JP5303971B2 - Methanol synthesis method - Google Patents

Methanol synthesis method Download PDF

Info

Publication number
JP5303971B2
JP5303971B2 JP2008063249A JP2008063249A JP5303971B2 JP 5303971 B2 JP5303971 B2 JP 5303971B2 JP 2008063249 A JP2008063249 A JP 2008063249A JP 2008063249 A JP2008063249 A JP 2008063249A JP 5303971 B2 JP5303971 B2 JP 5303971B2
Authority
JP
Japan
Prior art keywords
catalyst
gas
reaction
methanol
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008063249A
Other languages
Japanese (ja)
Other versions
JP2009215263A (en
Inventor
鉱一 伊藤
一生 馬目
陽子 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2008063249A priority Critical patent/JP5303971B2/en
Publication of JP2009215263A publication Critical patent/JP2009215263A/en
Application granted granted Critical
Publication of JP5303971B2 publication Critical patent/JP5303971B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for synthesizing methanol which can synthesize methanol from carbon dioxide and hydrogen with low energy. <P>SOLUTION: The method is one for synthesizing methanol by reacting carbon dioxide and hydrogen under irradiation of microwaves in the presence of a catalyst, wherein the catalyst is composed of a copper oxide, a zinc oxide and a lanthanum oxide, and the amount of the lanthanum is 0.5-10 mass% as a metal based on the total catalyst metals. In this method for synthesizing methanol, methanol can be synthesized by introducing a gas consisting of carbon dioxide and hydrogen into a catalyst-packed layer packed with the catalyst and by reacting under irradiation of microwaves onto the catalyst-packed layer. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、二酸化炭素(CO)および水素(H)からメタノールを合成するメタノール合成方法に関する。 The present invention relates to a methanol synthesis method for synthesizing methanol from carbon dioxide (CO 2 ) and hydrogen (H 2 ).

メタノールは主要化学品の一つであり、古くからメタノール合成触媒の開発研究が行われており、酸化銅−酸化亜鉛を含む三元または四元系触媒が、一酸化炭素と水素の混合ガス(合成ガス)からのメタノール合成において高い活性を有していることが知られている(特許文献1〜3等参照)。   Methanol is one of the main chemicals, and research and development of methanol synthesis catalysts has been conducted for a long time, and ternary or quaternary catalysts containing copper oxide-zinc oxide are mixed with carbon monoxide and hydrogen gas ( It is known to have high activity in methanol synthesis from synthesis gas) (see Patent Documents 1 to 3, etc.).

メタノールは、メチルターシャリーブチルエーテル(MTBE)、石油化学中間製品などの原料として、また燃料としての需要も増えることが期待されている。   Methanol is expected to increase demand as a raw material for fuel such as methyl tertiary butyl ether (MTBE) and petrochemical intermediate products, and as a fuel.

一方、発電所、工場、自動車等の人間の社会的活動に伴って大気中に排出される二酸化炭素は地球温暖化の主たる原因であることが知られており、近年、この二酸化炭素の排出量を削減することが地球環境の保護の大きな課題となっているそのため、発電所等の排煙や大気中の二酸化炭素を固定化し除去する方法が種々検討されている。
On the other hand, carbon dioxide released into the atmosphere in response to human social activities such as power plants, factories, and automobiles is known to be the main cause of global warming. Reducing environmental issues is a major issue for protecting the global environment . Therefore, various methods for fixing and removing flue gas from power plants and the like and carbon dioxide in the atmosphere have been studied.

しかしながら、二酸化炭素と水素からのメタノール合成法に関しては報告例も少なく、生物的あるいは物理的に二酸化炭素を固定化する方法に比べると、エネルギーの低減が図れる可能性があるが、基礎研究の段階である。   However, there are few reports on the synthesis of methanol from carbon dioxide and hydrogen, and there is a possibility that energy can be reduced compared with the method of biologically or physically immobilizing carbon dioxide. It is.

例えば、特許文献4には、担体として酸化ランタン等の金属酸化物を使用し、銅と酸化亜鉛を担体に担持した触媒を用いて、二酸化炭素と水素からメタノールを合成する方法が提案されているが、ランタン含有量が多いと却ってメタノール生成量が少なくなる傾向にある(本願明細書の実施例1参照)。   For example, Patent Document 4 proposes a method of synthesizing methanol from carbon dioxide and hydrogen using a metal oxide such as lanthanum oxide as a support and using a catalyst in which copper and zinc oxide are supported on the support. However, when the lanthanum content is high, the amount of methanol produced tends to decrease (see Example 1 of the present specification).

特許文献5には、銅、亜鉛、アルミニウムおよびガリウムの各酸化物と、アルカリ土類金属元素およびランタンの金属酸化物の一種以上とを含有するメタノール合成触媒を用いて、二酸化炭素と水素の混合ガスからメタノールを合成する方法が提案されている。このメタノール合成触媒は従来触媒に比べてメタノール合成活性が高いと報告されているが、反応温度(実施例5によれば210℃)などの点で解決すべき課題もある。   Patent Document 5 discloses a mixture of carbon dioxide and hydrogen using a methanol synthesis catalyst containing each of oxides of copper, zinc, aluminum and gallium and one or more of alkaline earth metal elements and lanthanum metal oxides. A method for synthesizing methanol from gas has been proposed. This methanol synthesis catalyst is reported to have higher methanol synthesis activity than the conventional catalyst, but there are also problems to be solved in terms of the reaction temperature (210 ° C. according to Example 5).

