JP2006342399A - Ultra-fine iron particle and production method therefor - Google Patents
Ultra-fine iron particle and production method therefor Download PDFInfo
- Publication number
- JP2006342399A JP2006342399A JP2005169678A JP2005169678A JP2006342399A JP 2006342399 A JP2006342399 A JP 2006342399A JP 2005169678 A JP2005169678 A JP 2005169678A JP 2005169678 A JP2005169678 A JP 2005169678A JP 2006342399 A JP2006342399 A JP 2006342399A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- particles
- ultrafine particles
- compound
- ultrafine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
本発明は鉄超微粒子及びその製造方法に関する。詳しくは、飽和磁化が大きく、かつ有機溶媒への分散性及びその安定性に優れた鉄超微粒子を簡便な方法で製造する方法と、この方法で製造された鉄超微粒子に関する。 The present invention relates to iron ultrafine particles and a method for producing the same. Specifically, the present invention relates to a method for producing iron ultrafine particles having a large saturation magnetization and excellent dispersibility in an organic solvent and stability thereof by a simple method, and an iron ultrafine particle produced by this method.
近年、通信機器・メモリデバイスにおいて、高周波化、メモリサイズの微細化が行われ、内部回路における消費電力の低減が大きな課題とされている。しかし、誘電率の低減による高インピーダンス化には限界があり、それに代わる材料として高周波数における高透磁率材料が求められている。 In recent years, in communication devices and memory devices, higher frequencies and smaller memory sizes have been achieved, and reduction of power consumption in internal circuits is a major issue. However, there is a limit to increasing the impedance by reducing the dielectric constant, and a high permeability material at a high frequency is required as an alternative material.
一方、鉄、コバルト、ニッケル等の強磁性金属微粒子は、磁気記録材料、高透磁率材料、電波吸収材料等の様々な分野で応用されている。特に、鉄はバルクの飽和磁化が最も大きく、しかも安価であることから非常に有用な材料である。 On the other hand, ferromagnetic metal fine particles such as iron, cobalt, and nickel are applied in various fields such as magnetic recording materials, high magnetic permeability materials, and radio wave absorbing materials. In particular, iron is a very useful material because it has the largest bulk saturation magnetization and is inexpensive.
しかしながら、鉄は微粒子化するに伴ってその表面積が増大するために、製造過程で酸化したり、欠陥が生じたりすることから、高い飽和磁化を保ったまま微粒子化することが困難であった。 However, since the surface area of iron increases as it becomes finer, it oxidizes during the manufacturing process or causes defects, making it difficult to make finer particles while maintaining high saturation magnetization.
従来、磁性微粒子の合成方法として、オレイン酸とオレイルアミンを安定化剤として用いる方法が報告されており、具体的には鉄と白金の合金微粒子を合成する方法が報告されている(非特許文献1参照)。この合成方法では、まず白金が核となりその回りに鉄が析出するため、比較的安定に鉄白金合金微粒子を得ることができる。しかし、この手法で、合金ではなく、鉄単体よりなる強磁性微粒子を合成しようとすると、オレイン酸のようなカルボン酸の鉄への配位力が非常に強いため、カルボン酸由来の酸素が酸素源となり、鉄酸化物が生じるという問題がある。 Conventionally, as a method for synthesizing magnetic fine particles, a method using oleic acid and oleylamine as stabilizers has been reported. Specifically, a method for synthesizing iron and platinum alloy fine particles has been reported (Non-patent Document 1). reference). In this synthesis method, first, platinum serves as a nucleus, and iron is deposited therearound, so that iron-platinum alloy fine particles can be obtained relatively stably. However, with this technique, when trying to synthesize ferromagnetic fine particles made of iron alone instead of an alloy, the coordination power of iron with carboxylic acid such as oleic acid is very strong. There is a problem that iron oxide is generated.
また、オレイン酸、オレイルアミン及び白金シードの存在下、鉄カルボニルを熱分解することで鉄微粒子を合成する方法が報告されている(非特許文献2参照)。この方法で製造された鉄微粒子は、10Kにおいて200emu/gという大きな飽和磁化を持っているが、この方法では、高価な白金を使うことや、鉄と白金の合金が不純物として生成する可能性があるという問題があった。 In addition, a method for synthesizing iron fine particles by thermally decomposing iron carbonyl in the presence of oleic acid, oleylamine and platinum seeds has been reported (see Non-Patent Document 2). The iron fine particles produced by this method have a large saturation magnetization of 200 emu / g at 10K. However, in this method, there is a possibility that expensive platinum is used or an alloy of iron and platinum is generated as an impurity. There was a problem that there was.
この他に大きな飽和磁化を持つ鉄微粒子の製造方法として、Fe[N(SiCH3)2]2を原料化合物として用い、これをヘキサデシルアミン及びオレイン酸の存在下、水素雰囲気で熱分解する方法が報告されている(非特許文献3参照)。この製造方法で合成した鉄微粒子は212emu/gという大きな飽和磁化を持っているが、原料化合物の合成が困難であり、また、水素雰囲気下で熱分解する必要があるため、産業上実用的ではなかった。 In addition to this, as a method for producing fine iron particles having a large saturation magnetization, Fe [N (SiCH 3 ) 2 ] 2 is used as a raw material compound, and this is thermally decomposed in a hydrogen atmosphere in the presence of hexadecylamine and oleic acid. Has been reported (see Non-Patent Document 3). The iron fine particles synthesized by this production method have a large saturation magnetization of 212 emu / g, but it is difficult to synthesize the raw material compound, and it is necessary to thermally decompose in a hydrogen atmosphere. There wasn't.
一方、分散安定性に優れた金属ナノ粒子として、P、N、及びOの少なくとも1種を含有し、平均粒径が1〜100nmである金属ナノ粒子が知られており、その製造方法として、不活性ガス雰囲気中においてアミン化合物の存在下で金属塩を含む出発材料を熱処理する方法が提案さている(特許文献1参照)。しかしながら、この方法では、金属成分としては、特に非磁性金属である貴金属が好ましいとされており、磁性金属である金属鉄ナノ粒子の製造について、更には上記熱処理による金属鉄ナノ粒子と磁性との関係については全く触れられていない。 On the other hand, as metal nanoparticles having excellent dispersion stability, metal nanoparticles containing at least one of P, N, and O and having an average particle diameter of 1 to 100 nm are known. A method of heat-treating a starting material containing a metal salt in the presence of an amine compound in an inert gas atmosphere has been proposed (see Patent Document 1). However, in this method, a noble metal, which is a nonmagnetic metal, is particularly preferable as the metal component. For the production of metallic iron nanoparticles, which are magnetic metals, the metal iron nanoparticles and magnetic materials obtained by the above heat treatment are further used. The relationship is not mentioned at all.
また、従来から微粒子の合成方法として用いられる逆ミセル法による磁性金属微粒子の合成も行われている(非特許文献4参照)。しかし、逆ミセル法は液中の粒子濃度が非常に低いため生産性に乏しく、また、合成した粒子を利用するには逆ミセル中の鉄微粒子を取り出す操作が必要となるため、産業上実用的ではなかった。
本発明は上記従来の実状に鑑みてなされたものであり、その目的は、飽和磁化が大きく、かつ有機溶媒への分散性及びその安定性に優れた鉄超微粒子を簡便な方法で製造する技術を提供することにある。 The present invention has been made in view of the above-described conventional situation, and an object of the present invention is a technique for producing iron ultrafine particles having a large saturation magnetization and excellent dispersibility in an organic solvent and stability thereof by a simple method. Is to provide.
本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、凝集抑制剤が存在する液中で、熱分解又は還元されて0価の鉄を生成する鉄化合物を熱分解又は還元することにより鉄超微粒子を製造するに当たり、凝集抑制剤として脂肪族アミンを用い、凝集抑制剤に含まれる酸素含有化合物の含有量を脂肪族アミン1モルに対して0.1モル以下とすることにより、上記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have thermally decomposed or reduced an iron compound that is pyrolyzed or reduced to produce zero-valent iron in a liquid containing an aggregation inhibitor. In producing iron ultrafine particles by using an aliphatic amine as an aggregation inhibitor, the content of the oxygen-containing compound contained in the aggregation inhibitor is 0.1 mol or less with respect to 1 mol of the aliphatic amine, The present inventors have found that the above problems can be solved and have completed the present invention.
即ち、本発明は以下を要旨とする。
[1] 液中にて、熱分解又は還元されて0価の鉄を生成する鉄化合物を、鉄超微粒子の凝集を抑制する作用を有する凝集抑制剤の存在下に、熱分解又は還元することにより、該凝集抑制剤が配位した鉄超微粒子を生成させる鉄超微粒子生成工程を有する鉄超微粒子の製造方法において、該凝集抑制剤が脂肪族アミンを含み、該凝集抑制剤中に含まれる酸素含有化合物の割合が該脂肪族アミン1モルに対して0.1モル以下であることを特徴とする鉄超微粒子の製造方法。
[2] [1]において、前記鉄超微粒子生成工程にて鉄超微粒子が生成した鉄超微粒子含有液と、熱分解又は還元されて0価の鉄を生成する鉄化合物とを混合し、該鉄超微粒子上に鉄を析出させることを特徴とする鉄超微粒子の製造方法。
[3] [2]において、前記鉄化合物が還元されて0価の鉄を生成する鉄化合物であることを特徴とする鉄超微粒子の製造方法。
[4] [1]ないし[3]において、前記凝集抑制剤が実質的に酸素含有化合物を含まないことを特徴とする鉄超微粒子の製造方法。
[5] [1]〜[4]の方法で製造された鉄超微粒子。
That is, the gist of the present invention is as follows.
[1] Pyrolysis or reduction of an iron compound that is pyrolyzed or reduced to produce zero-valent iron in a liquid in the presence of an aggregation inhibitor having an action of suppressing aggregation of iron ultrafine particles. In the method for producing iron ultrafine particles having the iron ultrafine particle production step for producing iron ultrafine particles coordinated by the aggregation inhibitor, the aggregation inhibitor contains an aliphatic amine and is contained in the aggregation inhibitor. The method for producing ultrafine iron particles, wherein the ratio of the oxygen-containing compound is 0.1 mol or less per 1 mol of the aliphatic amine.
[2] In [1], an iron ultrafine particle-containing liquid in which iron ultrafine particles are produced in the iron ultrafine particle production step is mixed with an iron compound that is pyrolyzed or reduced to produce zero-valent iron, A method for producing iron ultrafine particles, characterized in that iron is deposited on the iron ultrafine particles.
[3] The method for producing ultrafine iron particles according to [2], wherein the iron compound is an iron compound that is reduced to produce zero-valent iron.
[4] The method for producing ultrafine iron particles according to [1] to [3], wherein the aggregation inhibitor substantially does not contain an oxygen-containing compound.
[5] Iron ultrafine particles produced by the method of [1] to [4].
本発明の鉄超微粒子の製造方法によれば、酸化鉄の様な不純物の含有量が少なく、従って、飽和磁化が大きく、かつ有機溶媒への分散性及びその安定性に優れた鉄超微粒子を簡便な方法で製造することができる。 According to the method for producing iron ultrafine particles of the present invention, an iron ultrafine particle having a small content of impurities such as iron oxide, a large saturation magnetization, and excellent dispersibility and stability in an organic solvent is obtained. It can be manufactured by a simple method.
即ち、本発明の方法では、熱分解又は還元されて0価の鉄を生成する鉄化合物が熱分解あるいは還元されて鉄超微粒子が生成する際に、凝集抑制剤である脂肪族アミンが、生成した鉄微結晶の表面に位置して粒子の凝集を抑制するため、粒子同士の凝集による粗大化を防止して、粒径が非常に小さい鉄の微粒子を容易に得ることができる。また、鉄の酸化の要因と成り得る酸素原子を含む凝集抑制剤の存在量が脂肪族アミン1モルに対して0.1モル以下に抑えられているため、酸化鉄のような不純物の生成を抑え、従って、飽和磁化の大きい鉄超微粒子を得ることができる。 That is, in the method of the present invention, when an iron compound that is pyrolyzed or reduced to produce zero-valent iron is pyrolyzed or reduced to produce ultrafine iron particles, an aliphatic amine that is an aggregation inhibitor is produced. Since the particles are located on the surface of the iron microcrystals to suppress the aggregation of the particles, coarsening due to the aggregation of the particles can be prevented, and iron particles having a very small particle diameter can be easily obtained. Moreover, since the abundance of the aggregation inhibitor containing an oxygen atom that can cause iron oxidation is suppressed to 0.1 mol or less with respect to 1 mol of the aliphatic amine, the generation of impurities such as iron oxide is prevented. Therefore, it is possible to obtain iron ultrafine particles with high saturation magnetization.
従来法では、例えばオレイン酸のような酸素原子を含む凝集抑制剤の存在下で鉄超微粒子を製造していたため、凝集抑制剤中の酸素原子が鉄の酸化の要因となるという不都合が生じていた。本発明においては、凝集抑制剤として脂肪族アミンを用い、酸素原子を含む凝集抑制剤の割合を脂肪族アミン1モルに対して0.1モル以下とするため、鉄の酸化の要因が低減され、酸化鉄の生成による飽和磁化の低下が防止される。 In the conventional method, for example, iron ultrafine particles are produced in the presence of an aggregation inhibitor containing an oxygen atom such as oleic acid, which causes a disadvantage that the oxygen atom in the aggregation inhibitor causes oxidation of iron. It was. In the present invention, an aliphatic amine is used as the aggregation inhibitor, and the proportion of the aggregation inhibitor containing oxygen atoms is 0.1 mol or less with respect to 1 mol of the aliphatic amine, so that the factor of iron oxidation is reduced. In addition, a decrease in saturation magnetization due to the generation of iron oxide is prevented.
以下、本発明につき詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定はされない。 Hereinafter, the present invention will be described in detail. However, the description of the constituent elements described below is an example (representative example) of an embodiment of the present invention, and the present invention is specified to these contents as long as the gist thereof is not exceeded. Not done.
本発明による鉄超微粒子の製造は、熱分解又は還元されて0価の鉄を生成する鉄化合物(以下「原料鉄化合物」と称す場合がある。)と、鉄超微粒子の凝集を抑制する作用を有する凝集抑制剤と、必要に応じて用いられる還元剤を含む液(以下「反応液」と称す場合がある。)中で、該鉄化合物を熱分解又は還元することにより行われる。得られた鉄超微粒子は必要に応じて精製した後、各種用途に供される。 The production of ultrafine iron particles according to the present invention is an action that suppresses aggregation of iron compounds that are pyrolyzed or reduced to produce zero-valent iron (hereinafter sometimes referred to as “raw iron compounds”) and ultrafine iron particles. It is carried out by thermally decomposing or reducing the iron compound in a liquid (hereinafter sometimes referred to as “reaction liquid”) containing a coagulation inhibitor having the above and a reducing agent used as necessary. The obtained iron ultrafine particles are purified as necessary and then used for various purposes.
なお、本発明でいう「超微粒子」とは、単なる「鉄の微結晶」を意味するのではなく、「特定のアミン化合物(本発明では例えば脂肪族アミン)が表面に配位した鉄微結晶」を意味する。 The “ultrafine particles” as used in the present invention does not simply mean “iron fine crystals” but “iron fine crystals in which a specific amine compound (for example, an aliphatic amine in the present invention) is coordinated on the surface. "Means.
[凝集抑制剤]
凝集抑制剤は、本発明において、熱分解又は還元されて0価の鉄を生成する原料鉄化合物を熱分解又は還元して鉄超微粒子を生成させる際に、鉄超微粒子の表面に存在することで、鉄超微粒子同士の凝集を抑制してナノメートルオーダーの粒径を保つことを可能とするものである。
[Aggregation inhibitor]
In the present invention, the aggregation inhibitor is present on the surface of the iron ultrafine particles when the raw iron compound that is pyrolyzed or reduced to produce zero-valent iron is pyrolyzed or reduced to produce iron ultrafine particles. Thus, it is possible to keep the particle size in the nanometer order by suppressing the aggregation of the iron ultrafine particles.
このような凝集抑制剤としては、アミン類、ホスフィンオキシド類、カルボン酸類等が挙げられるが、本発明においては、この凝集抑制剤として、脂肪族アミンを用いる。脂肪族アミンは、原料鉄化合物の熱分解又は還元により生成した鉄超微粒子の表面に存在することで、鉄超微粒子の凝集を有効に防止する。この脂肪族アミンの鉄超微粒子表面の存在形態としては多様な形態があり、一概に特定することはできず、鉄超微粒子との配位結合や共有結合等の何らかの化学結合を成している場合だけでなく、ファンデアワールス力、疎水相互作用、水素結合、或いはクーロン力等の任意の引力相互作用で可逆的に吸着している場合もありうる。本発明においては、これらの存在形態を含めて「配位」と称す。 Examples of such an aggregation inhibitor include amines, phosphine oxides, carboxylic acids, and the like. In the present invention, an aliphatic amine is used as the aggregation inhibitor. The aliphatic amine effectively prevents aggregation of the iron ultrafine particles by being present on the surface of the iron ultrafine particles generated by thermal decomposition or reduction of the raw iron compound. There are various forms of the surface of the iron ultrafine particles of this aliphatic amine, and it cannot be specified in general, and forms some chemical bonds such as coordination bonds and covalent bonds with the iron ultrafine particles. In addition to the case, it may be adsorbed reversibly by any attractive interaction such as van der Waals force, hydrophobic interaction, hydrogen bond, or Coulomb force. In the present invention, these forms of existence are referred to as “coordination”.
脂肪族アミンは一般的に凝集抑制剤として用いられる界面活性成分のように酸素原子を持たず、鉄の酸化の要因となることはない。このため、酸化鉄の様な不純物の含有量の少ない鉄超微粒子の製造に有効である。 An aliphatic amine does not have an oxygen atom unlike a surface active component generally used as an aggregation inhibitor, and does not cause oxidation of iron. For this reason, it is effective for the production of iron ultrafine particles having a small content of impurities such as iron oxide.
脂肪族アミンとしては、第1級、第2級、第3級アミンの何れでも良いが、中でも第1級アミンが好適である。また、脂肪族アミン中にアミノ基は何個含まれていても構わないが、通常1〜2個のアミノ基を有するものが好適に用いられる。 As the aliphatic amine, any of primary, secondary, and tertiary amines may be used, and among these, primary amines are preferable. In addition, any number of amino groups may be contained in the aliphatic amine, but those having 1 to 2 amino groups are preferably used.
