JP5303176B2 - New aquatic rhizosphere microorganism - Google Patents

New aquatic rhizosphere microorganism Download PDF

Info

Publication number
JP5303176B2
JP5303176B2 JP2008099213A JP2008099213A JP5303176B2 JP 5303176 B2 JP5303176 B2 JP 5303176B2 JP 2008099213 A JP2008099213 A JP 2008099213A JP 2008099213 A JP2008099213 A JP 2008099213A JP 5303176 B2 JP5303176 B2 JP 5303176B2
Authority
JP
Japan
Prior art keywords
hydroxyl group
aromatic ring
acinetobacter
strain
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008099213A
Other languages
Japanese (ja)
Other versions
JP2009247279A (en
Inventor
正章 森川
健司 鷲尾
文子 山賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2008099213A priority Critical patent/JP5303176B2/en
Publication of JP2009247279A publication Critical patent/JP2009247279A/en
Application granted granted Critical
Publication of JP5303176B2 publication Critical patent/JP5303176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microorganism having cleaning ability of aromatic organic contaminants, especially a microorganism useful for cleaning an organic contaminant in the environment by phytoremediation. <P>SOLUTION: The microorganism belonging to the genus Acinetobacter has degrading ability to a hydroxy group-containing monocyclic aromatic compound or a polycyclic aromatic compound to produce a hydroxy group on an aromatic ring by the cleavage reaction of an aromatic ring. An environmental contaminant such as phenol is cleaned by using the microorganism absolutely harmless to the nature. Particularly, the biologicals efficiently and extremely inexpensively treat in the natural environment, environmental contaminants such as phenol leaked to the environment, especially lakes, marshes or rivers without recovering contaminated water etc. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、水酸基を有する単環式芳香族化合物又は芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物に対して分解能を有し、ウキクサの根に対して付着能を有するアシネトバクター(Acinetobacter)属微生物、及び当該微生物を用いて、水酸基を有する単環式芳香族化合物又は芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物によって汚染された水又は土壌の浄化方法に関する。   The present invention has a resolution for a monocyclic aromatic compound having a hydroxyl group or a polycyclic aromatic compound in which a hydroxyl group is generated on an aromatic ring by the cleavage reaction of the aromatic ring, and attaches to duckweed roots. Acinetobacter genus microorganism having the ability, and contamination by monocyclic aromatic compound having a hydroxyl group or polycyclic aromatic compound in which a hydroxyl group is generated on the aromatic ring by an aromatic ring cleavage reaction The present invention relates to a method for purifying collected water or soil.

フェノールやナフタレンは、消毒剤、防腐剤、防虫剤、染料中間体として用いられる他、合成樹脂、染料、爆薬、可塑剤、界面活性剤の製造原料として重要な芳香族化合物である。これらはいずれも生物に対する毒性が強く、工場等からの外部への流出は、深刻な環境汚染を引き起こすおそれがある。   Phenol and naphthalene are aromatic compounds important as raw materials for producing synthetic resins, dyes, explosives, plasticizers, and surfactants, as well as used as disinfectants, preservatives, insecticides, and dye intermediates. All of these are highly toxic to living organisms, and outflow from factories and the like may cause serious environmental pollution.

そのため、例えばフェノール排出基準は、下水道法や水質汚濁防止法などで5mg/Lと定められており、化学工業等の製造過程において生じるフェノール性化合物を含む廃水を処理する方法として、焼却法、蒸留回収法、活性汚泥法等が実施されている。   Therefore, for example, the phenol emission standard is set at 5 mg / L by the Sewerage Law and Water Pollution Control Law, etc., and as a method of treating wastewater containing phenolic compounds generated in the manufacturing process of the chemical industry, the incineration method, distillation Recovery methods, activated sludge methods, etc. are being implemented.

上記の処理方法は、主として、工場等の排水が発生する施設の内部で実施されることを目的として開発された方法である。そのため、施設の外部、例えば土壌、河川、湖沼などのオープンな環境に漏出してしまったフェノール等の環境汚染源を、上記の方法で処理することは事実上不可能である。   The above treatment method is a method developed mainly for the purpose of being carried out inside a facility such as a factory where wastewater is generated. Therefore, it is practically impossible to treat environmental pollution sources such as phenol that have leaked into the open environment such as soil, rivers, and lakes outside the facility by the above method.

こうした環境中に漏出してしまった汚染源を物理的又は化学的に回収あるいは分解するのは容易なことではないことから、植物や微生物を用いた生物学的な浄化技術が、環境中の汚染物質の除去方法として利用されている。特に植物の有機化合物の吸収能ならびに代謝能を利用した環境汚染源を浄化する技術は、一般にファイトレメディエーションと呼ばれる。この技術は、植物が自身の栄養源として利用する窒素、リンの除去や、植物体内への吸収、蓄積を利用した重金属の除去に対して、特に優れている。   Since it is not easy to physically or chemically recover or decompose these sources that have leaked into the environment, biological purification technologies using plants and microorganisms are It is used as a removal method. In particular, a technique for purifying environmental pollutants utilizing the ability of plants to absorb and metabolize organic compounds is generally called phytoremediation. This technique is particularly excellent for removal of nitrogen and phosphorus that plants use as their own nutrient sources, and removal of heavy metals using absorption and accumulation in plants.

植物を利用する環境浄化技術の最大のメリットは、太陽エネルギーを利用する経済性及び環境適合性という点であり、受動(パッシブ)システムとしてホテイアオイやヨシなどの植物が広く活用されている。しかし、植物による有機化合物等の環境汚染源の回収、除去反応は一般に長時間を要することから、効率的であるとは言い難い。   The greatest merit of environmental purification technology using plants is the economic efficiency and environmental compatibility using solar energy, and plants such as water hyacinth and reed are widely used as passive systems. However, the recovery and removal reaction of environmental pollutants such as organic compounds by plants generally takes a long time, so it cannot be said that it is efficient.

この問題を解消する方法として、植物と共存することができ、それ自体が環境浄化作用を有する微生物を組み合わせてファイトレメディエーションの効率を高める方法が提唱されている。その代表例が、植物の根の周囲における微生物と植物の共生関係を利用した、根圏浄化 (Rhizoremediation)と呼ばれる環境浄化技術である。   As a method for solving this problem, there has been proposed a method for improving the efficiency of phytoremediation by combining microorganisms that can coexist with plants and have an environmental purification effect. A typical example is an environmental purification technique called rhizomediation, which utilizes the symbiotic relationship between microorganisms and plants around the roots of plants.

例えば、原油汚染砂漠における土着植物と原油分解微生物との組み合わせによって、当該土着植物の根周辺の原油の除去が行われた例がある(非特許文献1)。   For example, there is an example in which crude oil around the root of the indigenous plant is removed by a combination of an indigenous plant and a crude oil-degrading microorganism in a crude oil-contaminated desert (Non-Patent Document 1).

また、水生植物の根圏微生物について、植物と根圏微生物の共存下では芳香族化合物の分解能が向上することが報告されている(非特許文献2)
Samir Radwanら、Nature、1995年、 第376巻、第6538号−302頁 Toyamaら、J.Biosci.Bioeng.、2006年、第101巻、第4号、346−353頁
In addition, regarding the rhizosphere microorganisms of aquatic plants, it has been reported that the resolution of aromatic compounds is improved in the presence of plants and rhizosphere microorganisms (Non-patent Document 2).
Samir Radwan et al., Nature, 1995, 376, 6538-302. Toyama et al. Biosci. Bioeng. 2006, Vol. 101, No. 4, pages 346-353

本発明は、芳香族系の有機汚染物質の浄化能を有する微生物、特にファイトレメディエーションによる汚染された環境の浄化に利用可能な微生物を提供することを目的とする。   An object of the present invention is to provide a microorganism having a purification ability of aromatic organic pollutants, particularly a microorganism that can be used for purification of a contaminated environment by phytoremediation.

本発明者らは、ウキクサの根圏から、フェノール及びナフタレンを分解することのできる微生物を単離し、フェノール及びナフタレンの生物学的分解除去、特にファイトレメディエーションによる汚染物質の分解除去又は当該汚染物質によって汚染された環境の浄化に利用し得ることを見いだし、下記の各発明を完成させた。   The present inventors isolated microorganisms capable of degrading phenol and naphthalene from duckweed rhizosphere, and biologically degrading and removing phenol and naphthalene, in particular, degrading and removing pollutants by phytoremediation or the pollutants. It was found that it can be used to purify the environment polluted by, and the following inventions have been completed.

(1)水酸基を有する単環式芳香族化合物又は芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物に対して分解能を有する、アシネトバクター(Acinetobacter)属微生物。 (1) Acinetobacter microorganisms having a resolution for a monocyclic aromatic compound having a hydroxyl group or a polycyclic aromatic compound in which a hydroxyl group is generated on an aromatic ring by an aromatic ring cleavage reaction.

(2)ベンゼンに対する分解能を示さない、(1)に記載のアシネトバクター属微生物。 (2) The microorganism of the genus Acinetobacter according to (1), which does not show resolution against benzene.

(3)水生植物の根圏微生物である、(1)又は(2)に記載のアシネトバクター属微生物。 (3) The Acinetobacter genus microorganism according to (1) or (2), which is a rhizosphere microorganism of an aquatic plant.

(4)水生植物がウキクサ科(Lemnaceae)植物である、(3)に記載のアシネトバクター属微生物。 (4) The Acinetobacter genus microorganism according to (3), wherein the aquatic plant is a Lemnaceae plant.

(5)ウキクサ科植物がアオウキクサ(Lemna perpusilla)又はウキクサ(Spirodela polyrrhiza)である、(4)に記載のアシネトバクター属微生物。 (5) The microorganism belonging to the genus Acinetobacter according to (4), wherein the duckweed plant is Lemna perpusilla or Spirodela polyrrhiza.

(6)受託番号NITE P−523として受託された、アシネトバクター属微生物。 (6) Acinetobacter genus microorganisms deposited under the deposit number NITE P-523.

(7)(1)〜(6)の何れかに記載のアシネトバクター属微生物を含む、水酸基を有する単環式芳香族化合物又は芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物を分解するための生物製剤。 (7) A monocyclic aromatic compound having a hydroxyl group, including the Acinetobacter microorganism according to any one of (1) to (6), or a polycyclic group in which a hydroxyl group is generated on an aromatic ring by an aromatic ring cleavage reaction Biologics for breaking down aromatic compounds.