さらに特許文献6には、二酸化炭素と水素の混合物に、触媒存在下でマイクロ波を照射することにより、メタノールが合成されることが報告されているが、メタノール転化率のなどの点において課題を有している。
特開昭47−9560号公報 特開昭54−26983号公報 特開昭59−29037号公報 特開平4−122444号公報 特開平10−277392号公報 特開2006−169095号公報
Furthermore, Patent Document 6 reports that methanol is synthesized by irradiating a mixture of carbon dioxide and hydrogen with microwaves in the presence of a catalyst, but there are problems in terms of methanol conversion. Have.
JP-A-47-9560 JP 54-26983 A JP 59-29037 A Japanese Patent Laid-Open No. 4-122444 JP 10-277392 A JP 2006-169095 A

触媒化学的な方法は反応速度が遅く、気相還元法を用いれば火力発電所の煙道等から排出される大量の二酸化炭素を短時間で処理可能とも考えられているが、メタノール等の液状炭化水素に直接転化するためには、高圧下での反応が必要であるため、短時間での処理が難しい。二酸化炭素と水素を用いて気相還元する方法としては、常圧下で反応が進行する反応として、下記の反応が知られている。
CO + H → CO+ H
The catalytic chemical method has a slow reaction rate, and it is considered that a large amount of carbon dioxide discharged from the flue of a thermal power plant can be processed in a short time by using a gas phase reduction method. In order to directly convert to hydrocarbon, a reaction under high pressure is required, so that it is difficult to process in a short time. As a method for vapor phase reduction using carbon dioxide and hydrogen, the following reaction is known as a reaction that proceeds under normal pressure.
CO 2 + H 2 → CO + H 2 O

この反応は吸熱反応であるため、一般には高温になればなるほど平衡が右側にシフトして、二酸化炭素が一酸化炭素に転化する比率(転化率)は増加するが、高温を維持するにはエネルギーを投入する必要があり、このエネルギー源として化石燃料を使用すれば二酸化炭素の排出量を低減したことにはならなくなる。   Since this reaction is an endothermic reaction, in general, the higher the temperature, the more the equilibrium shifts to the right, and the rate at which carbon dioxide is converted to carbon monoxide (conversion) increases. If fossil fuel is used as this energy source, the amount of carbon dioxide emissions will not be reduced.

従って、できるだけ低エネルギーで、化学平衡状態の転化率に近い転化特性を得られるか否かが、二酸化炭素からのメタノール合成における重要な課題である。   Therefore, whether or not conversion characteristics close to the conversion rate in a chemical equilibrium state can be obtained with as low energy as possible is an important issue in the synthesis of methanol from carbon dioxide.

本発明は、上記事情に鑑み、低エネルギー(すなわち、低温)で二酸化炭素と水素からメタノールを合成することが可能な、メタノール合成法を提供することを課題とする。   In view of the above circumstances, an object of the present invention is to provide a methanol synthesis method capable of synthesizing methanol from carbon dioxide and hydrogen with low energy (that is, low temperature).

前記課題を解決するため、本発明者らは鋭意検討した。そして、従来のCuO−ZnO系触媒に付加する金属元素としてランタンに着目し、ランタン含有量を種々検討した結果最適含有量が存在すること、さらに、触媒反応をマイクロ波による加熱状態で行わせることによりより少ないエネルギーで合成できること、を見出し、本発明に到達した。   In order to solve the above problems, the present inventors have intensively studied. Then, paying attention to lanthanum as a metal element to be added to the conventional CuO-ZnO-based catalyst, there is an optimum content as a result of various investigations on the lanthanum content, and further, the catalytic reaction is performed in a heated state by microwaves. And the present invention was reached.

すなわち、本発明は以下の通りである。
(1)マイクロ波を照射し、触媒存在下に二酸化炭素と水素を反応させてメタノールを合成する方法であって、前記触媒が銅酸化物、亜鉛酸化物およびランタン酸化物からなり、該ランタンの量が全触媒金属を基準として金属として0.5〜10質量%であることを特徴とするメタノール合成方法。
(2)前記触媒における銅元素と亜鉛元素の比率が、98:2〜30:70である前記(1)に記載のメタノール合成方法。
(3)前記触媒を充填した触媒充填層に、二酸化炭素と水素からなるガスを導入し、該触媒充填層にマイクロ波を照射して反応させる前記(1)または(2)に記載のメタノール合成方法。
That is, the present invention is as follows.
(1) A method of synthesizing methanol by irradiating microwaves and reacting carbon dioxide and hydrogen in the presence of a catalyst, wherein the catalyst comprises copper oxide, zinc oxide and lanthanum oxide, A methanol synthesis method characterized in that the amount is 0.5 to 10% by mass as a metal based on the total catalytic metal.
(2) The methanol synthesis method according to (1), wherein the ratio of the copper element and the zinc element in the catalyst is 98: 2 to 30:70.
(3) Methanol synthesis according to (1) or (2), wherein a gas comprising carbon dioxide and hydrogen is introduced into the catalyst packed bed filled with the catalyst, and the catalyst packed bed is irradiated with microwaves for reaction. Method.

本発明のメタノール合成方法によれば、触媒存在下でマイクロ波を照射し、触媒反応をマイクロ波による加熱状態で行わせることにより、マイクロ波と触媒との相乗効果によって、従来の触媒を使用したときよりも低温で二酸化炭素と水素からメタノールを合成できるので、より少ないエネルギーで二酸化炭素をメタノールに転化することができる。   According to the methanol synthesis method of the present invention, a conventional catalyst is used due to the synergistic effect of the microwave and the catalyst by irradiating the microwave in the presence of the catalyst and causing the catalytic reaction to be performed in a heated state by the microwave. Since methanol can be synthesized from carbon dioxide and hydrogen at lower temperatures than ever, carbon dioxide can be converted to methanol with less energy.

本発明の合成方法に用いるメタノール合成触媒は、銅酸化物、亜鉛酸化物およびランタン酸化物からなり、該ランタンの量が全触媒金属を基準として金属として0.5〜10質量%である。ランタン含有量がこの範囲内にあると、メタノール転化率が高くなる。その理由は明らかではないが、触媒の塩基性が上がり、COの吸着量が増えたためと推察される。ランタン含有量は、好ましくは0.5〜5質量%、特に好ましくは0.7〜3質量%である。銅酸化物と亜鉛酸化物の比率は、両元素比で、銅:亜鉛=98:2〜30:70であることが好ましく、より好ましくは90:10〜30:70、特に好ましくは80:20〜60:40である。 The methanol synthesis catalyst used in the synthesis method of the present invention is composed of copper oxide, zinc oxide and lanthanum oxide, and the amount of lanthanum is 0.5 to 10% by mass based on the total catalyst metal. When the lanthanum content is within this range, the methanol conversion rate increases. The reason is not clear, but it is presumed that the basicity of the catalyst has increased and the amount of adsorption of CO 2 has increased. The lanthanum content is preferably 0.5 to 5% by mass, particularly preferably 0.7 to 3% by mass. The ratio of the copper oxide to the zinc oxide is preferably an element ratio of copper: zinc = 98: 2 to 30:70, more preferably 90:10 to 30:70, and particularly preferably 80:20. ~ 60: 40.

上記のメタノール合成触媒は、アルミニウムおよびガリウム、さらには銅、亜鉛の焼結防止のためのマグネシウム、バリウムストロンチウム、カルシウム等の添加は不要である。その理由は、本発明はより低温でより安価にメタノール合成することを目的としているため、焼結温度のような高温での反応は行わないためである。 The above methanol synthesis catalyst does not require the addition of magnesium, barium , strontium, calcium or the like to prevent sintering of aluminum and gallium, as well as copper and zinc. The reason is that the present invention aims to synthesize methanol at a lower temperature and at a lower cost, and therefore does not perform a reaction at a high temperature such as a sintering temperature.

本発明のメタノール合成方法に用いるメタノール合成触媒は、既知の方法に準じて製造することができるが、より高活性な触媒が得られ易いという点から、銅、亜鉛およびランタンの塩の水溶液から共沈法により製造することが好ましい。銅、亜鉛およびランタンの原料には、触媒毒を含まない硝酸塩、酢酸塩等の塩を使用するのが好ましく、特に硝酸塩が好ましい。前記の原料塩を水に溶かして、濃度0.01〜1.0モル/Lの水溶液として用いる。   The methanol synthesis catalyst used in the methanol synthesis method of the present invention can be produced according to a known method. However, since a highly active catalyst can be easily obtained, the methanol synthesis catalyst is prepared from an aqueous solution of copper, zinc and lanthanum salts. It is preferable to manufacture by a precipitation method. As the raw materials for copper, zinc and lanthanum, it is preferable to use salts such as nitrates and acetates which do not contain catalyst poisons, and nitrates are particularly preferable. The raw material salt is dissolved in water and used as an aqueous solution having a concentration of 0.01 to 1.0 mol / L.

沈澱剤としては、沈澱率が高く高活性な触媒が得られることから、炭酸ナトリウムおよび重炭酸ナトリウムが好ましく、特に炭酸ナトリウムが好ましい。沈澱剤は水に溶かして、濃度0.01〜1.0モル/Lの水溶液として用いる。   As the precipitant, sodium carbonate and sodium bicarbonate are preferable, and sodium carbonate is particularly preferable because a highly active catalyst having a high precipitation rate can be obtained. The precipitant is dissolved in water and used as an aqueous solution having a concentration of 0.01 to 1.0 mol / L.

例えば、沈澱剤水溶液を50〜90℃に加熱した後、保温し、撹拌しながら、沈澱剤水溶液に亜鉛硝酸塩の水溶液を滴下して懸濁液を得、次に銅硝酸塩の水溶液を懸濁液に滴下し、さらにランタン硝酸塩を滴下して沈殿物を生成する。これらの金属の硝酸塩を混合した水溶液を沈澱剤水溶液に滴下してもよい。滴下は連続して1分間〜4時間程度行い、その後、1時間〜4時間程度、撹拌、熟成する。沈澱物を濾過等により分離した後、Naを除去するために十分水洗し、300〜500℃で焼成する。その後、N、H混合ガスにて還元して触媒を製造する。 For example, after heating a precipitant aqueous solution to 50 to 90 ° C., keeping it warm and stirring, an aqueous zinc nitrate solution is dropped into the precipitant aqueous solution to obtain a suspension, and then an aqueous copper nitrate solution is suspended. And lanthanum nitrate is added dropwise to form a precipitate. An aqueous solution in which these metal nitrates are mixed may be added dropwise to the aqueous precipitation agent solution. The dropping is continuously carried out for about 1 minute to 4 hours, and then stirred and aged for about 1 hour to 4 hours. After the precipitate is separated by filtration or the like, it is sufficiently washed with water to remove Na and calcined at 300 to 500 ° C. Thereafter, the catalyst is produced by reduction with a mixed gas of N 2 and H 2 .

本発明のメタノール合成方法においては、原料ガスとして、二酸化炭素と水素からなるガスを用いることが好ましいが、二酸化炭素は少なくとも二酸化炭素が含まれているガスであればよい。石炭、石油、LNG、プラスチックの燃焼により生じた燃焼排ガスや、熱風炉排ガス、高炉排ガス、転炉排ガス、燃焼排ガス等の製鉄所副生ガスのような、二酸化炭素を1〜40容量%含有する排ガス等も使用することができる。原料ガスには、窒素ガスなどの不活性ガスが含まれていてもよい。   In the methanol synthesis method of the present invention, it is preferable to use a gas composed of carbon dioxide and hydrogen as the raw material gas, but the carbon dioxide may be a gas containing at least carbon dioxide. Contains 1 to 40% by volume of carbon dioxide, such as combustion exhaust gas generated by combustion of coal, petroleum, LNG and plastics, and by-product gas of ironworks such as hot blast furnace exhaust gas, blast furnace exhaust gas, converter exhaust gas, and combustion exhaust gas Exhaust gas or the like can also be used. The source gas may contain an inert gas such as nitrogen gas.

二酸化炭素と水素の比率は、50/50〜5/95(モル比)が好ましく、より好ましくは30/70〜8/92(モル比)、特に好ましくは20/80〜10/90(モル比)である。二酸化炭素に対する水素の比率が高いほど、メタノール生成量が多くなるが、二酸化炭素の利用効率を考慮するとこの範囲が好ましい。   The ratio of carbon dioxide to hydrogen is preferably 50/50 to 5/95 (molar ratio), more preferably 30/70 to 8/92 (molar ratio), and particularly preferably 20/80 to 10/90 (molar ratio). ). The higher the ratio of hydrogen to carbon dioxide, the greater the amount of methanol produced, but this range is preferred in view of the utilization efficiency of carbon dioxide.

本発明のメタノール合成反応における反応温度は、100〜300℃が好ましく、特に好ましくは150〜250℃である。   100-300 degreeC is preferable and, as for the reaction temperature in the methanol synthesis reaction of this invention, Most preferably, it is 150-250 degreeC.

反応圧力は、常圧、加圧の何れでも良いが、通常、0.1MPa(常圧)〜30MPaである。反応ガスの流速は任意であるが、空間速度(SV)として2000〜50000hr−1が好ましい。 The reaction pressure may be normal pressure or increased pressure, but is usually 0.1 MPa (normal pressure) to 30 MPa. Although the flow rate of the reaction gas is arbitrary, the space velocity (SV) is preferably 2000 to 50000 hr −1 .

反応時間は、触媒量と反応温度に左右されて一定しないが、通常は反応進行状況を見ながら適宜に決定すればよい。   The reaction time depends on the amount of catalyst and the reaction temperature and is not constant, but usually it can be determined appropriately while observing the progress of the reaction.

照射するマイクロ波の出力や周波数、照射方法は、特に限定されるものではなく、反応温度が所定の範囲に保持できるよう電気的に制御すればよい。出力が低すぎる場合は反応の進行が遅くなり、出力が高すぎる場合はマイクロ波の利用率が悪くなる。マイクロ波の周波数は、通常、1GHz〜300GHzである。1GHz未満又は300GHzを超える周波数範囲では、反応促進効果が不十分となる。   The output, frequency, and irradiation method of the microwave to be irradiated are not particularly limited, and may be electrically controlled so that the reaction temperature can be maintained within a predetermined range. When the output is too low, the progress of the reaction is slow, and when the output is too high, the utilization rate of the microwave is deteriorated. The frequency of the microwave is usually 1 GHz to 300 GHz. In the frequency range below 1 GHz or above 300 GHz, the reaction promoting effect is insufficient.

マイクロ波の照射は連続照射、間欠照射のいずれの方法であってもよく、照射時間および照射停止時間は、反応用原料ガスあるいは反応触媒等に応じて適宜に決定すればよい。   The microwave irradiation may be either continuous irradiation or intermittent irradiation, and the irradiation time and irradiation stop time may be appropriately determined according to the reaction source gas or reaction catalyst.

本発明のメタノール合成方法では、触媒存在下において、触媒と二酸化炭素と水素とを接触させ、触媒にマイクロ波を照射することが好ましく、触媒が存在しない状態で該混合物にマイクロ波を照射しても、反応系の温度上昇が期待できず、また、反応速度は著しく遅くなる。中でも、二酸化炭素、水素及び触媒が十分接触するように、触媒を充填した触媒充填層を形成した触媒充填装置内に二酸化炭素及び水素からなるガスを導入し、二酸化炭素および水素を含む該触媒充填層へマイクロ波を照射する方法が、エネルギー効率的に最も好ましい。この方法によれば、ヒーター等の加熱手段と異なり、マイクロ波が触媒に当ることによって触媒表面が優先的に活性化されるので、エネルギー利用効率を著しく高めることが可能となる。   In the methanol synthesis method of the present invention, it is preferable that the catalyst, carbon dioxide and hydrogen are brought into contact with each other in the presence of the catalyst, and the catalyst is irradiated with microwaves. In the absence of the catalyst, the mixture is irradiated with microwaves. However, the temperature rise of the reaction system cannot be expected, and the reaction rate is remarkably slow. In particular, a gas comprising carbon dioxide and hydrogen is introduced into a catalyst filling device in which a catalyst packed bed filled with a catalyst is formed so that carbon dioxide, hydrogen and the catalyst are in sufficient contact, and the catalyst filling containing carbon dioxide and hydrogen is performed. The method of irradiating the layer with microwaves is most preferable in terms of energy efficiency. According to this method, unlike the heating means such as a heater, the catalyst surface is preferentially activated by the microwaves striking the catalyst, so that the energy utilization efficiency can be remarkably increased.

以下、本発明の実施例について図面を参照して説明するが、本発明は以下の実施例にのみ限定されるものではない。   Hereinafter, examples of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples.

(触媒製造例1)
1000mlの水に、85.41gの試薬特級硝酸銅・3水和物、43.57gの試薬特級硝酸亜鉛・6水和物、および2.28gの試薬特級硝酸ランタン・6水和物を溶解させた金属塩水溶液を調製し80℃に加温した。別に、1000mlの純水に53.48gの試薬特級炭酸ナトリウムを含む水溶液を調製し60℃に加温した。上記の金属塩水溶液を撹拌しながら該水溶液中に、上記の炭酸ナトリウム水溶液を10ml/minで滴下し沈澱を生成させた。pHが9.0になった時点で、炭酸ナトリウム水溶液の滴下をやめ、その後、撹拌下に液温を80℃に2時間保った後、さらに80℃のまま2時間静置し熟成させた。その後沈澱を濾過、洗浄し、80℃で一晩乾燥してから、乾燥物を乳鉢にて粉砕し、2wt%のグラファイト粉末(バインダー)を添加し、1時間混和した。
上記混合物を圧力5kNにて一軸加圧成型器を用いて成型した後、成型物をマッフル炉(電気炉)を用いて、350℃で3時間空気を流通させながら焼成した。昇温速度は3℃/minとした。
焼成した触媒は、窒素雰囲気下で230℃まで昇温(昇温速度3℃/min)し、ついで水素:窒素=1:9のガスにて230℃、3時間還元した。
この触媒を触媒Aとした。
(Catalyst production example 1)
Dissolve 85.41g reagent grade copper nitrate trihydrate, 43.57g reagent grade zinc nitrate hexahydrate, and 2.28g reagent grade lanthanum nitrate hexahydrate in 1000ml water. An aqueous metal salt solution was prepared and heated to 80 ° C. Separately, an aqueous solution containing 53.48 g of reagent-grade sodium carbonate in 1000 ml of pure water was prepared and heated to 60 ° C. While stirring the aqueous metal salt solution, the aqueous sodium carbonate solution was dropped into the aqueous solution at 10 ml / min to form a precipitate. When the pH reached 9.0, dropping of the sodium carbonate aqueous solution was stopped, and then the liquid temperature was maintained at 80 ° C. for 2 hours with stirring, and then the mixture was further left to stand for 2 hours at 80 ° C. for aging. Thereafter, the precipitate was filtered and washed, dried at 80 ° C. overnight, the dried product was pulverized in a mortar, 2 wt% graphite powder (binder) was added, and the mixture was mixed for 1 hour.
The mixture was molded using a uniaxial pressure molding machine at a pressure of 5 kN, and the molded product was fired using a muffle furnace (electric furnace) at 350 ° C. for 3 hours while circulating air. The heating rate was 3 ° C./min.
The calcined catalyst was heated to 230 ° C. under a nitrogen atmosphere (temperature rising rate: 3 ° C./min), and then reduced at 230 ° C. for 3 hours with a gas of hydrogen: nitrogen = 1: 9.
This catalyst was designated as Catalyst A.

(触媒製造例2)
試薬特級硝酸亜鉛・6水和物を40.57g、試薬特級硝酸ランタン・6水和物を6.84g用い、目標pHを8.85とした以外は、触媒製造例1と同様の方法にて触媒Bを製造した。
(Catalyst production example 2)
Using the same method as in Catalyst Production Example 1, except that 40.57 g of reagent-grade zinc nitrate hexahydrate, 6.84 g of reagent-grade lanthanum nitrate hexahydrate were used, and the target pH was 8.85. Catalyst B was prepared.

(触媒製造例3)
試薬特級硝酸亜鉛・6水和物を37.58g、試薬特級硝酸ランタン・6水和物を11.40g用い、目標pHを8.77とした以外は、触媒製造例1と同様の方法にて触媒Cを製造した。
(Catalyst production example 3)
The same method as in Catalyst Production Example 1 except that 37.58 g of reagent-grade zinc nitrate hexahydrate, 11.40 g of reagent-grade lanthanum nitrate hexahydrate were used, and the target pH was 8.77. Catalyst C was prepared.

(触媒製造例4)
試薬特級硝酸亜鉛・6水和物を30.05g、試薬特級硝酸ランタン・6水和物を22.79g用い、目標pHを8.67とした以外は、触媒製造例1と同様の方法にて触媒Dを製造した。
(Catalyst production example 4)
Using the same method as in Catalyst Production Example 1, except that 30.05 g of reagent-grade zinc nitrate hexahydrate, 22.79 g of reagent-grade lanthanum nitrate hexahydrate were used, and the target pH was 8.67. Catalyst D was prepared.

(比較製造例1)
試薬特級硝酸亜鉛・6水和物を45.07g用い、試薬特級硝酸ランタン・6水和物は用いず、目標pHを7.71としたこと以外は、触媒製造例1と同様の方法にて触媒Eを製造した。
(Comparative Production Example 1)
Using the same method as in Catalyst Production Example 1, except that 45.07 g of reagent-grade zinc nitrate hexahydrate was used, reagent-grade lanthanum nitrate hexahydrate was not used, and the target pH was 7.71. Catalyst E was prepared.

(実施例1)
特願2007−059322明細書に記載の固定床流通式の触媒活性評価装置を用いて試験した。図1に系統図を示す。
反応は外径75mmΦ、高さ120mmの円筒型ステンレス(SUS)製反応容器3を使用し、反応容器3内には、高さ50mmの原料ガスバッファー部35を設け、ステンレスのクラッドを3ヶ所削り、内径10mmΦ、高さ約50mm、内容量約4cmの触媒設置部31を均等に3個配置した。触媒設置部31の中に、1mm〜2mmに調整した触媒約1gを充填した。反応容器の周囲をマントルヒーター32にて覆い、温度コントローラを用いて加熱温度を制御した。反応容器3は、密閉式であり、底面に温度測定座を設けた。
Example 1
It tested using the fixed bed flow-type catalyst activity evaluation apparatus as described in Japanese Patent Application No. 2007-059322 specification. A system diagram is shown in FIG.
For the reaction, a cylindrical stainless steel (SUS) reaction vessel 3 having an outer diameter of 75 mmΦ and a height of 120 mm was used. In the reaction vessel 3, a raw material gas buffer unit 35 having a height of 50 mm was provided, and the stainless clad was cut in three places. Three catalyst installation portions 31 having an inner diameter of 10 mmΦ, a height of about 50 mm, and an internal volume of about 4 cm 3 were arranged uniformly. About 1 g of the catalyst adjusted to 1 mm to 2 mm was filled in the catalyst installation part 31. The periphery of the reaction vessel was covered with a mantle heater 32, and the heating temperature was controlled using a temperature controller. The reaction vessel 3 was hermetically sealed and provided with a temperature measurement seat on the bottom surface.

また、原料ガス又はパージ用ガスを収容したボンベと、反応容器3は、内径6mmのステンレス(SUS)製チューブを用いて接続した。なお、テフロン(登録商標)またはガラス製のチューブを用いて接続することも可能である。   The cylinder containing the raw material gas or the purge gas and the reaction vessel 3 were connected using a stainless steel (SUS) tube having an inner diameter of 6 mm. It is also possible to connect using a Teflon (registered trademark) or glass tube.

原料ガス及びパージ用ガスの流量制御は圧力調整弁1にて行い、途中に、パージガス用
仕切弁2と、水素還元用ガス切替用の三方弁6を設置した。反応容器の後流には、反応容
器から導出されたガスの流量調整弁5、流量計10を設け、評価時に触媒設置部における
原料ガスの空間速度を統一するようにした。触媒ごとに導出された生成ガスに含まれるメ
タノール濃度を、ガスクロマトグラフにて測定した。
The flow rate control of the source gas and the purge gas was performed by the pressure regulating valve 1, and a purge gas gate valve 2 and a three-way valve 6 for switching the hydrogen reduction gas were installed on the way. The flow rate adjusting valve 5 and the flow meter 10 for the gas led out from the reaction vessel are provided in the downstream of the reaction vessel, and the space velocity of the raw material gas in the catalyst installation portion is unified during the evaluation. The concentration of methanol contained in the product gas derived for each catalyst was measured with a gas chromatograph.

水素還元用ガスは、評価触媒の前処理用として使用できるように収容パック14に収容
し、そのガスを循環ポンプ15にて循環させた。触媒の前処理時は、水素還元用ガス切替
用の三方弁6、7、8及びパージ用仕切弁16を操作し、評価触媒にのみ水素還元用ガス
を循環させ、途中に触媒調整時に発生する水のトラップ13を設けた。
The hydrogen reduction gas was stored in the storage pack 14 so that it could be used for pretreatment of the evaluation catalyst, and the gas was circulated by the circulation pump 15. During catalyst pretreatment, the three-way valves 6, 7, 8 for switching the hydrogen reducing gas and the purge gate valve 16 are operated to circulate the hydrogen reducing gas only to the evaluation catalyst, and this occurs during catalyst adjustment in the middle. A water trap 13 was provided.

上記装置より反応容器を取り外し、触媒製造例で作製したCuO−ZnO−La系触媒(触媒A〜D,E)約1gを反応容器内にセットし、反応容器を装置にセットした。 The reaction container was removed from the apparatus, about 1 g of CuO—ZnO—La 2 O 3 catalyst (catalysts A to D, E) prepared in the catalyst production example was set in the reaction container, and the reaction container was set in the apparatus.

10Lテドラーパック14に、水素還元用ガス(H+N)を封入し、装置にセットした。三方弁(水素還元切替)6及び7を水素還元ラインに切り替え、ガス循環ポンプ15をONにした。各ラインの流量調整弁5にて流量計10を所定流量に調整した。温度制御装置を水素還元温度にセットし、加熱を開始した。設定還元温度となってから、所定時間保持した。 Hydrogen reduction gas (H 2 + N 2 ) was sealed in a 10 L tedlar pack 14 and set in the apparatus. The three-way valves (hydrogen reduction switching) 6 and 7 were switched to the hydrogen reduction line, and the gas circulation pump 15 was turned on. The flow meter 10 was adjusted to a predetermined flow rate by the flow rate adjustment valve 5 of each line. The temperature controller was set to the hydrogen reduction temperature and heating was started. After reaching the set reduction temperature, it was held for a predetermined time.

温度制御装置スイッチをOFFにし、ある程度温度が下がったところで、三方弁(パージ切替)8をガス排気ラインに切り替え、パージ用仕切弁16を開けて(H+N)混合ガスを排気した。全量排気が終了したら、ガス循環ポンプ15を停止した。三方弁(水素還元切替)6を活性試験ラインに切り替えた。パージガス用仕切弁2を開けて、窒素ボンベからガスを反応系内に導入し、約10min、窒素で反応系内をパージした。 When the temperature control device switch was turned off and the temperature dropped to some extent, the three-way valve (purge switching) 8 was switched to the gas exhaust line, the purge gate valve 16 was opened (H 2 + N 2 ), and the mixed gas was exhausted. When exhausting the entire amount, the gas circulation pump 15 was stopped. The three-way valve (hydrogen reduction switching) 6 was switched to the activity test line. The purge gas gate valve 2 was opened, gas was introduced into the reaction system from a nitrogen cylinder, and the reaction system was purged with nitrogen for about 10 minutes.

パージガス用仕切弁2を閉じ、窒素ボンベの元栓を閉めた。CO+H混合ガス(CO/H=20/80)のボンベを開放し、原料ガスを導入した。圧力調整弁1で反応圧力条件(0.3MPa)に合わせた。温度制御装置を反応温度にセットし、加熱を開始した。原料ガスをサンプリング口(反応前)11よりマイクロシリンジで採取し、ガスクロマトグラフィーにて反応前のガス組成を確認した。設定温度到達後、三方弁(水素還元切替)7をサンプリング座側に切替え、ガスを流し一定時間ごとに反応ガスをサンプリング口12よりマイクロシリンジで採取し、ガスクロマトグラフにて反応後のガス組成を確認した。 The purge gas gate valve 2 was closed, and the main stopper of the nitrogen cylinder was closed. The cylinder of CO 2 + H 2 mixed gas (CO 2 / H 2 = 20/80) was opened, and the raw material gas was introduced. The pressure was adjusted to the reaction pressure condition (0.3 MPa) with the pressure regulating valve 1. The temperature controller was set to the reaction temperature and heating was started. The raw material gas was collected from the sampling port (before the reaction) 11 with a microsyringe, and the gas composition before the reaction was confirmed by gas chromatography. After reaching the set temperature, the three-way valve (hydrogen reduction switching) 7 is switched to the sampling seat side, the gas is flowed, the reaction gas is sampled from the sampling port 12 with a microsyringe at regular intervals, and the gas composition after reaction is measured by a gas chromatograph. confirmed.

温度制御装置のスイッチをOFFにし、CO+H混合ガスボンベの元栓を閉じた。窒素ボンベの元栓を開けて、反応系内を窒素でパージした。温度が下がったら、窒素ボンベの元栓、パージ用仕切弁16を閉じた。 The switch of the temperature control device was turned off, and the main plug of the CO 2 + H 2 gas mixture cylinder was closed. The main stopper of the nitrogen cylinder was opened, and the inside of the reaction system was purged with nitrogen. When the temperature dropped, the main stopper of the nitrogen cylinder and the purge gate valve 16 were closed.

生成したメタノール量から、下記式よりメタノール空時収量を求めた。その結果を表1に示した。   From the amount of methanol produced, the methanol space time yield was determined from the following formula. The results are shown in Table 1.

メタノール空時収量(g/kg-cat・h)=メタノール生成量/(触媒設置重量×反応時間)   Methanol space time yield (g / kg-cat · h) = amount of methanol produced / (weight of catalyst installed x reaction time)

表1に示すように、本発明のメタノール合成触媒は、La1%組成での活性が最も良かった。   As shown in Table 1, the methanol synthesis catalyst of the present invention had the best activity at a La 1% composition.

(実施例2)
触媒として、CuO−ZnO−La触媒(触媒A、C、D)を用い、相対圧を0.02〜1.00まで変化させて触媒への二酸化炭素(CO)の吸着実験を行った。その結果を表2に示した。なお、実験は定容吸着法に準じて実施し、高速・比表面積・細孔分布測定装置(Quantachrome社製、Nova1200e)を用いて、CO吸着量の測定を実施した。表2に示すように、圧力が高くなるほど二酸化炭素(CO)の吸着量も増えるが、La1%組成での吸着量が最も高かった。
(Example 2)
Using a CuO—ZnO—La 2 O 3 catalyst (catalysts A, C, D) as a catalyst, and changing the relative pressure from 0.02 to 1.00, carbon dioxide (CO 2 ) adsorption experiment on the catalyst went. The results are shown in Table 2. The experiment was carried out according to the constant volume adsorption method, and the CO 2 adsorption amount was measured using a high speed, specific surface area / pore distribution measuring device (manufactured by Quantachrome, Nova1200e). As shown in Table 2, the amount of adsorption of carbon dioxide (CO 2 ) increased as the pressure increased, but the amount of adsorption at the La 1% composition was the highest.

(実施例3)
触媒としてCuO−ZnO−La触媒(触媒A)60gを用い、反応温度を150℃、160℃、170℃、180℃、200℃、反応圧力0.8MPa、ガス(CO/H=20/80)、流量3L/min、反応時間2時間にて、2段式マイクロ波反応装置によりメタノール合成反応を行った。このときのSV値は3300h−1であった。反応中のマイクロ波の電力量は0.44kWhであった。
反応後、実施例1同様、生成ガスと液体を分析し同定・定量した後、生成したメタノール量から下記式よりメタノール転化率を求めた。
(Example 3)
As the catalyst, 60 g of CuO—ZnO—La 2 O 3 catalyst (catalyst A) was used, the reaction temperature was 150 ° C., 160 ° C., 170 ° C., 180 ° C., 200 ° C., the reaction pressure was 0.8 MPa, and the gas (CO 2 / H 2 = 20/80), a flow rate of 3 L / min, and a reaction time of 2 hours, a methanol synthesis reaction was performed using a two-stage microwave reactor. The SV value at this time was 3300 h −1 . The amount of microwave power during the reaction was 0.44 kWh.
After the reaction, as in Example 1, the product gas and liquid were analyzed, identified and quantified, and the methanol conversion rate was determined from the following formula from the amount of methanol produced.

メタノール転化率(%)=メタノール生成量(mol)/CO(mol)×100 Methanol conversion (%) = methanol production (mol) / CO 2 (mol) × 100

結果を表3に示した。   The results are shown in Table 3.

(比較例1)
触媒としてCuO−ZnO触媒(日揮化学N211、CuO:ZnO=52:48)80gを用い、反応温度を180℃、200℃、210℃、220℃、230℃にした以外は、実施例3と同様な方法によりメタノール合成反応を行った。なお、触媒重量は実施例3での触媒AにおけるSV値(SV=3300h−1)と合わせた。反応中のマイクロ波の電力量は0.61kWhであった。
反応後、実施例1同様、生成ガスと液体を分析し同定・定量した後、生成したメタノール量からメタノール転化率を求めた。その結果を表3に示した。
(Comparative Example 1)
Example 3 except that 80 g of CuO—ZnO catalyst (JGC Chemical N211, CuO: ZnO = 52: 48) was used as the catalyst, and the reaction temperatures were 180 ° C., 200 ° C., 210 ° C., 220 ° C., 230 ° C. The methanol synthesis reaction was carried out by various methods. The catalyst weight was combined with the SV value (SV = 3300 h −1 ) for catalyst A in Example 3. The amount of microwave power during the reaction was 0.61 kWh.
After the reaction, as in Example 1, the product gas and liquid were analyzed, identified and quantified, and then the methanol conversion was determined from the amount of methanol produced. The results are shown in Table 3.

表3に示すように、本発明の触媒は従来の触媒に比べてメタノールへの転化率が高く、また、160℃付近で最適な反応温度となり、反応が低温側にシフトしたことがわかった。   As shown in Table 3, it was found that the catalyst of the present invention had a higher conversion rate to methanol than the conventional catalyst, and reached an optimum reaction temperature near 160 ° C., and the reaction shifted to the low temperature side.

本発明の実施例で用いた反応装置の系統図である。It is a systematic diagram of the reactor used in the Example of this invention.

符号の説明Explanation of symbols

1 圧力調整弁
2 パージガス用仕切弁
3 反応容器
31 触媒設置部
32 ヒーター
33 原料ガス導入部
34 反応ガス導出部
35 バッファー部
4 ガス検知管
5 流量調整弁
6 三方弁(水素還元切替)
7 三方弁(水素還元切替)
8 三方弁(パージ切替)
9 圧力計
10 流量計
11 サンプリング口(反応前)
12 サンプリング口(反応後)
13 水トラップ
14 水素還元用バッファーガス
15 ガス循環ポンプ
16 パージ用仕切弁
DESCRIPTION OF SYMBOLS 1 Pressure control valve 2 Purge gas gate valve 3 Reaction container 31 Catalyst installation part 32 Heater 33 Raw material gas introduction part 34 Reaction gas derivation part 35 Buffer part 4 Gas detection pipe 5 Flow control valve 6 Three-way valve (hydrogen reduction switching)
7 Three-way valve (hydrogen reduction switching)
8 Three-way valve (purge switching)
9 Pressure gauge 10 Flow meter 11 Sampling port (before reaction)
12 Sampling port (after reaction)
13 Water trap 14 Hydrogen reduction buffer gas 15 Gas circulation pump 16 Purge gate valve

Claims (3)

マイクロ波照射により、触媒存在下に二酸化炭素と水素を反応させてメタノールを合成する方法であって、前記触媒が銅酸化物、亜鉛酸化物およびランタン酸化物からなり、該ランタンの量が全触媒金属を基準として金属として0.5〜10質量%であることを特徴とするメタノール合成方法。   A method of synthesizing methanol by reacting carbon dioxide and hydrogen in the presence of a catalyst by microwave irradiation, wherein the catalyst comprises copper oxide, zinc oxide and lanthanum oxide, and the amount of lanthanum is the total catalyst A method for synthesizing methanol, comprising 0.5 to 10% by mass as a metal based on the metal. 前記触媒における銅元素と亜鉛元素の比率が、98:2〜30:70である請求項1に記載のメタノール合成方法。   2. The method for synthesizing methanol according to claim 1, wherein a ratio of a copper element and a zinc element in the catalyst is 98: 2 to 30:70. 前記触媒を充填した触媒充填層に、二酸化炭素と水素からなるガスを導入し、該触媒充填層にマイクロ波を照射して反応させる請求項1または2に記載のメタノール合成方法。   The method for synthesizing methanol according to claim 1 or 2, wherein a gas comprising carbon dioxide and hydrogen is introduced into the catalyst packed bed filled with the catalyst, and the catalyst packed bed is irradiated with microwaves for reaction.
JP2008063249A 2008-03-12 2008-03-12 Methanol synthesis method Expired - Fee Related JP5303971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008063249A JP5303971B2 (en) 2008-03-12 2008-03-12 Methanol synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008063249A JP5303971B2 (en) 2008-03-12 2008-03-12 Methanol synthesis method

Publications (2)

Publication Number Publication Date
JP2009215263A JP2009215263A (en) 2009-09-24
JP5303971B2 true JP5303971B2 (en) 2013-10-02

Family

ID=41187504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008063249A Expired - Fee Related JP5303971B2 (en) 2008-03-12 2008-03-12 Methanol synthesis method

Country Status (1)

Country Link
JP (1) JP5303971B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5541055B2 (en) * 2010-10-01 2014-07-09 東京電力株式会社 Methanol synthesis catalyst and methanol synthesis method
CN105498780B (en) * 2015-12-24 2018-01-23 大连工业大学 A kind of Cu/ZnO catalyst and preparation method thereof and in CO2Application in chemical conversion
JP7349111B1 (en) 2023-03-08 2023-09-22 株式会社アビット・テクノロジーズ Reduction reaction device and method for producing a reduced product of a compound to be treated

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426983A (en) * 1977-08-02 1979-02-28 Mitsubishi Gas Chem Co Inc Methanol synthesis catalyst
JP3259020B2 (en) * 1991-08-21 2002-02-18 智行 乾 Oxide-based catalyst, method for producing the same, and method for catalytic hydrogenation of CO2 using the catalyst
JPH08215570A (en) * 1995-02-17 1996-08-27 Ykk Kk Catalyst for synthesis of methanol, production thereof and synthesis of methanol
JP3510405B2 (en) * 1995-11-22 2004-03-29 三菱重工業株式会社 Methanol synthesis catalyst
JP3943648B2 (en) * 1997-04-11 2007-07-11 関西電力株式会社 Methanol synthesis method
JP5205693B2 (en) * 2004-11-17 2013-06-05 東京電力株式会社 Method for immobilizing CO2 using microwaves
JP2007261960A (en) * 2006-03-01 2007-10-11 Tokyo Electric Power Co Inc:The Method for continuously producing higher fatty acid methyl ester from co2
JP4905849B2 (en) * 2006-04-07 2012-03-28 東京電力株式会社 Synthesis method of dimethyl ether using microwave

Also Published As

Publication number Publication date
JP2009215263A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
Alipour et al. Effects of support modifiers on the catalytic performance of Ni/Al2O3 catalyst in CO2 reforming of methane
Wierzbicki et al. Ni-Fe layered double hydroxide derived catalysts for non-plasma and DBD plasma-assisted CO2 methanation
Vita et al. Biogas as renewable raw material for syngas production by tri-reforming process over NiCeO2 catalysts: Optimal operative condition and effect of nickel content
Song et al. Methanol steam reforming for hydrogen production over ternary composite ZnyCe1Zr9Ox catalysts
Vita et al. Influence of Ce-precursor and fuel on structure and catalytic activity of combustion synthesized Ni/CeO2 catalysts for biogas oxidative steam reforming
Jiang et al. Chemical looping glycerol reforming for hydrogen production by Ni@ ZrO2 nanocomposite oxygen carriers
Monteiro et al. Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts
Valverde et al. Limestone calcination under calcium-looping conditions for CO 2 capture and thermochemical energy storage in the presence of H 2 O: an in situ XRD analysis
Chen et al. Assessment of the effect of process conditions and material characteristics of alkali metal salt promoted MgO-based sorbents on their CO2 capture performance
Ni et al. High purity hydrogen production from sorption enhanced chemical looping glycerol reforming: Application of NiO-based oxygen transfer materials and potassium promoted Li2ZrO3 as CO2 sorbent
TW200836833A (en) Catalyst for carbon monoxide conversion and method of carbon monoxide modification with the same
Meshkani et al. Ni catalysts supported on nanocrystalline magnesium oxide for syngas production by CO2 reforming of CH4
CN106694008B (en) With support type RhNi/CeO2@C3N4The method of nanocatalyst Compounds with Hydrazine Hydrate Catalyzed dehydrogenation
JP3005647B2 (en) Photocatalyst, method for producing the same, and method for producing hydrogen using the same
JP5303971B2 (en) Methanol synthesis method
Richard et al. The effect of lanthanide promoters on NiInAl/SiO2 catalyst for methanol synthesis
KR20140087264A (en) Mesoporous Ni-X-Al2O3 xerogel catalyst, preparation method thereof, and method for preparing methane using said catalyst
JP2008036451A (en) Catalyst support and catalyst for methane reformation and method for preparing the same
JP2006216412A (en) Microwave heating device and carbon dioxide decomposition method using it
Li et al. Continuous CO 2 capture and methanation over Ni–Ca/Al 2 O 3 dual functional materials
Oliveira et al. Hydrogen production from sorption enhanced steam reforming of ethanol using bifunctional Ni and Ca-based catalysts doped with Mg and Al
Ranjekar et al. Hydrogen production by steam reforming of methanol by Cu–Zn/CeAlO 3 perovskite
Zyryanova et al. Selective methanation of CO in the presence of CO 2 in hydrogen-containing mixtures on nickel catalysts
JP5374955B2 (en) Method for synthesizing methanol from carbon dioxide
JP2003038957A (en) Catalyst for reforming dimethyl ether and method for producing hydrogen containing gas using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5303971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees