造方法では、ハード磁性ナノ粒子とソフト磁性ナノ粒子をそれぞれ作製し、これらを混合して磁界中成形を行なった後、熱処理を施すことによって、異方性ナノコンポジット磁石を得ている。ソフト磁性ナノ粒子であるFeナノ粒子は、ジ−n−オクチルエーテルに鉄アセチルアセトナート錯体を加熱溶解した後、還元剤である1,2−ヘキサデカンジオールを添加して高温で保持することによって製造される。この方法では、界面活性剤としてオレイルアミン、オレイン酸を溶液に添加することにより、生成されたFeナノ粒子の分散性を保っている。 Patent Document 1 discloses a method for producing a nanocomposite magnet using nanoparticles. In the manufacturing method described in Patent Document 1, hard magnetic nanoparticles and soft magnetic nanoparticles are respectively prepared, mixed, formed in a magnetic field, and then subjected to heat treatment, whereby an anisotropic nanocomposite magnet is obtained. It has gained. Fe nanoparticles, which are soft magnetic nanoparticles, are produced by heating and dissolving an iron acetylacetonate complex in di-n-octyl ether, and then adding 1,2-hexadecanediol, which is a reducing agent, and maintaining it at a high temperature. Is done. In this method, the dispersibility of the produced Fe nanoparticles is maintained by adding oleylamine and oleic acid as surfactants to the solution.
また、非特許文献1には、鉄ペンタカルボニル(Fe(CO)5)から生成されたFeナノ粒子を用いた、異方性ナノコンポジット磁石の製造方法が開示されている。鉄ペンタカルボニル錯体のFeの価数は0であるので、特許文献1に記載の鉄アセチルアセトナート錯体のように、還元する必要がない。非特許文献2に記載の製造方法では、まず、超急冷Nd−Fe−B磁性合金粉末を含む、氷水温度のデカンを溶媒とした懸濁液に鉄ペンタカルボニルを混合し、超音波で鉄ペンタカルボニルを分解させることにより、Nd−Fe−B磁性合金粒子の表面にFeナノ粒子が付着した複合粒子を作製する。得られた複合粒子からなる粉末をスパークプラズマ焼結法で熱間プレスし緻密化することによって、ナノコンポジットバルク磁石が得られる。 Non-Patent Document 1 discloses a method for producing an anisotropic nanocomposite magnet using Fe nanoparticles generated from iron pentacarbonyl (Fe (CO) 5 ). Since the valence of Fe in the iron pentacarbonyl complex is 0, it is not necessary to reduce it like the iron acetylacetonate complex described in Patent Document 1. In the production method described in Non-Patent Document 2, first, iron pentacarbonyl is mixed with a suspension containing decane at an ice water temperature, containing ultra-quenched Nd—Fe—B magnetic alloy powder, and the iron pentacarbonyl is ultrasonically mixed. By decomposing carbonyl, composite particles in which Fe nanoparticles are adhered to the surface of Nd—Fe—B magnetic alloy particles are produced. A nanocomposite bulk magnet can be obtained by hot pressing the resulting composite particle powder with a spark plasma sintering method and densifying the powder.
Feナノ粒子は、例えば非特許文献2に開示されているように、鉄ペンタカルボニル錯体を熱分解することによっても製造することができる。鉄ペンタカルボニル錯体のFeの価数は0であるので、熱分解するだけで、Fe(CO)5→Fe+5CO↑の反応により、直接、金属状態の鉄を生成する。非特許文献1によると、界面活性剤を共存させた有機溶媒中で鉄ペンタカルボニル錯体を熱分解することが好ましい。 For example, as disclosed in Non-Patent Document 2, Fe nanoparticles can be produced by thermally decomposing an iron pentacarbonyl complex. Since the valence of Fe in the iron pentacarbonyl complex is 0, iron in a metallic state is directly generated by a reaction of Fe (CO) 5 → Fe + 5CO ↑ only by thermal decomposition. According to Non-Patent Document 1, it is preferable to thermally decompose the iron pentacarbonyl complex in an organic solvent in which a surfactant coexists.
しかしながら、本発明者が、鉄ペンタカルボニル錯体を熱分解することによって得られたFeナノ粒子を用いて、異方性ナノコノポジット磁石を製造する方法を検討したところ、後に実験例を示して説明するように、Feナノ粒子が酸化されている、あるいは、Feナノ粒子の表面に界面活性剤が吸着されており、磁気特性を低下させる恐れがあることが分かった。すなわち、酸素や界面活性剤を含むナノ粒子と希土類磁性合金粒子との混合物を熱間成形すると、希土類磁性合金粒子、特に希土類元素が、酸化、炭化、あるいは窒化され、磁気特性が低下することがある。 However, the present inventor has studied a method for producing an anisotropic nanoconoposite magnet using Fe nanoparticles obtained by thermally decomposing an iron pentacarbonyl complex. Thus, it has been found that the Fe nanoparticles are oxidized, or the surfactant is adsorbed on the surface of the Fe nanoparticles, which may deteriorate the magnetic properties. That is, when a mixture of nanoparticles containing oxygen or a surfactant and rare earth magnetic alloy particles is hot-formed, rare earth magnetic alloy particles, particularly rare earth elements, are oxidized, carbonized, or nitrided, and the magnetic properties may deteriorate. is there.
このように、鉄ペンタカルボニル錯体を熱分解することによって得られたFeナノ粒子を用いると、酸素や界面活性剤の構成元素などの不要な元素が含まれることになる。これは、希土類磁性合金粒子を用いる場合に限られず、他の基材粒子の場合にも起こる問題である。 As described above, when Fe nanoparticles obtained by thermally decomposing an iron pentacarbonyl complex are used, unnecessary elements such as oxygen and constituent elements of a surfactant are included. This is a problem that occurs not only when rare earth magnetic alloy particles are used but also when other base particles are used.
本発明は、上記の問題を解決するためになされたものであり、その目的は、希土類磁性合金粒子のような基材粒子の表面に、酸素などの不要な元素の含有量の少ない鉄の被覆層が形成された複合粒子を製造する方法を提供することにある。 The present invention has been made in order to solve the above-described problems, and its purpose is to coat the surface of a base material particle such as a rare earth magnetic alloy particle with a low content of unnecessary elements such as oxygen. It is providing the method of manufacturing the composite particle in which the layer was formed.
本発明の複合粒子の製造方法は、平均粒子径が0.1μm以上1000μm以下の基材粒子を、103℃未満の第1の温度で、鉄ペンタカルボニル錯体を含む炭化水素系有機溶媒中に存在させる工程(a)と、120℃以上170℃未満の第2の温度で、前記炭化水素系有機溶媒中において前記鉄ペンタカルボニル錯体を熱分解させる工程(b)と、前記第2の温度より高く、且つ、240℃以下の第3の温度で、前記炭化水素系有機溶媒中において前記鉄ペンタカルボニル錯体をさらに熱分解させる工程(c)とを包含し、前記基材粒子の表面に鉄の被覆層を有する複合粒子を製造することを特徴とする。 In the method for producing composite particles of the present invention, base particles having an average particle size of 0.1 μm or more and 1000 μm or less are present in a hydrocarbon-based organic solvent containing an iron pentacarbonyl complex at a first temperature of less than 103 ° C. A step (a), a step (b) of thermally decomposing the iron pentacarbonyl complex in the hydrocarbon-based organic solvent at a second temperature of 120 ° C. or higher and lower than 170 ° C., and higher than the second temperature. And a step (c) of further thermally decomposing the iron pentacarbonyl complex in the hydrocarbon organic solvent at a third temperature of 240 ° C. or lower, and coating the surface of the substrate particles with iron It is characterized by producing composite particles having a layer.