(8)(1)〜(6)の何れかに記載のアシネトバクター属微生物とウキクサ科(Lemnaceae)植物とからなる、水酸基を有する単環式芳香族化合物又は芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物を分解するための生物製剤。 (8) A monocyclic aromatic compound having a hydroxyl group comprising an Acinetobacter genus microorganism according to any one of (1) to (6) and a Lemaceae plant, or an aromatic ring by an aromatic ring cleavage reaction A biopharmaceutical for decomposing a polycyclic aromatic compound on which a hydroxyl group is formed.

(9)ウキクサ科植物がアオウキクサ(Lemna perpusilla)又はウキクサ(Spirodela polyrrhiza)である、(8)に記載のフェノール及び/又はナフタレン分解用生物製剤。 (9) The biologic for degrading phenol and / or naphthalene according to (8), wherein the duckweed plant is duckweed (Lemna perpusilla) or duckweed (Spirodella polyrrhiza).

(10)(1)〜(6)のいずれかに記載のアシネトバクター属微生物と水酸基を有する単環式芳香族化合物若しくは芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物によって汚染された水若しくは土壌とを接触させる工程a)を含む、前記汚染された水若しくは土壌に含まれる水酸基を有する単環式芳香族化合物若しくは芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物を分解除去する方法。 (10) Acinetobacter microorganism according to any one of (1) to (6) and a monocyclic aromatic compound having a hydroxyl group or a polycyclic aromatic group in which a hydroxyl group is generated on an aromatic ring by an aromatic ring cleavage reaction On the aromatic ring by the cleavage reaction of the monocyclic aromatic compound or aromatic ring having a hydroxyl group contained in the contaminated water or soil, comprising the step a) of contacting the contaminated water or soil with the compound A method of decomposing and removing a polycyclic aromatic compound in which a hydroxyl group is generated.

(11)工程a)が、前記汚染された水若しくは土壌に(7)〜(9)の何れかに記載の生物製剤を投与することで、アシネトバクター属微生物と水酸基を有する単環式芳香族化合物若しくは芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物によって汚染された水若しくは土壌とを接触させる工程である、(10)に記載の方法。 (11) Step a) is a monocyclic aromatic compound having a hydroxyl group of Acinetobacter and a hydroxyl group by administering the biologic according to any one of (7) to (9) to the contaminated water or soil. Alternatively, the method according to (10), which is a step of contacting water or soil contaminated with a polycyclic aromatic compound in which a hydroxyl group is generated on the aromatic ring by an aromatic ring cleavage reaction.

(12)(1)〜(6)のいずれかに記載のアシネトバクター属微生物と水酸基を有する単環式芳香族化合物若しくは芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物によって汚染された水若しくは土壌とを接触させる工程a)、及び前記汚染された水若しくは土壌に含まれる水酸基を有する単環式芳香族化合物若しくは芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物を分解除去する工程b)を含む、前記汚染された水若しくは土壌の浄化方法。 (12) Acynetobacter microorganism according to any one of (1) to (6) and a monocyclic aromatic compound having a hydroxyl group or a polycyclic aromatic group in which a hydroxyl group is generated on the aromatic ring by a cleavage reaction of the aromatic ring A) contacting a contaminated water or soil with a compound, and a monocyclic aromatic compound having a hydroxyl group contained in the contaminated water or soil or a hydroxyl group on an aromatic ring by a cleavage reaction of the aromatic ring. A method for purifying the contaminated water or soil, comprising the step b) of decomposing and removing the polycyclic aromatic compound from which water is generated.

(13)工程a)が、前記汚染された水若しくは土壌に請求項7〜9の何れかに記載の生物製剤を投与することで、アシネトバクター属微生物と水酸基を有する単環式芳香族化合物若しくは芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物によって汚染された水若しくは土壌とを接触させる工程である、(12)に記載の浄化方法。 (13) Step a) comprises administering the biologic according to any one of claims 7 to 9 to the contaminated water or soil, whereby a monocyclic aromatic compound or fragrance having a hydroxyl group of Acinetobacter and a hydroxyl group The purification method according to (12), which is a step of contacting water or soil contaminated with a polycyclic aromatic compound in which a hydroxyl group is generated on the aromatic ring by an aromatic ring cleavage reaction.

本発明は、自然界に全く無害の微生物を用いて、フェノール等の環境汚染物質を分解除去して、環境を浄化することができる。特に本発明の生物製剤は、環境中、特に湖沼や河川に漏出したフェノール等の環境汚染物質を自然環境の中で効率的かつ極めて安価に分解処理して、環境を浄化することができる。   The present invention can purify the environment by decomposing and removing environmental pollutants such as phenol using microorganisms that are completely harmless to nature. In particular, the biologics of the present invention can purify the environment by decomposing and treating environmental pollutants such as phenol leaked in the environment, particularly in lakes and rivers, in the natural environment efficiently and extremely inexpensively.

本発明は、水酸基を有する単環式芳香族化合物又は芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物に対して分解能を有する、アシネトバクター(Acinetobacter)属微生物を提供する。   The present invention provides a microorganism belonging to the genus Acinetobacter having a resolution with respect to a monocyclic aromatic compound having a hydroxyl group or a polycyclic aromatic compound in which a hydroxyl group is generated on an aromatic ring by a cleavage reaction of the aromatic ring. To do.

本発明のアシネトバクター属微生物は、下記表1に示す微生物学的性質を有する。その好ましい例は、産業技術総合研究所特許生物寄託センターに、受託番号NITE P−523として寄託されているアシネトバクター エスピー P23株である。   The Acinetobacter microorganism of the present invention has the microbiological properties shown in Table 1 below. A preferred example thereof is Acinetobacter sp. P23 strain deposited at the National Institute of Advanced Industrial Science and Technology as a deposit number NITE P-523.

上記の微生物学的特徴を備えたアシネトバクター属微生物であって、水酸基を有する単環式芳香族化合物又は芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物に対して分解能を有するアシネトバクター属微生物、特にウキクサ科植物の根圏微生物であるアシネトバクター属微生物であれば、何れのアシネトバクター属微生物も本発明に含まれ、前記受託番号NITE P−523として寄託されている特定のアシネトバクター属微生物株には限定はされないが、本発明で好ましいアシネトバクター属微生物は、受託番号NITE P−523として寄託されているアシネトバクター エスピー P23株である。以下、アシネトバクター エスピー P23株をA−P23株と表すこととする。   Acinetobacter microorganisms having the above microbiological characteristics, wherein the monocyclic aromatic compound having a hydroxyl group or a polycyclic aromatic compound in which a hydroxyl group is generated on an aromatic ring by an aromatic ring cleavage reaction Acinetobacter microorganisms having a resolution, in particular, Acinetobacter microorganisms that are rhizosphere microorganisms of duckweed family plants, any Acinetobacter microorganisms are also included in the present invention, and are deposited under the accession number NITE P-523. Although not limited to the Acinetobacter genus microorganism strain, the preferred Acinetobacter genus microorganism in the present invention is Acinetobacter sp. P23 strain deposited under accession number NITE P-523. Hereinafter, Acinetobacter sp. P23 strain is referred to as A-P23 strain.

本発明のアシネトバクター属微生物を培養するために用いられる培地の栄養源としては、通常の微生物の生育に必要であって本菌が資化可能な栄養源であれば、いかなる炭素源、窒素源及び無機塩類等でもよい。   As a nutrient source of the medium used for culturing the Acinetobacter genus microorganism of the present invention, any carbon source, nitrogen source, and so on as long as it is necessary for normal microorganism growth and can be assimilated by the bacterium Inorganic salts may be used.

炭素源としては、グルコースやデンプンその他の糖類、酵母エキス等の天然物等が利用できるが、水酸基を有する単環式芳香族化合物又は芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物も炭素源として利用することができる。   As the carbon source, glucose, starch and other saccharides, natural products such as yeast extract, and the like can be used. However, a monocyclic aromatic compound having a hydroxyl group or a polyhydric group in which a hydroxyl group is generated on an aromatic ring by an aromatic ring cleavage reaction. Cyclic aromatic compounds can also be used as a carbon source.

また窒素源としては、硫酸アンモニウム等のアンモニウム塩、硝酸ナトリウム等の硝酸塩、各種アミノ酸、酵母エキス、肉エキス、麦芽エキス、ペプトン等の天然物が利用できる。また、カリウム塩、カルシウム塩、ナトリウム塩、マグネシウム塩、鉄塩、マンガン塩、リン酸塩等を無機成分として用いることができる。   As the nitrogen source, ammonium salts such as ammonium sulfate, nitrates such as sodium nitrate, various amino acids, yeast extract, meat extract, malt extract, peptone and other natural products can be used. Moreover, potassium salt, calcium salt, sodium salt, magnesium salt, iron salt, manganese salt, phosphate, etc. can be used as an inorganic component.

上記の窒素源ならびに炭素源を含む、本発明のアシネトバクター属微生物の培養に好適な培地の例としては、L培地、Hoagland培地(Hoaglandら、Soil Sci.,1940年、第50巻、第463−485頁)、BM(Basal salt Medium)培地などを挙げることができるが、これらには限定されない。   Examples of a medium suitable for culturing the Acinetobacter microorganism of the present invention containing the above nitrogen source and carbon source include L medium, Hoagland medium (Hoagland et al., Soil Sci., 1940, 50, 463-463). 485), a BM (Basal salt Medium) medium, and the like, but are not limited thereto.

本発明のアシネトバクター属微生物は、20〜40℃の温度範囲、好ましくは25〜35℃の温度範囲、5〜9のpH範囲、好ましくは6〜8のpH範囲で、好気的に培養することができる。   The Acinetobacter microorganism of the present invention is cultured aerobically in a temperature range of 20 to 40 ° C, preferably a temperature range of 25 to 35 ° C, a pH range of 5 to 9, and preferably a pH range of 6 to 8. Can do.