脂肪族アミンに含まれる炭素鎖は直鎖状であっても分岐を有するものであっても良いが、その炭素数は通常2〜30、好ましくは5〜25、更に好ましくは7〜20、最も好ましくは8〜18であり、具体的にはイソブチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、ヘキサデシル基、オレイル基等が例示でき、中でもオクチル基、デシル基、ドデシル基、ヘキサデシル基、オレイル基が好適である。 The carbon chain contained in the aliphatic amine may be linear or branched, but the carbon number is usually 2 to 30, preferably 5 to 25, more preferably 7 to 20, most preferably Preferably, it is 8-18, and specific examples include isobutyl group, hexyl group, octyl group, decyl group, dodecyl group, hexadecyl group, oleyl group and the like, among which octyl group, decyl group, dodecyl group, hexadecyl group, An oleyl group is preferred.
凝集抑制剤として好適な脂肪族アミンとしては1−デシルアミン、1−ドデシルアミン、1−ヘキサデシルアミン、オレイルアミン等が例示できる。これらの脂肪族アミンは、1種を単独で用いても良く、2種以上を併用しても良い。 Examples of the aliphatic amine suitable as the aggregation inhibitor include 1-decylamine, 1-dodecylamine, 1-hexadecylamine, oleylamine and the like. These aliphatic amines may be used alone or in combination of two or more.
このような脂肪族アミンは、後述の原料鉄化合物中の鉄原子1モルに対して下限として通常0.1モル以上、好ましくは0.5モル以上、上限として通常100モル以下、好ましくは50モル以下の範囲で用いられる。脂肪族アミン使用量が少な過ぎると、脂肪族アミンを用いたことによる鉄超微粒子の凝集抑制効果を十分に得ることができず、多過ぎると精製工程が増える等産業上実用的ではない。 Such an aliphatic amine has a lower limit of usually 0.1 mol or more, preferably 0.5 mol or more, and an upper limit of usually 100 mol or less, preferably 50 mol with respect to 1 mol of an iron atom in the raw material iron compound described later. Used in the following ranges. If the amount of the aliphatic amine used is too small, the effect of suppressing the aggregation of the iron ultrafine particles due to the use of the aliphatic amine cannot be sufficiently obtained, and if too large, the purification process increases, which is not practical in industry.
本発明において、凝集抑制剤として、上述のような脂肪族アミンを用いるが、凝集抑制剤中の酸素含有化合物の割合が、上記脂肪族アミン1モルに対して、0.1モル以下であることを特徴とする。なお、この凝集抑制剤中の酸素含有化合物(以下「酸素原子を含有する凝集抑制剤」と称す場合がある。)とは、原料鉄化合物の熱分解又は還元により生じた鉄超微粒子に配位して、鉄超微粒子の凝集を抑制する作用を有する化合物であって、酸素原子を含むものであり、単なる分散溶媒、還元剤や不純物として混入する酸素含有化合物は「凝集抑制剤中の酸素含有化合物」には該当しない。 In the present invention, the aliphatic amine as described above is used as the aggregation inhibitor, and the proportion of the oxygen-containing compound in the aggregation inhibitor is 0.1 mol or less with respect to 1 mol of the aliphatic amine. It is characterized by. The oxygen-containing compound in the aggregation inhibitor (hereinafter sometimes referred to as “aggregation inhibitor containing oxygen atoms”) is coordinated to the iron ultrafine particles generated by thermal decomposition or reduction of the raw iron compound. Thus, a compound having an action of suppressing the aggregation of iron ultrafine particles and containing an oxygen atom, an oxygen-containing compound mixed as a simple dispersion solvent, a reducing agent or an impurity is referred to as “the oxygen-containing content in the aggregation inhibitor”. Does not fall under “compound”.
凝集抑制剤としての酸素含有化合物としては、前述したカルボン酸類やホスフィンオキシド類等、具体的にはオレイン酸、パルミチン酸、ドデカン酸、デカン酸、へキサン酸、ステアリン酸、トリオクチルホスフィンオキシド、トリブチルホスフィンオキシド等が挙げられる。 Examples of the oxygen-containing compound as the aggregation inhibitor include the above-described carboxylic acids and phosphine oxides, such as oleic acid, palmitic acid, dodecanoic acid, decanoic acid, hexanoic acid, stearic acid, trioctylphosphine oxide, and tributyl. Examples include phosphine oxide.
本発明においては、このような凝集抑制剤中の酸素含有化合物の割合を、上述の凝集抑制剤としての脂肪族アミン1モルに対して0.1モル以下とする。この酸素原子を含有する凝集抑制剤の割合が脂肪族アミン1モルに対して0.1モルを超えると、酸素原子を含有する凝集抑制剤による酸化作用で酸化鉄等の不純物生成量が多くなり、飽和磁化が大きい鉄超微粒子を得ることができない。酸素原子を含有する凝集抑制剤は少ない程好ましく、脂肪族アミン1モルに対して0.01モル以下、特に酸素原子を含有する凝集抑制剤は反応液中に実質的に存在しないことが最も好ましい。 In the present invention, the ratio of the oxygen-containing compound in such an aggregation inhibitor is 0.1 mol or less with respect to 1 mol of the aliphatic amine as the aggregation inhibitor. When the proportion of the aggregation inhibitor containing oxygen atoms exceeds 0.1 mol with respect to 1 mol of the aliphatic amine, the amount of impurities such as iron oxide increases due to the oxidizing action of the aggregation inhibitor containing oxygen atoms. It is impossible to obtain iron ultrafine particles having a large saturation magnetization. The smaller the amount of aggregation inhibitor containing oxygen atoms, the more preferable, and 0.01 mol or less with respect to 1 mol of the aliphatic amine, and most preferable that the aggregation inhibitor containing oxygen atoms is not substantially present in the reaction solution. .
[原料鉄化合物]
本発明の鉄超微粒子の製造に用いられる原料鉄化合物としては、それ自体が熱分解して0価の金属鉄を生成する化合物と、化合物中の2価や3価の鉄が還元剤により還元されることで0価の金属鉄を生成する化合物が挙げられる。
[Raw iron compound]
The raw iron compound used in the production of the iron ultrafine particles of the present invention is a compound that itself thermally decomposes to produce zero-valent metallic iron, and divalent or trivalent iron in the compound is reduced by a reducing agent. As a result, compounds that produce zero-valent metallic iron can be mentioned.
熱分解して0価の金属鉄を生成する原料鉄化合物としては、熱分解により0価の金属鉄が生じる化合物であれば限定されないが、鉄カルボニルが好適に用いられ、例えば、ペンタカルボニル鉄、ノナカルボニル二鉄、ドデカカルボニル三鉄等が挙げられる。 The raw material iron compound that is pyrolyzed to produce zero-valent metallic iron is not limited as long as it is a compound that generates zero-valent metallic iron by pyrolysis, but iron carbonyl is preferably used, for example, pentacarbonyl iron, Nonacarbonyl diiron, dodecacarbonyl triiron and the like can be mentioned.
還元されることにより0価の金属鉄を生成する原料鉄化合物としては、還元されることにより0価の金属鉄が生じる化合物であれば特に限定されず、例えば、塩化鉄、臭化鉄等のハロゲン化鉄;酢酸鉄、オレイン酸鉄等のカルボン酸鉄;硫酸鉄、硝酸鉄等の無機酸鉄;アセチルアセトナト鉄等の鉄のβ−ジケトン錯体等が挙げられる。中でも、溶解性や化合物の安定性、操作性の点で、酢酸鉄、塩化鉄、及び鉄のβ−ジケトン錯体が特に好適に用いられる。 The raw material iron compound that generates zero-valent metallic iron by being reduced is not particularly limited as long as it is a compound that generates zero-valent metallic iron by being reduced. For example, iron chloride, iron bromide, etc. Examples thereof include iron halides; iron carboxylates such as iron acetate and iron oleate; inorganic acid irons such as iron sulfate and iron nitrate; and β-diketone complexes of iron such as acetylacetonato iron. Among them, iron acetate, iron chloride, and a β-diketone complex of iron are particularly preferably used in terms of solubility, compound stability, and operability.
これらの原料鉄化合物は、1種を単独で用いても良く、2種以上を併用しても良い。 These raw material iron compounds may be used individually by 1 type, and may use 2 or more types together.
反応液中の原料鉄化合物の含有量については特に制限はないが、少な過ぎると鉄超微粒子の生成効率が悪く、多過ぎると粒子の凝集が起こりやすくなり、ナノメートルオーダーの粒径を保つことが困難であることから、1ミリモル/リットル以上、10モル/リットル以下とすることが好ましい。 The content of the raw iron compound in the reaction solution is not particularly limited, but if it is too small, the production efficiency of iron ultrafine particles is poor, and if it is too large, the particles tend to aggregate and maintain a nanometer order particle size. Therefore, it is preferable to set the concentration to 1 mmol / liter or more and 10 mol / liter or less.