ある実施形態において、前記工程(a)において、前記炭化水素系有機溶媒にさらにアルキルアミン系の錯化剤を含有させる。 In one embodiment, in the step (a), the hydrocarbon organic solvent further contains an alkylamine complexing agent.
ある実施形態において、前記アルキルアミン系の錯化剤の鉄ペンタカルボニル錯体に対するモル比が、0.02以上0.2以下である。 In one embodiment, the molar ratio of the alkylamine complexing agent to the iron pentacarbonyl complex is 0.02 or more and 0.2 or less.
ある実施形態において、前記工程(b)と前記工程(c)との間に、前記第2の温度より高く、かつ、前記第3の温度より低い第4の温度で、前記炭化水素系有機溶媒中において前記鉄ペンタカルボニル錯体をさらに熱分解させる工程(d)を更に包含する。 In one embodiment, between the step (b) and the step (c), the hydrocarbon-based organic solvent at a fourth temperature that is higher than the second temperature and lower than the third temperature. The method further includes a step (d) of further thermally decomposing the iron pentacarbonyl complex.
ある実施形態において、前記基材粒子は、金属粒子または無機粒子である。 In one embodiment, the substrate particles are metal particles or inorganic particles.
ある実施形態において、前記基材粒子は、希土類磁性合金粒子である。 In one embodiment, the base particle is a rare earth magnetic alloy particle.
ある実施形態において、前記希土類磁性合金粒子は、HDDR法によって得られた希土類磁性合金粒子である。 In one embodiment, the rare earth magnetic alloy particles are rare earth magnetic alloy particles obtained by the HDDR method.
本発明の複合粒子は、上記のいずれかの製造方法によって製造された複合粒子である。 The composite particle of the present invention is a composite particle produced by any one of the production methods described above.
本発明によると、希土類磁性合金粒子のような基材粒子の表面に、酸素などの不要な元素の含有量の少ない鉄の被覆層が形成された複合粒子を製造する方法が提供される。 According to the present invention, there is provided a method for producing composite particles in which an iron coating layer having a low content of unnecessary elements such as oxygen is formed on the surface of base material particles such as rare earth magnetic alloy particles.
以下に、実験例を示しながら、図面を参照して本発明による実施形態の複合粒子の製造方法を説明する。 Hereinafter, a method for producing composite particles according to an embodiment of the present invention will be described with reference to the drawings while showing experimental examples.
図1に、本発明による複合粒子10の製造方法を説明するための模式図を示す。本発明による実施形態の製造方法によって得られる複合粒子10は、基材粒子12の表面に鉄の被覆層14を有する。また、図2に、本発明による複合粒子の製造方法における温度制御を説明するための温度スキームを示す。 In FIG. 1, the schematic diagram for demonstrating the manufacturing method of the composite particle 10 by this invention is shown. The composite particle 10 obtained by the manufacturing method of the embodiment according to the present invention has an iron coating layer 14 on the surface of the base particle 12. FIG. 2 shows a temperature scheme for explaining temperature control in the method for producing composite particles according to the present invention.
本発明による実施形態の複合粒子の製造方法は、鉄ペンタカルボニル錯体を炭化水素系有機溶媒中で熱分解させることによって、有機溶媒中に存在する基材粒子の表面に鉄を直接析出させる。このとき、従来のナノ粒子合成では最終的な熱分解温度まで一気に昇温し、溶液中でナノ粒子の核生成を促進させ、例えば最終的に粒径の揃ったナノ粒子を生成させていたのに対し、本発明では、鉄ペンタカルボニル錯体の熱分解によるFeナノ粒子の生成を抑制するために、熱分解させる温度を段階的にあるいはゆっくりと上昇させ、基材粒子の表面で選択的に鉄の核を生成させることによって、Fe被覆層を形成させる。また、有機溶媒中に適量の錯化剤を含有させることによって、錯化剤が適度に結合した鉄ペンタカルボニルから基材表面で選択的に核生成が起こって鉄が析出することにより、Feナノ粒子の生成が抑制される。 In the method for producing composite particles according to the embodiment of the present invention, iron is directly deposited on the surface of base particles present in an organic solvent by thermally decomposing an iron pentacarbonyl complex in a hydrocarbon-based organic solvent. At this time, in conventional nanoparticle synthesis, the temperature was raised to the final pyrolysis temperature all at once, promoting the nucleation of nanoparticles in the solution, for example, finally producing nanoparticles with uniform particle sizes. On the other hand, in the present invention, in order to suppress the formation of Fe nanoparticles due to the thermal decomposition of the iron pentacarbonyl complex, the temperature for thermal decomposition is increased stepwise or slowly, and the iron particles are selectively selected on the surface of the base particles. The Fe coating layer is formed by generating nuclei. Further, by containing an appropriate amount of complexing agent in the organic solvent, iron nucleation selectively occurs on the substrate surface from iron pentacarbonyl to which the complexing agent is appropriately bound, and iron is precipitated, thereby causing Fe nano-particles to precipitate. Particle formation is suppressed.
溶液中でFeナノ粒子が生成されると、図7(a)に模試的に示すように、基材粒子52の表面にFeナノ粒子54が付着した複合粒子50が生成される。なお、Feナノ粒子54は、図7(b)に模式的に示すように、鉄のコア56とその表面に吸着された界面活性剤58を有している。従って、Feナノ粒子54が生成されると、不要な元素が含まれることになる。 When Fe nanoparticles are generated in the solution, composite particles 50 in which Fe nanoparticles 54 are attached to the surface of the base particle 52 are generated as schematically shown in FIG. The Fe nanoparticles 54 have an iron core 56 and a surfactant 58 adsorbed on the surface thereof, as schematically shown in FIG. 7B. Therefore, when the Fe nanoparticles 54 are generated, unnecessary elements are included.
また、本発明による実施形態の複合粒子の製造方法によると、基材粒子の表面に優先的に鉄が析出し被覆層(皮膜)が形成されるので、Feナノ粒子が付着した場合に比べ、比表面積が小さい。その結果、鉄の酸化や界面活性剤の取り込みに起因する酸素や炭素などの不要な元素の量を低減することができる。 Also, according to the method for producing composite particles of the embodiment of the present invention, iron is preferentially deposited on the surface of the base particle and a coating layer (film) is formed, so compared with the case where Fe nanoparticles are adhered, Specific surface area is small. As a result, it is possible to reduce the amount of unnecessary elements such as oxygen and carbon due to iron oxidation and surfactant incorporation.
本発明による実施形態の複合粒子の製造方法は、以下の工程を含む。 The manufacturing method of the composite particle of embodiment by this invention includes the following processes.
まず、平均粒子径が0.1μm以上1000μm以下の基材粒子を、鉄ペンタカルボニル錯体の沸点である103℃未満の第1の温度で、鉄ペンタカルボニル錯体を含む炭化水素系有機溶媒中に存在させる。 First, base particles having an average particle size of 0.1 μm or more and 1000 μm or less are present in a hydrocarbon-based organic solvent containing an iron pentacarbonyl complex at a first temperature lower than 103 ° C. which is the boiling point of the iron pentacarbonyl complex. Let
基材粒子は、炭化水素系有機溶媒中で安定に存在可能な金属粒子または無機粒子である。無機粒子は、例えば、金属酸化物、金属窒化物、金属炭化物である。基材粒子として特に希土類磁性合金粒子に本発明を適用した場合には、希土類元素の酸化、炭化、窒化などによって、磁気特性が低下することを抑制することができる。なお、本発明は平均粒子径が0.1μm以上1000μm以下の基材粒子に好適に採用できるが、基材粒子の平均粒子径は、複合粒子の用途に応じて上記の範囲内で適宜設定され得る。 The base particles are metal particles or inorganic particles that can exist stably in a hydrocarbon-based organic solvent. Inorganic particles are, for example, metal oxides, metal nitrides, and metal carbides. In particular, when the present invention is applied to the rare earth magnetic alloy particles as the base particles, it is possible to suppress the magnetic properties from being deteriorated due to oxidation, carbonization, nitridation, or the like of the rare earth elements. The present invention can be suitably used for substrate particles having an average particle size of 0.1 μm or more and 1000 μm or less, but the average particle size of the substrate particles is appropriately set within the above range depending on the use of the composite particles. obtain.