本発明において、水酸基を有する単環式芳香族化合物とは、芳香族化合物の環に水酸基が直接結合した化合物で、フェノール類として表される化合物を意味する。代表的な例としては、フェノール、m−クレゾール、ビスフェノールF、サリチル酸、p−ヒドロキシ安息香酸等が挙げられる。また、本発明において、芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物とは、多環式芳香族化合物の一部を構成する芳香族環における原子間の共有結合が切断されることにより、芳香族環上に新たに水酸基が形成される多環式芳香族化合物をいう。例えば、ナフタレン、ビフェニル、アントラセン、ピレンである。本発明の微生物は、この様な化合物を分解することで、当該化合物を培地乃至環境から除去することができる。以下、本発明では、水酸基を有する単環式芳香族化合物と多環式芳香族化合物の一部を構成する芳香族環における原子間の共有結合が切断されることにより芳香族環上に新たに水酸基が形成される多環式芳香族化合物とをまとめて、「汚染化合物」と、それぞれ表すこととする。   In the present invention, the monocyclic aromatic compound having a hydroxyl group is a compound in which a hydroxyl group is directly bonded to a ring of an aromatic compound and means a compound represented as a phenol. Representative examples include phenol, m-cresol, bisphenol F, salicylic acid, p-hydroxybenzoic acid and the like. Further, in the present invention, a polycyclic aromatic compound in which a hydroxyl group is generated on an aromatic ring by an aromatic ring cleavage reaction is the sharing of atoms in an aromatic ring constituting a part of the polycyclic aromatic compound. It means a polycyclic aromatic compound in which a hydroxyl group is newly formed on the aromatic ring by cutting the bond. For example, naphthalene, biphenyl, anthracene, pyrene. The microorganism of the present invention can remove such a compound from the medium or the environment by decomposing such a compound. Hereinafter, in the present invention, a covalent bond between atoms in an aromatic ring constituting a part of a monocyclic aromatic compound having a hydroxyl group and a polycyclic aromatic compound is broken to newly form an aromatic ring. The polycyclic aromatic compounds in which hydroxyl groups are formed are collectively represented as “contaminating compounds”, respectively.

本発明のアシネトバクター属微生物は、工場、営業所あるいは家庭等からの排水、汚染された河川や湖沼、海水その他の水であって、「汚染化合物」が含まれることが予想され又は確認されている水(以下、「被汚染水」と表す)、あるいは「汚染化合物」が含まれることが予想され又は確認されている土壌(以下、「被汚染土壌」と表す)と接触させることで、「汚染化合物」を分解資化、すなわち分解処理して、「被汚染水」及び/「被汚染土壌」を浄化することができる。「汚染化合物」の分解処理ならびに「被汚染水」及び/又は「被汚染土壌」の浄化は、好ましくは、「被汚染水」又は「被汚染土壌」において本発明のアシネトバクター属微生物を培養し、増殖させることで行われる。   The Acinetobacter genus microorganism of the present invention is wastewater from factories, sales offices or households, polluted rivers and lakes, seawater and other waters, and it is expected or confirmed to contain “polluting compounds”. Contact with water (hereinafter referred to as “contaminated water”) or soil that is predicted or confirmed to contain “polluting compounds” (hereinafter referred to as “contaminated soil”) The “compound” can be decomposed, ie decomposed, to purify “contaminated water” and / or “contaminated soil”. The decomposition treatment of “contaminating compound” and the purification of “contaminated water” and / or “contaminated soil” are preferably performed by culturing the Acinetobacter microorganism of the present invention in “contaminated water” or “contaminated soil”, It is done by growing.

本発明のアシネトバクター属微生物は、これを「被汚染水」の中でそのまま培養することで、「汚染化合物」を分解処理させることができる。また、公知の方法で適当な担体に本発明のアシネトバクター属微生物を固定化させた固定化微生物を用意し、これを用いてバッチ式に、あるいは連続的に「被汚染水」を固定化微生物に接触させることで、「汚染化合物」を分解処理してもよい。「被汚染水」が本発明のアシネトバクター属微生物の培養、増殖に好適な栄養源に乏しい場合には、好適な栄養源を「被汚染水」に適宜添加してもよい。   The microorganism of the genus Acinetobacter of the present invention can be subjected to decomposition treatment of “contaminating compounds” by culturing it as it is in “contaminated water”. In addition, an immobilized microorganism is prepared by immobilizing the Acinetobacter genus microorganism of the present invention on an appropriate carrier by a known method, and using this, batch-wise or continuously “contaminated water” becomes an immobilized microorganism. The “contaminating compound” may be decomposed by contact. When the “contaminated water” is poor in nutrient sources suitable for culturing and growing the Acinetobacter microorganisms of the present invention, a suitable nutrient source may be appropriately added to the “contaminated water”.

また本発明のアシネトバクター属微生物は、これを「被汚染土壌」にそのまま散布することにより「汚染化合物」を分解処理させることができる。また、公知の方法で適当な担体に本発明のアシネトバクター属微生物を固定化させた固定化微生物を用意し、これを「被汚染土壌」に散布して「汚染化合物」を分解処理してもよい。「被汚染土壌」が本発明のアシネトバクター属微生物の培養、増殖に好適な栄養源に乏しい場合には、好適な栄養源を「被汚染土壌」に散布する、あるいは本発明のアシネトバクター属微生物と共に散布してもよい。   Further, the Acinetobacter genus microorganism of the present invention can be subjected to decomposition treatment of “contaminating compound” by spraying it on “contaminated soil” as it is. Alternatively, an immobilized microorganism obtained by immobilizing the Acinetobacter genus microorganism of the present invention on an appropriate carrier by a known method may be prepared, and this may be sprayed on “contaminated soil” to decompose the “contaminating compound”. . When the “contaminated soil” is poor in nutrient sources suitable for culturing and growing the Acinetobacter microorganisms of the present invention, a suitable nutrient source is sprayed on the “contaminated soil” or dispersed together with the Acinetobacter microorganisms of the present invention. May be.

本発明のアシネトバクター属微生物、特に好ましいアシネトバクター属微生物であるA−P23株は、ウキクサ科植物、例えばアオウキクサ(Lemna perpusilla)と共に培養すると、アオウキクサの根に付着して根圏を形成する性質を有している。特に、A−P23株の「汚染化合物」の分解処理能力は当該根圏が形成されることによって上昇し、また、「汚染化合物」が含まれる環境下でのアオウキクサの株数の増加率も、A−P23株による根圏が形成されることによって上昇することが確認された。このことから、本発明のアシネトバクター属微生物は、ウキクサ科植物に対して根圏を形成して共生関係を成立させることによって成長を促進する性質を有する、PGPR(Plant Growth Promoting rhizobacteria)の一種であると考えられる。   The Acinetobacter genus microorganism of the present invention, and particularly the A-P23 strain which is a preferred Acinetobacter genus microorganism, has the property of forming a rhizosphere by adhering to duckweed roots when cultured with a duckweed plant such as Duckweed (Lemna perpusilla). ing. In particular, the ability of the A-P23 strain to decompose “polluting compounds” increases due to the formation of the rhizosphere, and the rate of increase in the number of duckweed strains in an environment containing “polluting compounds” is also -It was confirmed that the rhizosphere by the P23 strain was increased. Therefore, the Acinetobacter microorganism of the present invention is a kind of PGPR (Plant Growth Promoting rhizobacteria) having a property of promoting growth by forming a rhizosphere and establishing a symbiotic relationship with a duckweed family plant. it is conceivable that.

この様に、本発明のアシネトバクター属微生物は、そのままあるいはウキクサ科植物と組み合わせることで、「汚染化合物」の分解処理を目的とした生物製剤として利用することができる。すなわち本発明は、アシネトバクター属微生物又は本発明のアシネトバクター属微生物とウキクサ科植物を含む、「汚染化合物」を分解処理するため、又は汚染化合物を分解処理して「被汚染水」及び/又は「被汚染土壌」を浄化するための生物製剤を提供するものである。   Thus, the Acinetobacter microorganism of the present invention can be used as a biologic for the purpose of decomposing “contaminating compounds” as it is or in combination with a duckweed plant. That is, the present invention is for decomposing or treating “contaminated water” and / or “contaminated water” by decomposing or treating a “contaminating compound” including the Acinetobacter spp. Microorganism or the Acinetobacter spp. It provides a biopharmaceutical for purifying "contaminated soil".

本発明の生物製剤は、本発明のアシネトバクター属微生物、アシネトバクター属微生物とウキクサ科植物の他に、適当な賦形剤、及び/又はアシネトバクター属微生物の培養に好適な培地その他の任意成分を含んでいてもよい。また、アシネトバクター属微生物とウキクサ科植物はそれぞれ分離されて製剤に含まれていてもよく、あるいはウキクサ科植物の根の表面にアシネトバクター属微生物が根圏を形成している形態にあってもよい。アシネトバクター属微生物が根圏を形成しているウキクサ科植物を生物製剤として用いて湖沼や河川における「汚染化合物」の分解処理を行う場合、処理が終了したあとはウキクサを回収することで、湖沼や河川から不要となった微生物を簡便に回収することができる。   The biologic of the present invention contains, in addition to the Acinetobacter spp., Acinetobacter spp. And duckweed plant of the present invention, a suitable excipient and / or a medium suitable for culturing Acinetobacter spp. May be. Further, the Acinetobacter genus microorganism and the duckweed plant may be separated and included in the preparation, or the Acinetobacter genus microorganism may form a rhizosphere on the root surface of the duckweed plant. When the duckweed family plant in which rhizosphere of Acinetobacter genus forms the rhizosphere is used as a biologic, the "polluting compounds" in the lakes and rivers are decomposed. Microorganisms that are no longer needed from the river can be easily recovered.

本発明は、本発明に係るアシネトバクター属微生物と「被汚染水」又は「被汚染土壌」とを接触させる工程a)を含む、前記「被汚染水」又は「被汚染土壌」に含まれる「汚染化合物」を分解除去する方法を提供する。また、前記工程a)が、前記「被汚染水」又は「被汚染土壌」に本発明に係る生物製剤を投与することで、アシネトバクター属微生物と「被汚染水」又は「被汚染土壌」とを接触させる工程である、前記「被汚染水」又は「被汚染土壌」に含まれる「汚染化合物」を分解除去する方法を提供する。   The present invention includes “contaminated water” or “contaminated soil” comprising the step a) of bringing the Acinetobacter microorganism according to the present invention into contact with “contaminated water” or “contaminated soil”. A method of decomposing and removing the “compound” is provided. In addition, the step a) comprises administering the biologic according to the present invention to the “contaminated water” or “contaminated soil”, so that the Acinetobacter genus microorganism and the “contaminated water” or “contaminated soil” Provided is a method for decomposing and removing “contaminating compounds” contained in the “contaminated water” or “contaminated soil”, which is the step of contacting.