[還元剤]
原料鉄化合物として還元することにより0価の金属鉄を生成する化合物を用いる場合には、反応液中に還元剤を存在させる必要がある。この還元剤としては、原料鉄化合物を還元して0価の金属鉄としうる化合物であれば限定されない。具体的には、水素、炭素、ヒドラジン、水素化ホウ素ナトリウム、水素化ホウ素カリウム等の水素化ホウ素化物、シュウ酸、クエン酸等のカルボン酸、クエン酸ナトリウム、アスコルビン酸ナトリウム等のカルボン酸塩、エタノール、ブタノール、ヘキサノール等の1価アルコール、1,2−ヘキサンジオール、1,2−ヘキサデカンジオール、エチレングリコール等の多価アルコール、リチウムトリエチルボロヒドリド(スーパーハイドライド)、水素化アルミニウムリチウム、水素化リチウム等の金属水素化物等が挙げられるが、反応性や操作性等の点から、多価アルコールや金属水素化物が好適に用いられる。これらの還元剤は、1種を単独で用いても良く、2種以上を併用しても良い。
[Reducing agent]
When using a compound that generates zero-valent metallic iron by reduction as a raw iron compound, a reducing agent must be present in the reaction solution. The reducing agent is not limited as long as it is a compound that can reduce the raw iron compound to zero-valent metallic iron. Specifically, hydrogen, carbon, hydrazine, borohydride such as sodium borohydride, potassium borohydride, carboxylic acid such as oxalic acid and citric acid, carboxylate such as sodium citrate and sodium ascorbate, Monohydric alcohols such as ethanol, butanol, hexanol, polyhydric alcohols such as 1,2-hexanediol, 1,2-hexadecanediol, ethylene glycol, lithium triethylborohydride (superhydride), lithium aluminum hydride, lithium hydride Examples of the metal hydride such as polyhydric alcohol and metal hydride are preferably used from the viewpoint of reactivity and operability. These reducing agents may be used individually by 1 type, and may use 2 or more types together.
還元剤の使用量は、原料鉄化合物中の鉄原子1モルに対して下限が通常0.1モル以上、好ましくは0.5モル以上であり、上限が通常100モル以下、好ましくは50モル以下である。 The lower limit of the amount of the reducing agent used is usually 0.1 mol or more, preferably 0.5 mol or more, and the upper limit is usually 100 mol or less, preferably 50 mol or less, relative to 1 mol of iron atoms in the raw iron compound. It is.
[溶媒]
本発明の鉄超微粒子の製造は、原料鉄化合物及び凝集抑制剤、必要に応じて用いられる還元剤を混合した反応液中で加熱することにより行われるが、反応液は更に有機溶媒を添加して希釈しても良い。ここで反応液に用いられる有機溶媒としては、ジオクチルエーテル、ジフェニルエーテル等のエーテル類、n−ペンタン、n−ヘキサン、シクロヘキサン、n−オクタン、イソオクタン等のアルカン類、ベンゼン、トルエン、キシレン、ナフタレン、クロロベンゼン、ジクロロベンゼン等の芳香族炭化水素類、ピリジン、ルチジン、コリジン、あるいはキノリン等の含窒素芳香族化合物、塩化メチレン、クロロホルム、四塩化炭素、1,2−ジクロロエタン等のハロゲン化アルキル類、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N−メチルピロリドン(NMP)等のアミド系非プロトン性溶媒が例示される。
[solvent]
The production of the iron ultrafine particles of the present invention is carried out by heating in a reaction liquid in which a raw material iron compound, an aggregation inhibitor, and a reducing agent used as necessary are mixed. The reaction liquid is further added with an organic solvent. May be diluted. Examples of the organic solvent used in the reaction solution include ethers such as dioctyl ether and diphenyl ether, alkanes such as n-pentane, n-hexane, cyclohexane, n-octane and isooctane, benzene, toluene, xylene, naphthalene and chlorobenzene. , Aromatic hydrocarbons such as dichlorobenzene, nitrogen-containing aromatic compounds such as pyridine, lutidine, collidine, or quinoline, halogenated alkyls such as methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, N, Examples include amide aprotic solvents such as N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP) and the like.
これらの溶媒は、必要に応じて、任意の種類、組み合わせ、混合比において2種以上混合して使用しても構わない。 These solvents may be used as a mixture of two or more in any kind, combination, and mixing ratio as necessary.
[反応温度・時間・雰囲気]
本発明における反応温度は、原料鉄化合物が熱分解又は還元される温度であれば特に制限はないが、通常、還元反応の場合、下限が0℃以上、好ましくは100℃以上であり、熱分解反応の場合には、下限が通常50℃以上、好ましくは100℃以上である。一方、上限は、通常500℃以下、好ましくは400℃以下である。
[Reaction temperature, time, atmosphere]
The reaction temperature in the present invention is not particularly limited as long as the raw iron compound is thermally decomposed or reduced. Usually, in the case of a reduction reaction, the lower limit is 0 ° C. or higher, preferably 100 ° C. or higher. In the case of reaction, the lower limit is usually 50 ° C. or higher, preferably 100 ° C. or higher. On the other hand, the upper limit is usually 500 ° C. or lower, preferably 400 ° C. or lower.
反応時間は必要な鉄超微粒子が生成する時間であれば特に制限はないが、通常1分以上、好ましくは30分以上であり、通常100時間以下、好ましくは50時間以下である。 The reaction time is not particularly limited as long as the necessary iron ultrafine particles are produced, but is usually 1 minute or more, preferably 30 minutes or more, and usually 100 hours or less, preferably 50 hours or less.
本発明の鉄超微粒子の製造方法は、生成した鉄超微粒子が酸化しないように、通常、酸素100ppm以下、水100ppm以下の、アルゴンや窒素といった不活性ガス雰囲気下で実施される。 The method for producing ultrafine iron particles of the present invention is usually carried out in an inert gas atmosphere such as argon or nitrogen containing 100 ppm or less of oxygen and 100 ppm or less of water so that the produced iron ultrafine particles are not oxidized.
[鉄超微粒子の粒径調整]
本発明の鉄超微粒子の製造方法においては、得られる鉄超微粒子の粒径を増大させるために、原料鉄化合物の熱分解又は還元を行って鉄超微粒子を生成させた後に、鉄超微粒子が生成した液に更に原料鉄化合物を加えて、或いは鉄超微粒子が生成した液を原料鉄化合物に加えて混合し、混合液中の原料鉄化合物の熱分解又は還元を行って、鉄超微粒子上に鉄を析出させることができる。この場合、原料鉄化合物は適当な溶媒に溶解させて用いても良い。また、鉄超微粒子が生成した液としては、後述の方法で精製された鉄超微粒子を含有する液を用いても良い。
[Adjustment of iron ultrafine particle size]
In the method for producing iron ultrafine particles of the present invention, in order to increase the particle size of the obtained iron ultrafine particles, the iron ultrafine particles are produced after the raw iron compound is pyrolyzed or reduced to produce iron ultrafine particles. The raw material iron compound is further added to the generated liquid, or the liquid in which the iron ultrafine particles are generated is added to and mixed with the raw iron compound, and the raw iron compound in the mixed solution is thermally decomposed or reduced, so that It is possible to deposit iron. In this case, the starting iron compound may be used after being dissolved in a suitable solvent. Further, as the liquid in which the iron ultrafine particles are generated, a liquid containing iron ultrafine particles purified by the method described later may be used.
このようにして先に生成した鉄超微粒子を核として、その上に更に鉄を析出させることにより、該微粒子の粒径を増大させることができる。 By using the iron ultrafine particles generated in this way as nuclei and further precipitating iron thereon, the particle size of the fine particles can be increased.
追加で用いる原料鉄化合物は当初の原料鉄化合物と同一のものであっても良く、異なるものであっても良い。この原料鉄化合物が還元することにより0価の金属鉄を生成するものである場合は、更に前述した還元剤も併用する。また、原料鉄化合物を混合する際に必要に応じて更に脂肪族アミンを混合しても良い。 The additional raw material iron compound may be the same as or different from the original raw material iron compound. When this raw material iron compound generates zero-valent metallic iron by reduction, the aforementioned reducing agent is also used in combination. Moreover, when mixing a raw material iron compound, you may mix an aliphatic amine further as needed.
[その他の物質]
本発明の鉄超微粒子の製造においては、本発明の目的を損なわない範囲で、反応液中に上記以外の物質が存在しても良い。
[Other substances]
In the production of the ultrafine iron particles of the present invention, substances other than those described above may be present in the reaction solution as long as the object of the present invention is not impaired.
前述したカルボン酸類の様な酸素原子を含む凝集抑制剤の反応液中の存在量は、前述の如く、脂肪族アミン1モルに対して、通常、0.1モル以下、好ましくは0.01モル以下であり、本発明の鉄超微粒子は、このような酸素含有化合物の不存在下で製造することが最も好ましいが、原料鉄化合物の熱分解又は還元が起こり、鉄超微粒子が生成した後であれば、分散性を改善するためにカルボン酸のような酸素原子を含む凝集抑制剤が、脂肪族アミン1モルに対して0.1モルを超えて反応液に存在しても構わない。 As described above, the amount of the aggregation inhibitor containing an oxygen atom such as carboxylic acids described above in the reaction solution is usually 0.1 mol or less, preferably 0.01 mol, relative to 1 mol of the aliphatic amine. The iron ultrafine particles of the present invention are most preferably produced in the absence of such an oxygen-containing compound, but after the raw iron compound is thermally decomposed or reduced and the iron ultrafine particles are produced, If present, an aggregation inhibitor containing an oxygen atom such as a carboxylic acid may be present in the reaction solution in an amount exceeding 0.1 mol with respect to 1 mol of the aliphatic amine in order to improve dispersibility.
[鉄超微粒子の精製]
上述した方法により得られる鉄超微粒子は、反応液より抜き出した後そのまま使用しても良いが、該微粒子中の金属鉄結晶の構成比を上げるために、脂肪族アミンの溶解度は高いが生成した鉄超微粒子の分散性の低い溶媒(以下「精製溶媒」と称す場合がある。)と混合して精製しても良い。鉄超微粒子を精製溶媒と混合することにより、鉄超微粒子に配位している脂肪族アミン、その他の有機成分が精製溶媒中に溶解し、微粒子が析出した懸濁液となるので、遠心分離等の分離方法により、この懸濁液中から鉄超微粒子を分離して精製した鉄超微粒子を得ることができる。この精製溶媒としては用いた脂肪族アミンに応じて適宜選択されるが、例えば、脂肪族アミンがオレイルアミンである場合には、メタノール、エタノール、n−プロパノール、イソプロピルアルコール、n−ブタノール、tert−ブタノール等のアルコール類等の1種又は2種以上を用いることができる。
[Purification of ultrafine iron particles]
The iron ultrafine particles obtained by the method described above may be used as they are after being extracted from the reaction solution. However, in order to increase the composition ratio of metallic iron crystals in the fine particles, the solubility of aliphatic amines is high, but generated. The ultrafine iron particles may be purified by mixing with a solvent having low dispersibility (hereinafter sometimes referred to as “purification solvent”). By mixing the iron ultrafine particles with the purification solvent, the aliphatic amine coordinated to the iron ultrafine particles and other organic components dissolve in the purification solvent, resulting in a suspension in which the fine particles are precipitated. The ultrafine iron particles can be obtained by separating and refining the ultrafine iron particles from the suspension by a separation method such as the above. The purification solvent is appropriately selected according to the aliphatic amine used. For example, when the aliphatic amine is oleylamine, methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, tert-butanol 1 type (s) or 2 or more types, such as alcohols, etc. can be used.
なお、このような鉄超微粒子の精製に際しては、一旦鉄超微粒子を鉄超微粒子の分散性に優れた有機溶媒に分散させ、その後上記アルコール類等の精製溶媒と混合しても構わない。鉄超微粒子の良分散性有機溶媒としては、ジオクチルエーテル、ジフェニルエーテル等のエーテル類、n−ペンタン、n−ヘキサン、シクロヘキサン、n−オクタン、イソオクタン等のアルカン類、ベンゼン、トルエン、キシレン、ナフタレン、クロロベンゼン、ジクロロベンゼン等の芳香族炭化水素類、ピリジン、ルチジン、コリジン、あるいはキノリン等の含窒素芳香族化合物、塩化メチレン、クロロホルム、四塩化炭素、1,2−ジクロロエタン等のハロゲン化アルキル類、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N−メチルピロリドン(NMP)等のアミド系非プロトン性溶剤が例示され、これらは1種を単独で用いても良く、2種以上を併用しても良い。 In the purification of such iron ultrafine particles, the iron ultrafine particles may be once dispersed in an organic solvent having excellent dispersibility of the iron ultrafine particles, and then mixed with a purification solvent such as the above alcohols. As well-dispersible organic solvents for iron ultrafine particles, ethers such as dioctyl ether and diphenyl ether, alkanes such as n-pentane, n-hexane, cyclohexane, n-octane and isooctane, benzene, toluene, xylene, naphthalene and chlorobenzene , Aromatic hydrocarbons such as dichlorobenzene, nitrogen-containing aromatic compounds such as pyridine, lutidine, collidine, or quinoline, halogenated alkyls such as methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, N, Examples include amide aprotic solvents such as N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), and these may be used alone. More than one species may be used in combination.
なお、本発明により得られる鉄超微粒子は、非常に粒径の小さい超微粒子であるため、この鉄超微粒子の分散性に優れた溶媒にこの鉄超微粒子を分散させた場合、目視で鉄超微粒子を確認し得ない状態となり、あたかも「溶解」したかのような状態となる。この鉄超微粒子の擬似溶解状態の液に前述の精製溶媒を添加すると、鉄超微粒子が懸濁状態となり、あたかも、鉄超微粒子が析出したような現像となる。 In addition, since the iron ultrafine particles obtained by the present invention are ultrafine particles having a very small particle diameter, when the iron ultrafine particles are dispersed in a solvent having excellent dispersibility of the iron ultrafine particles, the iron ultrafine particles are visually observed. It becomes a state where the fine particles cannot be confirmed, as if it were “dissolved”. When the above-mentioned purification solvent is added to the solution of the iron ultrafine particles in a pseudo-dissolved state, the iron ultrafine particles are in a suspended state, and the development is as if the iron ultrafine particles are precipitated.
[本発明の鉄超微粒子]
(脂肪族アミン含有量)
上記の本発明の鉄超微粒子の製造方法により得られる本発明の鉄超微粒子には、凝集抑制剤として用いた脂肪族アミンが配位し、脂肪族アミンが配位することによって、粒子間の凝集による粗大粒子の生成を避けることができ、有機溶媒への良好かつ安定な分散性が得られる。
[Ultrafine iron particles of the present invention]
(Aliphatic amine content)
The iron ultrafine particles of the present invention obtained by the iron ultrafine particle production method of the present invention are coordinated with an aliphatic amine used as an aggregation inhibitor, and the aliphatic amine is coordinated, so that Generation of coarse particles due to aggregation can be avoided, and good and stable dispersibility in an organic solvent can be obtained.
本発明の製造方法により得られる鉄超微粒子の脂肪族アミンの配位量は、該微粒子の粒径あるいは表面積にもよるが、前述した精製工程を経て十分に精製された状態で、下限が、通常5重量%以上、好ましくは10重量%以上、更に好ましくは15重量%以上、最も好ましくは20重量%以上、上限が、通常90重量%以下、好ましくは80重量%以下、更に好ましくは70重量%以下、最も好ましくは60重量%以下である。脂肪族アミンの配位量が少な過ぎると脂肪族アミンによる十分な凝集効果が得られず、多過ぎると使用時に脂肪族アミンが析出する等不具合が生じる可能性がある。なお、この脂肪族アミンの配位量とは鉄微結晶及び少量含有していると思われる鉄の酸化物の合計に対する脂肪族アミンの重量割合である。 The coordination amount of the aliphatic amine of the iron ultrafine particles obtained by the production method of the present invention depends on the particle size or surface area of the fine particles, but in a state where it has been sufficiently purified through the purification step described above, the lower limit is Usually 5% by weight or more, preferably 10% by weight or more, more preferably 15% by weight or more, most preferably 20% by weight or more, and the upper limit is usually 90% by weight or less, preferably 80% by weight or less, more preferably 70% by weight. % Or less, most preferably 60% by weight or less. If the amount of coordination of the aliphatic amine is too small, a sufficient aggregating effect due to the aliphatic amine cannot be obtained, and if it is too large, problems such as precipitation of the aliphatic amine during use may occur. The coordination amount of the aliphatic amine is a weight ratio of the aliphatic amine to the total of iron fine crystals and an iron oxide which is considered to be contained in a small amount.
この脂肪族アミン配位量は、例えば熱重量分析や元素分析等を組み合わせることにより測定される。 This aliphatic amine coordination amount is measured by combining, for example, thermogravimetric analysis or elemental analysis.
(粒径)
本発明の製造方法により得られる鉄超微粒子の粒子の大きさ(この大きさとは、鉄超微粒子に配位した脂肪族アミン等を含まない大きさをさす。)は、汎用的な透過型電子顕微鏡(TEM)で観察される平均粒径として、通常1nm以上、好ましくは2nm以上であり、通常500nm以下、好ましくは300nm以下、更に好ましくは100nm以下である。鉄超微粒子の平均粒径が大きすぎるとファン・デル・ワールス力等により粒子が凝集しやすくなり、有機溶媒への分散性が低下する。一方、鉄超微粒子の平均粒径が小さすぎると工業的に製造することが困難であり実用的でない。ただし、TEMで観察される粒子径は微粒子中の鉄結晶部分が観察されているものであり、実際にはこの結晶の表面には脂肪族アミン等の有機成分が配位し、配位成分を含む粒子径は上記範囲よりも大きい。
(Particle size)
The size of the iron ultrafine particles obtained by the production method of the present invention (this size means a size that does not include an aliphatic amine coordinated with the iron ultrafine particles) is a general-purpose transmission electron. The average particle diameter observed with a microscope (TEM) is usually 1 nm or more, preferably 2 nm or more, usually 500 nm or less, preferably 300 nm or less, more preferably 100 nm or less. If the average particle size of the iron ultrafine particles is too large, the particles are likely to aggregate due to van der Waals force and the like, and the dispersibility in an organic solvent decreases. On the other hand, if the average particle size of the iron ultrafine particles is too small, it is difficult to produce industrially and is not practical. However, the particle diameter observed by TEM is that in which the iron crystal portion in the fine particles is observed. In reality, organic components such as aliphatic amines are coordinated on the surface of this crystal, and the coordination component is The particle size to be included is larger than the above range.
(構造)
本発明の製造方法より得られる鉄超微粒子は、その電子線回折パターンやX線回折パターンを測定することで、その構造を同定することや酸化鉄等の不純物の有無を確認することが可能である。例えば、鉄の場合、常温で体心立方構造、910℃以上で立方最密構造、1400℃以上で体心立方構造が安定であり、それぞれα鉄、γ鉄、δ鉄と呼ばれている。
(Construction)
By measuring the electron diffraction pattern and X-ray diffraction pattern of the iron ultrafine particles obtained from the production method of the present invention, it is possible to identify the structure and to confirm the presence of impurities such as iron oxide. is there. For example, in the case of iron, a body-centered cubic structure at room temperature, a cubic close-packed structure at 910 ° C. or higher, and a body-centered cubic structure at 1400 ° C. or higher are stable, which are called α iron, γ iron, and δ iron, respectively.