炭化水素系有機溶媒は、鉄カルボニル錯体を熱分解させる温度よりも沸点が高く、基材粒子や錯化剤、さらには熱分解によって得られた鉄との反応性が低いものが好ましい。鉄カルボニル錯体の熱分解のための最高到達温度はおよそ170℃から240℃である。炭化水素系有機溶媒は、熱分解のための最高到達温度以上の沸点を有するものであればよく、炭素数9以上のパラフィン系炭化水素を好適に用いることができ、炭素数12以上のものがより好適に用いられる。ただし、炭素数は20以下であることが好ましい。炭素数が20を超えると、溶媒の粘性が高く得られた複合粒子を処理槽に分離回収することが困難となることがある。具体的には、ドデカン(炭素数12)、ヘキサデカン(炭素数16)、オクタデカン(炭素数18)などが好適に用いられる。 The hydrocarbon-based organic solvent preferably has a boiling point higher than the temperature at which the iron carbonyl complex is thermally decomposed, and has low reactivity with the base particles, the complexing agent, and iron obtained by thermal decomposition. The highest temperature reached for the thermal decomposition of the iron carbonyl complex is approximately 170 ° C to 240 ° C. The hydrocarbon-based organic solvent only needs to have a boiling point equal to or higher than the highest temperature for thermal decomposition, and paraffinic hydrocarbons having 9 or more carbon atoms can be suitably used, and those having 12 or more carbon atoms can be used. More preferably used. However, the carbon number is preferably 20 or less. When the carbon number exceeds 20, it may be difficult to separate and collect the composite particles obtained with high solvent viscosity in the treatment tank. Specifically, dodecane (carbon number 12), hexadecane (carbon number 16), octadecane (carbon number 18), and the like are preferably used.
炭化水素系有機溶媒に錯化剤を含有させることが好ましい。錯化剤は、鉄原子とゆるく結合し(「錯化」ということがある。)、溶媒中に鉄カルボニル錯体を取り込み、その後、熱分解により鉄原子を放出して基材粒子の表面に効率的にFe被覆層を形成することができる。錯化剤は、アミノ基を有するもの、特にアルキルアミンが好適に用いられる。アルキルアミンとしては、オクチルアミンやジオクチルアミン、トリオクチルアミン、オレイルアミンなど、アルキル鎖長の異なるものや二重結合を有するもの、級数の異なる種々のものを使用できる。ただし、上記熱分解のための最高到達温度以上の沸点を有するもの、例えば、オクチルアミン(176℃)、ジオクチルアミン(298℃)、トリオクチルアミン(365℃)などが好ましい。また、アルキル鎖長が長くなると、アルキルアミンが基材表面で安定的に吸着し、鉄の被覆を妨げる恐れがあることから、アルキル基は炭素数が6〜12のものが好ましい。 It is preferable to contain a complexing agent in the hydrocarbon-based organic solvent. The complexing agent loosely binds to iron atoms (sometimes referred to as “complexation”), incorporates an iron carbonyl complex into the solvent, and then releases the iron atoms by thermal decomposition, which is efficient on the surface of the substrate particles. Thus, an Fe coating layer can be formed. As the complexing agent, one having an amino group, particularly an alkylamine is preferably used. As the alkylamine, octylamine, dioctylamine, trioctylamine, oleylamine, etc., those having different alkyl chain lengths, those having double bonds, and various types having different series can be used. However, those having a boiling point equal to or higher than the highest temperature for the thermal decomposition, for example, octylamine (176 ° C.), dioctylamine (298 ° C.), trioctylamine (365 ° C.) and the like are preferable. Further, when the alkyl chain length is long, the alkyl group is preferably 6 to 12 carbon atoms because the alkylamine is stably adsorbed on the surface of the substrate and there is a risk of hindering the coating of iron.
錯化剤を用いる場合、錯化剤の添加量は、錯化剤の種類や、熱分解のための最高到達温度、鉄ペンタカルボニル錯体の溶液中の濃度などによって適宜選定される。錯化剤が少ないと、反応のための昇温過程において鉄ペンタカルボニル錯体が気化してしまう、あるいは、反応容器の内壁などに鉄が析出してしまう恐れがある。逆に錯化剤が過剰に存在すると、錯化剤によって鉄ペンタカルボニル錯体や熱分解後に生じた鉄原子が溶液中で安定化されてしまうことで、多段昇温による反応速度制御の効果が失われてしまい、結果として溶液中で核生成が起こり、ナノ粒子が形成され易くなる恐れがある。錯化剤を使用するときの典型的な添加量は、錯化剤の鉄ペンタカルボニル錯体に対するモル比(錯化剤のモル数/鉄ペンタカルボニル錯体のモル数)が0.01以上0.3以下が好ましく、0.02以上0.2以下がより好ましい。または、錯化剤の鉄ペンタカルボニル錯体に対する容量比(錯化剤の容量/鉄ペンタカルボニル錯体の容量は、0.01以上1以下が好ましく、0.03以上0.8以下がより好ましく、0.05以上0.4以下がさらに好ましい。なお、反応終了後に溶液内に残存する錯化剤を除去する必要があることから、錯化剤は室温で液体であるものが好ましい。 When a complexing agent is used, the amount of complexing agent added is appropriately selected depending on the type of complexing agent, the highest temperature reached for thermal decomposition, the concentration of the iron pentacarbonyl complex in the solution, and the like. If the amount of the complexing agent is small, the iron pentacarbonyl complex may be vaporized in the temperature rising process for the reaction, or iron may be deposited on the inner wall of the reaction vessel. On the other hand, if the complexing agent is present in excess, the iron pentacarbonyl complex and iron atoms generated after thermal decomposition are stabilized in the solution by the complexing agent, so that the effect of controlling the reaction rate due to multistage temperature increase is lost. As a result, nucleation occurs in the solution, and nanoparticles may be easily formed. The typical addition amount when using the complexing agent is such that the molar ratio of the complexing agent to the iron pentacarbonyl complex (mole number of complexing agent / mole number of iron pentacarbonyl complex) is 0.01 or more and 0.3. The following is preferable, and 0.02 to 0.2 is more preferable. Alternatively, the capacity ratio of the complexing agent to the iron pentacarbonyl complex (the capacity of the complexing agent / the capacity of the iron pentacarbonyl complex is preferably 0.01 or more and 1 or less, more preferably 0.03 or more and 0.8 or less, and 0 The complexing agent is preferably liquid at room temperature because it is necessary to remove the complexing agent remaining in the solution after completion of the reaction.
鉄ペンタカルボニル錯体は、鉄ペンタカルボニル錯体の沸点である103℃未満の第1の温度(図2中のT1)で、鉄ペンタカルボニル錯体を炭化水素系有機溶媒に添加することが好ましい。有機溶媒の温度が103℃以上の有機溶媒に鉄ペンタカルボニル錯体を添加すると、有機溶媒に均一に溶解されるまでに鉄ペンタカルボニル錯体の気化が優先的に進行してしまうからである。一旦有機溶媒中に均一に溶解されると、鉄ペンタカルボニルの気化の速度が小さくなり、沸点よりも高い温度で熱分解を優先的に進行させることができる。特に、錯化剤の共存する有機溶媒中では、鉄ペンタカルボニルの気化の速度は低下する。なお、鉄ペンタカルボニル錯体の添加量は基材粒子の量やサイズ、溶媒ならびに錯化剤の種類や量、最終的に目的とするFe被覆層の厚さなどによって適宜選定されるが、(鉄ペンタカルボニル錯体の容量)/(有機溶媒の容量)が0.01より小さいと反応の効率が悪くなり、0.5を超えるとナノ粒子が生成されやすくなるため、0.01以上0.5以下が好ましく、0.03以上0.3以下がより好ましい。 The iron pentacarbonyl complex is preferably added to the hydrocarbon-based organic solvent at a first temperature lower than 103 ° C. (T1 in FIG. 2), which is the boiling point of the iron pentacarbonyl complex. This is because when an iron pentacarbonyl complex is added to an organic solvent having an organic solvent temperature of 103 ° C. or higher, vaporization of the iron pentacarbonyl complex proceeds preferentially until it is uniformly dissolved in the organic solvent. Once dissolved uniformly in an organic solvent, the rate of vaporization of iron pentacarbonyl is reduced and thermal decomposition can be preferentially advanced at a temperature higher than the boiling point. In particular, in the organic solvent in which the complexing agent coexists, the rate of vaporization of iron pentacarbonyl decreases. The amount of iron pentacarbonyl complex added is appropriately selected depending on the amount and size of the base particles, the type and amount of the solvent and the complexing agent, the final thickness of the Fe coating layer, etc. If the capacity of the pentacarbonyl complex) / (capacity of the organic solvent) is less than 0.01, the reaction efficiency becomes poor, and if it exceeds 0.5, nanoparticles are likely to be produced. Is preferable, and 0.03 or more and 0.3 or less are more preferable.
次に、鉄ペンタカルボニル錯体を120℃以上240℃以下の温度範囲内で熱分解させる。熱分解させる温度が120℃よりも低いと、鉄ペンタカルボニルの熱分解反応が十分に進行せず、鉄が十分に析出しない。一方、熱分解させる温度が240℃を越えると、有機溶媒中でナノ粒子の生成を十分に抑制できないことがある。また、反応容器の内壁などに熱分解した鉄が析出することにより、成膜効率が低下することがある。したがって、熱分解させる温度は120℃以上240℃以下が好ましく、140℃以上220℃以下がより好ましい。 Next, the iron pentacarbonyl complex is thermally decomposed within a temperature range of 120 ° C. or higher and 240 ° C. or lower. If the temperature for thermal decomposition is lower than 120 ° C., the thermal decomposition reaction of iron pentacarbonyl does not proceed sufficiently and iron does not sufficiently precipitate. On the other hand, if the temperature for thermal decomposition exceeds 240 ° C., the formation of nanoparticles may not be sufficiently suppressed in an organic solvent. In addition, deposition efficiency may decrease due to deposition of pyrolyzed iron on the inner wall of the reaction vessel. Therefore, the temperature for thermal decomposition is preferably 120 ° C. or higher and 240 ° C. or lower, and more preferably 140 ° C. or higher and 220 ° C. or lower.
熱分解工程は、具体的には、120℃以上170℃未満の範囲内の第2の温度(図2中のT2)で、炭化水素系有機溶媒中において鉄ペンタカルボニル錯体を熱分解させる工程と、第2の温度より高く、且つ、240℃以下の範囲内の第3の温度(図2中のT4)で、炭化水素系有機溶媒中において鉄ペンタカルボニル錯体をさらに熱分解させる工程とを包含する。すなわち、鉄ペンタカルボニル錯体を少なくとも2つの温度(図2中のT2およびT4)で熱分解させる。もちろん、図2に示したように、第2の温度(T2)より高く、かつ、第3の温度(T4)より低い第4の温度(T3)で、炭化水素系有機溶媒中において鉄ペンタカルボニル錯体をさらに熱分解させる工程を更に包含してもよい。また、図2には、T2、T3およびT4の各温度で一定時間(t2、t3、t4)保持しているが、これに限られず、それぞれの範囲内でゆっくりと連続的に温度を上昇させてもよい。すなわち、上記第2〜第4の温度は、上記温度範囲内での保持温度を指す場合もあれば、上記温度範囲内でゆっくりと温度上昇する温度範囲を指す場合もある。なお、第2の温度における処理時間は5分以上480分以内であることが好ましく、第3の温度における処理時間は5分以上480分以内であることが好ましい。このように、最終的な熱分解到達温度まで一気に昇温するのでなく、段階的に、あるいは、徐々に温度を上昇させることによって、鉄ペンタカルボニル錯体の熱分解速度を遅くし、ナノ鉄粒子の生成を抑制することができる。そのために、少なくとも第1の熱分解工程は170℃未満で行う。 Specifically, the pyrolysis step is a step of thermally decomposing an iron pentacarbonyl complex in a hydrocarbon-based organic solvent at a second temperature (T2 in FIG. 2) within a range of 120 ° C. or more and less than 170 ° C. And further pyrolyzing the iron pentacarbonyl complex in a hydrocarbon-based organic solvent at a third temperature (T4 in FIG. 2) higher than the second temperature and not higher than 240 ° C. To do. That is, the iron pentacarbonyl complex is thermally decomposed at at least two temperatures (T2 and T4 in FIG. 2). Of course, as shown in FIG. 2, iron pentacarbonyl in a hydrocarbon-based organic solvent at a fourth temperature (T3) higher than the second temperature (T2) and lower than the third temperature (T4). A step of further thermally decomposing the complex may be further included. In FIG. 2, the temperature is maintained for a certain time (t2, t3, t4) at each temperature of T2, T3, and T4. However, the temperature is not limited to this, and the temperature is increased slowly and continuously within each range. May be. That is, the second to fourth temperatures may refer to a holding temperature within the temperature range, or may refer to a temperature range where the temperature slowly rises within the temperature range. The treatment time at the second temperature is preferably 5 minutes or more and 480 minutes or less, and the treatment time at the third temperature is preferably 5 minutes or more and 480 minutes or less. In this way, the temperature of the iron pentacarbonyl complex is reduced by increasing the temperature stepwise or gradually, rather than raising the temperature to the final thermal decomposition temperature at once. Generation can be suppressed. Therefore, at least the first pyrolysis step is performed at less than 170 ° C.
なお、一度の工程で所望の厚さに成膜できない場合には、上記工程を繰り返しても良い。 Note that when the desired thickness cannot be formed in one step, the above steps may be repeated.
次に、多段昇温によるナノ粒子生成抑制の効果について検証した実験の結果を示す。 Next, the result of the experiment which verified about the effect of the nanoparticle production | generation suppression by multistage temperature rising is shown.
図3に示す反応装置を用いて、以下のような実験を行なった。反応装置は、4つ口フラスコと、4つ口フラスコの2つの口にそれぞれセットされた冷却器および撹拌棒を備える。4つ口フラスコの1つの口からは不活性ガス(例えばアルゴンガス)を導入し、4つ口フラスコ内に空気(特に酸素)が侵入することを防ぐ。フラスコの不図示の口から、各試料を投入する。 The following experiment was conducted using the reaction apparatus shown in FIG. The reaction apparatus includes a four-necked flask and a condenser and a stirrer bar set in the two necks of the four-necked flask. An inert gas (for example, argon gas) is introduced from one neck of the four-necked flask to prevent air (particularly oxygen) from entering the four-necked flask. Each sample is introduced from the mouth of the flask (not shown).
まず、室温で、300mL容の4つ口フラスコに、基材粒子として銅粉(製品名:Cu−At100(福田金属箔粉工業製、中心粒径45〜150μm)4g、有機溶媒としてドデカン30mL、錯化剤としてジオクチルアミン0.2mLを充填した。 First, at room temperature, in a 300 mL four-necked flask, copper powder (product name: Cu-At100 (made by Fukuda Metal Foil Powder Industry, center particle size 45 to 150 μm)) 4 g as a base particle, dodecane 30 mL as an organic solvent, Dioctylamine 0.2 mL was charged as a complexing agent.