更に本発明は、本発明に係るアシネトバクター属微生物と「被汚染水」又は「被汚染土壌」とを接触させる工程a)、及び前記「被汚染水」又は「被汚染土壌」に含まれる「汚染化合物」を分解除去する工程b)を含む、前記「被汚染水」又は「被汚染土壌」の浄化方法を提供する。また、前記工程a)が、前記「被汚染水」又は「被汚染土壌」に本発明に係る生物製剤を投与することで、アシネトバクター属微生物と「被汚染水」又は「被汚染土壌」とを接触させる工程である、「被汚染水」又は「被汚染土壌」の浄化方法を提供する。   Furthermore, the present invention relates to the step a) of bringing the Acinetobacter genus microorganism according to the present invention into contact with “contaminated water” or “contaminated soil”, and “contaminated water” contained in the “contaminated water” or “contaminated soil”. Provided is a method for purifying the “contaminated water” or “contaminated soil”, which comprises the step b) of decomposing and removing the “compound”. In addition, the step a) comprises administering the biologic according to the present invention to the “contaminated water” or “contaminated soil”, so that the Acinetobacter genus microorganism and the “contaminated water” or “contaminated soil” Provided is a purification method of “contaminated water” or “contaminated soil”, which is a step of contacting.

本発明のアシネトバクター属微生物を用いた「被汚染水」中の「汚染化合物」の分解処理又は「被汚染水」の浄化は、例えば活性汚泥方式、バイオリアクター方式により、また「被汚染物土壌」においては、本発明のアシネトバクター属微生物を土壌に散布するあるいは注入することにより行われてもよく、目的に適した方式を適宜に選択することができる。   Decomposition treatment of "polluted compounds" in "contaminated water" or purification of "contaminated water" using the Acinetobacter genus microorganism of the present invention, for example, by activated sludge method, bioreactor method, and "contaminated soil" May be carried out by spraying or injecting the microorganism of the genus Acinetobacter of the present invention onto the soil, and a method suitable for the purpose can be appropriately selected.

活性汚泥法では、本発明のアシネトバクター属微生物又は生物製剤と「被汚染水」とを接触させることで、「汚染化合物」を分解処理することができる。例えば、活性汚泥法による分解処理の場合には、本発明のアシネトバクター属微生物の菌体を10cfu/mL以上、好ましくは10cfu/mL以上の濃度でばっ気槽に添加し、前記の好適な培養条件下で培養して分解処理を行えばよい。また、散水濾床法、浸漬濾床法、菌体固定法においては、本発明のアシネトバクター属微生物を固定化した担体と、「被汚染水」と接触させることにより、「汚染化合物」を分解処理することができる。 In the activated sludge method, the “contaminated compound” can be decomposed by bringing the Acinetobacter microorganism or the biologic of the present invention into contact with “contaminated water”. For example, in the case of decomposition treatment by the activated sludge method, the cells of the genus Acinetobacter of the present invention are added to an aeration tank at a concentration of 10 3 cfu / mL or more, preferably 10 6 cfu / mL or more. The decomposition treatment may be performed by culturing under various culture conditions. In the sprinkling filter bed method, the submerged filter bed method, and the fungus body fixing method, the “contaminated compound” is decomposed by bringing the carrier in which the Acinetobacter genus microorganism of the present invention is immobilized into contact with “contaminated water”. can do.

本発明の分解処理方法によれば、20mg/Lという高濃度の汚染化合物(フェノール)を、25℃4時間の培養で0.01mg/L以下まで分解することができる。   According to the decomposition treatment method of the present invention, a contaminating compound (phenol) having a high concentration of 20 mg / L can be decomposed to 0.01 mg / L or less by culturing at 25 ° C. for 4 hours.

土壌浄化においては、「被汚染土壌」と本発明のアシネトバクター属微生物とを、好ましくは本発明のアシネトバクター属微生物が増殖可能な条件下で接触させることにより、「被汚染土壌」中の「汚染化合物」を分解処理し、「被汚染土壌」を浄化することができる。   In soil purification, “contaminated compound” in “contaminated soil” is obtained by bringing “contaminated soil” and the Acinetobacter microorganism of the present invention into contact with each other preferably under conditions that allow the Acinetobacter microorganism of the present invention to grow. ”Can be decomposed and“ contaminated soil ”can be purified.

本発明にかかる方法の好ましい態様は、本発明に係るアシネトバクター属微生物を、「被汚染水」中で培養し、増殖させて、「被汚染水」に含まれる「汚染化合物」を分解除去する、あるいは「被汚染水」を浄化する方法である。本発明に係るアシネトバクター属微生物の培養条件は、先に述べたとおりである。
以下、実施例を示して本発明を更に詳しく説明するが、本発明はその実施例に限定されるものではない。
In a preferred embodiment of the method according to the present invention, the Acinetobacter microorganism according to the present invention is cultured in "contaminated water" and grown to decompose and remove "contaminating compounds" contained in "contaminated water". Or it is the method of purifying "contaminated water". The culture conditions of the Acinetobacter microorganism according to the present invention are as described above.
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated in more detail, this invention is not limited to the Example.

<実施例1>
1−1)微生物の単離
3種類の炭化水素 (フェノール、ナフタレン、マレーシア原油)を終濃度20または200mg/Lとなるように添加したHoagland培地(表2)100mL/300mL容三角フラスコへ、北海道大学付属植物園幽庭湖から採取し、蒸留水で洗浄したアオウキクサ(Lemna perpusilla)を加え、温度:25℃の恒温室内、照度:4500−6000ルクス、明暗条件:16時間明8時間暗で培養した。
<Example 1>
1-1) Isolation of microorganisms To Hoagland medium (Table 2) 100 mL / 300 mL Erlenmeyer flask containing 3 types of hydrocarbons (phenol, naphthalene, Malaysian crude oil) added to a final concentration of 20 or 200 mg / L, Hokkaido Duckweed (Lemna perpusilla) collected from Yueniwa Lake attached to the university and washed with distilled water was added, and it was cultured in a temperature-controlled room at 25 ° C., illuminance: 4500-6000 lux, light / dark conditions: 16 hours, light and dark for 8 hours. .

3週間後、アオウキクサを取り出して蒸留水10mLで2回洗浄した後、10株分の葉状態と根をそれぞれエッペンドルフチューブへ取り出した。ここへ5mg/Lトリポリリン酸ナトリウム水溶液1mLを添加し、超音波発振操作(操作1:5秒×6回、操作2:20秒×5回 )を行い、1〜1×105に段階希釈した溶液を調製した。これを50μLのBM(表3、Basal salt Medium)培地又はLB固形培地へ塗布し、25℃で平板培養を行った。このときBM培地には単一炭素源として集積培養の際添加した炭化水素を100μL添加した。平板上に表れたコロニーをそれぞれL培地、または各炭化水素を加えたBM培地へ植え継いだ。 Three weeks later, the duckweed was taken out and washed twice with 10 mL of distilled water, and then the leaf state and roots for 10 strains were taken out into an Eppendorf tube. To this, 1 mL of 5 mg / L sodium tripolyphosphate aqueous solution was added, and ultrasonic oscillation operation (operation 1: 5 seconds × 6 times, operation 2: 20 seconds × 5 times) was performed, and serial dilution was performed to 1 to 1 × 10 5 . A solution was prepared. This was applied to 50 μL of BM (Table 3, Basal salt Medium) medium or LB solid medium, and plated at 25 ° C. At this time, 100 μL of hydrocarbon added at the time of enrichment culture as a single carbon source was added to the BM medium. The colonies appearing on the plate were each inoculated into L medium or BM medium to which each hydrocarbon was added.

固形培地上でコロニー形態の異なる細菌として、フェノール含有培地から109菌株、ナフタレン含有培地から79菌株、マレーシア原油含有培地から41菌株がそれぞれ取得された。単一菌株と確認されたコロニーを、それぞれで使用された炭化水素を10mg/L含む液体L培地5mLに植菌し、濁度が十分上昇したと確認されるまで25℃、150rpmで振とう培養した。菌体を遠心分離(1900×g、5分、20℃ )で集菌し、15%グリセロール溶液として−80℃のディープフリーザーで保存した。グリセロール溶液作製後、L固形培地に塗布し、単一種が保存されていることを確認した。   As bacteria having different colony forms on the solid medium, 109 strains were obtained from the phenol-containing medium, 79 strains were obtained from the naphthalene-containing medium, and 41 strains were obtained from the Malaysian crude oil-containing medium. Colonies identified as single strains are inoculated into 5 mL of liquid L medium containing 10 mg / L of the hydrocarbon used in each, and shake cultured at 25 ° C. and 150 rpm until it is confirmed that the turbidity has sufficiently increased. did. The cells were collected by centrifugation (1900 × g, 5 minutes, 20 ° C.) and stored in a deep freezer at −80 ° C. as a 15% glycerol solution. After preparation of the glycerol solution, it was applied to the L solid medium, and it was confirmed that a single species was stored.

1−2)単離細菌の炭化水素分解活性の評価 1-2) Evaluation of hydrocarbon-degrading activity of isolated bacteria

1−2)−1.フェノール分解活性評価
終濃度2mg/Lのフェノールを添加したL液体培地5mL/試験管に各微生物を植菌後、濁度が十分上昇したと確認されるまで振とう培養(25℃、150rpm)を行い、遠心分離(1900×g、5分、20℃)により集菌し、1mLのBM培地で洗浄後、同量のBM培地に懸濁した。終濃度10mg/Lのフェノールを添加した4mLのBM培地へ1mLの細菌懸濁液を加え、振とう培養(25℃、150rpm)を行い、7日後の培養液1mLをポリプロピレンチューブに入れて遠心分離(13000×g、15分、4℃)して上清を回収し、その中のフェノール残存量を、HPLC(HP1100Series、HEWLETT PACKARD社)により測定した。HPLCの測定条件を表4に示す。
1-2) -1. Evaluation of phenol degradation activity
After inoculating each microorganism in 5 mL of L liquid medium / test tube to which phenol with a final concentration of 2 mg / L was added, shaking culture (25 ° C., 150 rpm) was performed until it was confirmed that the turbidity was sufficiently increased, and centrifugation was performed. The cells were collected by (1900 × g, 5 minutes, 20 ° C.), washed with 1 mL of BM medium, and suspended in the same amount of BM medium. Add 1 mL of bacterial suspension to 4 mL of BM medium supplemented with phenol at a final concentration of 10 mg / L, perform shaking culture (25 ° C., 150 rpm), and centrifuge 1 mL of culture solution after 7 days in a polypropylene tube. (13000 × g, 15 minutes, 4 ° C.) and the supernatant was recovered, and the amount of phenol remaining in the supernatant was measured by HPLC (HP1100 Series, HEWLETT PACKARD). Table 4 shows the HPLC measurement conditions.

上記の測定から、培地に添加したフェノールの80%以上を分解した細菌を選択した。この選択された細菌の前培養液1mL(OD600=1.0)を、100mL容フラスコに終濃度20mg/L のフェノールを添加した50mLのHoagland培地に添加して振とう培養(25℃、150rpm)を行い、培養開始から1.5、3、4.5、6、9、12、24各時間後に培地を500μL回収し、菌体を遠心分離(13000rpm、15分、4℃)で除去した上清を上記と同じ条件でHPLCにかけ、培地中のフェノール残存量の経時変化を測定した。 From the above measurements, bacteria that decomposed 80% or more of the phenol added to the medium were selected. 1 mL of the preculture solution (OD 600 = 1.0) of the selected bacteria was added to 50 mL of Hoagland medium added with phenol at a final concentration of 20 mg / L in a 100 mL flask and shake culture (25 ° C., 150 rpm). 500 μL of the medium was collected after 1.5, 3, 4.5, 6, 9, 12, and 24 hours from the start of the culture, and the cells were removed by centrifugation (13000 rpm, 15 minutes, 4 ° C.). The supernatant was subjected to HPLC under the same conditions as described above, and the change over time in the amount of phenol remaining in the medium was measured.

この実験を通じて、培地に添加したフェノールの80%以上を分解することのできる細菌として5菌株が得られた。これらはいずれも、20mg/Lのフェノールを数時間で分解するような高い分解活性を有した。   Through this experiment, 5 strains were obtained as bacteria capable of degrading 80% or more of the phenol added to the medium. All of them had such a high degrading activity as to degrade 20 mg / L of phenol in a few hours.

1−2)−2.ナフタレン分解活性評価
終濃度30mg/Lのナフタレンを添加したBM液体培地10mL/遠心管に各微生物を植菌後、振とう培養(25℃、150rpm、7日間)を行った後、培地に10mLの抽出溶媒(ヘキサン:アセトン=1:1)を添加して撹拌し、遠心分離(2810×g、30分、4℃)した。1mLのヘキサン層をGC用ガラスバイアルチューブに移し、ナフタレン残存量を表5に示す条件でガスクロマトグラフィー(以下、GC−FID) を用いて測定した。ナフタレンと内部標準物質であるビフェニルのクロマトグラムピーク面積の値から、残存率、および分解率を算出した。
1-2) -2. Evaluation of naphthalene degradation activity After inoculating each microorganism in a BM liquid medium 10 mL / centrifuge tube to which naphthalene having a final concentration of 30 mg / L was added, shaking culture (25 ° C., 150 rpm, 7 days) was performed, and then 10 mL of the medium was added to the medium. An extraction solvent (hexane: acetone = 1: 1) was added and stirred, followed by centrifugation (2810 × g, 30 minutes, 4 ° C.). 1 mL of the hexane layer was transferred to a glass vial tube for GC, and the residual amount of naphthalene was measured using gas chromatography (hereinafter, GC-FID) under the conditions shown in Table 5. The residual rate and the decomposition rate were calculated from the chromatogram peak area values of naphthalene and the internal standard substance biphenyl.

上記実験でナフタレン分解能が高いと判断された細菌について、上記実験と同様の条件で再度培養し、培地中のナフタレン残存量の経時変化を測定した。   Bacteria judged to have high naphthalene resolution in the above experiment were cultured again under the same conditions as in the above experiment, and the change over time in the amount of naphthalene remaining in the medium was measured.

この実験を通じて、ナフタレン分解能が高いと判断された細菌として、6菌株が得られた。   Through this experiment, 6 strains were obtained as bacteria judged to have high naphthalene resolution.

1−2)−3.スタンダードガスオイル分解活性評価
スタンダードガスオイル5000mg/Lを添加した10mLのBM培地/50mL容遠沈管に各微生物を植菌後、振とう培養 (25℃、150rpm、7日間)を行った後、上記2)と同様にして、培地からの残存原油又は残存スタンダードガスオイルの抽出操作及びGC−FIDを用いた測定、さらに栽培用による培地中の残存原油量等の経時変化を測定した。
1-2) -3. Standard gas oil decomposition activity evaluation After inoculating each microorganism in a 10 mL BM medium / 50 mL centrifuge tube to which standard gas oil 5000 mg / L was added, after shaking culture (25 ° C., 150 rpm, 7 days), the above In the same manner as in 2), the residual crude oil or residual standard gas oil was extracted from the culture medium and measured using GC-FID, and the changes over time such as the residual crude oil quantity in the culture medium were measured.

この実験を通じて、スタンダードガスオイル分解能が高いと判断された細菌として、5菌株が得られた。   Through this experiment, 5 strains were obtained as bacteria judged to have high standard gas oil resolution.

1−3)分離菌株の同定
1−2)で得られたフェノール分解能を有する5菌株、ナフタレン分解能を有する6菌株、スタンダードガスオイル分解能を有する5菌株について、16S rRNA後半部分約600塩基を解析することで各菌株の属同定を行った。
1-3) Identification of isolates About the 5 strains having phenol resolution, 6 strains having naphthalene resolution, and 5 strains having standard gas oil resolution obtained in 1-2), about 600 bases of the latter half of 16S rRNA are analyzed. The genus identification of each strain was performed.

L固形培地に生育させた各菌株のコロニーを10μLの蒸留水を加えたポリプロピレンチューブに移して懸濁した後、99℃で15分間加熱して溶菌させた。この溶液を鋳型とし、表5に示す反応液組成において、94℃で1分の後、[94℃、30秒−52℃、2分−74℃、30秒]×30サイクルのPCR反応を行った。   The colonies of each strain grown on the L solid medium were transferred to a polypropylene tube to which 10 μL of distilled water was added and suspended, and then heated at 99 ° C. for 15 minutes for lysis. Using this solution as a template, in the reaction solution composition shown in Table 5, after 1 minute at 94 ° C., a PCR reaction of [94 ° C., 30 seconds-52 ° C., 2 minutes-74 ° C., 30 seconds] × 30 cycles was performed. It was.

アガロースゲル電気泳動法によって回収した増幅されたDNAをQiaquick Gel Extraction Kit(QIAGEN社)を用いて精製した。この生成されたDNAを鋳型とし、表6に示すような反応駅組成において、BigDye(登録商標)Terminator v3.1 Cycle Sequencing Kit(Applied Biosystems社)を用い、96℃で10分の後、[50℃、5分−60℃、4分]×25サイクルのシーケンスPCR反応を行った。   The amplified DNA recovered by agarose gel electrophoresis was purified using Qiaquick Gel Extraction Kit (QIAGEN). Using the generated DNA as a template and using a BigDye (registered trademark) Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) at a reaction station composition as shown in Table 6, after 10 minutes at 96 ° C., [50 C., 5 minutes to 60.degree. C., 4 minutes]. A sequence PCR reaction of 25 cycles was performed.

エタノール沈殿法で回収、精製したシーケンスPCR反応産物を、Hi−Di−Formamide(Applied Biosystems社)12μLに溶解し、ABI3100(ABI PRISM(登録商標)3100−Genetic Analyzer、Applied Biosystems社)を用いてシーケンスを決定し、Blast Search(http://www.ncbi.nlm.nih.gov/blast/blast.cgi)を用いて相同性の高い遺伝子の検索を行った。遺伝子解析は、GENETYX−WIN Ver.5.1(ソフトウエア開発株式会社)およびMEGA(Molecular Evolutionary Genetics Analysis社)を用いて行った。この実験の結果を表7に示す。   The sequence PCR reaction product collected and purified by the ethanol precipitation method was dissolved in 12 μL of Hi-Di-Formamide (Applied Biosystems), and ABI3100 (ABI PRISM (registered trademark) 3100-Genetic Analyzer, Applied Biosystems) was used. The genes having high homology were searched using Blast Search (http://www.ncbi.nlm.nih.gov/blast/blast.cgi). Gene analysis was performed using GENETYX-WIN Ver. 5.1 (Software Development Co., Ltd.) and MEGA (Molecular Evolutionary Genetics Analysis) were used. The results of this experiment are shown in Table 7.

<実施例2>単離細菌のバイオフィルム形成能の測定
5mLの液体L培地に表7に示した各菌株を植菌し、濁度OD600 =0.3になるまで前培養した。フェノール分解性5菌株は、終濃度10mg/Lのフェノールを含むL培地、Hoagland培地、BM培地を、ナフタレン分解性6菌株は終濃度30mg/Lのナフタレンを含むL培地、Hoagland培地、BM培地それぞれ300μLを遠心チューブに用意して、前培養液を植菌し、25℃の温室内で静置培養した。培養開始から24時間後及び48時間後に遠心チューブ内の培養液を取り除き、350μL蒸留水1回洗浄した後、0.1%クリスタルバイオレット溶液400μLをチューブに加えて20分間染色した。染色液を取り除き、450μLの蒸留水で1回洗浄した後、自然乾燥させた。さらに500μLの95%エタノールを添加し、60分間抽出をおこなった。抽出溶液を95%エタノール溶液で適度に希釈し、590nmにおける吸光度の測定値をバイオフィルム活性とした。
<Example 2> Measurement of biofilm-forming ability of isolated bacteria Each strain shown in Table 7 was inoculated into 5 mL of liquid L medium, and precultured until the turbidity OD 600 = 0.3. Phenol-degrading five strains are L medium, Hoagland medium, and BM medium containing phenol at a final concentration of 10 mg / L. Naphthalene-degrading six strains are L medium, Hoagland medium, and BM medium each containing naphthalene at a final concentration of 30 mg / L. 300 μL was prepared in a centrifuge tube, the preculture solution was inoculated, and statically cultured in a greenhouse at 25 ° C. After 24 hours and 48 hours from the start of the culture, the culture solution in the centrifuge tube was removed and washed once with 350 μL distilled water, and then 400 μL of 0.1% crystal violet solution was added to the tube and stained for 20 minutes. The staining solution was removed, washed once with 450 μL of distilled water, and then naturally dried. Further, 500 μL of 95% ethanol was added, and extraction was performed for 60 minutes. The extracted solution was appropriately diluted with a 95% ethanol solution, and the measured absorbance at 590 nm was defined as biofilm activity.

その結果、図1に示されるように、フェノール分解能を有するRhodococcus sp. P22株(以下、R−P22株と表す)及びAcinetobacter sp.P23株(A−P23株と表す)が、特にL培地において24時間培養で高いバイオフィルム形成量を示した。また48時間後のバイオフィルム形成量は減少した(図2)。   As a result, as shown in FIG. 1, Rhodococcus sp. P22 strain (hereinafter referred to as R-P22 strain) and Acinetobacter sp. P23 strain (referred to as A-P23 strain) showed a high biofilm formation amount when cultured for 24 hours in L medium. In addition, the amount of biofilm formed after 48 hours decreased (FIG. 2).

また、ナフタレン分解能を有する菌株についてもフィルム形成は確認されたが、フェノール分解能を有する菌株と比較すると、フィルム形成量は少なかった。ナフタレン分解能を有する菌株のフィルム形成能(24時間培養後)を図3に示す。   Moreover, although film formation was confirmed also about the strain | stump | stock which has naphthalene resolution | decomposability, there was little film formation amount compared with the strain | stump | stock which has phenol resolution | decomposability. FIG. 3 shows the film-forming ability (after 24-hour culture) of a strain having naphthalene resolution.

<実施例3>単離細菌のアオウキクサへの付着評価
1)アオウキクサ付着細菌数の計測
北海道大学付属植物園幽庭湖から採取し、蒸留水で洗浄したアオウキクサ(Lemna perpusilla)数十株を、0.5%NaClO及び0.05%TritonX100を含む水溶液に入れて10分間緩やかに撹拌した後、同溶液を捨て、さらに滅菌済みの蒸留水を用いて1分間の撹拌を2回行い、アオウキクサを滅菌した。
Example 3 Evaluation of Adherence of Isolated Bacteria to Duckweed 1) Measurement of Duckweed Attached Bacteria Count After gently stirring for 10 minutes in an aqueous solution containing 5% NaClO and 0.05% Triton X100, the solution was discarded, and further 1 minute stirring was performed using sterilized distilled water to sterilize duckweed. .

表7に示した菌株からPseudomonas.sp.P2株(以下、P−P2株と表す)、Rhodococcus sp. P11c株(以下、R−P11c株と表す)及びA−P23株を選択し、それぞれL固形培地に生育させて形成させたコロニーを5mLの液体L培地に植菌し、振とう培養(25℃、170rpm、24時間)を行い、前培養液を調製した。100mL容のフラスコへ滅菌した50mLのHoagland培地、BM培地、L培地をそれぞれ用意し、滅菌済みのアオウキクサを入れ、さらにOD600=0.3に調製した前培養液を1%植菌し、25℃で48時間静置培養を行った。 From the strains shown in Table 7, Pseudomonas. sp. P2 strain (hereinafter referred to as P-P2 strain), Rhodococcus sp. The P11c strain (hereinafter referred to as R-P11c strain) and the A-P23 strain are selected, colonies formed by growing on the L solid medium are inoculated into 5 mL of liquid L medium, and shaken culture (25 ° C. , 170 rpm, 24 hours) to prepare a preculture solution. Prepare a sterile 50 mL Hoagland medium, BM medium, and L medium in a 100 mL flask, add sterilized duckweed, and inoculate 1% of the preculture solution adjusted to OD 600 = 0.3. The stationary culture was performed at ° C for 48 hours.

培養後、アオウキクサを回収して500μLの5mg/Lトリポリリン酸ナトリウム溶液を加えたチューブへ入れた後、同溶液を捨て、再び500μLの同溶液を新たに加えてアオウキクサの表面を洗浄した。さらに500μLの同溶液を加え、超音波処理及び攪拌処理を行って、アオウキクサへ付着した細菌を溶液中に遊離させた。この溶液をL培地で希釈し、50μLをL固形培地へ塗布し、形成されたコロニー数を計測した。また、培養後の培養液の浮遊細胞濁度(OD600)を測定した。 After culturing, duckweed was collected and placed in a tube to which 500 μL of 5 mg / L sodium tripolyphosphate solution was added, and then the solution was discarded, and 500 μL of the same solution was newly added again to wash the surface of duckweed. Furthermore, 500 μL of the same solution was added, and ultrasonic treatment and stirring treatment were performed to release bacteria adhering to duckweed into the solution. This solution was diluted with L medium, 50 μL was applied to L solid medium, and the number of colonies formed was counted. Moreover, the suspended cell turbidity (OD 600 ) of the culture solution after the culture was measured.

その結果、培養開始から48時間後に、P−P2株とA−P23株において、アオウキクサと共に培養することで培養液の浮遊細胞濁度が1%ほどに減少した(A−P23株について、図4)。   As a result, 48 hours after the start of the culture, the suspended cell turbidity of the culture solution decreased to about 1% by culturing with Duckweed in the P-P2 strain and the A-P23 strain (for the A-P23 strain, FIG. 4). ).

一方、R−P11c株では、浮遊細胞濁度の変化は確認されなかった。また、アオウキクサへの付着菌数は、3種類の微生物の何れもアオウキクサ1株あたり1×109 〜 1×1010 CFUsの付着細菌数が確認された。またアオウキクサへの付着菌数は、24時間後に比べて48時間後にはおよそ2倍に増えていた。 On the other hand, in the R-P11c strain, no change in suspended cell turbidity was confirmed. In addition, the number of bacteria attached to Duckweed was confirmed to be 1 × 10 9 to 1 × 10 10 CFUs of attached bacteria per duckweed strain in any of the three types of microorganisms. In addition, the number of bacteria adhering to duckweed increased approximately twice after 48 hours compared to 24 hours later.

また、培養終了後に回収したアオウキクサの水分をふき取った後に、Propidium iodide(Pi、緑)又はSyto9(S9、赤)各250μLを含む蛍光色素混合液0.5mLに入れて、5分間、蛍光染色した。Pi及びS9を用いた蛍光染色により、植物体表面はPi及びS9を共に取り込むことでオレンジに染色され、生菌は緑に染色され、死菌は赤に染色される。5分後、アオウキクサのみを取り出し、蛍光顕微鏡(BZ9000 KEYENCE)を用いて観察(対物レンズ×20)した。その結果(写真)を図5に示す。   Further, after wiping off the water of duckweed collected after the cultivation, it was placed in 0.5 mL of a fluorescent dye mixture containing 250 μL of Propidium ioide (Pi, green) or Syto9 (S9, red) and fluorescently stained for 5 minutes. . By fluorescent staining using Pi and S9, the plant surface is stained orange by incorporating Pi and S9 together, viable bacteria are stained green, and dead bacteria are stained red. After 5 minutes, only Duckweed was taken out and observed (objective lens × 20) using a fluorescence microscope (BZ9000 KEYENCE). The result (photograph) is shown in FIG.

滅菌したアオウキクサの表面はオレンジに染色される(図5のパネルE)が、P−P2株(図5のパネルAとC)、及びA−P23株(図5のパネルBとD)では、緑に染色された生菌がアオウキクサの表面に観察された。特に、P−P2株では、培養24時間後に比較して培養48時間後に明らかに多くの生菌がアオウキクサに付着していることが確認された。   The surface of the sterilized duckweed is stained orange (Panel E in FIG. 5), but in the P-P2 strain (Panel A and C in FIG. 5) and the A-P23 strain (Panel B and D in FIG. 5), Viable bacteria stained in green were observed on the surface of duckweed. In particular, in the P-P2 strain, it was confirmed that a large number of viable bacteria were clearly attached to Duckweed after 48 hours of culture compared to 24 hours after culture.

<実施例4>A−P23株の特性解析
1)菌種同定のための生理学試験
BactoTrypticSoyBroth(TSB)を含む固形寒天培地にA−P23株を接種し、25℃で24時間培養して形成させた数十個のコロニーをまとめて、滅菌した0.85%NaCl水溶液へ懸濁した。この溶液をマクファーランド濁度0.5(OD550=0.125)に希釈して、ID 32E APIシステム(日本BIOMERIEUX社)用のキットプレートに55μLずつ注入した。さらにODC、ADH、LDC、URE、LARL、GAT及び5KGのカップにミネラルオイルを2滴ずつ滴下して、37℃、24時間インキュベーター内で静置した。24時間後、INDのカップへJames試薬を加えた。成績の読み取りは判定表に従って目視でおこなった。
<Example 4> Characteristic analysis of A-P23 strain 1) Physiological test for bacterial species identification A-P23 strain was inoculated on a solid agar medium containing BactoTryptic Soy Broth (TSB) and cultured at 25 ° C for 24 hours to form. Several dozen colonies were collected and suspended in a sterile 0.85% NaCl aqueous solution. This solution was diluted to McFarland turbidity 0.5 (OD550 = 0.125), and 55 μL was injected into a kit plate for an ID 32E API system (Japan BIOMERIEUX). Further, two drops of mineral oil were dropped into ODC, ADH, LDC, URE, LARL, GAT and 5KG cups, and allowed to stand in an incubator at 37 ° C. for 24 hours. After 24 hours, James reagent was added to the IND cup. The grades were read visually according to the judgment table.

その結果、P−AP23株は、インドール生産、L−Aspartic−allylamidase、Glucoseの酸性化について疑陽性であった。また、この表現型を元にAPIシステムデーターベース検索を行った結果、A−P23株はAcinetobacter baumannii と近種(99.9%の相同性)の微生物であると推察された。しかし、Acinetobacter baumanniiではフェノールの分解活性や植物根への付着活性に関する報告はなく、A−P23株はAcinetobacter属細菌の新種であると判断された。   As a result, the P-AP23 strain was falsely positive for indole production, L-Aspartic-allylamidase, and acidification of glucose. Moreover, as a result of API system database search based on this phenotype, it was speculated that the A-P23 strain is a microorganism of a close species (99.9% homology) with Acinetobacter baumannii. However, Acinetobacter baumannii has no report on phenol degrading activity and adhesion activity to plant roots, and the A-P23 strain was judged to be a new species of Acinetobacter genus bacteria.

2)分解汚染物質の特異性
固形L寒天培地上のA−P23株コロニーを5mLの液体L培地へ植菌し、振とう培養(25℃、150rpm、24時間)して、前培養液を調製した。各炭化水素(フェノール、ベンゼン、トルエン、ナフタレン、エタノール、グルコース)500mg/Lを含む5mLのBM液体培地(ナフタレンのみ、別途50mg/LのBM液体培地を追加して)用意し、前培養液を1%植菌し、振とう培養(25℃、150rpm)して、濁度上昇の有無を目視により確認した。培養開始から1日目、および5日目の濁度変化の有無を表8に示す。
2) Specificity of degrading contaminants A-P23 strain colonies on solid L agar medium are inoculated into 5 mL of liquid L medium and shake cultured (25 ° C., 150 rpm, 24 hours) to prepare a preculture solution. did. Prepare 5 mL of BM liquid medium (only naphthalene, separately add 50 mg / L BM liquid medium) containing 500 mg / L of each hydrocarbon (phenol, benzene, toluene, naphthalene, ethanol, glucose) 1% inoculated and cultured with shaking (25 ° C., 150 rpm), and the presence or absence of increased turbidity was confirmed visually. Table 8 shows the presence or absence of turbidity changes on day 1 and day 5 from the start of culture.

表8に示される様に、A−P23株は、フェノールとナフタレンを炭素源とする培地において濁度上昇が観察されたが、グルコース、トルエン又はベンゼンを炭素源とする培地では濁度上昇は観察されなかった。   As shown in Table 8, the A-P23 strain showed an increase in turbidity in a medium containing phenol and naphthalene as a carbon source, but an increase in turbidity was observed in a medium containing glucose, toluene or benzene as a carbon source. Was not.

3)アオウキクサとの共培養によるフェノール分解活性
固形L寒天培地上のA−P23株コロニーを5mLの液体L培地へ植菌し、振とう培養(25℃、150rpm、24時間)して、前培養液を調製した。この前培養液から遠心操作(1900×g、5分、20℃) により集菌し、1mLのHoagland培地で菌体を洗浄後、OD600=15の懸濁液/Hoagland培地を調製した。100mL容の三角フラスコに、20mg/Lのフェノールを含む50mLのHoagland培地を用意し、実施例3の1)と同様にして用意した滅菌したアオウキクサを30株ずつ加えた。ここへ前記懸濁液1mLを添加し、人工気象器内(25℃、8500ルクス、16時間:明−8時間暗)で48時間静置培養した。48時間後、40mg/Lのフェノールを添加した新たな50mLのHoagland培地へアオウキクサ20株のみを移した。
3) Phenolytic activity by co-culture with duckweed A-P23 strain colonies on solid L agar medium were inoculated into 5 mL liquid L medium, shake cultured (25 ° C., 150 rpm, 24 hours), precultured A liquid was prepared. Bacteria were collected from this precultured solution by centrifugation (1900 × g, 5 minutes, 20 ° C.), washed with 1 mL of Hoagland medium, and then a suspension / Hoagland medium with OD600 = 15 was prepared. 50 mL Hoagland medium containing 20 mg / L phenol was prepared in a 100 mL Erlenmeyer flask, and 30 strains of sterilized duckweed prepared in the same manner as in 1) of Example 3 were added. 1 mL of the suspension was added thereto, and the cells were statically cultured for 48 hours in an artificial weather apparatus (25 ° C., 8500 lux, 16 hours: light to 8 hours dark). After 48 hours, only 20 duckweed strains were transferred to a fresh 50 mL Hoagland medium supplemented with 40 mg / L phenol.

アオウキクサを新たな培地に移した時点を0時間とし、4時間又は8時間毎にゆるく攪拌しながら培養液を250μL採取し、遠心分離(13000×g、10分、20℃)して回収した上清中のフェノール残存量を、実施例1−2)−1.と同様にしてHPLCを用いて測定した。40時間を経過したときに、採取された培地と等量の新鮮なHoagland培地を加え、さらに終濃度40mg/Lとなるように新たにフェノールを加えた。この時点を新たに0時間とし、上記と同様のサンプリング、フェノール残存量の測定、培地及びフェノールの補充を、2回繰り返した。コントロールは、滅菌処理していないアオウキクサ、及び滅菌処理をしたアオウキクサを用意した。この実験によるフェノール残存量の変化を図6に示す。   The time when the duckweed was transferred to a new medium was set to 0 hour, 250 μL of the culture solution was collected with gentle stirring every 4 hours or 8 hours, and collected by centrifugation (13000 × g, 10 minutes, 20 ° C.). The amount of phenol remaining in the cleansing was determined according to Example 1-2) -1. In the same manner as above, measurement was performed using HPLC. When 40 hours had elapsed, an equal amount of fresh Hoagland medium was added to the collected medium, and phenol was newly added to a final concentration of 40 mg / L. This time was newly set to 0 hour, and the same sampling, measurement of the residual amount of phenol, medium and phenol supplementation were repeated twice. As controls, duckweed that was not sterilized and duckweed that were sterilized were prepared. FIG. 6 shows the change in the amount of residual phenol by this experiment.

滅菌処理したアオウキクサのみの培養では、残存フェノール量は殆ど変化しなかった。一方、A−P23株の接種の有無について比較すると、1サイクル目では、A−P23株を接種した系 (図6の○)と滅菌処理をしていないアオウキクサ、すなわち常在菌を含むアオウキクサ(図6の●)ではその除去率に差は見られなかったが、2サイクル目ではフェノール除去率に差が生じ、さらに3サイクル目に入ると滅菌処理をしていないアオウキクサではフェノールの減少は殆ど認められなかった。   When only sterilized duckweed was cultured, the amount of residual phenol hardly changed. On the other hand, comparing the presence or absence of inoculation of the A-P23 strain, in the first cycle, the system inoculated with the A-P23 strain (◯ in FIG. 6) and the duckweed that has not been sterilized, that is, the duckweed containing resident bacteria ( In Fig. 6, ●, there was no difference in the removal rate, but there was a difference in the phenol removal rate in the second cycle, and in the third cycle, there was almost no decrease in phenol in duckweed that was not sterilized. I was not able to admit.

4)アオアウキクサの生育への影響
100mL容の三角フラスコに20mg・Lのフェノールを含むHoagland培地50mLを用意し、アオウキクサを30株ずつ加え、さらに前記3)で調製したOD600=15の懸濁液/Hoagland培地を添加して、人工気象器内(25℃、8500ルクス、16時間:明−8時間暗)で静置培養し、一定時間後、アオウキクサの増加数及び根の長さを測定した。
4) Effect on the growth of blue duckweed Prepare a 50 ml Hoagland medium containing 20 mg · L of phenol in a 100 ml Erlenmeyer flask, add 30 duckweed strains at a time, and add the suspension of OD600 = 15 prepared in 3) above / Hoagland medium was added, and static culture was performed in an artificial weather apparatus (25 ° C., 8500 lux, 16 hours: light to 8 hours dark). After a certain time, the number of duckweeds and the root length were measured.

A−P23株を接種した培地における160時間培養後のアオウキクサの増殖は、A−P23株を摂取しなかった培地におけるアオウキクサの増殖のそれの1.7倍に達した(図7)。   The growth of Duckweed after 160 hours in the medium inoculated with the A-P23 strain reached 1.7 times that of Duckweed in the medium that did not ingest the A-P23 strain (FIG. 7).

また、160時間培養後のアオウキクサの根の伸長の様子を図8に示した。滅菌処理をしないアオウキクサ、A−P23株を接種した株、及びA−P23株を接種しなかった株の根の成長は、培養開始後約100時間を過ぎた頃より根の長さに変化が現れ、160時間培養後の上記3株のそれぞれの根の長さの平均値は、4.2cm、3.75cm及び6.5cmと、A−P23株の接種によって根の伸長が抑制されることが確認された。   Further, FIG. 8 shows the state of duckweed root elongation after 160 hours of culture. The growth of the roots of the duckweed not sterilized, the strain inoculated with the A-P23 strain, and the strain not inoculated with the A-P23 strain changed to the length of the roots after about 100 hours from the start of the culture. The average length of each of the above three strains after cultivation for 160 hours is 4.2 cm, 3.75 cm, and 6.5 cm. Was confirmed.

アオウキクサから分離されたフェノール分解能を有する微生物株のバイオフィルム形成能(培養24時間)の測定結果を示すグラフである。図中、P2〜P24aはそれぞれ表7に示された微生物株を表す。It is a graph which shows the measurement result of the biofilm formation ability (24 hours culture | cultivation) of the microorganisms strain | stump | stock which isolate | separated from duckweed and has a phenol resolution. In the figure, P2 to P24a represent microbial strains shown in Table 7, respectively. アオウキクサから分離された細菌のフェノールを含む培地におけるバイオフィルム形成能(培養48時間)の測定結果を示すグラフである。図中、P2〜P24aはそれぞれ表7に示された微生物株を表す。It is a graph which shows the measurement result of the biofilm formation ability (culture 48 hours) in the culture medium containing the phenol of the bacteria isolate | separated from duckweed. In the figure, P2 to P24a represent microbial strains shown in Table 7, respectively. アオウキクサから分離されたナフタレン分解能を有する微生物株のバイオフィルム形成能(培養24時間)の測定結果を示すグラフである。図中、N1−b〜N12−bはそれぞれ表7に示された微生物株を表す。It is a graph which shows the measurement result of the biofilm formation ability (24 hours culture | cultivation) of the microorganisms strain which has the naphthalene resolution isolate | separated from duckweed. In the figure, N1-b to N12-b represent microbial strains shown in Table 7, respectively. A−P23株をアオウキクサと共に培養したときの培養液における浮遊細胞濁度の現象を示す図(写真)である。It is a figure (photograph) which shows the phenomenon of floating cell turbidity in a culture solution when A-P23 strain | stump | stock is cultured with a duckweed. 蛍光色素を用いてアオウキクサと共にA−P23株を培養したときの、アオウキクサの根圏に付着したA−P23株を示す蛍光顕微鏡観察結果(写真)である。It is a fluorescence-microscope observation result (photograph) which shows the A-P23 stock | strain adhering to the rhizosphere of a duckweed when the A-P23 strain | stump | stock was cultured with the duckweed using fluorescent dye. A−P23株をアオウキクサと共培養したときのフェノール分解活性の経時的変化を示すグラフである。図中、▲が滅菌したアオウキクサのみを、●が常在菌を有するアオウキクサを、○がA−P23株を接種したアオウキクサを、それぞれ示す。It is a graph which shows a time-dependent change of a phenol degradation activity when A-P23 strain | stump | stock is co-cultured with Duckweed. In the figure, ▲ indicates a sterilized duckweed, ● indicates a duckweed having resident bacteria, and ◯ indicates a duckweed inoculated with the A-P23 strain. フェノールを含む培地におけるアオウキクサの生育に対するA−P23株の影響を示す図(写真)である。図中、左がA−P23株を接種したアオウキクサを、右が滅菌したアオウキクサのみを示す。It is a figure (photograph) which shows the influence of A-P23 stock | strain with respect to the growth of the duckweed in the culture medium containing a phenol. In the figure, the left shows Duckweed inoculated with the A-P23 strain, and the right shows only sterilized Duckweed. フェノールを含む培地におけるアオウキクサの生育(根の伸展)に対するA−P23株の影響を示す図(写真)である。図中、aが常在菌を有するアオウキクサを、bがA−P23株を接種したアオウキクサを、cが滅菌したアオウキクサのみを示す。It is a figure (photograph) which shows the influence of A-P23 stock | strain on the growth (root extension) of the duckweed in the culture medium containing a phenol. In the figure, a shows a duckweed having resident bacteria, b shows a duckweed inoculated with the A-P23 strain, and c shows only a duckweed sterilized.

Claims (8)

受託番号NITE P−523として受託された、アシネトバクター エスピー(Acinetovacter sp)P23株Acinetobacter sp strain P23, deposited under accession number NITE P-523. 請求項1に記載のアシネトバクター エスピー(Acinetovacter sp)P23株を含む、水酸基を有する単環式芳香族化合物又は芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物を分解処理するための生物製剤。 Decomposing a monocyclic aromatic compound having a hydroxyl group or a polycyclic aromatic compound in which a hydroxyl group is produced on an aromatic ring by a cleavage reaction of the aromatic ring, including the Acinetobacter sp strain P23 according to claim 1 Biologic for processing. 請求項1に記載のアシネトバクター エスピー(Acinetovacter sp)P23株とウキクサ科(Lemnaceae)植物とからなる、水酸基を有する単環式芳香族化合物又は芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物を分解処理するための生物製剤。 A monocyclic aromatic compound having a hydroxyl group, which is composed of the Acinetobacter sp P23 strain according to claim 1 and a Lemaceae plant, or a hydroxyl group is produced on the aromatic ring by a cleavage reaction of the aromatic ring. A biologic for decomposing polycyclic aromatic compounds. ウキクサ科植物がアオウキクサ(Lemna perpusilla)又はウキクサ(Spirodela polyrrhiza)である、請求項に記載の生物製剤4. The biologic of claim 3 , wherein the duckweed plant is Lemna perpusilla or Spirodela polyrrhiza. 請求項1に記載のアシネトバクター エスピー(Acinetovacter sp)P23株と水酸基を有する単環式芳香族化合物若しくは芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物によって汚染された水若しくは土壌とを接触させる工程a)を含む、前記汚染された水若しくは土壌に含まれる水酸基を有する単環式芳香族化合物若しくは芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物を分解除去する方法。 The Acinetobacter sp (P23) strain according to claim 1 was contaminated by a monocyclic aromatic compound having a hydroxyl group or a polycyclic aromatic compound in which a hydroxyl group is formed on the aromatic ring by a cleavage reaction of the aromatic ring. A polycyclic ring having a hydroxyl group on the aromatic ring by a cleavage reaction of the monocyclic aromatic compound or aromatic ring having a hydroxyl group contained in the contaminated water or soil, comprising the step a) of contacting with water or soil A method for decomposing and removing aromatic compounds. 工程a)が、前記汚染された水若しくは土壌に請求項2〜4の何れかに記載の生物製剤を投与することで、アシネトバクター エスピー(Acinetovacter sp)P23株と水酸基を有する単環式芳香族化合物若しくは芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物によって汚染された水若しくは土壌とを接触させる工程である、請求項に記載の方法。 Step a) comprises administering the biologic according to any one of claims 2 to 4 to the contaminated water or soil, so that Acinetobacter sp P23 strain and monocyclic aromatic compound having a hydroxyl group Alternatively, the method according to claim 5 , which is a step of contacting water or soil contaminated with a polycyclic aromatic compound in which a hydroxyl group is generated on the aromatic ring by an aromatic ring cleavage reaction. 請求項1に記載のアシネトバクター エスピー(Acinetovacter sp)P23株と水酸基を有する単環式芳香族化合物若しくは芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物によって汚染された水若しくは土壌とを接触させる工程a)、及び前記汚染された水若しくは土壌に含まれる水酸基を有する単環式芳香族化合物若しくは芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物を分解除去する工程b)を含む、前記汚染された水若しくは土壌の浄化方法。 The Acinetobacter sp (P23) strain according to claim 1 was contaminated by a monocyclic aromatic compound having a hydroxyl group or a polycyclic aromatic compound in which a hydroxyl group is formed on the aromatic ring by a cleavage reaction of the aromatic ring. A) contacting with water or soil a), and a monocyclic aromatic compound having a hydroxyl group contained in the contaminated water or soil, or a polycyclic ring having a hydroxyl group on the aromatic ring by the cleavage reaction of the aromatic ring A method for purifying contaminated water or soil, comprising the step b) of decomposing and removing aromatic compounds. 工程a)が、前記汚染された水若しくは土壌に請求項2〜4の何れかに記載の生物製剤を投与することで、アシネトバクター エスピー(Acinetovacter sp)P23株と水酸基を有する単環式芳香族化合物若しくは芳香族環の開裂反応によって芳香族環上に水酸基が生じる多環式芳香族化合物によって汚染された水若しくは土壌とを接触させる工程である、請求項に記載の浄化方法。
Step a) comprises administering the biologic according to any one of claims 2 to 4 to the contaminated water or soil, so that Acinetobacter sp P23 strain and monocyclic aromatic compound having a hydroxyl group Alternatively, the purification method according to claim 7 , which is a step of contacting water or soil contaminated with a polycyclic aromatic compound in which a hydroxyl group is generated on the aromatic ring by an aromatic ring cleavage reaction.
JP2008099213A 2008-04-07 2008-04-07 New aquatic rhizosphere microorganism Active JP5303176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008099213A JP5303176B2 (en) 2008-04-07 2008-04-07 New aquatic rhizosphere microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008099213A JP5303176B2 (en) 2008-04-07 2008-04-07 New aquatic rhizosphere microorganism

Publications (2)

Publication Number Publication Date
JP2009247279A JP2009247279A (en) 2009-10-29
JP5303176B2 true JP5303176B2 (en) 2013-10-02

Family

ID=41308561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008099213A Active JP5303176B2 (en) 2008-04-07 2008-04-07 New aquatic rhizosphere microorganism

Country Status (1)

Country Link
JP (1) JP5303176B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6800484B2 (en) * 2015-06-30 2020-12-16 国立大学法人北海道大学 Methods for promoting plant growth, methods for producing plant growth-promoting substances, and proteins used for these
CN116693067B (en) * 2023-07-14 2024-02-06 中国水产科学研究院珠江水产研究所 In-situ restoration method for jointly treating cultivation tail water by utilizing duckweed-loaded plant growth promoting bacteria

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100193A (en) * 1984-10-22 1986-05-19 Susumu Hashimoto Preparation of immobilized enzyme, immobilized microorganism and group of immobilized microorganism
JPS61139385A (en) * 1984-12-10 1986-06-26 Susumu Hashimoto Production of immobilized microorganism and/or immobilized microorganism group
JPS61158786A (en) * 1984-12-28 1986-07-18 Susumu Hashimoto Preparation of immobilized microorganism embedded in carrier and group of immobilized microorganism embedded in carrier
JPH1142088A (en) * 1997-07-25 1999-02-16 Tonen Corp Aromatic compound oxidative decomposition enzyme gene and its use
JP2001017991A (en) * 1999-07-08 2001-01-23 Taisei Corp Method for thickening and decomposing environmental hormone in soil or water
EP1918255A4 (en) * 2005-06-15 2009-07-29 Central Res Inst Elect Method of feeding microbial activity controlling substance, apparatus therefor, and making use of the same, method of environmental cleanup and bioreactor
WO2007043657A1 (en) * 2005-10-14 2007-04-19 National University Corporation Kanazawa University Method of decomposing organic material in the presence of heavy metal
JP4864444B2 (en) * 2005-12-14 2012-02-01 財団法人電力中央研究所 Bioreactor
JP4778938B2 (en) * 2006-07-24 2011-09-21 財団法人電力中央研究所 Environmental pollutant treatment method and bioreactor

Also Published As

Publication number Publication date
JP2009247279A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
Hong et al. Characterization of a diesel-degrading bacterium, Pseudomonas aeruginosa IU5, isolated from oil-contaminated soil in Korea
CN109913387B (en) Enterobacter for degrading N-methylpyrrolidone and application of enterobacter in wastewater treatment
CN106434470B (en) A kind of polycyclic aromatic hydrocarbon-degrading bacteria and its application
Pi et al. Bioremediation of the oil spill polluted marine intertidal zone and its toxicity effect on microalgae
CN109486721A (en) A kind of pseudomonas putida and its application
CN111733098B (en) Application of bacillus in low-temperature degradation of petroleum hydrocarbon
Abdel-Razek et al. Bioelimination of phenanthrene using degrading bacteria isolated from petroleum soil: safe approach
Zhao et al. Different phenanthrene-degrading bacteria cultured by in situ soil substrate membrane system and traditional cultivation
CN104388328A (en) Novel strain for degrading 5-ring and 6-ring polycyclic aromatic hydrocarbons, and acquisition method and application thereof
JP5303176B2 (en) New aquatic rhizosphere microorganism
Luo et al. Characterization of a novel diesel oil-degrading pseudomonas sp. strain F4
CN115386520B (en) Rhodococcus pyridine-philic RL-GZ01 strain and application thereof
KR101471508B1 (en) New Microbial Strain Alteromonas sp. SN2 for Degrading Polycyclic Aromatic Hydrocarbon
Farjadfard et al. Efficient biodegradation of naphthalene by a newly characterized indigenous Achromobacter sp. FBHYA2 isolated from Tehran Oil Refinery Complex
RU2661679C2 (en) Method of oil-processing and petrochemical production sewage waters purification from phenol
CN113512511B (en) Acinetobacter AVYS1 in sunstroke-prevention reef lagoon and application of acinetobacter AVYS1 in degradation of high-concentration diesel oil
CN101955951A (en) Acinetobacter naphthalene dioxygenase system and application thereof
MOZAFAR et al. Isolation and identification of anionic surfactant degrading bacteria from activated sludge
Abarian et al. Isolation and characterization of phenol degrading bacteria from Midok copper mine at Shahrbabk provenance in Iran
RU2663798C2 (en) Method of purification of wastewater from the oil refining and petrochemical manufacturing productions from benzene
JP4931451B2 (en) New microorganism
CN114292771B (en) Pseudomonas stutzeri WZY-3-1 for efficiently degrading anthrone and application thereof
CN115125158B (en) Bacterial strain and microbial inoculum for degrading petroleum hydrocarbon and application thereof
CN114231451B (en) Salt-tolerant bacillus capable of efficiently degrading bisphenol A and application thereof
Baharuddin et al. Isolation and Identification of Bacteria from Phytoremediation Plant of Heliconia psittacorum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R150 Certificate of patent or registration of utility model

Ref document number: 5303176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250