(飽和磁化)
本発明の製造方法により得られる鉄超微粒子は通常、強磁性体であり、超伝導量子干渉素子(SQUID)磁束計等により飽和磁化を測定することが可能である。この鉄超微粒子の飽和磁化はバルクの鉄の飽和磁化(220emu/g)に近いほど望ましいが、通常5Kにおいて、150emu/g以上、好ましくは165emu/g以上、更に好ましくは180emu/g以上である。
(Saturation magnetization)
The iron ultrafine particles obtained by the production method of the present invention are usually ferromagnetic, and the saturation magnetization can be measured with a superconducting quantum interference device (SQUID) magnetometer or the like. The saturation magnetization of the iron ultrafine particles is preferably as close as possible to the saturation magnetization (220 emu / g) of bulk iron, but is usually 150 emu / g or more, preferably 165 emu / g or more, more preferably 180 emu / g or more at 5K. .
なお、本発明の鉄超微粒子の飽和磁化の算出方法は次の通りである。 In addition, the calculation method of the saturation magnetization of the iron ultrafine particles of the present invention is as follows.
通常、飽和磁化は鉄の単位グラム当たりで表されるが、本発明の製造方法により得られる鉄超微粒子は、鉄の一部分が酸化したものやその他の酸化物等の不純物を含んでいる可能性があり、その割合を算出することは非常に困難である。そこで、本発明では、一旦該鉄超微粒子を焼成して酸化鉄(Fe2O3)とし、その重量から該鉄超微粒子中に含まれる鉄の含量を見積もり、鉄超微粒子中に含まれる鉄がすべて0価の鉄であるとして飽和磁化を算出した。 Usually, the saturation magnetization is expressed per gram of iron, but the iron ultrafine particles obtained by the production method of the present invention may contain impurities such as oxidized iron or other oxides. It is very difficult to calculate the ratio. Therefore, in the present invention, once the iron by sintering ultrafine particles and iron oxide (Fe 2 O 3), to estimate the amount of iron contained in iron ultra fine particles from the weight of iron contained in the iron ultrafine particles The saturation magnetization was calculated assuming that all are zero-valent iron.
(その他の成分)
本発明の製造方法において、カルボン酸のような酸素原子を含有する凝集抑制剤を含んだ反応液で鉄超微粒子を製造した場合、得られる鉄超微粒子には、この酸素原子を含有する凝集抑制剤が配位している場合もある。
(Other ingredients)
In the production method of the present invention, when iron ultrafine particles are produced with a reaction solution containing an aggregation inhibitor containing oxygen atoms such as carboxylic acid, the resulting iron ultrafine particles contain aggregation inhibitors containing oxygen atoms. The agent may be coordinated.
また、本発明の製造方法により得られる鉄超微粒子は、通常、脂肪族アミン以外にも前述した原料鉄化合物由来のジケトン等の有機化合物や反応液に使用した溶媒成分等に由来する有機成分が配位している。 Moreover, the iron ultrafine particles obtained by the production method of the present invention usually have organic components derived from organic compounds such as diketone derived from the above-mentioned raw material iron compound and solvent components used in the reaction solution in addition to the aliphatic amine. It is coordinated.
かかる有機成分は、前述した精製工程を経た後も、本発明の鉄超微粒子との配位結合や共有結合等の何らかの化学結合、ファンデアワールス力、疎水相互作用、水素結合、あるいはクーロン力等の任意の引力相互作用で可逆的に吸着して、該鉄超微粒子に配位している。 Such an organic component, after undergoing the purification step described above, is any chemical bond such as a coordinate bond or covalent bond with the iron ultrafine particles of the present invention, van der Waals force, hydrophobic interaction, hydrogen bond, Coulomb force, etc. It is reversibly adsorbed by any attractive interaction and coordinated with the iron ultrafine particles.
(シェル)
本発明の鉄超微粒子は、空気中での酸化を防止するために、酸素に対して安定なシェルを有していても構わない。例えば、鉄超微粒子が存在する液中でシェル原料を反応させる等により鉄超微粒子にシェルを形成することができる。シェルとして用いられる化合物としては、白金、金、銀、パラジウム等の貴金属、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム等の酸化物等が挙げられる。これらは1種を単独で用いても良く、2種以上を併用しても良い。
(shell)
The iron ultrafine particles of the present invention may have a stable shell against oxygen in order to prevent oxidation in the air. For example, the shell can be formed on the iron ultrafine particles by reacting the shell raw material in a liquid containing the iron ultrafine particles. Examples of the compound used as the shell include noble metals such as platinum, gold, silver, and palladium, and oxides such as silicon oxide, aluminum oxide, and zirconium oxide. These may be used alone or in combination of two or more.
以下に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はその要旨を超えない限り、これらの実施例によって限定されるものではない。 EXAMPLES Specific examples of the present invention will be described in more detail below with reference to examples. However, the present invention is not limited to these examples unless it exceeds the gist.
なお、原料試薬は、特に記載がない限り、市販の試薬を精製を加えず使用した。また、得られた鉄超微粒子の飽和磁化及び粒径の測定方法は次の通りである。 In addition, as a raw material reagent, unless otherwise indicated, a commercially available reagent was used without purification. Moreover, the measuring method of the saturation magnetization and particle size of the obtained iron ultrafine particles is as follows.
[飽和磁化の測定]
アルゴン雰囲気のグローブボックス内で、後述の如く、反応液をエタノールで洗浄後、ヘキサンに再分散したサンプル(0.1g)を石英管に入れ、エポキシ樹脂で蓋をして測定サンプルとした。この石英管を超伝導量子干渉素子(SQUID)磁束系(QUANTOM DESIGN社製MPMS−5)にセットし、磁化の測定を行った。測定温度を5Kとし、測定磁界範囲を50kOeから−50kOeとした。一方で、同じ鉄超微粒子を含有する液の溶媒を蒸発させ、650℃で4時間焼成し、重量を測定して鉄の含有量を求めた。測定した飽和磁化値を見積もった鉄の重量で割った値を、その鉄超微粒子の飽和磁化[emu/g]とした。
[Measurement of saturation magnetization]
As described later, a sample (0.1 g) re-dispersed in hexane after washing the reaction solution with ethanol in an argon atmosphere glove box was placed in a quartz tube and covered with an epoxy resin to obtain a measurement sample. This quartz tube was set in a superconducting quantum interference device (SQUID) magnetic flux system (MPMS-5 manufactured by QUANTOM DESIGN), and the magnetization was measured. The measurement temperature was 5 K, and the measurement magnetic field range was 50 kOe to −50 kOe. On the other hand, the solvent of the liquid containing the same iron ultrafine particles was evaporated, baked at 650 ° C. for 4 hours, and the weight was measured to determine the iron content. The value obtained by dividing the measured saturation magnetization value by the estimated iron weight was defined as the saturation magnetization [emu / g] of the iron ultrafine particles.
[粒径の測定]
後述の如く、反応液をエタノールで洗浄後、ヘキサンに再分散したサンプルをグリッドに滴下し、溶媒を蒸発させた後に、透過型電子顕微鏡(JEOL社製JEM−2000EX)で測定した。サンプルは測定の直前数分間大気に露出した。平均粒径は、粒子像を少なくとも300個以上粒径測定した値から算出した。
[Measurement of particle size]
As described later, after the reaction solution was washed with ethanol, a sample redispersed in hexane was dropped onto the grid and the solvent was evaporated, and then measured with a transmission electron microscope (JEM-2000EX manufactured by JEOL). The sample was exposed to the atmosphere for a few minutes just before the measurement. The average particle size was calculated from a value obtained by measuring the particle size of at least 300 particle images.
実施例1:オレイルアミン存在下における鉄超微粒子の製造
空冷式還流管と温度計を装着した無色透明のパイレックスガラス製3口フラスコ(100mL)にジオクチルエーテル(Aldrich社製:25mL)及びオレイルアミン(Aldrich社製:8mmol)を入れた。ジオクチルエーテル及びオレイルアミンは事前に室温から50℃でロータリーポンプを用いて真空引きを1時間行ったものを用いた。
Example 1 Production of Ultrafine Iron Particles in the Presence of Oleylamine Dioctyl ether (Aldrich: 25 mL) and oleylamine (Aldrich) were added to a colorless and transparent Pyrex glass three-neck flask (100 mL) equipped with an air-cooled reflux tube and a thermometer. Product: 8 mmol). Dioctyl ether and oleylamine used in advance were evacuated for 1 hour from room temperature to 50 ° C. using a rotary pump.
別途、鉄ペンタカルボニル(関東化学社製:2mmol)をフラスコ内の溶液の一部(ジオクチルエーテル+オレイルアミン;2mL)に溶解した原料溶液を調製した。マントルヒーターによりフラスコ内の溶液を200℃に加熱し、この原料溶液を、注射器で一気に注入した。注入直後に液は黒色となった。原料溶液注入後、更に加熱して30分還流した(反応液の温度289℃)後に熱源を除去し室温まで放冷した。 Separately, a raw material solution in which iron pentacarbonyl (manufactured by Kanto Chemical Co., Inc .: 2 mmol) was dissolved in a part of the solution in the flask (dioctyl ether + oleylamine; 2 mL) was prepared. The solution in the flask was heated to 200 ° C. with a mantle heater, and this raw material solution was injected at once with a syringe. Immediately after injection, the liquid turned black. After injecting the raw material solution, the mixture was further heated to reflux for 30 minutes (reaction liquid temperature: 289 ° C.), and then the heat source was removed and the mixture was allowed to cool to room temperature.
このようにして得られた鉄超微粒子生成液(10mL)に脱水エタノール(和光純薬工業(株)社製:30mL)を加えて黒色の不溶物を生じさせた後、遠心分離を行い、更に上澄み液をデカンテーションにより除去し、得られた黒沈(鉄超微粒子)を脱水ヘキサン(和光純薬工業(株)社製:10mL)に分散させた。この鉄超微粒子を含むヘキサンは少なくとも2週間は沈殿が生じることはなかった。 After adding dehydrated ethanol (manufactured by Wako Pure Chemical Industries, Ltd .: 30 mL) to the iron ultrafine particle production solution (10 mL) obtained in this way to produce a black insoluble matter, centrifugation was performed, and further The supernatant was removed by decantation, and the resulting black precipitate (iron ultrafine particles) was dispersed in dehydrated hexane (manufactured by Wako Pure Chemical Industries, Ltd .: 10 mL). The hexane containing the iron ultrafine particles did not precipitate for at least 2 weeks.
なお、以上の操作はすべて、酸素及び水分がいずれも10ppm以下のアルゴン雰囲気のグローブボックス内で行った。 All the above operations were performed in a glove box in an argon atmosphere in which both oxygen and moisture were 10 ppm or less.
以上のようにして得られた鉄超微粒子の平均粒径は5nmであり、また、5Kにおける飽和磁化は186emu/gであった。 The average particle diameter of the iron ultrafine particles obtained as described above was 5 nm, and the saturation magnetization at 5K was 186 emu / g.
実施例2:オレイルアミン存在下における鉄超微粒子の製造(鉄超微粒子への鉄の析出)
実施例1と同様にして反応を行って得られた鉄超微粒子生成液(6mL)を、酢酸鉄(II)(Aldrich社製:1mmol)、オレイルアミン(Aldrich社製:4mmol)及び1,2−ヘキサデカンジオール(Aldrich社製:5mmol)を加えたジオクチルエーテル(Aldrich社製:12mL)に加えた反応液に添加した。この配合液をマントルヒーターで加熱して1時間還流した(反応液の温度289℃)。
Example 2: Production of ultrafine iron particles in the presence of oleylamine (deposition of iron on ultrafine iron particles)
An iron ultrafine particle production solution (6 mL) obtained by carrying out the reaction in the same manner as in Example 1 was mixed with iron (II) acetate (Aldrich: 1 mmol), oleylamine (Aldrich: 4 mmol) and 1,2- Hexadecanediol (manufactured by Aldrich: 5 mmol) was added to the reaction solution added to dioctyl ether (manufactured by Aldrich: 12 mL). The blended liquid was heated with a mantle heater and refluxed for 1 hour (reaction liquid temperature 289 ° C.).
このようにして得られた鉄超微粒子生成液(10mL)に脱水エタノール(和光純薬工業(株)社製:30mL)を加えて黒色の不溶物を生じさせた後、遠心分離を行い、更に上澄み液をデカンテーションにより除去し、得られた黒沈(鉄超微粒子)を脱水ヘキサン(和光純薬工業(株)社製:10mL)に分散させた。この鉄超微粒子を含むヘキサンは少なくとも2週間は沈殿が生じることはなかった。 After adding dehydrated ethanol (manufactured by Wako Pure Chemical Industries, Ltd .: 30 mL) to the iron ultrafine particle production liquid (10 mL) thus obtained, a black insoluble matter was produced, followed by centrifugation, and further The supernatant was removed by decantation, and the resulting black precipitate (iron ultrafine particles) was dispersed in dehydrated hexane (manufactured by Wako Pure Chemical Industries, Ltd .: 10 mL). The hexane containing the iron ultrafine particles did not precipitate for at least 2 weeks.
なお、以上の操作はすべて、酸素及び水分がいずれも10ppm以下のアルゴン雰囲気のグローブボックス内で行った。 All the above operations were performed in a glove box in an argon atmosphere in which both oxygen and moisture were 10 ppm or less.
以上のようにして得られた鉄超微粒子の平均粒径は13nmであり、また、5Kにおける飽和磁化は182emu/gであった。 The iron ultrafine particles obtained as described above had an average particle size of 13 nm and a saturation magnetization at 5K of 182 emu / g.
この実施例2では、予め鉄超微粒子が生成した液と、原料鉄化合物、脂肪族アミン及び還元剤を含む反応液とを混合したことにより、既に生成した鉄超微粒子を核として鉄が析出したため、実施例1の場合よりも粒径の大きな鉄超微粒子が得られたが、飽和磁化についてはほぼ同等の値を示した。 In this Example 2, because the liquid in which the iron ultrafine particles were generated in advance and the reaction liquid containing the raw material iron compound, the aliphatic amine, and the reducing agent were mixed, iron was precipitated with the iron ultrafine particles already generated as nuclei. Although iron ultrafine particles having a particle size larger than that in Example 1 were obtained, the saturation magnetization showed almost the same value.
比較例1:オレイン酸存在下における鉄超微粒子の製造
空冷式の還流管と温度計を装着した無色透明のパイレックスガラス製3口フラスコ(100mL)にジオクチルエーテル(Aldrich社製:30mL)及びオレイン酸(Aldrich社製:16.1mmol)を入れた。ジオクチルエーテル及びオレイン酸は事前に室温から50℃でロータリーポンプを用いて真空引きを1時間行ったものを用いた。
Comparative Example 1: Production of ultrafine iron particles in the presence of oleic acid A colorless and transparent Pyrex glass three-necked flask (100 mL) equipped with an air-cooled reflux tube and a thermometer was added to dioctyl ether (Aldrich: 30 mL) and oleic acid. (Aldrich: 16.1 mmol) was added. Dioctyl ether and oleic acid used in advance were evacuated for 1 hour at room temperature to 50 ° C. using a rotary pump.
別途、鉄ペンタカルボニル(関東化学社製:4.3mmol)をフラスコ内の溶液の一部(ジオクチルエーテル+オレイン酸;2mL)に溶解した原料溶液を調製した。マントルヒーターによりフラスコ内の溶液を100℃に加熱し、この原料溶液を、注射器で一気に注入した。注入直後に液は黒色となった。原料溶液注入後、更に加熱して70分還流した(反応液の温度287℃)後に熱源を除去し室温まで放冷した。 Separately, a raw material solution in which iron pentacarbonyl (manufactured by Kanto Chemical Co., Ltd .: 4.3 mmol) was dissolved in a part of the solution in the flask (dioctyl ether + oleic acid; 2 mL) was prepared. The solution in the flask was heated to 100 ° C. with a mantle heater, and this raw material solution was injected at once with a syringe. Immediately after injection, the liquid turned black. After injecting the raw material solution, the mixture was further heated and refluxed for 70 minutes (reaction liquid temperature: 287 ° C.).
このようにして得られた鉄超微粒子生成液(10mL)に脱水エタノール(和光純薬工業(株)社製:30mL)を加えて黒色の不溶物を生じさせた後、遠心分離を行い、更に上澄み液をデカンテーションにより除去し、得られた黒沈(鉄超微粒子)を脱水ヘキサン(10mL)に分散させた。 After adding dehydrated ethanol (manufactured by Wako Pure Chemical Industries, Ltd .: 30 mL) to the iron ultrafine particle production liquid (10 mL) thus obtained, a black insoluble matter was produced, followed by centrifugation, and further The supernatant was removed by decantation, and the resulting black precipitate (iron ultrafine particles) was dispersed in dehydrated hexane (10 mL).
なお、以上の操作はすべて、酸素及び水分がいずれも10ppm以下のアルゴン雰囲気のグローブボックス内で行った。 All the above operations were performed in a glove box in an argon atmosphere in which both oxygen and moisture were 10 ppm or less.
以上のようにして得られた微粒子の平均粒径は4nmであり、実施例1の場合と同等であったが、5Kにおいて磁化の測定を行ったところ、50kOeにおいても飽和せず、その時の磁化は6.9emu/gであった。磁化の値が極めて小さく磁化が飽和しなかったことから、得られた鉄超微粒子の磁気特性は通常強磁性であるα鉄のものとは異なると判断された。 The average particle size of the fine particles obtained as described above was 4 nm, which was the same as in Example 1. However, when the magnetization was measured at 5K, it was not saturated at 50 kOe, and the magnetization at that time was Was 6.9 emu / g. Since the magnetization value was extremely small and the magnetization was not saturated, it was judged that the magnetic properties of the obtained iron ultrafine particles were different from those of α iron, which is usually ferromagnetic.
比較例2:オレイン酸及びオレイルアミン(1:1)存在下における鉄超微粒子の製造
空冷式の還流管と温度計を装着した無色透明のパイレックスガラス製3口フラスコ(100mL)にジオクチルエーテル(Aldrich社製:25mL)、オレイン酸(Aldrich社製:2mmol)及びオレイルアミン(Aldrich社製:2mmol)を入れた。ジオクチルエーテル、オレイン酸及びオレイルアミンは事前に室温から50℃でロータリーポンプを用いて真空引きを1時間行ったものを用いた。
Comparative Example 2: Production of ultrafine iron particles in the presence of oleic acid and oleylamine (1: 1) Dioctyl ether (Aldrich) was added to a colorless and transparent Pyrex glass three-necked flask (100 mL) equipped with an air-cooled reflux tube and a thermometer. Manufactured: 25 mL), oleic acid (manufactured by Aldrich: 2 mmol) and oleylamine (manufactured by Aldrich: 2 mmol) were added. Dioctyl ether, oleic acid, and oleylamine used in advance were evacuated at room temperature to 50 ° C. using a rotary pump for 1 hour.
別途、鉄ペンタカルボニル(関東化学社製:2mmol)をフラスコ内の溶液の一部(ジオクチルエーテル+オレイン酸+オレイルアミン;2mL)に溶解した原料溶液を調製した。マントルヒーターによりフラスコ内の溶液を200℃に加熱し、この原料溶液を、注射器で一気に注入した。注入直後に液は黒色となった。原料溶液注入後、更に加熱して70分還流した(反応液の温度289℃)後に熱源を除去し室温まで放冷した。 Separately, a raw material solution in which iron pentacarbonyl (manufactured by Kanto Chemical Co., Inc .: 2 mmol) was dissolved in a part of the solution in the flask (dioctyl ether + oleic acid + oleylamine; 2 mL) was prepared. The solution in the flask was heated to 200 ° C. with a mantle heater, and this raw material solution was injected at once with a syringe. Immediately after injection, the liquid turned black. After injecting the raw material solution, the mixture was further heated to reflux for 70 minutes (reaction liquid temperature: 289 ° C.), and then the heat source was removed and the mixture was allowed to cool to room temperature.
このようにして得られた鉄超微粒子生成液(10mL)に脱水エタノール(和光純薬工業(株)社製:30mL)を加えて黒色の不溶物を生じさせた後、遠心分離を行い、更に上澄み液をデカンテーションにより除去し、得られた黒沈(鉄超微粒子)を脱水ヘキサン(10mL)に分散させた。 After adding dehydrated ethanol (manufactured by Wako Pure Chemical Industries, Ltd .: 30 mL) to the iron ultrafine particle production liquid (10 mL) thus obtained, a black insoluble matter was produced, followed by centrifugation, and further The supernatant was removed by decantation, and the resulting black precipitate (iron ultrafine particles) was dispersed in dehydrated hexane (10 mL).
なお、以上の操作はすべて、酸素及び水分がいずれも10ppm以下のアルゴン雰囲気のグローブボックス内で行った。 All the above operations were performed in a glove box in an argon atmosphere in which both oxygen and moisture were 10 ppm or less.
以上のようにして得られた微粒子の平均粒径は6nmであり、実施例1の場合と同等であったが、5Kにおける飽和磁化は130emu/gで、実施例1,2のものよりも劣るものであった。 The average particle size of the fine particles obtained as described above was 6 nm, which was the same as that in Example 1, but the saturation magnetization at 5K was 130 emu / g, which is inferior to those in Examples 1 and 2. It was a thing.
Claims (5)
該凝集抑制剤が脂肪族アミンを含み、該凝集抑制剤中に含まれる酸素含有化合物の割合が該脂肪族アミン1モルに対して0.1モル以下であることを特徴とする鉄超微粒子の製造方法。 By thermally decomposing or reducing an iron compound that is pyrolyzed or reduced in liquid to produce zero-valent iron in the presence of an aggregation inhibitor having an action of suppressing aggregation of iron ultrafine particles, In the production method of iron ultrafine particles having an iron ultrafine particle production step for producing iron ultrafine particles coordinated with an aggregation inhibitor,
The iron ultrafine particles characterized in that the aggregation inhibitor contains an aliphatic amine, and the ratio of the oxygen-containing compound contained in the aggregation inhibitor is 0.1 mol or less with respect to 1 mol of the aliphatic amine. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005169678A JP2006342399A (en) | 2005-06-09 | 2005-06-09 | Ultra-fine iron particle and production method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005169678A JP2006342399A (en) | 2005-06-09 | 2005-06-09 | Ultra-fine iron particle and production method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006342399A true JP2006342399A (en) | 2006-12-21 |
Family
ID=37639573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005169678A Pending JP2006342399A (en) | 2005-06-09 | 2005-06-09 | Ultra-fine iron particle and production method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006342399A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100913615B1 (en) | 2007-10-12 | 2009-08-26 | 포항공과대학교 산학협력단 | Preparing method of purifying agent for purifying soil or ground water, and purifying agent prepared thereby |
JP2010150332A (en) * | 2008-12-24 | 2010-07-08 | Teijin Ltd | Polymerizable compound-metal nanoparticle dispersion, and method for producing the same |
KR100986738B1 (en) | 2008-05-19 | 2010-10-08 | 포항공과대학교 산학협력단 | Preparing method using carbonyl compounds of nano scale iron, and nano iron prepared thereby |
JP2010229443A (en) * | 2009-03-26 | 2010-10-14 | Hitachi Metals Ltd | Method of manufacturing composite particle |
US9412405B2 (en) | 2014-04-25 | 2016-08-09 | Kabushiki Kaisha Toshiba | Pattern forming method and manufacturing method of magnetic recording medium |
WO2020013142A1 (en) * | 2018-07-10 | 2020-01-16 | キヤノン株式会社 | Aqueous iron particle dispersion, method for producing same, inkjet ink, and method for producing three-dimensional article |
KR20200045720A (en) * | 2018-10-23 | 2020-05-06 | 한국기초과학지원연구원 | non-oxidative iron and a method of manufacturing the same |
-
2005
- 2005-06-09 JP JP2005169678A patent/JP2006342399A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100913615B1 (en) | 2007-10-12 | 2009-08-26 | 포항공과대학교 산학협력단 | Preparing method of purifying agent for purifying soil or ground water, and purifying agent prepared thereby |
KR100986738B1 (en) | 2008-05-19 | 2010-10-08 | 포항공과대학교 산학협력단 | Preparing method using carbonyl compounds of nano scale iron, and nano iron prepared thereby |
JP2010150332A (en) * | 2008-12-24 | 2010-07-08 | Teijin Ltd | Polymerizable compound-metal nanoparticle dispersion, and method for producing the same |
JP2010229443A (en) * | 2009-03-26 | 2010-10-14 | Hitachi Metals Ltd | Method of manufacturing composite particle |
US9412405B2 (en) | 2014-04-25 | 2016-08-09 | Kabushiki Kaisha Toshiba | Pattern forming method and manufacturing method of magnetic recording medium |
WO2020013142A1 (en) * | 2018-07-10 | 2020-01-16 | キヤノン株式会社 | Aqueous iron particle dispersion, method for producing same, inkjet ink, and method for producing three-dimensional article |
KR20200045720A (en) * | 2018-10-23 | 2020-05-06 | 한국기초과학지원연구원 | non-oxidative iron and a method of manufacturing the same |
KR102167239B1 (en) | 2018-10-23 | 2020-10-20 | 한국기초과학지원연구원 | non-oxidative iron and a method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Organic phase synthesis of monodisperse iron oxide nanocrystals using iron chloride as precursor | |
Guo et al. | Facile synthesis of Cu and Cu@ Cu–Ni nanocubes and nanowires in hydrophobic solution in the presence of nickel and chloride ions | |
Salavati-Niasari et al. | Preparation of cobalt nanoparticles from [bis (salicylidene) cobalt (II)]–oleylamine complex by thermal decomposition | |
Thimmaiah et al. | A solvothermal route to capped nanoparticles of γ-Fe2O3 and CoFe2O4 | |
Robinson et al. | Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA | |
Chen et al. | Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines | |
Hufschmid et al. | Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition | |
Green | Organometallic based strategies for metal nanocrystal synthesis | |
Rao et al. | Recent progress in the synthesis of inorganic nanoparticles | |
Joseyphus et al. | Size controlled Fe nanoparticles through polyol process and their magnetic properties | |
Salavati-Niasari et al. | Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate | |
Xia et al. | Novel complex-coprecipitation route to form high quality triethanolamine-coated Fe 3 O 4 nanocrystals: their high saturation magnetizations and excellent water treatment properties | |
JP3989868B2 (en) | Synthesis of magnetite nanoparticles and method for forming iron-based nanomaterials | |
Chaubey et al. | Synthesis of Sm–Co and Sm–Co/Fe nanocrystals by reductive annealing of nanoparticles | |
Liu et al. | Characterization of magnetic NiFe nanoparticles with controlled bimetallic composition | |
Chen et al. | Synthesis of iron–nickel nanoparticles via a nonaqueous organometallic route | |
JP2006342399A (en) | Ultra-fine iron particle and production method therefor | |
Lei et al. | A general strategy for synthesizing high-coercivity L1 0-FePt nanoparticles | |
Oliveira et al. | Ionic liquids as recycling solvents for the synthesis of magnetic nanoparticles | |
Ramírez-Meneses et al. | Superparamagnetic nickel nanoparticles obtained by an organometallic approach | |
Shao et al. | Control of iron nanoparticles size and shape by thermal decomposition method | |
Şimşek et al. | Synthesis of MnFe2O4 nanocrystals by wet-milling under atmospheric conditions | |
Wang et al. | Solution synthesis of triangular and hexagonal nickel nanosheets with the aid of tungsten hexacarbonyl | |
Lu et al. | Fabrication, characterization, and formation mechanism of hollow spindle-like hematite via a solvothermal process | |
Zheng et al. | A novel direct reduction method to synthesize ordered Fe-Pt alloy nanoparticles |