その後、室温にて溶液を攪拌しながらフラスコ内を不活性ガス(ここではアルゴンガス)で置換した後、マントルヒータにより、混合溶液を鉄ペンタカルボニル錯体の沸点より少し低い95℃で30分間加熱攪拌し、溶液内の溶存酸素および水を除去した。 Then, after stirring the solution at room temperature, the inside of the flask was replaced with an inert gas (in this case, argon gas), and then the mixed solution was heated and stirred for 30 minutes at 95 ° C., slightly lower than the boiling point of the iron pentacarbonyl complex, using a mantle heater. Then, dissolved oxygen and water in the solution were removed.
その後、95℃(図2中のT1)で、鉄ペンタカルボニル錯体(Fe(CO)5)1mLを注射器にてフラスコ内に注入し、2分間攪拌して、オレイルアミンとの錯形成を促進させた。Fe(CO)5を注入した後は、気化したFe(CO)5がフラスコ外へ排出されることを防ぐために、フラスコ内へのアルゴンガス注入を中止した。 Thereafter, at 95 ° C. (T1 in FIG. 2), 1 mL of iron pentacarbonyl complex (Fe (CO) 5 ) was injected into the flask with a syringe and stirred for 2 minutes to promote complex formation with oleylamine. . Fe (CO) 5 was injected, the vaporized Fe (CO) 5 in order to prevent it from being discharged into the flask out, was discontinued argon gas injection into the flask.
その後、混合溶液をFe(CO)5の熱分解反応があまり進行しない160℃(図2中のT2)まで昇温し、その温度で30分間保持した。その後、同様にして170℃(図2中のT3)まで昇温して30分間保持した後、180℃(図2中のT4)まで昇温して3時間保持する多段昇温処理を行なった。 Thereafter, the temperature of the mixed solution was raised to 160 ° C. (T2 in FIG. 2) where the thermal decomposition reaction of Fe (CO) 5 did not proceed so much, and the temperature was maintained at that temperature for 30 minutes. Thereafter, similarly, the temperature was raised to 170 ° C. (T3 in FIG. 2) and held for 30 minutes, and then the temperature was raised to 180 ° C. (T4 in FIG. 2) and held for 3 hours. .
一方、95℃で鉄ペンタカルボニル錯体1mLを注入して攪拌しオレイルアミンとの錯形成を促進させる工程までは同様の処理を行なった後、混合溶液を180℃まで一気に昇温して4時間保持する処理を行なった。 On the other hand, 1 mL of iron pentacarbonyl complex is injected at 95 ° C. and stirred until the step of promoting complex formation with oleylamine is performed. After that, the mixed solution is heated up to 180 ° C. and held for 4 hours. Processing was performed.
処理後に濾過を行なって基材粒子を除去した後の溶液の観察結果を図4(a)および(b)に示す。図4(a)に示すように、多段昇温処理では淡い黄色をした透明な溶液であるのに対し、図4(b)に示すように、一段昇温処理では溶液の色が茶褐色になっていた。発明者の別の研究から、溶液が茶褐色を呈するのは溶液中にFeナノ粒子が分散していることに起因していることによるものであることがわかっており、この実験結果から、多段昇温処理を行うことによって、熱分解過程において溶液中でFeナノ粒子が生成されるのを抑制できることがわかる。 4A and 4B show the observation results of the solution after filtration after the treatment to remove the base particles. As shown in FIG. 4 (a), the multi-stage heating process is a light yellow transparent solution, whereas as shown in FIG. 4 (b), the solution color is brown. It was. Another study by the inventor has shown that the solution exhibits a brown color due to the fact that Fe nanoparticles are dispersed in the solution. It can be seen that the heat treatment can suppress the formation of Fe nanoparticles in the solution during the thermal decomposition process.
次に、銅粒子への鉄の複合化の実験例を説明する。 Next, an experimental example of compounding iron into copper particles will be described.
図3に示す反応装置を用いて、以下のようにして、銅粒子の表面に鉄の被覆層を形成する実験を行った。 Using the reaction apparatus shown in FIG. 3, an experiment for forming an iron coating layer on the surface of copper particles was performed as follows.
まず、室温で、300mL容の4つ口フラスコに、基材粒子として銅粉(製品名:Cu−At100(福田金属箔粉工業製、中心粒径45〜150μm)4g、有機溶媒としてドデカン30mL、錯化剤としてジオクチルアミン(0.0、0.1、0.2、および0.5mL)を充填した。このとき、錯化剤の鉄ペンタカルボニル錯体に対するモル比は、それぞれ0.0、0.05、0.09、0.22である。 First, at room temperature, in a 300 mL four-necked flask, copper powder (product name: Cu-At100 (made by Fukuda Metal Foil Powder Industry, center particle size 45 to 150 μm)) 4 g as a base particle, dodecane 30 mL as an organic solvent, Dioctylamine (0.0, 0.1, 0.2, and 0.5 mL) was charged as a complexing agent, and the molar ratio of the complexing agent to the iron pentacarbonyl complex was 0.0, 0, respectively. .05, 0.09, 0.22.
その後、室温にて溶液を攪拌しながらフラスコ内を不活性ガス(ここではアルゴンガス)で置換した後、マントルヒータにより、混合溶液を鉄ペンタカルボニル錯体の沸点より少し低い95℃で30分間加熱攪拌し、溶液内の溶存酸素および水を除去した。 Then, after stirring the solution at room temperature, the inside of the flask was replaced with an inert gas (in this case, argon gas), and then the mixed solution was heated and stirred for 30 minutes at 95 ° C., slightly lower than the boiling point of the iron pentacarbonyl complex, using a mantle heater. Then, dissolved oxygen and water in the solution were removed.
その後、95℃(図2中のT1)で、鉄ペンタカルボニル錯体(Fe(CO)5)1mLを注射器にてフラスコ内に注入し、2分間攪拌して、オレイルアミンとの錯形成を促進させた。Fe(CO)5を注入した後は、気化したFe(CO)5がフラスコ外へ排出されることを防ぐために、フラスコ内へのアルゴンガス注入を中止した。 Thereafter, at 95 ° C. (T1 in FIG. 2), 1 mL of iron pentacarbonyl complex (Fe (CO) 5 ) was injected into the flask with a syringe and stirred for 2 minutes to promote complex formation with oleylamine. . Fe (CO) 5 was injected, the vaporized Fe (CO) 5 in order to prevent it from being discharged into the flask out, was discontinued argon gas injection into the flask.
その後、混合溶液をFe(CO)5の熱分解反応があまり進行しない160℃(図2中のT2)まで昇温し、その温度で30分間保持した。その後、同様にして170℃(図2中のT3)まで昇温して30分間保持した後、180℃(図2中のT4)まで昇温して30分間保持した。 Thereafter, the temperature of the mixed solution was raised to 160 ° C. (T2 in FIG. 2) where the thermal decomposition reaction of Fe (CO) 5 did not proceed so much, and the temperature was maintained at that temperature for 30 minutes. Thereafter, the temperature was similarly raised to 170 ° C. (T3 in FIG. 2) and held for 30 minutes, and then heated to 180 ° C. (T4 in FIG. 2) and held for 30 minutes.
その後、反応溶液を室温まで冷却した後に、濾過によって被覆粉末を回収し、無水ヘキサンで洗浄した後、乾燥させた。 Thereafter, the reaction solution was cooled to room temperature, and then the coated powder was collected by filtration, washed with anhydrous hexane, and then dried.
また、得られた複合体粒子を目視で観察したところ、ジオクチルアミンを添加しなかったものは、基材の銅粒子に近い外観を呈しており、鉄の析出が少ないことが分かった。ジオクチルアミンの添加量が0.1mLおよび0.2mLのものは、黒く変色しており、銅粒子の表面に鉄が十分に析出し、鉄の被覆層が形成されていることがわかった。添加量が0.5mLのものは、銅粒子に近い外観であり、鉄の被覆層の形成が不十分であることが分かった。 Moreover, when the obtained composite particle was observed visually, what added no dioctylamine showed the external appearance close | similar to the copper particle of a base material, and it turned out that there is little precipitation of iron. When the amount of dioctylamine added was 0.1 mL or 0.2 mL, the color was changed to black, and it was found that iron was sufficiently deposited on the surface of the copper particles and an iron coating layer was formed. When the addition amount was 0.5 mL, the appearance was close to copper particles, and it was found that the formation of the iron coating layer was insufficient.
図5(a)に、ジオクチルアミンを0.1mL添加して得られたFe被覆層が形成された銅粒子(複合体粒子)の表面の走査電子顕微鏡(SEM)像を示し、図5(b)にその拡大像を示す。
図5(a)および(b)から明らかなように、Fe被覆層を形成した複合粒子の表面は、10〜30nmの微細なFe結晶粒で覆われている。また、エネルギー分散型検出器(EDX)を搭載した透過電子顕微鏡(TEM)による、Fe被覆層を形成した複合粒子の断面観察の結果を図6に示す。基材粒子の表面に約200nmの厚さのFe被覆層が形成されており、このFe被覆層がナノ粒子が積層したものではないことを確認した。
FIG. 5A shows a scanning electron microscope (SEM) image of the surface of the copper particles (composite particles) on which the Fe coating layer obtained by adding 0.1 mL of dioctylamine was formed. ) Shows the enlarged image.
As is apparent from FIGS. 5A and 5B, the surface of the composite particle on which the Fe coating layer is formed is covered with fine Fe crystal grains of 10 to 30 nm. Further, FIG. 6 shows the results of cross-sectional observation of the composite particles on which the Fe coating layer is formed by a transmission electron microscope (TEM) equipped with an energy dispersive detector (EDX). It was confirmed that an Fe coating layer having a thickness of about 200 nm was formed on the surface of the substrate particles, and this Fe coating layer was not a laminate of nanoparticles.
本実験例によって、160℃から180℃まで段階的に昇温することによって、Fe(CO)5が徐々に分解され、銅粒子の表面への鉄の析出が徐々に起こり、不要なナノ粒子の生成を抑制しつつ、複合粒子を作製できることが確認された。 According to this experimental example, when the temperature is raised stepwise from 160 ° C. to 180 ° C., Fe (CO) 5 is gradually decomposed, and iron is gradually deposited on the surface of the copper particles. It was confirmed that composite particles can be produced while suppressing generation.
次に、希土類磁性合金粒子の複合化の実験例を説明する。 Next, an experimental example of compositing rare earth magnetic alloy particles will be described.
本発明による複合粒子の製造方法を用いて、希土類磁性合金粒子を複合化することができる。ここでは、HDDR法によって得られた希土類磁性合金粒子(「HDDR磁石粒子」ともいう。)を用いた例を示すが、これに限られず、種々の公知の希土類磁性合金粒子を用いることができる。例えば、超急冷法や超急冷合金を熱間塑性加工した後に、それを粉砕することによって得られた粒子を用いることができる。 Rare earth magnetic alloy particles can be composited using the composite particle manufacturing method according to the present invention. Here, an example using rare earth magnetic alloy particles (also referred to as “HDDR magnet particles”) obtained by the HDDR method is shown, but not limited to this, various known rare earth magnetic alloy particles can be used. For example, it is possible to use particles obtained by pulverizing a super-quenching method or a super-quenched alloy after hot plastic working.
HDDR磁石粉末は、現在、異方性ボンド磁石用の希土類磁性合金粉末として用いられている。「HDDR」は水素化(Hydrogenation)および不均化(Disproportionation)と、脱水素(Desorption)および再結合(Recombination)とを順次実行するプロセスを意味している。公知のHDDR処理によれば、R−Fe−B系合金のインゴットまたは粉末を、H2ガス雰囲気またはH2ガスと不活性ガスとの混合雰囲気中で温度500℃〜1000℃に保持し、それによって上記インゴットまたは粉末に水素を吸蔵させた後、例えばH2圧力が13Pa以下の真空雰囲気、またはH2分圧が13Pa以下の不活性雰囲気になるまで温度500℃〜1000℃で脱水素処理し、次いで冷却することを特徴としている。 HDDR magnet powder is currently used as rare earth magnetic alloy powder for anisotropic bonded magnets. “HDDR” means a process of sequentially performing hydrogenation and disproportionation, dehydrogenation and recombination. According to the known HDDR treatment, an R-Fe-B alloy ingot or powder is maintained at a temperature of 500 ° C. to 1000 ° C. in an H 2 gas atmosphere or a mixed atmosphere of an H 2 gas and an inert gas. It said after ingot or powder in a hydrogen is occluded, such as H 2 pressure is 13Pa or less of vacuum atmosphere, or H 2 partial pressure is dehydrogenated at a temperature 500 ° C. to 1000 ° C. until the following inactive atmosphere 13Pa by Then, it is cooled.
上記処理において、典型的には、次のような反応が進行する。すなわち、水素吸蔵を起こすための熱処理によって、水素化ならびに不均化反応(双方を合わせて「HD反応」と呼ぶ。反応式の例:Nd2Fe14B+2H2→2NdH2+12Fe+Fe2B)が進行し微細組織が形成される。次いで脱水素処理をおこすための熱処理を行うことにより、脱水素ならびに再結合反応(双方を合わせて「DR反応」と呼ぶ。反応式の例:2NdH2+12Fe+Fe2B→Nd2Fe14B+2H2)が起こり、微細なR2Fe14B結晶相を含む合金が得られる。 In the above treatment, typically, the following reaction proceeds. That is, hydrogenation and disproportionation reactions (both are collectively referred to as “HD reaction” by the heat treatment for causing hydrogen occlusion. Examples of reaction formula: Nd 2 Fe 14 B + 2H 2 → 2NdH 2 + 12Fe + Fe 2 B) proceed. A fine structure is formed. Next, by performing heat treatment for dehydrogenation, dehydrogenation and recombination reaction (both are referred to as “DR reaction”. Example of reaction formula: 2NdH 2 + 12Fe + Fe 2 B → Nd 2 Fe 14 B + 2H 2 ) And an alloy containing a fine R 2 Fe 14 B crystal phase is obtained.
HDDR磁石粉末は、大きな保磁力を有し、磁気的な異方性を示している。このような性質を有する理由は、金属組織が実質的に0.1μm〜1μmと非常に微細で、かつ、反応条件や組成を適切に選択することによって、容易磁化軸が一方向にそろった結晶の集合体となるためである。より詳細には、HDDR処理によって得られる極微細結晶の粒径が正方晶R2Fe14B系化合物の単磁区臨界粒径に近いために高い保磁力を発揮する。この正方晶R2Fe14B系化合物の非常に微細な結晶の集合体を「再結晶集合組織」と呼ぶ。HDDR処理を施すことによって、再結合集合組織をもつR−Fe−B系合金粉末を製造する方法は、例えば、特開平1−132106号公報や特開平2−4901号公報に開示されている。 HDDR magnet powder has a large coercive force and exhibits magnetic anisotropy. The reason for having such a property is that the metallographic structure is substantially as fine as 0.1 μm to 1 μm, and a crystal with easy magnetization axes aligned in one direction by appropriately selecting reaction conditions and composition. It is because it becomes the aggregate of. More specifically, since the grain size of the ultrafine crystal obtained by the HDDR treatment is close to the single domain critical grain size of the tetragonal R 2 Fe 14 B-based compound, a high coercive force is exhibited. An aggregate of very fine crystals of this tetragonal R 2 Fe 14 B-based compound is referred to as “recrystallized texture”. A method for producing an R—Fe—B alloy powder having a recombination texture by performing an HDDR process is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 1-132106 and 2-4901.
希土類磁性合金粒子の複合化も、銅粒子と同様の方法で複合化することができる。但し、希土類磁性合金粒子は非常に活性であり、反応し難い有機溶媒や錯化剤を選定することが好ましい。 Rare earth magnetic alloy particles can also be compounded in the same manner as copper particles. However, the rare earth magnetic alloy particles are very active, and it is preferable to select an organic solvent or a complexing agent that hardly reacts.
表1は、HDDR法によって作製されたNd12.5Fe73Co8B6.5組成(数値は原子%)の磁石粉末粒子を表1に示した各種化合物(有機溶媒または錯化剤として用いられる)に分散し、200℃で2時間攪拌した後、冷却後、ヘキサンで洗浄して回収した粉末の酸素、窒素、炭素の含有率を示したものである。分析は、ICP発光分光分析法で行った。 Table 1 shows magnetic powder particles of Nd 12.5 Fe 73 Co 8 B 6.5 composition (numerical value is atomic%) prepared by HDDR method dispersed in various compounds (used as organic solvent or complexing agent) shown in Table 1. Then, after stirring at 200 ° C. for 2 hours, the content of oxygen, nitrogen and carbon in the powder recovered by washing with hexane after cooling is shown. Analysis was performed by ICP emission spectroscopy.
ドデカンのような炭化水素、トリオクチルアミン、ジオクチルアミン、オレイルアミンなどのアミンを用いた場合、処理後の粒子の酸素含有率がわずかに増大する程度であった。一方、エチレングリコールのようなアルコールの場合には、処理後の粒子の酸素含有率が非常に増大することがわかった。 When hydrocarbons such as dodecane, amines such as trioctylamine, dioctylamine, oleylamine were used, the oxygen content of the treated particles was only slightly increased. On the other hand, in the case of alcohols such as ethylene glycol, it has been found that the oxygen content of the treated particles is greatly increased.
この結果から、銅粒子の複合化に用いた炭化水素系溶媒およびアミン系錯化剤を、希土類磁性合金粒子の複合化に用いることができることが確認された。 From this result, it was confirmed that the hydrocarbon solvent and the amine complexing agent used for complexing the copper particles can be used for complexing the rare earth magnetic alloy particles.
上記と同様に、図3に示す反応装置を用いて、以下のようにして、HDDR磁石粒子の表面に鉄の被覆層を形成する実験を行った。 In the same manner as described above, an experiment for forming an iron coating layer on the surface of HDDR magnet particles was performed as follows using the reaction apparatus shown in FIG.
まず、室温で、300mL容の4つ口フラスコに、基材粒子として上述のHDDR磁石粉末(平均粒子径70μm)4g、有機溶媒としてドデカン30mL、錯化剤として0.1mLのオレイルアミンを添加した。 First, at room temperature, 4 g of the above HDDR magnet powder (average particle size 70 μm) as base particles, 30 mL of dodecane as an organic solvent, and 0.1 mL of oleylamine as a complexing agent were added to a 300 mL four-necked flask.
その後、室温にて溶液を攪拌しながらフラスコ内を不活性ガス(ここではアルゴンガス)で置換した後、マントルヒータにより、混合溶液を鉄ペンタカルボニル錯体の沸点より少し低い95℃で30分間加熱攪拌し、溶液内の溶存酸素および水を除去した。 Then, after stirring the solution at room temperature, the inside of the flask was replaced with an inert gas (in this case, argon gas), and then the mixed solution was heated and stirred for 30 minutes at 95 ° C., slightly lower than the boiling point of the iron pentacarbonyl complex, using a mantle heater. Then, dissolved oxygen and water in the solution were removed.
その後、95℃(図2中のT1)で、鉄ペンタカルボニル錯体(Fe(CO)5)0.2mLを注射器にてフラスコ内に注入し、2分間攪拌して、オレイルアミンとの錯形成を促進させた。Fe(CO)5を注入した後は、気化したFe(CO)5がフラスコ外へ排出されることを防ぐために、フラスコ内へのアルゴンガス注入を中止した。 Then, at 95 ° C. (T1 in FIG. 2), 0.2 mL of iron pentacarbonyl complex (Fe (CO) 5 ) was injected into the flask with a syringe and stirred for 2 minutes to promote complex formation with oleylamine. I let you. Fe (CO) 5 was injected, the vaporized Fe (CO) 5 in order to prevent it from being discharged into the flask out, was discontinued argon gas injection into the flask.
その後、混合溶液をFe(CO)5の分解反応があまり進行しない140℃(図2中のT2)まで昇温し、その温度で15分間保持する。その後、同様にして160℃(図2中のT3)まで昇温して15分間保持した後、170℃(図2中のT4)まで昇温して45分間保持した。 Thereafter, the temperature of the mixed solution is raised to 140 ° C. (T2 in FIG. 2) at which the decomposition reaction of Fe (CO) 5 does not proceed so much, and is maintained at that temperature for 15 minutes. Thereafter, the temperature was similarly raised to 160 ° C. (T3 in FIG. 2) and held for 15 minutes, and then the temperature was raised to 170 ° C. (T4 in FIG. 2) and held for 45 minutes.
その後、反応溶液を室温まで冷却した後に、濾過によって被覆粉末を回収し、無水ヘキサンにより洗浄した後、乾燥させた。 Thereafter, the reaction solution was cooled to room temperature, and then the coated powder was collected by filtration, washed with anhydrous hexane, and then dried.
得られた複合粒子ならびに処理前のHDDR粒子の酸素、窒素および炭素の含有率をICP発光分光分析法で求めた。また、HDDR磁石粉末に市販の鉄粉を混合した粉末を用いて、ICP発光分光分析法における検量線を作成し、この検量線を用いて、複合粒子のICP発光分光分析結果から、複合粒子に形成された鉄の被覆層の質量を見積もった。得られた鉄の含有率(Fe被覆層の質量の複合粒子の全体の質量に対する比率)は3質量%であった。 The content of oxygen, nitrogen and carbon in the obtained composite particles and HDDR particles before treatment were determined by ICP emission spectroscopic analysis. In addition, using a powder obtained by mixing commercially available iron powder with HDDR magnet powder, a calibration curve in ICP emission spectroscopic analysis is prepared, and from this ICP emission spectroscopic analysis result of the composite particle, The mass of the formed iron coating layer was estimated. The obtained iron content (ratio of the mass of the Fe coating layer to the total mass of the composite particles) was 3% by mass.
比較例として、予めドデカン95mLにオレイルアミンを5mL投入し、95℃になった段階でFe(CO)5を2mL投入し、その後180℃まで一気に昇温し、60分間加熱することによって、粒径が10nmのFeナノ粒子を作製し、HDDR粉末と混合したサンプルを用意した。Feナノ粒子の混合割合は、混合粉の全体の質量の3質量%とした。すなわち、混合粉に含まれる鉄の質量%を一致させた。 As a comparative example, 5 mL of oleylamine was added to 95 mL of dodecane in advance, 2 mL of Fe (CO) 5 was added at the stage when the temperature reached 95 ° C., and then heated to 180 ° C. at a stretch and heated for 60 minutes. 10 nm Fe nanoparticles were prepared and a sample mixed with HDDR powder was prepared. The mixing ratio of the Fe nanoparticles was 3% by mass of the total mass of the mixed powder. That is, the mass% of iron contained in the mixed powder was matched.
実施例および比較例のサンプルについて、酸素、窒素および炭素の含有率をICP発光分光分析法で求めた。得られた結果を表2に示す。比較例で用いたナノ粒子は、比表面積が大きいために酸化が進行しているとともに、個々のナノ粒子の表面に界面活性剤に由来する窒素や炭素が多く吸着しているため、結果的に複合粒子の酸素、窒素、炭素量は大きくなる。これに対し、表2の結果から明らかなように、実施例の複合粒子は、比較例のサンプルよりも、酸素、窒素および炭素の増加が明らかに抑制されていることが分かる。 About the sample of an Example and a comparative example, the content rate of oxygen, nitrogen, and carbon was calculated | required by the ICP emission spectroscopy analysis method. The obtained results are shown in Table 2. The nanoparticles used in the comparative example are oxidized due to a large specific surface area, and a large amount of nitrogen and carbon derived from the surfactant are adsorbed on the surface of each nanoparticle. The amount of oxygen, nitrogen, and carbon in the composite particles increases. On the other hand, as can be seen from the results in Table 2, it can be seen that the increase in oxygen, nitrogen, and carbon is clearly suppressed in the composite particles of the example as compared with the sample of the comparative example.
処理前のHDDR磁粉ならびに実施例のサンプルについて、サンプル作製時の試料の配向度による磁化の影響を取除くため、サンプルホルダーに詰めて、磁石粉末を磁界中配向せずにパラフィンで固定し、4.8MA/mのパルス磁界で着磁したサンプルの磁化の値を振動試料磁力計(VSM、東英工業製VSM5−20)で評価した。外部磁界1592kA/m(20kOe)まで付与した時の磁化の値を評価した結果、処理前のHDDR磁粉で0.934Tに対し、実施例のサンプルは0.944Tであり、鉄が被覆されたことによって実際にサンプルの磁化が向上していることを確認した。 About the HDDR magnetic powder before processing and the sample of the example, in order to remove the influence of magnetization due to the degree of orientation of the sample at the time of sample preparation, the sample holder is packed and the magnet powder is fixed with paraffin without being oriented in the magnetic field. The value of magnetization of the sample magnetized with a pulse magnetic field of .8 MA / m was evaluated with a vibrating sample magnetometer (VSM, VSM5-20 manufactured by Toei Industry Co., Ltd.). As a result of evaluating the value of magnetization when an external magnetic field of up to 1592 kA / m (20 kOe) was applied, the sample of the example was 0.944 T with respect to 0.934 T with the HDDR magnetic powder before processing, and iron was coated. As a result, it was confirmed that the magnetization of the sample was actually improved.
本発明は、例えば、希土類ナノコンポジット磁石の製造に好適に用いられる複合粒子の製造に用いられる。 The present invention is used, for example, for the production of composite particles suitably used for the production of rare earth nanocomposite magnets.
10 複合粒子
12 基材粒子
14 鉄の被覆層
10 Composite Particle 12 Base Material Particle 14 Iron Coating Layer
Claims (8)
120℃以上170℃未満の第2の温度で、前記炭化水素系有機溶媒中において前記鉄ペンタカルボニル錯体を熱分解させる工程(b)と、
前記第2の温度より高く、且つ、240℃以下の第3の温度で、前記炭化水素系有機溶媒中において前記鉄ペンタカルボニル錯体をさらに熱分解させる工程(c)と
を包含し、
前記基材粒子の表面に鉄の被覆層を有する複合粒子を製造する方法。 A step (a) in which base particles having an average particle size of 0.1 μm or more and 1000 μm or less are present in a hydrocarbon-based organic solvent containing an iron pentacarbonyl complex at a first temperature of less than 103 ° C .;
A step (b) of thermally decomposing the iron pentacarbonyl complex in the hydrocarbon-based organic solvent at a second temperature of 120 ° C. or more and less than 170 ° C .;
And (c) further thermally decomposing the iron pentacarbonyl complex in the hydrocarbon-based organic solvent at a third temperature higher than the second temperature and not higher than 240 ° C.
A method for producing composite particles having an iron coating layer on the surface of the substrate particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009075767A JP5304376B2 (en) | 2009-03-26 | 2009-03-26 | Method for producing composite particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009075767A JP5304376B2 (en) | 2009-03-26 | 2009-03-26 | Method for producing composite particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010229443A JP2010229443A (en) | 2010-10-14 |
JP5304376B2 true JP5304376B2 (en) | 2013-10-02 |
Family
ID=43045528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009075767A Expired - Fee Related JP5304376B2 (en) | 2009-03-26 | 2009-03-26 | Method for producing composite particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5304376B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5997075B2 (en) * | 2013-02-28 | 2016-09-21 | トヨタ自動車株式会社 | Alloy powder for blending sintered alloy and method for producing sintered alloy using the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1022353A1 (en) * | 1999-01-21 | 2000-07-26 | Basf Aktiengesellschaft | Process for manufacturing metal coated hard materials |
JP2006342399A (en) * | 2005-06-09 | 2006-12-21 | Mitsubishi Chemicals Corp | Ultra-fine iron particle and production method therefor |
JP2008117855A (en) * | 2006-11-01 | 2008-05-22 | Toyota Motor Corp | Manufacturing method of nano-composite magnet |
-
2009
- 2009-03-26 JP JP2009075767A patent/JP5304376B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010229443A (en) | 2010-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Salavati-Niasari et al. | Preparation of cobalt nanoparticles from [bis (salicylidene) cobalt (II)]–oleylamine complex by thermal decomposition | |
US9704625B2 (en) | Magnetic nanoparticles, bulk nanocomposite magnets, and production thereof | |
US7029514B1 (en) | Core-shell magnetic nanoparticles and nanocomposite materials formed therefrom | |
Yang et al. | Single domain SmCo5@ Co exchange-coupled magnets prepared from core/shell Sm [Co (CN) 6]· 4H2O@ GO particles: a novel chemical approach | |
Chaubey et al. | Synthesis of Sm–Co and Sm–Co/Fe nanocrystals by reductive annealing of nanoparticles | |
Shen et al. | Chemical synthesis of magnetic nanoparticles for permanent magnet applications | |
Lei et al. | A general strategy for synthesizing high-coercivity L1 0-FePt nanoparticles | |
JP4938285B2 (en) | Method for producing core / shell composite nanoparticles | |
CN103119664A (en) | Ferromagnetic particle powder, method for producing same, anisotropic magnet, and bonded magnet | |
Okada et al. | Direct preparation of submicron-sized Sm2Fe17 ultra-fine powders by reduction-diffusion technique | |
JP4923151B2 (en) | Permanent magnet and method for manufacturing permanent magnet | |
JP2018127716A (en) | Rare-earth-iron-nitrogen based magnetic powder and method for producing the same | |
Gandha et al. | Effect of ${\rm RuCl} _ {3} $ on Morphology and Magnetic Properties of CoNi Nanowires | |
JP6427061B2 (en) | Method of preparing core-shell-shell FeCo / SiO2 / MnBi nanoparticles, and core-shell-shell FeCo / SiO2 / MnBi nanoparticles | |
Rahimi et al. | On the magnetic and structural properties of neodymium iron boron nanoparticles | |
JP2012197473A (en) | Method for synthesizing metal or alloy nanoparticle by supercritical hydrothermal reaction under reductive atmosphere | |
Poudyal et al. | Shape control of FePt nanocrystals | |
US10639711B2 (en) | Nanowire-based magnets and methods of making same | |
JP2009215583A (en) | Sm-Co-BASED ALLOY NANOPARTICLE, AND METHOD FOR PRODUCING THE SAME | |
JP6485066B2 (en) | Iron nitride magnet | |
Nandwana et al. | Magnetic hardening in ultrafine FePt nanoparticle assembled films | |
Yonekura et al. | Magnetic properties of hard magnetic nanoparticles of Nd2Fe14B synthesized using self-assembled block copolymers | |
US20170069412A1 (en) | Ligand passivated core-shell fept@co nanomagnets exhibiting enhanced energy product | |
JP5769069B2 (en) | Iron nitride material and manufacturing method thereof | |
JP5304376B2 (en) | Method for producing composite particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130528 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130610 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |