JP5302578B2 - Ultrasonic diagnostic equipment - Google Patents
Ultrasonic diagnostic equipment Download PDFInfo
- Publication number
- JP5302578B2 JP5302578B2 JP2008159204A JP2008159204A JP5302578B2 JP 5302578 B2 JP5302578 B2 JP 5302578B2 JP 2008159204 A JP2008159204 A JP 2008159204A JP 2008159204 A JP2008159204 A JP 2008159204A JP 5302578 B2 JP5302578 B2 JP 5302578B2
- Authority
- JP
- Japan
- Prior art keywords
- cartilage
- contour
- volume data
- point
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4209—Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
本発明は超音波診断装置に関し、特に膝の軟骨の診断のための装置に関する。 The present invention relates to an ultrasonic diagnostic apparatus, and more particularly to an apparatus for diagnosis of knee cartilage.
変形性膝関節症は、膝関節のクッションの役目を果たす軟骨の摩耗・すり減りなどが要因となって、膝の関節に炎症が起きたり、関節が変形したりして痛みが生じる病気である。変形性膝関節症は年齢とともに増加するが、発症前に、大腿骨軟骨の厚みや表面形状を正確に把握することにより変形性膝関節症に対する予防対策を施すことができる。高齢化で変形性膝関節症患者の増加が予想される現在、簡便な診断方法が期待されている。 Osteoarthritis is a disease in which the knee joint is inflamed or deformed, causing pain due to factors such as wear and abrasion of the cartilage that acts as a cushion for the knee joint. Although osteoarthritis of the knee increases with age, preventive measures against osteoarthritis of the knee can be taken by accurately grasping the thickness and surface shape of the femoral cartilage before onset. With the expectation that the number of knee osteoarthritis patients will increase with the aging of the population, a simple diagnostic method is expected.
変形性膝関節症の診断手法として、膝の中に関節鏡(内視鏡)を挿入して軟骨表面の状態を観察する方法や、レントゲン検査により関節の隙間の開き具合から推定する方法などが知られている。しかし、これらの診断手法では軟骨の厚みを計測することはできない。また、軟骨の三次元形状を抽出して提示することもできない。 As a method for diagnosing knee osteoarthritis, there are a method of inserting an arthroscope (endoscope) into the knee and observing the state of the cartilage surface, a method of estimating from the degree of opening of the joint gap by X-ray examination, etc. Are known. However, these diagnostic methods cannot measure the thickness of cartilage. In addition, the three-dimensional shape of cartilage cannot be extracted and presented.
これに対し、特許文献1には、関節内探触子を膝関節内に挿入して超音波を送受することで、膝関節の軟骨の厚みを評価するシステムが開示されている。しかし、このシステムは侵襲的であるため、健康診断の大勢の被検者の検査に手軽に利用できるものとはいえない。 On the other hand, Patent Document 1 discloses a system for evaluating the thickness of the cartilage of the knee joint by inserting an intra-joint probe into the knee joint and transmitting and receiving ultrasonic waves. However, since this system is invasive, it cannot be said that it can be easily used for examination of a large number of subjects for health examination.
また、MRI(Magnetic Resonance Imaging)装置は、非侵襲的な画像診断装置であり、原理上軟骨を骨や筋肉、体液などと区別して画像化することができ、軟骨の厚みも計測できる。しかしながら、MRIは利用コストが高額であり、測定にも時間が掛かるため、大勢の被検者の検査に用いるには適さない。 An MRI (Magnetic Resonance Imaging) apparatus is a non-invasive diagnostic imaging apparatus that can image cartilage in distinction from bones, muscles, body fluids, etc. in principle, and can also measure the thickness of cartilage. However, MRI is expensive to use and takes a long time to measure, so it is not suitable for testing many subjects.
本発明は、非侵襲で簡便に膝関節の軟骨の三次元形状を抽出できる装置を提供することを特徴とする。 The present invention is characterized by providing a device that can easily and non-invasively extract the three-dimensional shape of the knee joint cartilage.
本発明に係る装置は、屈曲した膝の正面側の体表面から超音波ビームを走査することにより、膝内部の大腿骨遠位端の軟骨を含む三次元領域についてのボリュームデータを取得する送受波手段と、前記ボリュームデータにおける各ボクセルのエコーレベル値に基づき、前記ボリュームデータから前記軟骨に対応する部分を抽出する抽出手段と、を備える。 The apparatus according to the present invention obtains volume data for a three-dimensional region including cartilage at the distal end of the femur inside the knee by scanning an ultrasonic beam from the front body surface of the bent knee. And means for extracting a portion corresponding to the cartilage from the volume data based on the echo level value of each voxel in the volume data.
この構成では、屈曲した膝の正面側の体表面から超音波ビームを走査する送受波手段を用いることで、軟骨荷重部を含んだボリュームデータを得ることができる。そのボリュームデータから軟骨に相当する部分を抽出することで、診断上有益な情報の提供が可能になる。なお、抽出した軟骨に相当する部分は、三次元画像等の画像として表示してもよいし、他の演算処理に供してもよい。 In this configuration, volume data including a cartilage load portion can be obtained by using a wave transmitting / receiving unit that scans an ultrasonic beam from the body surface on the front side of the bent knee. By extracting a portion corresponding to cartilage from the volume data, it is possible to provide information useful for diagnosis. Note that the portion corresponding to the extracted cartilage may be displayed as an image such as a three-dimensional image or may be subjected to other arithmetic processing.
さらに本発明では、前記抽出手段は、前記軟骨に対応する部分の抽出において、前記ボリュームデータにおいて前記軟骨に対応する部分と繋がっている膝蓋骨の影に対応する部分を除去する処理を行う。 Further, in the present invention , the extraction means performs a process of removing a portion corresponding to the shadow of the patella connected to the portion corresponding to the cartilage in the volume data in the extraction of the portion corresponding to the cartilage.
超音波画像(ボリュームデータ)では、膝蓋骨の影の部分は、軟骨と重なり、軟骨と区別がつきにくい。このような膝蓋骨の影の部分を除去することで、より正確な軟骨部分の形状を求めることができる。 In the ultrasound image (volume data), the shadow portion of the patella overlaps with the cartilage and is difficult to distinguish from the cartilage. By removing such a shadow portion of the patella, a more accurate shape of the cartilage portion can be obtained.
好適な態様では、前記抽出手段は、前記ボリュームデータの各ボクセルのエコーレベル値に基づき求められる輪郭の連続性に基づき、前記軟骨に対応する部分と前記膝蓋骨の影に対応する部分とを区別し、前記膝蓋骨の影に対応する部分を除去して前記軟骨に対応する部分を抽出する。 In a preferred aspect, the extraction means distinguishes a portion corresponding to the cartilage and a portion corresponding to the shadow of the patella based on the continuity of the contour obtained based on the echo level value of each voxel of the volume data. Then, a portion corresponding to the shadow of the patella is removed, and a portion corresponding to the cartilage is extracted.
更に好適な態様では、前記抽出手段は、前記ボリュームデータに基づき表示された前記膝内部の画像において、ユーザから軟骨の内部又は表面に該当する基準点の指定を受け付ける指定手段と、前記ボリュームデータの各ボクセルのエコーレベル値に基づき求められる輪郭から、指定された前記基準点の近傍の輪郭部分を特定し、当該輪郭部分に対し滑らかに連続する輪郭を、前記膝蓋骨の影に対応する部分が除去された前記軟骨に対応する輪郭として検出する検出手段と、を備える。 In a further preferred aspect, the extraction means includes: designation means for accepting designation of a reference point corresponding to the inside or surface of cartilage from a user in the image inside the knee displayed based on the volume data; From the contour obtained based on the echo level value of each voxel, the contour portion in the vicinity of the designated reference point is specified, and the portion that corresponds to the shadow of the patella is removed from the contour portion that is smoothly continuous with the contour portion. Detecting means for detecting a contour corresponding to the cartilage.
更に好適な態様では、前記検出手段は、前記ボリュームデータにおいて、前記基準点の近傍の輪郭部分に連続する輪郭部分を順次探索し、探索した前記輪郭部分の方向が、あらかじめ定めた急峻変化条件を満たした場合に探索を停止し、当該停止までに探索された輪郭部分を、前記軟骨に対応する輪郭として検出する。 In a further preferred aspect, the detection means sequentially searches the volume data for a contour portion that is continuous with the contour portion in the vicinity of the reference point, and the direction of the searched contour portion satisfies a predetermined steep change condition. When satisfied, the search is stopped, and the contour portion searched until the stop is detected as a contour corresponding to the cartilage.
また、別の好適な態様では、前記ボリュームデータは、複数の断面スライスデータに分割することができ、前記指定手段は、前記ボリュームデータ中の1つの断面スライスデータに基づき表示された2次元画像上で最初の基準点の指定を受け付け、前記検出手段は、第1の断面スライスデータの各ボクセルのエコーレベル値に基づき求められる輪郭から、基準点の両側のそれぞれについて近傍の輪郭部分を特定し、それら両側の輪郭部分のそれぞれに対し滑らかに連続する輪郭を検出する第1の手段と、前記第1の断面スライスデータにおける、前記基準点の両側のそれぞれについて特定された近傍の輪郭部分の略中央の点を伝搬点として求め、前記第1の断面スライスデータに隣接する第2の断面スライスデータにおいて前記伝搬点に対応する点を、当該第2の断面スライスデータにおける基準点に決定する第2の手段と、を備え、前記指定手段が受け付けた最初の基準点から順に各断面スライスデータの基準点を前記第2の手段に決定させ、前記第2の手段が決定した基準点に基づき前記第1の手段に当該基準点を含む断面スライスデータでの輪郭を検出させる。 In another preferred aspect, the volume data can be divided into a plurality of slice slice data, and the specifying means can display the two-dimensional image displayed on the basis of one slice slice data in the volume data. The detection means accepts the specification of the first reference point, and the detection means specifies a neighboring contour portion for each of both sides of the reference point from the contour obtained based on the echo level value of each voxel of the first slice slice data, A first means for detecting a smoothly continuous contour for each of the contour portions on both sides, and a substantially center of a neighboring contour portion specified for each of both sides of the reference point in the first cross-sectional slice data; Is determined as a propagation point and corresponds to the propagation point in the second slice data adjacent to the first slice data. And a second means for determining a reference point in the second slice slice data as a reference point in the second slice slice data, wherein the reference point of each slice slice data is sequentially set from the first reference point received by the designation means. The first means is made to detect a contour in the slice data including the reference point based on the reference point determined by the second means.
別の好適な態様では、前記抽出手段は、前記ボリュームデータに対し、組織境界の方向に沿って平滑化を行う平滑手段を備え、前記平滑手段による平滑化後のボリュームデータから前記軟骨に対応する部分を抽出する。 In another preferred aspect, the extraction means includes a smoothing means for smoothing the volume data along a tissue boundary direction, and corresponds to the cartilage from the volume data smoothed by the smoothing means. Extract the part.
軟骨の輪郭は、組織境界(組織同士の境界)の一種である。この態様では、組織境界の方向性に沿って平滑化を行うことで、軟骨の輪郭を維持又は強調しつつも、ボリュームデータを平滑化することができる。したがって、軟骨抽出により適したボリュームデータを生成することができる。 The outline of the cartilage is a kind of tissue boundary (between tissues). In this aspect, the volume data can be smoothed while maintaining or enhancing the outline of the cartilage by performing smoothing along the directionality of the tissue boundary. Therefore, volume data more suitable for cartilage extraction can be generated.
更に好適な態様では、前記平滑手段は、前記ボリュームデータ中の注目点について、複数の方向の中から当該注目点を中心とする当該方向の線分上の各点の画素値の分散が最大となる方向を判定する方向判定手段と、前記注目点を通る線分であって、前記方向判定手段が判定した方向に垂直な方向の線分の上の各点の画素値に基づき、前記注目点の平滑化された画素値を計算する計算手段と、を備え、前記ボリュームデータの各点をそれぞれ注目点として前記方向判定手段及び前記計算手段を動作させることを特徴とする。 In a further preferred aspect, the smoothing means has a maximum variance of pixel values of each point on a line segment in the direction centered on the target point from among a plurality of directions for the target point in the volume data. A direction determination unit that determines a direction to be determined, and a line segment that passes through the point of interest and is based on a pixel value of each point on a line segment in a direction perpendicular to the direction determined by the direction determination unit. And calculating means for calculating the smoothed pixel value, wherein the direction determining means and the calculating means are operated with each point of the volume data as an attention point.
また、別の態様では、前記ボリュームデータは、複数の断面スライスデータに分割することができ、前記抽出手段は、前記ボリュームデータ中の断面スライスデータごとに、当該断面スライスデータ中の各ボクセルのエコーレベル値に基づき、軟骨に対応する部分を抽出し、スライスデータごとに抽出された軟骨に対応する部分を合成して前記ボリュームデータにおける軟骨に対応する部分を求める。 In another aspect, the volume data can be divided into a plurality of slice slice data, and the extraction means performs echo of each voxel in the slice slice data for each slice slice data in the volume data. Based on the level value, a portion corresponding to cartilage is extracted, and a portion corresponding to cartilage extracted for each slice data is synthesized to obtain a portion corresponding to cartilage in the volume data.
本発明によれば、超音波の走査という比較的低コストの手段により、大腿骨遠位端の軟骨の形状を抽出することができる。 According to the present invention, the shape of the cartilage at the distal end of the femur can be extracted by a relatively low-cost means of ultrasonic scanning.
この実施形態では、膝関節における大腿骨遠位端部の軟骨の形状情報を、超音波を用いて取得するための装置を提供する。 In this embodiment, an apparatus for acquiring the shape information of the cartilage at the distal end of the femur in the knee joint using ultrasound is provided.
実施形態の装置構成例を説明する前に、当該装置が対象とする膝関節(特に人間の)の内部構造について、図1を参照して簡単に説明する。図1は、立位での右足の膝関節の、体の正面側から見たときの模式的な断面図である。 Before describing an apparatus configuration example of an embodiment, the internal structure of a knee joint (particularly human) targeted by the apparatus will be briefly described with reference to FIG. FIG. 1 is a schematic cross-sectional view of the knee joint of the right leg in a standing position when viewed from the front side of the body.
図1に示すように、膝関節は、大腿骨100の遠位端部と、脛骨120の近位端部と、膝蓋骨130とから構成される。大腿骨100の遠位端の表面は軟骨105で覆われ、脛骨120の近位端の表面は軟骨125で覆われている。骨(例えば大腿骨100)の表面のうち軟骨で覆われた部分は、軟骨下骨と呼ばれる。大腿骨100の軟骨105と脛骨120の軟骨125との間には半月板110が存在している。大腿骨100の遠位端は、立位の身体の正面方向から見た場合、図示のように二股に分かれて突起(それぞれ内側顆、外側顆と呼ばれる)しており、内側顆及び外側顆の軟骨105は、内側及び外側の半月板110にそれぞれ空いた穴を介して、脛骨120の近位端の軟骨125と接している。なお、以上に説明した膝関節部分は滑膜及び関節包140により覆われている。 As shown in FIG. 1, the knee joint includes a distal end portion of the femur 100, a proximal end portion of the tibia 120, and a patella 130. The surface of the distal end of the femur 100 is covered with cartilage 105, and the surface of the proximal end of the tibia 120 is covered with cartilage 125. A portion of the surface of the bone (for example, the femur 100) covered with cartilage is called a subchondral bone. A meniscus 110 exists between the cartilage 105 of the femur 100 and the cartilage 125 of the tibia 120. When viewed from the front of the standing body, the distal end of the femur 100 has a bifurcated projection (referred to as a medial condyle and a lateral condyle, respectively) as shown in the figure. The cartilage 105 is in contact with the cartilage 125 at the proximal end of the tibia 120 through holes formed in the inner and outer meniscus 110, respectively. Note that the knee joint portion described above is covered with the synovium and the joint capsule 140.
大腿骨100の遠位端の軟骨105は、当該遠位端部の表面を広く覆っているが、そのうち立位の際に脛骨120の近位端の軟骨125と接する部分は、上半身の荷重を強く受ける部分である。この部分は、軟骨荷重部と呼ばれる。軟骨荷重部は摩耗しやすく、摩耗が著しくなると変形性膝関節症を引き起こす。変形性膝関節症の診断には軟骨荷重部の軟骨の厚みが重要な判断指標となる。 The cartilage 105 at the distal end of the femur 100 covers the surface of the distal end widely, and a portion of the cartilage 125 that contacts the cartilage 125 at the proximal end of the tibia 120 in the standing position carries a load on the upper body. It is the part that receives strongly. This portion is called a cartilage load portion. The cartilage loading part is easily worn, and if the wear becomes significant, it causes knee osteoarthritis. For the diagnosis of knee osteoarthritis, the thickness of the cartilage in the cartilage loading part is an important judgment index.
人間の大腿骨100の遠位端の軟骨105の厚みは健常者で2〜3mm程度と薄いものである。したがって、超音波診断の手法でその厚みを精度よく測定しようとすれば、軟骨105の表面に対してできるだけ垂直に近い角度で超音波ビームを当てることが望ましい。ところが、立位では、大腿骨100の遠位端の軟骨荷重部は脛骨120の軟骨125に接しているので、仮にこの状態で軟骨荷重部の表面に垂直に近い角度で超音波ビームを当てようとすれば、脛骨側から上に向けて超音波ビームを当てる必要がある。しかし、そのような位置に超音波プローブを当てることは不可能である。また、仮にそのような位置に超音波プローブを配置できたとしても、軟骨は大腿骨又は脛骨の影になるので、超音波は軟骨には届きにくく、軟骨を画像化することは困難である。 The thickness of the cartilage 105 at the distal end of the human femur 100 is as thin as about 2 to 3 mm for a healthy person. Therefore, in order to accurately measure the thickness by an ultrasonic diagnostic technique, it is desirable to irradiate the ultrasonic beam at an angle as close to perpendicular to the surface of the cartilage 105 as possible. However, in the standing position, the cartilage load portion at the distal end of the femur 100 is in contact with the cartilage 125 of the tibia 120, and in this state, let's apply an ultrasonic beam at an angle close to the surface of the cartilage load portion. In this case, it is necessary to apply an ultrasonic beam from the tibia side upward. However, it is impossible to apply an ultrasonic probe to such a position. Even if the ultrasonic probe can be arranged at such a position, since the cartilage becomes a shadow of the femur or tibia, the ultrasonic wave hardly reaches the cartilage and it is difficult to image the cartilage.
これに対し、例えば椅子に座るなどして膝を大きく(例えば90度程度まで)曲げると、図2に示すように、大腿骨100遠位端の軟骨105の荷重部108が脛骨側から外れ、膝頭の正面側を向くようになる(図示の荷重部108は内側顆のものであり、外側顆の荷重部は図示を省略している。)。したがって、膝頭の正面側からプローブを当てれば、荷重部108の表面に対して垂直に近い角度で超音波ビームを当てることができる。そこで、この実施形態では、椅子に座るなどして膝を大きく曲げた状態で、超音波プローブにより大腿骨遠位端の軟骨の荷重部を含む膝内部の三次元領域のエコーを取得し、それらエコー信号に基づき軟骨の三次元形状を求める。 On the other hand, when the knee is bent largely (for example, up to about 90 degrees) by sitting on a chair, for example, the load portion 108 of the cartilage 105 at the distal end of the femur 100 is detached from the tibia side, as shown in FIG. It faces the front side of the kneecap (the load portion 108 shown is that of the medial condyle, and the load portion of the lateral condyle is not shown). Therefore, if the probe is applied from the front side of the kneecap, the ultrasonic beam can be applied at an angle close to perpendicular to the surface of the load portion 108. Therefore, in this embodiment, in a state where the knee is greatly bent by sitting on a chair or the like, echoes of a three-dimensional region inside the knee including the load part of the cartilage at the distal end of the femur are acquired by an ultrasonic probe, The three-dimensional shape of the cartilage is obtained based on the echo signal.
図3に、実施形態の超音波診断装置の機能構成の一例を示す。この例では、膝内部の三次元領域のエコーを取得するための超音波プローブとして、メカニカル三次元プローブ10を用いる。メカニカル三次元プローブ10は、振動素子が1次元配列された振動子アレイ12と、メカ走査機構14とを備える。 FIG. 3 shows an example of a functional configuration of the ultrasonic diagnostic apparatus according to the embodiment. In this example, the mechanical three-dimensional probe 10 is used as an ultrasonic probe for acquiring an echo of a three-dimensional region inside the knee. The mechanical three-dimensional probe 10 includes a transducer array 12 in which vibration elements are arranged one-dimensionally and a mechanical scanning mechanism 14.
振動子アレイ12によって超音波ビームが形成され、その超音波ビームは電子走査される。電子走査方式としては電子セクタ走査、電子リニア走査等が公知である。 An ultrasonic beam is formed by the transducer array 12, and the ultrasonic beam is electronically scanned. As the electronic scanning method, electronic sector scanning, electronic linear scanning, and the like are known.
メカ走査機構14は、振動子アレイ12を、当該アレイ12の電子走査の走査面と略垂直な方向に機械走査する。振動子アレイ12による電子走査とメカ走査機構14による機械走査の組合せにより、三次元領域がカバーされる。すなわち、一回の電子走査により1つの電子走査面の断層画像データを得ることができ、機械走査の走査位置ごとに電子走査を行うことで、複数の電子走査面の断層画像データの集まりを得ることができる。機械走査範囲全体の断層画像データの集まりが、メカニカル三次元プローブ10の走査範囲についての1つのボリュームデータである。 The mechanical scanning mechanism 14 mechanically scans the transducer array 12 in a direction substantially perpendicular to the scanning surface of the array 12 for electronic scanning. A three-dimensional region is covered by a combination of electronic scanning by the transducer array 12 and mechanical scanning by the mechanical scanning mechanism 14. That is, tomographic image data of one electronic scanning surface can be obtained by one electronic scanning, and a collection of tomographic image data of a plurality of electronic scanning surfaces is obtained by performing electronic scanning for each scanning position of mechanical scanning. be able to. A collection of tomographic image data in the entire mechanical scanning range is one volume data for the scanning range of the mechanical three-dimensional probe 10.
振動子アレイ12の電子走査形状は特に限定されず、例えば軟骨105の横幅をカバーする程度の幅(アレイ長)を持つリニア走査の振動子アレイ12を用いることもできる。また、コンベックス走査、コンケーブ(凹形)走査のプローブを用いてもよい。 The electronic scanning shape of the transducer array 12 is not particularly limited. For example, a linear scanning transducer array 12 having a width (array length) enough to cover the lateral width of the cartilage 105 can be used. Further, a probe for convex scanning or concave (concave) scanning may be used.
また、例えば図4に示す例では、メカ走査機構14は、椅子等に座った状態で屈曲された膝に対し、太もも側から脛側まで膝頭に沿って上下にアーク(コンケーブ)走査を行う。図4は、被検者の膝を側面側から見た状態の図である。振動子アレイ12のアレイ方向は例えば図4の紙面に垂直な方向である。またメカ走査機構14の機械走査方向は、大腿骨100の遠位部に位置決めされた回転軸42を中心に、図中の矢印で示すように、上下に回転する方向である。回転軸42は、膝頭の両側にそれぞれ設ければよい。振動子アレイ12を収容する振動子部40の両側面には、各々の側の回転軸42から延びるアーム44が取り付けられており、図示しない駆動機構により振動子部40を矢印方向に動かすことができる。振動子部40の振動子アレイ12側には、水などの音響カップリング剤を封じた柔軟なスタンドオフ46が設けられている。測定時には、スタンドオフ46の一方の面が膝頭の形状に密着し、他方の面に沿って振動子アレイ12が矢印方向に移動する。図示は省略したが、これら振動子部40、回転軸42、アーム44、スタンドオフ46、振動子部40の駆動機構などは筐体内に収容することができる。その筐体には、膝を収容するための凹部が形成されており、その凹部にスタンドオフ46が設けられる。そして、その筐体を膝にかぶせてその凹部に膝頭を収容すると、スタンドオフ46やその近傍の筐体構造が例えば大腿200の上部や膝頭、脛等に当接する。これにより、回転軸42が大腿骨100の遠位部の、あらかじめ定めた範囲に位置決め固定されることになる。メカ走査機構14の走査は、モータなどを用いた自動走査でもよいし、手動で振動子部40を円弧状のガイドに沿って移動させる方式でもよい。メカ走査機構14は、振動子部40の回転位置(すなわち電子走査面の角度)を求めるエンコーダを備えている。このエンコーダの出力から、振動子アレイ12の電子走査面の角度が分かるので、その走査面における各点の三次元的な位置を求めることができる。 For example, in the example shown in FIG. 4, the mechanical scanning mechanism 14 performs an arc (concave) scanning up and down along the kneecap from the thigh side to the shin side with respect to the knee bent while sitting on a chair or the like. FIG. 4 is a view of the subject's knee as viewed from the side. The array direction of the transducer array 12 is, for example, a direction perpendicular to the paper surface of FIG. The mechanical scanning direction of the mechanical scanning mechanism 14 is a direction in which the mechanical scanning mechanism 14 rotates up and down as shown by arrows in the figure, with the rotation shaft 42 positioned at the distal portion of the femur 100 as the center. The rotation shafts 42 may be provided on both sides of the kneecap. Arms 44 extending from the respective rotating shafts 42 are attached to both side surfaces of the transducer unit 40 that accommodates the transducer array 12, and the transducer unit 40 can be moved in the direction of the arrow by a drive mechanism (not shown). it can. A flexible stand-off 46 in which an acoustic coupling agent such as water is sealed is provided on the transducer array 12 side of the transducer unit 40. At the time of measurement, one surface of the standoff 46 is in close contact with the shape of the kneecap, and the transducer array 12 moves in the direction of the arrow along the other surface. Although not shown, the vibrator unit 40, the rotating shaft 42, the arm 44, the standoff 46, the drive mechanism of the vibrator unit 40, and the like can be housed in a housing. The housing is formed with a recess for accommodating the knee, and a standoff 46 is provided in the recess. Then, when the housing is placed on the knee and the kneecap is housed in the recess, the standoff 46 and the housing structure in the vicinity thereof come into contact with the upper portion of the thigh 200, the kneecap, the shin, and the like. Thereby, the rotating shaft 42 is positioned and fixed in a predetermined range of the distal portion of the femur 100. The scanning of the mechanical scanning mechanism 14 may be automatic scanning using a motor or the like, or may be a method in which the transducer unit 40 is manually moved along an arcuate guide. The mechanical scanning mechanism 14 includes an encoder that obtains the rotational position of the transducer unit 40 (that is, the angle of the electronic scanning surface). Since the angle of the electronic scanning plane of the transducer array 12 is known from the output of this encoder, the three-dimensional position of each point on the scanning plane can be obtained.
なお、図4に例示したような走査機構はあくまで一例に過ぎない。例えば、機械的なアーク走査のための上に例示したものに限られない。また、筐体を上下及び/又は前後に移動させる機構を設け、この機構により回転軸42を膝に対して位置決めするようにしてもよい。また、アーク走査の代わりに図5に示すように曲げた膝の前面に沿って振動子部40(振動子の配列方向は紙面に垂直)をリニアに機械走査してもよい。もちろん、機械走査の形状は、アークやリニアに限られるものではない。なお、アーク走査は、略円弧状に湾曲している軟骨105の多くの範囲に対し、垂直に近い方向から超音波ビームを当てることができる。 Note that the scanning mechanism illustrated in FIG. 4 is merely an example. For example, it is not limited to the above-described examples for mechanical arc scanning. Further, a mechanism for moving the casing up and down and / or back and forth may be provided, and the rotation shaft 42 may be positioned with respect to the knee by this mechanism. Further, instead of arc scanning, the transducer unit 40 (the arrangement direction of the transducers is perpendicular to the paper surface) may be linearly scanned along the front surface of the bent knee as shown in FIG. Of course, the shape of mechanical scanning is not limited to arc or linear. In the arc scanning, an ultrasonic beam can be applied to a large range of the cartilage 105 that is curved in a substantially arc shape from a direction close to vertical.
また、以上の例は、身体の横方向に素子配列方向に一致させるように配置した振動子部40を、身体の縦方向に沿って機械的にアーク走査又はリニア走査するものであったが、これは一例に過ぎない。この代わりに、図6に示すように身体の縦方向を素子配列方向とした振動子部40を身体の横方向に機械走査するようにしてもよい。図6はリニア走査を示しているが、これに限らず、アーク走査や他の走査形状でも構わない。 In the above example, the transducer unit 40 arranged so as to match the element arrangement direction in the horizontal direction of the body is mechanically arc-scanned or linear-scanned along the vertical direction of the body. This is only an example. Instead of this, as shown in FIG. 6, the transducer unit 40 having the vertical direction of the body as the element arrangement direction may be mechanically scanned in the horizontal direction of the body. Although FIG. 6 shows linear scanning, the present invention is not limited to this, and arc scanning or other scanning shapes may be used.
図3の説明に戻ると、送受信部16は、振動子アレイ12及びメカ走査機構14を駆動・制御して超音波ビームの送受信、電子走査、機械走査を実現する。送受信部16は、送信部の機能と受信部の機能を備える。送信部は送信ビームフォーマーとして機能する。すなわち、送信部から複数の送信信号が振動子アレイ12の複数の振動素子に対して供給される。これによって振動子アレイ12から超音波ビームパルスが生体内に放射される。生体内からの反射波は、振動子アレイ12にて受波される。これにより複数の振動素子から複数の受信信号が出力される。それらの受信信号は送受信部16の受信部に入力される。受信部は受信ビームフォーマーとして機能する。すなわち、複数の受信信号に対して整相加算処理を適用する。また受信部は、対数圧縮処理、フィルタ処理等といった各種の信号処理を行う。そのような処理を経た受信信号が、座標変換部18に入力される。受信信号は、被検体内の各点でのエコーレベル値を表す。 Returning to the description of FIG. 3, the transmission / reception unit 16 drives and controls the transducer array 12 and the mechanical scanning mechanism 14 to realize transmission / reception of ultrasonic beams, electronic scanning, and mechanical scanning. The transmission / reception unit 16 includes a transmission unit function and a reception unit function. The transmission unit functions as a transmission beam former. That is, a plurality of transmission signals are supplied from the transmission unit to the plurality of vibration elements of the transducer array 12. Thereby, an ultrasonic beam pulse is emitted from the transducer array 12 into the living body. The reflected wave from the living body is received by the transducer array 12. Thereby, a plurality of reception signals are output from the plurality of vibration elements. Those received signals are input to the receiving unit of the transmitting / receiving unit 16. The receiving unit functions as a receiving beam former. That is, the phasing addition process is applied to a plurality of received signals. The receiving unit performs various signal processing such as logarithmic compression processing and filter processing. The reception signal that has undergone such processing is input to the coordinate conversion unit 18. The received signal represents an echo level value at each point in the subject.
座標変換部18は、入力された受信信号(エコー信号)に対し、表示、画像処理、保存などのためのあらかじめ定めた共通座標系、例えば三次元デカルト座標系(XYZ座標系)、への座標変換処理を施す。すなわち、受信信号は被検体内各点のエコー強度の情報を含んでいるが、この場合の各点は、プローブ10の電子走査及び機械走査の走査形状により規定されるプローブ座標系でのものである。例えば、図4の例のように電子リニア走査の振動子アレイ12を機械的にアーク走査する場合、被検体内の点は、機械アーク走査の回転角θ、電子リニア走査における走査位置x、及びプローブ10からの距離(深さ)dからなる座標系で表現される。電子走査位置x及び距離dは送受信部16から得ることができ、機械走査位置(回転角θ)はメカ走査機構14が備えるエンコーダから得ることができる。このように、送受信部16が出力する受信信号は、プローブ座標系でのボリュームデータを表す。座標変換部18は、ボリュームデータをプローブ座標系から表示等のための共通座標系に座標変換するのである。また、座標変換部18は、共通座標系の点(ボクセル)のうち受信信号のデータ(エコーレベル値)がない点のデータを、その点の周囲の各点のデータを補間することにより求める。医用三次元画像における座標変換や補間は周知技術なので、これ以上の説明は省略する。 The coordinate converter 18 coordinates the input received signal (echo signal) to a predetermined common coordinate system for display, image processing, storage, etc., for example, a three-dimensional Cartesian coordinate system (XYZ coordinate system). Perform conversion processing. In other words, the received signal includes information on the echo intensity at each point in the subject. In this case, each point is in the probe coordinate system defined by the scanning shape of the electronic scanning and mechanical scanning of the probe 10. is there. For example, when the electronic linear scanning transducer array 12 is mechanically arc-scanned as in the example of FIG. 4, the points in the subject are the rotation angle θ of the mechanical arc scanning, the scanning position x in the electronic linear scanning, and It is expressed in a coordinate system consisting of a distance (depth) d from the probe 10. The electronic scanning position x and the distance d can be obtained from the transmission / reception unit 16, and the mechanical scanning position (rotation angle θ) can be obtained from an encoder provided in the mechanical scanning mechanism 14. Thus, the reception signal output from the transmission / reception unit 16 represents volume data in the probe coordinate system. The coordinate conversion unit 18 converts the volume data from the probe coordinate system to a common coordinate system for display or the like. In addition, the coordinate conversion unit 18 obtains data of points having no received signal data (echo level value) among points (voxels) in the common coordinate system by interpolating data of points around the point. Since coordinate transformation and interpolation in a medical three-dimensional image are well-known techniques, further explanation is omitted.
座標変換部18により座標変換された受信信号は、三次元データメモリ20に書き込まれる。三次元データメモリ20には、表示等のための共通座標系での各点(ボクセル)のエコーレベル値が記憶されることになる。すなわち、三次元データメモリ20には、座標変換後のボリュームデータが記憶される。 The received signal that has undergone coordinate transformation by the coordinate transformation unit 18 is written into the three-dimensional data memory 20. The three-dimensional data memory 20 stores an echo level value of each point (voxel) in a common coordinate system for display or the like. That is, the volume data after coordinate conversion is stored in the three-dimensional data memory 20.
画像形成部28は、この三次元データメモリ20に記憶されたボリュームデータから、表示部30に表示する画像を生成する。例えば、画像形成部28は、指定された視点からボリュームデータをレンダリングすることで、その視点から見た被検体内部の三次元画像を生成する。また、画像形成部28は、ボリュームデータの中の指定された1以上の各断面(スライス)の画像を生成する機能を備えていてもよい。また、画像形成部28は、それら三次元画像や断面画像のうちの複数を1つの画面に配列する機能を持っていてもよい。 The image forming unit 28 generates an image to be displayed on the display unit 30 from the volume data stored in the three-dimensional data memory 20. For example, the image forming unit 28 renders volume data from a designated viewpoint, thereby generating a three-dimensional image inside the subject viewed from the viewpoint. Further, the image forming unit 28 may have a function of generating an image of one or more specified cross sections (slices) in the volume data. Further, the image forming unit 28 may have a function of arranging a plurality of these three-dimensional images and cross-sectional images on one screen.
また、画像形成部28は、後述する軟骨抽出部24により抽出される大腿骨遠位端の軟骨の三次元形状情報に基づき、軟骨の三次元画像や断面画像を生成する機能を備える。また、生成した軟骨の三次元画像や断面画像を、走査範囲全体の三次元画像や断面画像に合成する機能を備えていてもよい。この合成では、軟骨の画像を走査範囲の他の部分から強調するようにしてもよい。例えば、軟骨の画像の色を走査範囲の他の部分の色とは異なった色とするなどである。 The image forming unit 28 has a function of generating a three-dimensional image or a cross-sectional image of cartilage based on the three-dimensional shape information of the cartilage at the distal end of the femur extracted by the cartilage extracting unit 24 described later. Further, a function of synthesizing the generated three-dimensional image or cross-sectional image of cartilage with the three-dimensional image or cross-sectional image of the entire scanning range may be provided. In this synthesis, the cartilage image may be emphasized from other parts of the scanning range. For example, the color of the cartilage image may be different from the color of other parts of the scanning range.
また、画像形成部28は、軟骨についての定量化データ(例えば軟骨の厚みなど)を、例えば数値などの形で表示画像に合成する機能を備える。 Further, the image forming unit 28 has a function of synthesizing quantification data (for example, cartilage thickness) of cartilage into a display image in the form of a numerical value, for example.
この他、必須ではないが、画像形成部28は、超音波診断装置が備える他の機能(例えばドプラ画像生成機能など)により得られる情報から、カラーフローマッピング画像(二次元血流画像)、カラー組織画像(組織運動表示画像)、パワードプラ画像などの各種画像を形成する機能を備えていてもよい。また、それら各種画像を、上述の三次元画像や軟骨の画像と合成して表示する機能を備えていてもよい。 In addition, although not essential, the image forming unit 28 uses a color flow mapping image (two-dimensional blood flow image), color, and the like from information obtained by other functions (for example, a Doppler image generation function) provided in the ultrasonic diagnostic apparatus. A function of forming various images such as a tissue image (tissue motion display image) and a power Doppler image may be provided. Moreover, you may provide the function which synthesize | combines and displays these various images with the above-mentioned three-dimensional image and the image of a cartilage.
画像形成部28は、例えばDSC(デジタルスキャンコンバータ)などにより構成される。画像形成部28によって生成された画像が、表示部30に表示される。 The image forming unit 28 is configured by, for example, a DSC (digital scan converter). An image generated by the image forming unit 28 is displayed on the display unit 30.
更に図3を参照して、軟骨抽出のための構成について説明する。 Further, a configuration for cartilage extraction will be described with reference to FIG.
画像前処理部22は、三次元データメモリ20中のボリュームデータ、又はそのボリュームデータ中の断面のスライスデータに対して、軟骨抽出に適した画像にするための前処理を行う。画像前処理部22が行う前処理は、例えばノイズ低減のための平滑化、又は軟骨境界を明確化させるためのエッジ強調、又はその両方を含んだ処理である。以下、一例として、軟骨の形状特徴を利用した前処理の例を、図7〜図13を参照して説明する。この例は、ボリュームデータを、一方向に並んだ複数の断面スライスデータ(例えばXYZ座標系でX軸方向についてあらかじめ定めた間隔ごとにX=一定の断面をとったもの)に分解し、スライスデータごとに前処理を行う場合の例である。 The image preprocessing unit 22 performs preprocessing for making an image suitable for cartilage extraction on the volume data in the three-dimensional data memory 20 or the slice data of the cross section in the volume data. The preprocessing performed by the image preprocessing unit 22 is, for example, processing including smoothing for noise reduction, edge enhancement for clarifying the cartilage boundary, or both. Hereinafter, as an example, an example of preprocessing using the shape feature of cartilage will be described with reference to FIGS. In this example, volume data is decomposed into a plurality of slice slice data arranged in one direction (for example, X = constant slice taken at predetermined intervals in the X-axis direction in the XYZ coordinate system) and slice data. It is an example in the case of performing preprocessing for each.
図7は、超音波ビームの走査により得られる膝内部の断層画像を模式的に例示する図である。このような断面画像は、例えば、三次元データメモリ20内のボリュームデータから取り出された1断面のスライスデータを表示したものである。図7の断面画像例では、大腿骨300の内部,軟骨305の内部,及び音響カップリング剤が封入されたスタンドオフ360の内部は、それぞれ音響的にほぼ等質なので、超音波はほぼ反射されず、超音波画像上では暗い画像となる。膝関節を囲む筋肉350等の組織は、組織の微細構造による反射により比較的輝度の高いまだらな画像となる。筋肉350等の組織と軟骨305とは音響インピーダンスの差が大きいので、それら両者の境界すなわち軟骨の表面は、高輝度となる。同様に軟骨305と大腿骨300(軟骨下骨)との境界も高輝度となる。 FIG. 7 is a diagram schematically illustrating a tomographic image inside the knee obtained by scanning with an ultrasonic beam. Such a cross-sectional image is, for example, a display of slice data of one cross section extracted from the volume data in the three-dimensional data memory 20. In the cross-sectional image example of FIG. 7, the inside of the femur 300, the inside of the cartilage 305, and the inside of the stand-off 360 in which the acoustic coupling agent is sealed are almost acoustically homogeneous, so that the ultrasonic waves are almost reflected. Instead, the image is dark on the ultrasonic image. A tissue such as the muscle 350 surrounding the knee joint becomes a mottled image with relatively high luminance due to reflection by the fine structure of the tissue. Since the acoustic impedance difference between the tissue such as the muscle 350 and the cartilage 305 is large, the boundary between them, that is, the surface of the cartilage has high brightness. Similarly, the boundary between the cartilage 305 and the femur 300 (subchondral bone) also has high brightness.
図7の模式図においては、軟骨305と筋肉350との境界部分に微細な凹凸があり、1画素の格子内に暗い部分と明るい部分とが様々な割合で混在しているが、これは境界部分の画素の輝度値が画素ごとに大きく揺らいでいることを表現したものである。 In the schematic diagram of FIG. 7, there are fine irregularities at the boundary between the cartilage 305 and the muscle 350, and dark portions and bright portions are mixed in various proportions within the lattice of one pixel. This represents that the luminance value of the pixel of the part fluctuates greatly for each pixel.
このような超音波断層画像に対し、この例では、軟骨の形状特徴を強調するような平滑化処理を実行する。軟骨(特に大腿骨遠位端のそれ)は、厚みが2,3mm程度で基本的にその表面が滑らかであり、大腿骨遠位端の表面に張り付いている。そこで、この例では、平滑化にあたり注目画素の周囲全方向の画素(ボクセル)の値を用いるのではなく、軟骨と他組織との境界面(断層像の場合は境界線)すなわち軟骨の輪郭に沿った方向の画素のみを用いるような平滑化方法を用いる。 In this example, a smoothing process that emphasizes the shape feature of cartilage is performed on such an ultrasonic tomographic image. The cartilage (especially that of the distal end of the femur) has a thickness of about 2 to 3 mm and is basically smooth and sticks to the surface of the distal end of the femur. Therefore, in this example, instead of using the values of pixels (voxels) in all directions around the target pixel for smoothing, the boundary surface between the cartilage and other tissues (the boundary line in the case of a tomographic image), that is, the outline of the cartilage A smoothing method using only pixels in the direction along the line is used.
この方法では、画像前処理部22は、スライスデータのある注目画素の平滑化値を得るにあたり、その注目画素を中心として通る一定長の直線上にある各画素の輝度値を抽出し、それらの分散を計算する。 In this method, the image preprocessing unit 22 extracts the luminance value of each pixel on a straight line of a certain length passing through the target pixel when obtaining a smoothed value of the target pixel in the slice data. Calculate the variance.
例えば、図8に示す例では、その一定長の長さを9画素としている。図8に示す1つ1つの格子が画素を示している。すなわち、図8の例では、スライスデータを構成する行列状に並んだ画素400群のうち、注目画素410を通る線分420が横切る9つの画素(図中では斜線ハッチングで示した)の輝度値(エコーレベル値)を取り出し、それらの分散値を計算する。分散値は例えば次式により計算すればよい。 For example, in the example shown in FIG. 8, the fixed length is 9 pixels. Each grid shown in FIG. 8 represents a pixel. That is, in the example of FIG. 8, the luminance values of nine pixels (indicated by hatching in the drawing) crossed by the line segment 420 passing through the pixel of interest 410 among the group of pixels 400 arranged in a matrix forming the slice data. (Echo level values) are taken out and their variance values are calculated. The variance value may be calculated by the following formula, for example.
分散値=1/n × Σ(Li - Lm)2 Variance = 1 / n × Σ (Li−Lm) 2
ここで、Li は、線分420上のn画素のうちのi(iは1からnまでの整数)番目の画素の輝度値であり、Lmはそれらn画素の輝度値の平均値である。Σは、i=1からi=nまでの総和である。なお、図8の例ではn=9であるが、9画素に限定されるわけではない。n個の画素のうちの1つは中心である注目画素410であり、その注目画素410の両側にそれぞれ残りの(n−1)個のうちの半数ずつが存在する。分散を求める際の線分の長さ(すなわち参照画素の数)は、スライスデータ(あるいはボリュームデータ)の解像度などを考慮して定めればよい。 Here, Li is the luminance value of the i-th pixel (i is an integer from 1 to n) of the n pixels on the line segment 420, and Lm is the average value of the luminance values of these n pixels. Σ is the sum from i = 1 to i = n. Although n = 9 in the example of FIG. 8, it is not limited to 9 pixels. One of the n pixels is the target pixel 410 as the center, and half of the remaining (n−1) pixels exist on both sides of the target pixel 410. The length of the line segment (that is, the number of reference pixels) for obtaining the variance may be determined in consideration of the resolution of slice data (or volume data).
このような分散値計算の処理を、図9に例示するように、1周(すなわちこの場合は0度から180度)の範囲で方向があらかじめ定めた間隔(例えば5度)ずつ異なる線分420−1、420−2,420−3,…のそれぞれについて行う。角度の刻み間隔は適宜定めればよい。分散値計算対象の方向の線分420が横切るn個の画素は、都度計算してもよいが、注目画素に対するそれら各画素の相対位置を計算対象の方向ごとにあらかじめ計算して記憶装置(例えばリード・オンリー・メモリやハードディスク)に記憶しておき、計算対象の方向ごとにその相対位置と注目画素の位置から特定するようにしてもよい。 As illustrated in FIG. 9, such a variance value calculation process is performed by a line segment 420 whose direction is different by a predetermined interval (for example, 5 degrees) in one round (that is, 0 degrees to 180 degrees in this case). -1, 420-2, 420-3,... What is necessary is just to determine the interval of an angle | corner suitably. The n pixels crossed by the line 420 in the direction of the variance value calculation target may be calculated each time, but the relative position of each pixel with respect to the target pixel is calculated in advance for each calculation target direction and stored in a storage device (for example, It may be stored in a read-only memory or a hard disk) and specified from the relative position and the position of the target pixel for each direction to be calculated.
このようにして注目画素を中心とする各方向の線分についての分散値が求められると、画像前処理部22は、それら各方向のなかで分散値が最大となる方向を特定する。特定された方向は、軟骨や大腿骨、筋肉、スタンドオフなどといった各媒体間の境界(言い換えれば各媒体の輪郭)の法線方向を表す。 When the variance value for the line segment in each direction centered on the target pixel is obtained in this way, the image preprocessing unit 22 identifies the direction in which the variance value is the maximum among these directions. The specified direction represents the normal direction of the boundary between the media such as cartilage, femur, muscle, and standoff (in other words, the contour of each media).
例えば、図10は、軟骨305と筋肉350との境界(言い換えれば軟骨の輪郭)より少し上に位置する注目画素410Aについての例である。この例では、注目画素410Aを中心とする各方向の線分420a、420b、420cのそれぞれについて、上述のように分散値を計算すると、線分420aについての分散値が最大となる。すなわち、それら各方向の線分420a〜cの中心(注目画素410A)の一方の側が横切る画素は筋肉350に属するので基本的に明るい画素であるのに対し、他方の側が横切る画素には軟骨305内の暗い画素が含まれる。そして、線分が軟骨305内に最も深く入った状態である線分420aのときにそれら暗い画素の数が最大となるため、分散値も最大となる。この線分420aの方向は、近傍にある軟骨305の輪郭に対する法線方向に近い方向となっている。 For example, FIG. 10 is an example of the pixel of interest 410A located slightly above the boundary between the cartilage 305 and the muscle 350 (in other words, the outline of the cartilage). In this example, when the variance value is calculated as described above for each of the line segments 420a, 420b, and 420c in each direction centered on the pixel of interest 410A, the variance value for the line segment 420a is maximized. That is, a pixel that crosses one side of the center (line of interest 410A) of the line segments 420a to 420c in each direction belongs to the muscle 350 and is basically a bright pixel, whereas a pixel that crosses the other side has a cartilage 305. Dark pixels within are included. And since the number of these dark pixels becomes the maximum at the line segment 420a in the state where the line segment is deepest in the cartilage 305, the dispersion value is also maximized. The direction of the line segment 420a is close to the normal direction to the contour of the cartilage 305 in the vicinity.
このように、注目画素410Aに対して上述の分散値が最大となる方向(線分420a)が特定できると、画像前処理部22は、スライスデータの面内で注目画素410Aの周囲近傍に存在する画素のうち、その方向に対し垂直な方向にある画素のみを用いてその注目画素の平滑化値を計算する。例えば、図11に示す例では、注目画素410Aを中心とし、分散最大方向に対して垂直な線分450aが横切る9つの画素(図ではドットハッチングで示した)の輝度値から、注目画素410Aの平滑化値が計算される。 As described above, when the direction (line segment 420a) in which the above-described variance value is maximum for the target pixel 410A can be specified, the image preprocessing unit 22 exists in the vicinity of the target pixel 410A in the plane of the slice data. The smoothed value of the target pixel is calculated using only the pixels in the direction perpendicular to the direction among the pixels to be processed. For example, in the example shown in FIG. 11, the luminance value of the pixel of interest 410A is determined from the luminance values of nine pixels (indicated by dot hatching in the figure) that the line segment 450a perpendicular to the maximum dispersion direction crosses around the pixel of interest 410A. A smoothing value is calculated.
分散最大方向に対して垂直な線分450aが横切る9つの画素は、都度計算してもよいが、方向ごとあらかじめ計算してハードディスク等の記憶装置に記憶しておき、その記憶データを読み出して利用するようにしてもよい。例えば、分散最大方向ごとに、それに垂直な線分450a上のそれら9つの参照画素の位置情報(例えば注目画素410Aに対する相対位置)を記憶装置に記憶しておき、分散最大方向が特定されればその方向に対応する各参照画素の相対位置をその記憶装置から求め、それら相対位置を注目画素の位置と組み合わせることで、各参照画素の絶対位置を特定すればよい。なお、参照画素の数を9個としたが、これは一例に過ぎない。参照画素の数は、軟骨表面の曲率、スライスデータ(あるいはボリュームデータ)の解像度、その解像度でのスペックルのサイズ(画素数)などを考慮して定めればよい。 The nine pixels that the line segment 450a perpendicular to the maximum dispersion direction crosses may be calculated each time, but each direction is calculated in advance and stored in a storage device such as a hard disk, and the stored data is read and used. You may make it do. For example, for each maximum variance direction, position information (for example, a relative position with respect to the target pixel 410A) of these nine reference pixels on the line segment 450a perpendicular to the maximum is stored in the storage device, and the maximum variance direction is specified. The absolute position of each reference pixel may be specified by obtaining the relative position of each reference pixel corresponding to the direction from the storage device and combining the relative position with the position of the target pixel. Although the number of reference pixels is nine, this is only an example. The number of reference pixels may be determined in consideration of the curvature of the cartilage surface, the resolution of slice data (or volume data), the speckle size (number of pixels) at that resolution, and the like.
線分420aは軟骨305と筋肉350との境界(すなわち軟骨の輪郭)の法線に近い方向の線なので、それに垂直な線分450aは、その境界に平行に近い方向の線分となる。注目画素410Aの全周囲の近傍画素の平均をとると、平均結果は軟骨305内の暗い画素も含んだ値となるが、軟骨305の輪郭の方向に沿った画素のみの平均であれば平均結果には軟骨305内の暗い画素は含まれにくい。 Since the line segment 420a is a line in a direction close to the normal line of the boundary between the cartilage 305 and the muscle 350 (that is, the outline of the cartilage), the line segment 450a perpendicular thereto is a line segment in a direction almost parallel to the boundary. Taking the average of neighboring pixels all around the pixel of interest 410A, the average result includes the dark pixels in the cartilage 305, but if the average of only the pixels along the contour direction of the cartilage 305, the average result Does not include dark pixels in the cartilage 305.
平滑化値は、例えば、それら9つの画素の輝度値の単純平均でよい。また、別の例として、例えば中心である注目画素410Aに近い画素ほど高い重みを与えた加重平均を平滑化値としてもよい。また、それら9つの画素の輝度値の平均値(単純平均又は加重平均)の大小に応じた係数をその平均値に乗じた値を平滑化値としてもよい。例えば平均値が高い(すなわち高輝度)ほど係数を大きくすることで、暗い部分と明るい部分のコントラストを向上させることもできる。いずれの場合でも、図11の例では、計算対象となる9つの画素はほとんど筋肉350に属する画素なので、注目画素410Aの平滑化値は高輝度値となる。 The smoothing value may be, for example, a simple average of the luminance values of these nine pixels. As another example, for example, a weighted average obtained by giving a higher weight to a pixel closer to the pixel of interest 410A at the center may be used as the smoothing value. Further, a smoothed value may be obtained by multiplying the average value by a coefficient corresponding to the magnitude of the average value (simple average or weighted average) of the luminance values of these nine pixels. For example, the contrast between a dark part and a bright part can be improved by increasing the coefficient as the average value is higher (that is, higher brightness). In any case, in the example of FIG. 11, the nine pixels to be calculated are mostly pixels belonging to the muscle 350, so the smoothed value of the pixel of interest 410A is a high luminance value.
また、図12のように注目画素410Bが筋肉350と軟骨305との境界に位置する場合、画像前処理部22は、分散最大となる線分420dに対して垂直な線分450dを通る9つの画素(ドットハッチングで示す)を平均することで注目画素410Bの平滑化値を求める。この場合、その線分450dは軟骨305の輪郭の接線に近いものであり、それら9つの画素は軟骨305の輪郭又はその近傍に位置する画素である。 In addition, when the target pixel 410B is located at the boundary between the muscle 350 and the cartilage 305 as shown in FIG. 12, the image pre-processing unit 22 has nine line segments 450d perpendicular to the line segment 420d having the maximum variance. The smoothed value of the target pixel 410B is obtained by averaging the pixels (indicated by dot hatching). In this case, the line segment 450d is close to the tangent line of the outline of the cartilage 305, and these nine pixels are pixels located at or near the outline of the cartilage 305.
また、図示は省略するが、注目画素410が軟骨305の内部に位置する場合は、図11の場合と同様の考え方で、その注目画素410についての平滑化値は、軟骨305の輪郭の方向に沿った軟骨305内部の画素の平均となる。 Although not shown, when the target pixel 410 is located inside the cartilage 305, the smoothing value for the target pixel 410 is in the direction of the contour of the cartilage 305 in the same way as in FIG. It is the average of the pixels inside the cartilage 305 along.
なお、以上に例示した平滑化処理は、軟骨305と筋肉350との境界に沿った方向だけでなく、筋肉350とスタンドオフ360(図7参照)との境界、筋肉350と大腿骨300との境界、軟骨305と大腿骨300との境界などのように、大きな組織同士の境界に沿った方向についても平滑化を行うことになる。 Note that the smoothing process exemplified above is performed not only in the direction along the boundary between the cartilage 305 and the muscle 350 but also at the boundary between the muscle 350 and the standoff 360 (see FIG. 7) and between the muscle 350 and the femur 300. Smoothing is also performed in the direction along the boundary between large tissues such as the boundary and the boundary between the cartilage 305 and the femur 300.
なお、個々の注目画素についてみれば上述の方法で求めた分散最大の方向が必ずしも注目画素近傍の組織境界の法線方向に近くなるとは限らないが、大局的にみれば分散最大の方向は近傍の組織境界の法線方向に近いと考えられる。特に、軟骨305の表面は滑らかなので、筋肉350と軟骨305との境界、軟骨305と大腿骨300(軟骨下骨)との境界については、分散最大の方向はそれら境界の法線方向に近い。 For each target pixel, the direction of maximum dispersion obtained by the above method is not necessarily close to the normal direction of the tissue boundary near the target pixel. It is considered to be close to the normal direction of the tissue boundary. In particular, since the surface of the cartilage 305 is smooth, regarding the boundary between the muscle 350 and the cartilage 305 and the boundary between the cartilage 305 and the femur 300 (subchondral bone), the direction of maximum dispersion is close to the normal direction of those boundaries.
以上に説明した組織境界の方向に沿った平滑化処理により、ノイズやスペックル等により必ずしも滑らかになっていない生スライスデータにおける軟骨305の輪郭(図10参照)が、図13に示すように滑らかになる。 By the smoothing process along the direction of the tissue boundary described above, the contour of the cartilage 305 (see FIG. 10) in the raw slice data that is not necessarily smooth due to noise, speckle, etc., is smooth as shown in FIG. become.
注目画素の全周囲の近傍画素を用いた単純な平滑化では組織境界(特に軟骨と他組織との境界)がぼけてしまうが、組織境界の方向を考慮したこの例の平滑化では、そのような境界のぼけは抑止できる。この意味で、この例の平滑化処理は、エッジの維持あるいは強調(例えば平均値に応じた係数を乗じたものを平滑化値とする場合)の効果を持った平滑化と言える。 Simple smoothing using neighboring pixels all around the pixel of interest blurs the tissue boundary (especially the boundary between cartilage and other tissues), but in this example smoothing considering the direction of the tissue boundary, The blurring of the border can be suppressed. In this sense, the smoothing processing in this example can be said to be smoothing having the effect of maintaining or enhancing edges (for example, when a smoothing value is obtained by multiplying a coefficient corresponding to an average value).
スライスデータ上の各画素をそれぞれ注目画素として、注目画素ごとに以上のような組織境界の方向性を考慮した平滑化を行うことで、スライスデータ全体を、組織境界を維持又は強調しつつ平滑化することができる。このような平滑化処理により、滑らかで鮮明な軟骨画像を得ることができる。なお、この平滑化処理では、筋肉350等の内部のスペックルは平滑化されるので、筋肉350は比較的高輝度の一様に近い画像となる。 Smoothing the entire slice data while maintaining or enhancing the tissue boundary by using each pixel on the slice data as the target pixel and performing smoothing in consideration of the directionality of the tissue boundary as described above for each target pixel. can do. By such a smoothing process, a smooth and clear cartilage image can be obtained. In this smoothing process, the speckles inside the muscle 350 and the like are smoothed, so that the muscle 350 becomes a relatively uniform image with relatively high luminance.
ボリュームデータを構成する各スライスデータについて上述のような方向性を考慮した平滑化処理を行うことで、ボリュームデータ全体についての平滑化が実現できる。 By performing the smoothing process in consideration of the directionality as described above on each slice data constituting the volume data, the entire volume data can be smoothed.
なお、以上に例示した組織境界の方向性を考慮した平滑化は一例に過ぎない。この代わりに、既存の平滑化フィルタ処理とエッジ強調フィルタ処理の組合せを用いてもよい。 Note that the smoothing in consideration of the directionality of the tissue boundary exemplified above is only an example. Instead, a combination of existing smoothing filter processing and edge enhancement filter processing may be used.
以上では、平滑化やエッジ強調(あるいはエッジ維持)に注目して説明したが、画像前処理部22は、そのような処理に加え、他の画像処理を行うものであってもよい。 In the above, description has been given focusing on smoothing and edge enhancement (or edge maintenance), but the image preprocessing unit 22 may perform other image processing in addition to such processing.
また、以上の例では、ボリュームデータをスライスデータに分解し、スライスデータごとに前処理を行ったが、ボリュームデータに対して直接同様の前処理を施すことも可能である。例えば、組織境界の方向性を考慮した平滑化を行う方式の場合、上述のスライスデータごとの処理では二次元面内の各方向の中から画素値の分散が最大となる方向を特定したが、ボリュームデータに対する処理では注目画素(ボクセル)に関し三次元の各方向の中から画素値の分散が最大になる方向を特定すればよい。そして、その方向に対して垂直な面(例えば注目画素を中心とする円板)が横切る画素に基づき(例えばそれら画素の平均演算により)注目画素の平滑化値を計算すればよい。 In the above example, the volume data is decomposed into slice data, and preprocessing is performed for each slice data. However, the same preprocessing can be directly performed on the volume data. For example, in the case of a method for performing smoothing in consideration of the directionality of the tissue boundary, the processing for each slice data described above specifies the direction in which the dispersion of pixel values is maximum from each direction in the two-dimensional plane. In the processing for the volume data, the direction in which the dispersion of pixel values is maximized may be specified from the three-dimensional directions for the target pixel (voxel). Then, the smoothing value of the target pixel may be calculated based on the pixels (for example, by averaging the pixels) crossed by a plane perpendicular to the direction (for example, a disk centered on the target pixel).
さて、以上のように画像前処理部22の前処理結果は、軟骨抽出部24に渡される。画像前処理部22がスライスデータ単位で前処理を行う場合、前処理結果はスライスデータ単位で軟骨抽出部24に渡してもよい。また、スライスデータごとの前処理結果をまとめたボリュームデータをまとめて軟骨抽出部24に渡してもよい。以下では、スライスデータ単位で受け渡し、処理する場合を例示する。 As described above, the preprocessing result of the image preprocessing unit 22 is passed to the cartilage extraction unit 24. When the image preprocessing unit 22 performs preprocessing in units of slice data, the preprocessing result may be passed to the cartilage extraction unit 24 in units of slice data. Further, the volume data obtained by collecting the preprocessing results for each slice data may be collectively delivered to the cartilage extraction unit 24. In the following, a case of passing and processing in units of slice data will be exemplified.
この例では、軟骨抽出部24は、前処理結果のスライスデータを反転・二値化する。反転・二値化では、例えば、画像(スライスデータ)の各画素の値を反転してから、その反転結果をあらかじめ定めたしきい値と比較して二値化する。この場合、反転処理は、例えば、画素が取り得る最大値(1画素8ビットなら画素値255)から、現在の画素値を減算する処理でよい。二値化のためのしきい値は、反転の結果明るくなった軟骨部分と、反転の結果暗くなった軟骨周囲部分(筋肉や、軟骨と大腿骨との境界など)と、を区別できる値を、実験等により求めればよい。なお、画素値を反転してから二値化する代わりに、二値化してから画素値を反転してもよい。 In this example, the cartilage extraction unit 24 inverts and binarizes the slice data of the preprocessing result. In the inversion / binarization, for example, the value of each pixel of the image (slice data) is inverted, and the inversion result is compared with a predetermined threshold value to be binarized. In this case, the inversion process may be, for example, a process of subtracting the current pixel value from the maximum value that can be taken by the pixel (pixel value 255 if one pixel is 8 bits). The threshold value for binarization is a value that can distinguish between cartilage parts that become bright as a result of inversion and parts around cartilage that become dark as a result of inversion (such as muscles and the boundary between cartilage and femur). What is necessary is just to obtain | require by experiment etc. Instead of binarizing after inverting the pixel value, the pixel value may be inverted after binarizing.
反転・二値化のうち、二値化処理は例えば画像を組織ごとの部分に区別して軟骨抽出を容易にするためのものである。また反転処理は、超音波画像上では暗くなっている軟骨部分を明るく(すなわち白く)することで、ユーザにとって軟骨部分が実体組織であることを直感的に分かりやすくするためである。また、反転処理は、後述するエッジ抽出との整合性のために行っている。すなわち、後で例示するエッジ抽出フィルタは二値データのH(ハイ:すなわち「1」)の領域のエッジを抽出するものであるため、軟骨のエッジを抽出するために反転処理を行っているのである。したがって、二値データのL(ロー:すなわち「0」)の領域を抽出するエッジ抽出フィルタを用いる場合や、二値化結果の画像を表示する必要がない場合には、反転処理は行わなくてもよい。 Of the inversion and binarization, binarization processing is for, for example, distinguishing an image into parts for each tissue and facilitating cartilage extraction. The inversion process is to make it easier for the user to intuitively understand that the cartilage portion is a solid tissue by brightening (that is, whitening) the cartilage portion that is dark on the ultrasound image. The inversion process is performed for consistency with edge extraction to be described later. That is, since the edge extraction filter exemplified later extracts the edge of the binary data H (high: “1”) region, the inversion process is performed to extract the cartilage edge. is there. Therefore, when an edge extraction filter that extracts an L (low: “0”) region of binary data is used or when it is not necessary to display an image of the binarization result, the inversion process is not performed. Also good.
図7に例示したスライスデータを、画像前処理部22による前処理後に反転・二値化すると、図14に示すような画像が得られる。図14の画像例では、軟骨305,大腿骨300などが白く、筋肉350等が黒く表示されている。 When the slice data illustrated in FIG. 7 is inverted and binarized after the preprocessing by the image preprocessing unit 22, an image as illustrated in FIG. 14 is obtained. In the image example of FIG. 14, the cartilage 305, the femur 300, etc. are displayed in white, and the muscle 350, etc. are displayed in black.
次に軟骨抽出部24は、反転・二値化後のスライスデータに対して、エッジ抽出処理を適用することで、そのスライスデータにおける組織境界のエッジを抽出する。抽出されるエッジには、軟骨の輪郭も含まれる。 Next, the cartilage extraction unit 24 applies an edge extraction process to the inverted and binarized slice data, thereby extracting tissue boundary edges in the slice data. The extracted edge includes the outline of the cartilage.
このエッジ抽出処理では、二値化後のスライスデータに対してエッジ抽出フィルタを適用すればよい。エッジ抽出フィルタとしては、例えば、Laplacianフィルタ、Prewittフィルタ、Sobelフィルタ等の公知の二次の微分フィルタを用いればよい。 In this edge extraction process, an edge extraction filter may be applied to the binarized slice data. As the edge extraction filter, for example, a known secondary differential filter such as a Laplacian filter, a Prewitt filter, or a Sobel filter may be used.
図14に例示した二値化後のスライスデータに対してエッジ抽出処理を行うと、例えば図15に示すような画像が得られる。エッジ抽出結果の二値画像では、エッジは黒(値“0”)、エッジ以外は白(値“1”)となる。図15では、軟骨輪郭306を含む、各種の境界が黒の輪郭線となっている。 When edge extraction processing is performed on the binarized slice data illustrated in FIG. 14, for example, an image as illustrated in FIG. 15 is obtained. In the binary image of the edge extraction result, the edge is black (value “0”), and other than the edge is white (value “1”). In FIG. 15, various boundaries including the cartilage contour 306 are black contour lines.
軟骨抽出部24は、スライスデータを表示した画面上で、ユーザから軟骨内部(あるいは軟骨表面上)の点(以下、基準点Rと呼ぶ)の指定を受け付ける。基準点Rの指定を受け付ける際の画面に表示する画像は、反転・二値化後の画像(図14参照)でもよいし、エッジ抽出結果の画像(図15参照)でもよい。なお、基準点Rの指定は、入力部32が備えるマウスなどのポインティングデバイスを用いて行えばよい。図16は、エッジ抽出結果の画像に対して指定された基準点Rを示している。 The cartilage extraction unit 24 receives designation of a point (hereinafter referred to as a reference point R) inside the cartilage (or on the cartilage surface) from the user on the screen displaying the slice data. The image displayed on the screen when receiving the designation of the reference point R may be an image after inversion and binarization (see FIG. 14) or an image of the edge extraction result (see FIG. 15). The reference point R may be specified using a pointing device such as a mouse provided in the input unit 32. FIG. 16 shows the reference point R designated for the image of the edge extraction result.
次に、軟骨抽出部24は、基準点Rの近傍から軟骨輪郭306上の点を求める。図17の例では、基準点Rを通る縦線と軟骨輪郭306との交点A(上側),B(下側)を求めている(図17では、煩雑さを避けるため、軟骨輪郭306以外のエッジは省略している。)。図17の例では、基準点Rを起点に上方向に1画素ずつ順に進みながら、その過程で最初に見つかった黒画素が軟骨輪郭306上の点Aと判別できる。同様に基準点Rから下方向に進んで最初に見つかった黒画素が点Bである。 Next, the cartilage extraction unit 24 obtains a point on the cartilage contour 306 from the vicinity of the reference point R. In the example of FIG. 17, intersections A (upper side) and B (lower side) of the vertical line passing through the reference point R and the cartilage contour 306 are obtained (in FIG. 17, other than the cartilage contour 306 is avoided in order to avoid complexity. Edges are omitted.) In the example of FIG. 17, the black pixel first found in the process can be determined as the point A on the cartilage contour 306 while sequentially proceeding one pixel at a time starting from the reference point R. Similarly, the black pixel which is found first after proceeding downward from the reference point R is the point B.
なお、軟骨305の内部にエッジが存在する場合を考慮するならば、軟骨抽出部24が、そのようにして求めた点A及びBの間隔を求め、その間隔が軟骨の厚み(通常2〜3mm程度)と比較して狭すぎる場合には、基準点Rの位置をあらかじめ定めた画素だけ横方向にずらしてから再度点A,Bを求めるようにしてもよい。その比較では、点AB間の間隔を、軟骨の厚みの知見に基づきあらかじめ定めたしきい値(例えば1.5mm)と比較すればよい。 If the case where an edge exists inside the cartilage 305 is considered, the cartilage extraction unit 24 obtains the distance between the points A and B thus obtained, and the distance is the thickness of the cartilage (usually 2 to 3 mm). If the reference point R is too narrow, the points A and B may be obtained again after shifting the position of the reference point R by a predetermined pixel in the horizontal direction. In the comparison, the interval between the points AB may be compared with a predetermined threshold value (for example, 1.5 mm) based on the knowledge of the cartilage thickness.
なお、図17(及び図7、図14〜図16)の例では、薄い軟骨305の画像が、画面中でほぼ横方向に延びるように位置しているので、上下方向をほぼ軟骨の厚みの方向とみなすことができる。被検者が椅子に腰掛けるなどして屈曲した膝に対して、メカニカル三次元プローブ10の筐体を一定の向きで当接させれば(例えば、そのような向きをプローブ10に表示して、ユーザがその向きに従って当接させるか、機構上その向きにしか当接しないようにするなどすればよい)、得られるボリュームデータ(及びそこから求められるスライスデータ)の座標系は既知であるので、スライスデータを自動的に図17,図7等のような向きにすることができる。 In the example of FIG. 17 (and FIG. 7, FIG. 14 to FIG. 16), the image of the thin cartilage 305 is positioned so as to extend substantially laterally in the screen. It can be regarded as a direction. If the subject of the mechanical three-dimensional probe 10 is brought into contact with a knee bent by a subject sitting on a chair or the like (for example, such a direction is displayed on the probe 10, The user may make contact according to the orientation or only contact the orientation according to the mechanism), and the coordinate system of the volume data (and slice data obtained therefrom) is known. The slice data can be automatically oriented as shown in FIGS.
以上のようにして、基準点Rの上下の軟骨輪郭306の点A,Bを特定すると、軟骨抽出部24は、各点A,Bに連結する黒画素の連結成分を探索する。例えば、点A,Bをそれぞれ起点として、注目画素の4近傍又は8近傍の画素から黒画素を探索し、黒画素が見つかればその黒画素を新たに注目画素として同様の探索を繰り返せばよい。以上のような探索処理により求められた黒画素の連結成分が、軟骨輪郭306である。図16に例示するエッジ抽出結果に対して探索処理を行えば、図18に示すように軟骨輪郭306のみが抽出できる。 As described above, when the points A and B of the cartilage contour 306 above and below the reference point R are specified, the cartilage extraction unit 24 searches for a connected component of black pixels connected to the points A and B. For example, starting from points A and B, a black pixel is searched from pixels in the vicinity of 4 or 8 of the target pixel, and if a black pixel is found, the same search may be repeated using the black pixel as a new target pixel. A connected component of black pixels obtained by the search process as described above is a cartilage contour 306. If search processing is performed on the edge extraction result illustrated in FIG. 16, only the cartilage contour 306 can be extracted as shown in FIG.
以上のような処理を、ボリュームデータ中の各スライスデータについて繰り返す。各スライスデータから抽出された軟骨輪郭306の組が、三次元的な軟骨の輪郭形状を表す。 The above processing is repeated for each slice data in the volume data. A set of cartilage contours 306 extracted from each slice data represents a three-dimensional cartilage contour shape.
以上の抽出処理では軟骨内部又は表面の基準点をユーザに指定させているが、ボリュームデータを構成する多数のスライスデータのそれぞれに対しそのような指定を行うのは煩雑である。そこで、ユーザが1つのスライスデータで基準点を1つ指定すれば、その基準点から残りのスライスデータでの軟骨の基準点を自動的に決定するようにすることも好適である。そのための処理の例を以下に示す。 In the above extraction processing, the user specifies the reference point inside or on the surface of the cartilage. However, it is troublesome to make such designation for each of a large number of slice data constituting the volume data. Therefore, if the user designates one reference point with one slice data, it is also preferable to automatically determine the reference point of the cartilage in the remaining slice data from the reference point. An example of the processing for that is shown below.
この例では、図19に示すように、あるスライスデータS0上でユーザが軟骨内の基準点R0を指定すると、軟骨抽出部24は、基準点R0を通る縦線と軟骨輪郭306との交点A0及びB0を起点としてそのスライスデータ上の軟骨輪郭306を抽出する。また、軟骨抽出部24は、それら点A0及びB0の中点C0の座標を求める。図では、一例として、ボリュームデータの座標系がXYZであり、各スライスデータはZ=一定の面であるとしている。したがって、中点C0の座標は(X,Y)で表される。 In this example, as shown in FIG. 19, when the user designates a reference point R 0 in the cartilage on a certain slice data S 0 , the cartilage extraction unit 24 uses the vertical line passing through the reference point R 0 , the cartilage contour 306, and so on. The cartilage contour 306 on the slice data is extracted with the intersections A 0 and B 0 as the starting points. Further, cartilage extract unit 24 obtains the coordinates of the midpoint C 0 thereof points A 0 and B 0. In the figure, as an example, the coordinate system of the volume data is XYZ, and each slice data is assumed to be Z = a constant surface. Therefore, the coordinates of the midpoint C 0 are represented by (X, Y).
次に、軟骨抽出部24は、図20に示すように、ボリュームデータからスライスデータS0の隣のスライスデータS1を取り出し、そのスライスデータS1内で、点C0と同じ(X,Y)座標を持つ点を基準点R1とする。軟骨は三次元的に緩やかに湾曲した形状なので、あるスライスデータでの軟骨の上下輪郭の中点は、非常に高い確率で隣のスライスデータでも軟骨の上下輪郭の間に入ると考えられる。したがって、その基準点R1を用いて上述と同様の輪郭抽出処理を行うことができる。また、軟骨抽出部24は、それら基準点R1を通る縦線と軟骨輪郭306との交点A1及びB1の中点C1を求め、その中点C1の座標に基づき次のスライスデータS2の基準点R2を決定する。このように、スライスデータごとに基準点Rから軟骨輪郭306の点A,Bの中点Cを求め、その中点Cから隣のスライスデータでの基準点Rを定めるという処理を連鎖的に繰り返すことで、最初にあるスライスデータで基準点を1点指定すれば、残りの全てのスライスデータの基準点を自動的に定めることができる。 Next, as shown in FIG. 20, the cartilage extraction unit 24 extracts slice data S 1 adjacent to the slice data S 0 from the volume data, and is the same as the point C 0 in the slice data S 1 (X, Y). ) points with coordinates as a reference point R 1. Since the cartilage is gently curved three-dimensionally, the midpoint of the upper and lower contours of the cartilage in a certain slice data is considered to fall between the upper and lower contours of the cartilage in the adjacent slice data with a very high probability. Therefore, it is possible to perform the same outline extraction process as described above with reference to the reference point R 1. Further, cartilage extract unit 24, the center point C 1 of intersection A 1 and B 1 between the vertical line and the cartilage contour 306 therethrough reference points R 1 determined, the next slice data based on the coordinate its midpoint C 1 determining a reference point R 2 in S 2. In this way, the process of determining the midpoint C of the points A and B of the cartilage contour 306 from the reference point R for each slice data and determining the reference point R in the adjacent slice data from the midpoint C is repeated in a chain manner. Thus, if one reference point is designated in the first slice data, the reference points for all remaining slice data can be automatically determined.
なお、次のスライスデータでの基準点を求めるための点は、点A,Bの厳密な中点Cでなくてもよく、中点Cに近い範囲の点でよい。ユーザが指定した基準点そのものは、軟骨の厚み方向の上下いずれかの端に偏っている場合もあり、その場合にはその点に対応する点は隣のスライスデータでは軟骨の外に出てしまう可能性がある。これに対し、指定された基準点に基づき軟骨の上下の輪郭上の点A,Bを求め、それら上下の輪郭上の点から次のスライスデータの基準点を求めるようにすれば、軟骨の外にはみ出る可能性をほぼなくすことができる。 Note that the point for obtaining the reference point in the next slice data may not be the exact midpoint C of the points A and B, but may be a point in the range close to the midpoint C. The reference point specified by the user may be biased to either the upper or lower end in the cartilage thickness direction, and in this case, the point corresponding to that point goes out of the cartilage in the adjacent slice data. there is a possibility. On the other hand, if the points A and B on the upper and lower contours of the cartilage are obtained based on the designated reference point and the reference point of the next slice data is obtained from the points on the upper and lower contours, The possibility of overflowing can be almost eliminated.
また、このような基準点Rの自動決定処理では、あるスライスデータにて基準点Rから上下に向かって黒画素(輪郭)を探索する際に、軟骨の厚みを超える範囲まで探索しても黒画素が見つからなければ、スライスデータの配列方向についての軟骨端部に到達したと判定して処理を停止し、それ以降のスライスデータについては処理しないようにしてもよい。 Further, in such automatic determination processing of the reference point R, when searching for black pixels (contours) from the reference point R upward and downward with a certain slice data, even if searching to a range exceeding the thickness of the cartilage, it is black. If the pixel is not found, it may be determined that the end of the cartilage end in the arrangement direction of the slice data has been reached, and the processing may be stopped, and subsequent slice data may not be processed.
以上、軟骨輪郭抽出の処理例を説明した。以上ではスライスデータごとに軟骨輪郭を抽出したが、この実施形態の手法はこれに限らない。例えば二次元面内の4近傍や8近傍の代わりに、三次元空間における上下前後左右の6近傍、又は14近傍の画素を探索ウインドウとすることで、連結成分の探索は三次元のボリュームデータに対しても同様に行うことができる。したがって、ボリュームデータから直接三次元的な軟骨輪郭を抽出することもできる。 The example of the cartilage contour extraction process has been described above. In the above, the cartilage contour is extracted for each slice data, but the method of this embodiment is not limited to this. For example, instead of 4 or 8 neighbors in a two-dimensional plane, the search for connected components in the three-dimensional volume data can be performed by using pixels in the vicinity of the top, bottom, front, back, left, and right in the three-dimensional space as the search window. The same can be done for this. Therefore, a three-dimensional cartilage contour can be directly extracted from the volume data.
また、軟骨抽出部24が行う抽出処理の別の例として、次のような処理もある。すなわち、この処理では、反転・二値化後のスライスデータに対して、周知のラベリング処理を行うことで、図21に示すように、白及び黒の各連結成分1,2,3,4を抽出する。なお、ラベルの値1,2,3,4等は軟骨抽出部24が内部的に保持していればよく、必ずしも画面表示しなくてよい。そして、軟骨抽出部24は、画面表示した二値画像上で、ユーザに軟骨に該当する点をマウス等により指定させ、指定された点のラベル値を含む連結成分を、軟骨305として抽出する。 Another example of the extraction process performed by the cartilage extraction unit 24 is the following process. That is, in this process, the well-known labeling process is performed on the slice data after inversion and binarization, so that each of the white and black connected components 1, 2, 3, and 4 is obtained as shown in FIG. Extract. The label values 1, 2, 3, 4 and the like need only be held internally by the cartilage extraction unit 24 and need not necessarily be displayed on the screen. Then, the cartilage extraction unit 24 causes the user to designate a point corresponding to the cartilage with a mouse or the like on the binary image displayed on the screen, and extracts a connected component including the label value of the designated point as the cartilage 305.
さて、大腿骨遠位端の軟骨の抽出では、膝蓋骨による影が悪影響を及ぼす可能性がある。すなわち、図22に示すように、膝内部の超音波診断では、軟骨305の一部がプローブ10から見て膝蓋骨370の後ろに位置する。骨の背後は、超音波ビームの減衰や散乱などにより、エコーデータが小さく不鮮明になる。このため、輪郭抽出において軟骨305と膝蓋骨370の影375とが繋がってしまい、図23に例示するように、抽出される軟骨輪郭306に、膝蓋骨の影による不正確な部分308が含まれてしまう。そこで、以下では、そのような膝蓋骨の影響による不正確な部分を除去するために軟骨抽出部24が行う処理の例を説明する。 Now, in the extraction of the cartilage at the distal end of the femur, the shadow by the patella may have an adverse effect. That is, as shown in FIG. 22, in ultrasonic diagnosis inside the knee, a part of the cartilage 305 is located behind the patella 370 when viewed from the probe 10. Behind the bone, the echo data is small and unclear due to attenuation or scattering of the ultrasonic beam. Therefore, in the contour extraction, the cartilage 305 and the shadow 375 of the patella 370 are connected, and the extracted cartilage contour 306 includes an inaccurate portion 308 due to the shadow of the patella as illustrated in FIG. . Therefore, hereinafter, an example of processing performed by the cartilage extraction unit 24 in order to remove an inaccurate portion due to the influence of the patella will be described.
この処理の手順の一例を図24及び図25に示す。この手順では、軟骨抽出部24は、前述の例と同様、図26に例示するように、エッジ抽出結果のスライスデータ上で基準点Rの指定を受け付ける(S102)。そして、基準点Rから上下方向に向かってそれぞれ探索を行い、基準点から最も近い黒画素を見つける。見つかった黒画素が、軟骨の上下の輪郭線上の点A,Bである(S104)。ここで上側の輪郭は軟骨表面(すなわち軟骨とそれを覆う筋肉や体液との境界)であり、下側の輪郭は軟骨と大腿骨の軟骨下骨部との境界である。 An example of the procedure of this processing is shown in FIGS. In this procedure, the cartilage extraction unit 24 receives the designation of the reference point R on the slice data of the edge extraction result as illustrated in FIG. 26 as in the above example (S102). Then, a search is performed from the reference point R in the vertical direction to find a black pixel closest to the reference point. The black pixels found are points A and B on the upper and lower contour lines of the cartilage (S104). Here, the upper contour is the cartilage surface (that is, the boundary between the cartilage and the muscle and body fluid covering it), and the lower contour is the boundary between the cartilage and the subchondral bone of the femur.
次に軟骨抽出部24は、それら点A,Bをそれぞれ始点として、かつその始点から右方向及び左方向をそれぞれ進行方向として、輪郭端点検出処理(S200)を行う。この処理では、始点A,Bの2種類と、進行方向右、左の2種類と、の4種類の組合せのそれぞれについて、S200を実行することにより、軟骨の上側及び下側の輪郭のそれぞれについて、右端及び左端の点を求める。このステップS200の詳細手順の例を図25に示す。 Next, the cartilage extraction unit 24 performs contour end point detection processing (S200) with the points A and B as starting points and the right and left directions from the starting points as traveling directions, respectively. In this process, by executing S200 for each of the four types of combinations of the two types of start points A and B and the two types of right and left in the traveling direction, each of the upper and lower contours of the cartilage Find the right and left points. An example of the detailed procedure of step S200 is shown in FIG.
図25の手順では、まず、始点(点A又は点B)を注目点Piとし(S202)、注目点Piを通る接線の傾き角θiを計算する(S204)。接線の傾き角θiは、数値計算分野で用いられている公知の方法により求めればよい。例えば、注目点Piが属する輪郭線(注目輪郭線と呼ぶ)において、注目点Piの両隣の点を求め、それら両隣の点を結ぶ直線の傾きを、注目点Piを通る接線の傾き角θiとすればよい。両隣の点を用いるのは一例に過ぎず、この代わりに注目点から左右それぞれあらかじめ定めた画素数ずつ離れた2つの点を用いてもよい。図27の例では、接線の傾き角θiは、注目点Piから右方向に延びる基準線に対する角度で表現しており、時計回りが正の方向である(ただしこれは一例に過ぎない)。 In the procedure of FIG. 25, firstly, the starting point (point A or point B) as the target point P i (S202), calculates the inclination of a tangent line angle theta i through the point of interest P i (S204). The tangential inclination angle θ i may be obtained by a known method used in the field of numerical calculation. For example, the outline point of interest P i belongs (called the target contour), determine the points on both sides of the target point P i, the slope of a straight line connecting their neighboring points, and slope of the tangent line passing through the point of interest P i The angle θ i may be used. The use of both adjacent points is merely an example, and two points separated by a predetermined number of pixels on the left and right sides from the point of interest may be used instead. In the example of FIG. 27, the tangent slope angle theta i is the angle are represented by the reference line extending in the right direction from the notice point P i, clockwise is a positive direction (although this is only an example) .
次に軟骨抽出部24は、注目輪郭線上で注目点Piに対し進行方向にある隣接点Pi+1を探索する(S206)。この探索では、例えば図28に示す参照ウインドウを用いればよい。すなわち、進行方向が右方向の場合は、(a)のように、注目点Piの上下及び右、右上、右下の5画素からなる参照ウインドウ内に黒画素があれば、その黒画素を隣接点Pi+1とすればよい。進行方向が左方向の場合は、(b)のように、注目点Piの上下及び左、左上、左下の5画素からなる参照ウインドウを用いればよい。参照ウインドウ内の画素には優先順位が設定されており、参照ウインドウ内に黒画素が複数存在する場合は、それら黒画素のうち最も優先順位の高い画素が隣接点Pi+1として検出される。 Next cartilage extract unit 24 searches for a neighboring point P i + 1 in the traveling direction with respect to the point of interest P i in interest contour (S206). In this search, for example, a reference window shown in FIG. 28 may be used. That is, when the traveling direction is the right direction, as shown in (a), upper and lower and right of the target point P i, upper right, if there is a black pixel in the reference window of five pixels in the lower right, the black pixel What is necessary is just to set it as the adjacent point Pi + 1 . If the traveling direction is the left direction, so as in (b), however, upper and lower and left target point P i, the upper left, may be used a reference window comprising a lower left 5 pixels. Priorities are set for the pixels in the reference window, and when there are a plurality of black pixels in the reference window, the pixel having the highest priority among the black pixels is detected as the adjacent point P i + 1 .
次に軟骨抽出部24は、S206で隣接点Pi+1が見つかったかどうかを判定し(S208)、見つかった場合は隣接点Pi+1を通る接線の傾き角θi+1を計算する(S210)(図27参照)。そして、隣接点Pi+1を通る接線の傾き角θi+1と注目点Piを通る接線の傾き角θiとの差(絶対値)を求め、その差と、あらかじめ設定されたしきい値Thとを比較する(S212)。しきい値Thは、軟骨表面の曲率に応じて、例えば5度や10度などとあらかじめ定めておけばよい。 Next, the cartilage extraction unit 24 determines whether or not the adjacent point P i + 1 is found in S206 (S208), and if found, calculates the inclination angle θ i + 1 of the tangent line passing through the adjacent point P i + 1 (S210) (FIG. 27). reference). Then, a difference between adjacent points P i + 1 to the gradient of the tangent angle theta i through the tangent slope angle theta i + 1 and target point P i through (absolute value), and the difference, and the threshold Th that is set in advance Are compared (S212). The threshold Th may be determined in advance, for example, 5 degrees or 10 degrees according to the curvature of the cartilage surface.
その比較で、その差がしきい値Thより小さければ、隣接点Pi+1は、膝蓋骨の影響の部分には該当しないと判断し、隣接点Pi+1を次の注目点Piとし、隣接点Pi+1に対応する接線の傾き角θi+1を次の注目点Piに対応する傾き角θiとし(S214)、S206以下の処理を繰り返す。 In the comparison, if the difference is less than the threshold value Th, the adjacent point P i + 1, in part of the effects of the patella is determined that not the case, the neighboring point P i + 1 as the next target point P i, adjacent point P the tangent slope angle theta i + 1 corresponding to the i + 1 and the inclination angle theta i corresponding to the next target point P i (S214), S206 and repeats the following process.
ステップS206〜S214を繰り返すうちに、隣接点Pi+1が膝蓋骨の影による不正確な部分(図23の部分308)に達する(これに対し注目点Piは軟骨の輪郭上)と、θiとθi+1の差が大きくなる。すると、ステップS212の判定結果が否定(No)となり、処理はステップS216に進む。ステップS216では、軟骨抽出部24は、その時点での注目点Piを、進行方向についての軟骨輪郭の端点として記憶する。 While repeating steps S206 to S214, when the adjacent point P i + 1 reaches an inaccurate portion (portion 308 in FIG. 23) due to the shadow of the patella (as opposed to the attention point P i on the contour of the cartilage), θ i The difference of θ i + 1 increases. Then, the determination result of step S212 is negative (No), and the process proceeds to step S216. In step S216, cartilage extract unit 24, the target point P i at that time is stored as the end point of the cartilage contour of the traveling direction.
例えば、図29に例示するように、軟骨の上側の輪郭上の点Aから右方向に処理を進めた場合、ステップS216では、点ARが上側輪郭の右端の点として記憶される。同様に点BRが下側輪郭の右端の点として記憶される。 For example, as illustrated in FIG. 29, when advancing the process to the right from point A on the upper cartilage contour, step S216, the point A R is stored as the rightmost point of the upper edge. Likewise the point B R is stored as a point right end of the lower contour.
また、ステップS206〜S214の処理ループで、注目点Piを進行方向に移動させていくうちに、注目点Piが軟骨輪郭の端に到達してしまう場合もある。この場合、ステップS206で進行方向の隣接点Pi+1を探しても見つからないので、処理はステップS208からステップS216に進み、軟骨抽出部24は、その時点の注目点Piを、進行方向についての軟骨輪郭の端点として記憶する。例えば、図23の軟骨輪郭306で、上下の点A,B(図26参照)からそれぞれ左方向に処理を進めると、どちらも軟骨輪郭306の左端の同じ点に到達し、その点を端点として記憶して処理が終わる。 Further, in the processing loop of steps S206~S214, while going to move the target point P i in the traveling direction, there is a case where the point of interest P i will reach the edge of the cartilage contour. In this case, since the adjacent point P i + 1 in the traveling direction is not found even if it is searched in step S206, the process proceeds from step S208 to step S216, and the cartilage extracting unit 24 determines the current point of interest P i in the traveling direction. It is stored as the end point of the cartilage contour. For example, in the cartilage contour 306 in FIG. 23, when the processing proceeds to the left from the upper and lower points A and B (see FIG. 26), both reach the same point at the left end of the cartilage contour 306, and that point is the end point. Memorize and finish the process.
以上のようにして軟骨輪郭の各端点が求められると、軟骨抽出部24は、軟骨の上側、下側の各輪郭線の右端点同士、左端点同士をそれぞれ直線で結ぶ(S106,S108)。S106及びS108はどちらを先に実行してもよい。なお、上下の端点が同一点である場合は、それら両者を直線で結ぶ必要はない。 When the end points of the cartilage contour are obtained as described above, the cartilage extraction unit 24 connects the right end points and the left end points of the upper and lower contour lines of the cartilage with straight lines, respectively (S106, S108). Either of S106 and S108 may be executed first. When the upper and lower end points are the same point, it is not necessary to connect them with a straight line.
以上のような処理を図23に例示した、不正確な部分308を含んだ軟骨輪郭306に適用すると、図30に例示するように、不正確な部分308が除かれた、閉じた軟骨輪郭306aが求められる。 When the above process is applied to the cartilage contour 306 including the inaccurate portion 308 illustrated in FIG. 23, the closed cartilage contour 306a from which the inaccurate portion 308 is removed as illustrated in FIG. Is required.
以上に説明した図24及び図25の処理をボリュームデータ中の各スライスデータについて繰り返す。これにより求められたスライスデータごとの軟骨輪郭306aを組み合わせることで、膝蓋骨の影響による不正確な部分が除かれた、三次元の軟骨輪郭の表面形状が求められる。なお、この処理にも、前述の基準点Rの自動決定処理を適用することができる。基準点Rの自動決定処理を適用した場合、前述と同様に、ボリュームデータに含まれるスライスデータのうち軟骨輪郭306を含まないスライスデータには、図24及び図25の処理をしないようにすることもできる。 24 and 25 described above are repeated for each slice data in the volume data. By combining the cartilage contour 306a for each slice data obtained in this way, the surface shape of the three-dimensional cartilage contour from which an inaccurate portion due to the influence of the patella is removed is obtained. Note that the automatic determination process for the reference point R described above can also be applied to this process. When the automatic determination process of the reference point R is applied, the slice data that does not include the cartilage contour 306 among the slice data included in the volume data is not subjected to the processes of FIGS. You can also.
以上説明したように、図24及び図25の処理手順では、注目点と隣接点との間での接線の傾き角の変化(差)が軽微である間は、隣接点は軟骨輪郭306上にある(すなわち不正確な部分308上にはない)と判断する。すなわち、そのような場合には、隣接点は、軟骨輪郭306上にある注目点に対して軟骨輪郭306に沿って滑らかに連続しているので、隣接点は軟骨輪郭306上の点であると判定するのである。これに対し、注目点と隣接点との間での接線の傾き角の変化が急峻(すなわち、しきい値Th以上)となると、隣接点が不正確な部分308に入ってしまったと判断し、その隣接点の直前の注目点までが正確な軟骨輪郭306であると判断するのである。 As described above, in the processing procedure of FIGS. 24 and 25, while the change (difference) in the inclination angle of the tangent line between the target point and the adjacent point is slight, the adjacent point is on the cartilage contour 306. It is determined that there is (that is, not on the inaccurate portion 308). That is, in such a case, the adjacent points are smoothly continuous along the cartilage contour 306 with respect to the target points on the cartilage contour 306, and therefore the adjacent points are points on the cartilage contour 306. Judgment is made. On the other hand, when the change in the inclination angle of the tangent line between the target point and the adjacent point becomes steep (that is, the threshold Th or more), it is determined that the adjacent point has entered the inaccurate portion 308, It is determined that the cartilage contour 306 is accurate up to the attention point immediately before the adjacent point.
以上のような処理により、基準点Rの近傍にある軟骨輪郭306上の点A,Bに対してそれぞれ滑らかに連続する輪郭部分が、不正確な部分308が除去された正確な軟骨輪郭として抽出される。 Through the processing as described above, a contour portion that smoothly continues with respect to the points A and B on the cartilage contour 306 in the vicinity of the reference point R is extracted as an accurate cartilage contour from which the inaccurate portion 308 is removed. Is done.
以上の例では、輪郭の接線方向が急峻に変化する点を軟骨輪郭306の端点と判定したが、端点を見出すために着目する特徴は接線方向に限らない。輪郭の法線方向が急峻に変化する点を端点と判定してもよい。また、輪郭の微分係数が急激に変化する点を端点と判定してもよい。いずれにしても、この実施形態では、輪郭の方向性を示す特徴量が急峻に変化する点を端点と判定すればよい。 In the above example, the point at which the tangential direction of the contour changes sharply is determined as the end point of the cartilage contour 306, but the feature of interest for finding the end point is not limited to the tangential direction. A point at which the normal direction of the contour changes sharply may be determined as an end point. Further, a point where the contour differential coefficient changes abruptly may be determined as an end point. In any case, in this embodiment, the point at which the feature amount indicating the directionality of the contour changes sharply may be determined as the end point.
また、以上の例では、接線方向の傾き角の差をしきい値と比較することで、輪郭の方向性が急峻に変化したかどうかを判定したが、判定条件はこれに限るものではない。 Further, in the above example, it is determined whether or not the directionality of the contour has changed sharply by comparing the difference in the inclination angle in the tangential direction with a threshold value. However, the determination condition is not limited to this.
次に、軟骨輪郭306から不正確な部分308を除去する処理の変形例を説明する。この例では、軟骨に対して三次元的な関心領域(以下、ROIという。ROIはRegion Of Interestの略)を設定し、輪郭のうちROIから外れる部分を除去する。この方法では、不正確な部分308を完全に除去することは困難だが、かなりの部分は除去することができ、しかも演算処理の高速化が期待できる。以下、この変形例におけるROIの設定方法の例を説明する。 Next, a modified example of the process of removing the inaccurate portion 308 from the cartilage contour 306 will be described. In this example, a three-dimensional region of interest (hereinafter referred to as ROI, where ROI is an abbreviation of Region Of Interest) is set for cartilage, and a portion of the contour that deviates from the ROI is removed. With this method, it is difficult to completely remove the inaccurate portion 308, but a considerable portion can be removed, and the calculation processing can be speeded up. Hereinafter, an example of the ROI setting method in this modification will be described.
この例では、画像前処理部22による組織境界の方向性を考慮した平滑化結果のボリュームデータ(より好適にはそれを反転・二値化した後のデータ)をボリュームレンダリングして表示部30に三次元表示する。そして、その三次元画像表示を入力部32を介してユーザに操作させ、視点位置や視線方向を選ばせることで、図31に示すように大腿骨遠位端の軟骨305をほぼ正面から見た状態が表示されるようにする。図31の例では、便宜上、軟骨305の三次元的な奥行きを等高線で表示しているが、実際の三次元表示はこのような表示に限るものではない。また、実際の超音波計測では、膝蓋骨の影になる部分があるので、軟骨の三次元形状の全体が図31のようにはっきりと見えるわけではないが、図31では説明の便宜上、明確な形状を示しておく。 In this example, the volume data (more preferably, the data after inversion / binarization) of the smoothed result in consideration of the directionality of the tissue boundary by the image preprocessing unit 22 is volume-rendered and displayed on the display unit 30. 3D display. Then, by allowing the user to operate the three-dimensional image display via the input unit 32 and selecting the viewpoint position and the line-of-sight direction, the cartilage 305 at the distal end of the femur is viewed from substantially the front as shown in FIG. Make sure the status is displayed. In the example of FIG. 31, for convenience, the three-dimensional depth of the cartilage 305 is displayed with contour lines, but the actual three-dimensional display is not limited to such a display. Further, in actual ultrasonic measurement, since there is a portion that becomes a shadow of the patella, the entire three-dimensional shape of the cartilage is not clearly visible as shown in FIG. 31, but in FIG. Let me show you.
次に、軟骨305の二股に分かれた部分のうちの内側顆(図では二股のうちの左側)の抽出のために、内側顆で最も視点に近い点(ここがおおよそ軟骨荷重部である)を通る横方向の軸(XY軸)と縦方向の軸(VW軸)とを入力部32を介してユーザに指定させる。XY軸は内側顆の短軸であり、VW軸は内側顆の長軸である。なお、内側顆を取り上げたのは、内側顆の方が膝蓋骨により覆われる部分が少ない(特に内側顆の荷重部は、一般に、図4〜図6のように膝を大きく曲げた状態では、膝蓋骨にはほとんど隠されない)ので、軟骨についての計測に好適だからである。 Next, in order to extract the medial condyle (the left side of the bifurcated in the figure) of the bifurcated portion of the cartilage 305, the point closest to the viewpoint on the medial condyle (this is roughly the cartilage loading portion) The user is allowed to designate a horizontal axis (XY axis) and a vertical axis (VW axis) through the input unit 32. The XY axis is the short axis of the medial condyle, and the VW axis is the long axis of the medial condyle. The medial condyle is taken up because the medial condyle is less covered by the patella (especially the load part of the medial condyle is generally the patella when the knee is largely bent as shown in FIGS. This is because it is suitable for measurement of cartilage.
次に、VW軸を通り、視点から奥行方向に延びる平面(VW面500)でボリュームデータを切断し、その切断面の断層画像を表示部30に表示させる。図32はそのようなVW面500の断層画像の例である。図では、煩雑さを避けるために軟骨502の輪郭のみを示し周囲の組織の画像は示していないが、実際の断層画像では、周囲の組織の画像が存在する。ユーザは、このような断層画像を見ながら入力部32(例えばポインティングデバイス)を操作して、軟骨502の形状に沿った曲線504を指定する。 Next, the volume data is cut by a plane (VW plane 500) extending in the depth direction from the viewpoint through the VW axis, and a tomographic image of the cut plane is displayed on the display unit 30. FIG. 32 shows an example of such a tomographic image of the VW surface 500. In the drawing, only the outline of the cartilage 502 is shown and the surrounding tissue image is not shown in order to avoid complication, but the image of the surrounding tissue exists in the actual tomographic image. The user operates the input unit 32 (for example, a pointing device) while viewing such a tomographic image, and designates a curve 504 along the shape of the cartilage 502.
また、XY軸を通り、視点から奥行方向に延びる平面(XY面510)でボリュームデータを切断し、その切断面の断層画像を表示部30に表示させる。図33はそのようなXY面510の断層画像の例である。図では、煩雑さを避けるために軟骨512の輪郭のみを示し周囲の組織の画像は示していない。ユーザは、このような断層画像を見ながら入力部32を操作して、軟骨512を内包するROIの輪郭線514を指定する。ROIの輪郭線514は、軟骨512よりある程度大きくなるように指定すればよい。 Further, the volume data is cut by a plane (XY plane 510) passing through the XY axis and extending in the depth direction from the viewpoint, and a tomographic image of the cut plane is displayed on the display unit 30. FIG. 33 shows an example of such a tomographic image of the XY plane 510. In the figure, in order to avoid complexity, only the outline of the cartilage 512 is shown, and the image of the surrounding tissue is not shown. The user operates the input unit 32 while viewing such a tomographic image, and designates the ROI outline 514 that encloses the cartilage 512. The ROI outline 514 may be specified to be somewhat larger than the cartilage 512.
抽出ROI設定部34(図3参照)は、以上のように指定された輪郭線514を、その中心(すなわちVW軸上の点)が曲線504を通るように平行移動させることで、三次元的なROIが設定する。すなわち、平行移動により、図34に例示するように、XY面に平行な各面510−1〜510−5で、それぞれ輪郭線514−1〜514−5が求められ、それら輪郭線の集まりにより囲まれる内部の領域が三次元的なROIとなる。 The extraction ROI setting unit 34 (see FIG. 3) translates the contour line 514 designated as described above so that its center (that is, a point on the VW axis) passes through the curve 504, thereby obtaining a three-dimensional view. Set ROI. That is, as illustrated in FIG. 34, contour lines 514-1 to 514-5 are obtained by parallel movement on the respective surfaces 510-1 to 510-5 parallel to the XY plane, and the contour lines are collected. The enclosed inner region becomes a three-dimensional ROI.
軟骨抽出部24は、元の反転・二値化後のボリュームデータ、あるいはエッジ抽出後のボリュームデータ(図23参照)のうち、そのように求められた三次元的なROIの内部のみを切り出す。これにより、膝蓋骨の影響による不正確な部分308(図23参照)のかなりの部分を除去することができる。 The cartilage extraction unit 24 cuts out only the inside of the three-dimensional ROI thus obtained from the original volume data after inversion / binarization or volume data after edge extraction (see FIG. 23). Thereby, a considerable portion of the inaccurate portion 308 (see FIG. 23) due to the influence of the patella can be removed.
以上、軟骨抽出部24の処理内容の例を説明した。再び図3に戻ると、軟骨抽出部24により求められた軟骨の三次元形状データは、三次元データメモリ26に記憶される。画像形成部28は、その三次元データメモリ26内のデータをレンダリングして、三次元の軟骨画像を生成し、表示部30に表示する。画像形成部28は、レンダリングした軟骨画像を三次元データメモリ20内の、膝内部全体の生のボリュームデータをレンダリングした三次元画像と合成した画像を生成し、表示してもよい。合成は、例えば、軟骨画像を、膝内部全体の画像とは異なる色で表示し、両者を重畳するような処理でもよい。また、画像形成部28は、三次元データメモリ26内の軟骨形状のデータに基づき、ユーザから指定された断面での軟骨形状を表す画像を形成し、表示部30に表示してもよい。 The example of the processing content of the cartilage extraction unit 24 has been described above. Returning to FIG. 3 again, the three-dimensional shape data of the cartilage obtained by the cartilage extraction unit 24 is stored in the three-dimensional data memory 26. The image forming unit 28 renders the data in the three-dimensional data memory 26 to generate a three-dimensional cartilage image and displays it on the display unit 30. The image forming unit 28 may generate and display an image obtained by synthesizing the rendered cartilage image with a three-dimensional image obtained by rendering the raw volume data of the entire knee in the three-dimensional data memory 20. The synthesis may be, for example, a process in which the cartilage image is displayed in a color different from the image of the entire inside of the knee, and both are superimposed. The image forming unit 28 may form an image representing the cartilage shape in the cross section designated by the user based on the cartilage shape data in the three-dimensional data memory 26 and display the image on the display unit 30.
以上に説明した例では、図3に示したように、画像前処理部22及び軟骨抽出部24は、三次元データメモリ20内の座標変換後のボリュームデータに対して処理を行った。しかし、これは一例に過ぎない。この代わりに、電子走査により得られる1フレームの画像ごとに、画像前処理部22及び軟骨抽出部24が処理を行ってもよい。この場合の装置構成の例を図35に示す。図35において、図3と同様の構成要素には同一符号を付して説明を省略する。 In the example described above, as illustrated in FIG. 3, the image preprocessing unit 22 and the cartilage extraction unit 24 perform processing on the volume data after coordinate conversion in the three-dimensional data memory 20. However, this is only an example. Instead, the image preprocessing unit 22 and the cartilage extraction unit 24 may perform processing for each frame image obtained by electronic scanning. An example of the device configuration in this case is shown in FIG. In FIG. 35, the same components as those in FIG.
図35の例では、送受信部16により求められた1電子走査フレームの画像データがフレームメモリ52に蓄積される。画像前処理部22はこのフレームメモリ52内の画像データに対して上述の前処理を行い、軟骨抽出部24はその前処理結果に対して上述の軟骨抽出処理を行う。そして、座標変換部54は、軟骨抽出部24が抽出した電子走査フレームごとの軟骨輪郭の形状を、表示や保存のための共通座標系に変換し、その変換結果を三次元データメモリ26に蓄積する。また、フレームメモリ52内の電子走査フレームのデータは、座標変換部18により共通座標系へと座標変換され、その変換結果が三次元データメモリ20に格納される。 In the example of FIG. 35, image data of one electronic scanning frame obtained by the transmission / reception unit 16 is accumulated in the frame memory 52. The image preprocessing unit 22 performs the above-described preprocessing on the image data in the frame memory 52, and the cartilage extraction unit 24 performs the above-described cartilage extraction processing on the preprocessing result. Then, the coordinate conversion unit 54 converts the shape of the cartilage contour for each electronic scanning frame extracted by the cartilage extraction unit 24 into a common coordinate system for display and storage, and stores the conversion result in the three-dimensional data memory 26. To do. The data of the electronic scanning frame in the frame memory 52 is coordinate-converted into a common coordinate system by the coordinate conversion unit 18, and the conversion result is stored in the three-dimensional data memory 20.
また、以上の例では、軟骨に該当する部分(例えば基準点R)をユーザに指定させ、これを元に軟骨抽出を行ったが、これは必須ではない。例えば、回転軸42(図4参照)を膝に対して適切に位置決めすることで、軟骨の画像がボリュームデータ中の、あらかじめ定めた範囲内に位置するようにすることができる。このようなボリュームデータ(あるいはその中のスライスデータ)(例えばエッジ抽出後が好適)と、例えばあらかじめ用意した軟骨の形状・サイズを表すテンプレート画像とのマッチング処理を行うことで、おおよそ軟骨であると推定される部分を求め、その中のある点乃至領域を基準点Rなどに選ぶことができる。このような処理は自動化することができる。 In the above example, the user specifies a portion corresponding to cartilage (for example, the reference point R), and cartilage extraction is performed based on this, but this is not essential. For example, by appropriately positioning the rotation shaft 42 (see FIG. 4) with respect to the knee, the cartilage image can be positioned within a predetermined range in the volume data. By performing matching processing between such volume data (or slice data therein) (for example, after edge extraction is suitable) and a template image representing the shape and size of cartilage prepared in advance, the cartilage is roughly cartilage. An estimated portion can be obtained, and a certain point or region can be selected as the reference point R or the like. Such processing can be automated.
また、以上では膝内部のボリュームデータを得るために、電子走査の振動子アレイ12とメカ走査機構14を組み合わせたプローブ10を用いたが、この代わりに、電子的に二次元走査を行うプローブを用いてもよい。 In the above, the probe 10 that combines the electronic scanning transducer array 12 and the mechanical scanning mechanism 14 is used to obtain volume data in the knee. Instead, a probe that electronically performs two-dimensional scanning is used. It may be used.
以上に説明した実施形態によれば、超音波プローブという非侵襲で、かつMRIなどと比較して低コストの装置を用いて、大腿骨遠位端の軟骨の三次元形状を抽出することができる。 According to the embodiment described above, it is possible to extract the three-dimensional shape of the cartilage at the distal end of the femur using a non-invasive ultrasound probe and a low-cost apparatus compared to MRI or the like. .
また、上記実施形態によれば、膝蓋骨の影に対応する部分を除去することで、抽出した軟骨の形状に不正確な部分が含まれる可能性を低減することができる。 Moreover, according to the said embodiment, possibility that an inaccurate part is contained in the shape of the extracted cartilage can be reduced by removing the part corresponding to the shadow of a patella.
また、上記実施形態によれば、ボリュームデータに対して組織境界の方向に沿った平滑化を行うことで、後段の軟骨抽出のためにより好適な画像(ボリュームデータ又はスライスデータ)を生成することができる。 Further, according to the above embodiment, smoothing along the direction of the tissue boundary is performed on the volume data, thereby generating a more suitable image (volume data or slice data) for subsequent cartilage extraction. it can.
10 メカニカル三次元プローブ、12 振動子アレイ、14 メカ走査機構、16 送受信部、18 座標変換部、20 三次元データメモリ、22 画像前処理部、24 軟骨抽出部、26 三次元データメモリ、28 画像形成部、30 表示部、32 入力部、34 抽出ROI設定部、40 振動子部、42 回転軸、44 アーム、46 スタンドオフ、100 大腿骨。 10 mechanical three-dimensional probe, 12 transducer array, 14 mechanical scanning mechanism, 16 transmission / reception unit, 18 coordinate conversion unit, 20 three-dimensional data memory, 22 image preprocessing unit, 24 cartilage extraction unit, 26 three-dimensional data memory, 28 image Forming unit, 30 display unit, 32 input unit, 34 extraction ROI setting unit, 40 transducer unit, 42 rotation axis, 44 arm, 46 standoff, 100 femur.
Claims (8)
前記ボリュームデータにおける各ボクセルのエコーレベル値に基づき、前記ボリュームデータから前記軟骨に対応する部分を抽出する抽出手段と、
を備え、
前記抽出手段は、前記軟骨に対応する部分の抽出において、前記ボリュームデータにおいて前記軟骨に対応する部分と繋がっている膝蓋骨の影に対応する部分を除去する処理を行うことを特徴とする超音波診断装置。 A wave transmitting / receiving means for acquiring volume data about a three-dimensional region including cartilage at the distal end of the femur inside the knee by scanning an ultrasonic beam from the body surface on the front side of the bent knee;
Based on the echo level value of each voxel in the volume data, extraction means for extracting a portion corresponding to the cartilage from the volume data;
With
The extraction means, the extraction of the portion corresponding to the cartilage, ultrasound you and performs a process of removing a portion corresponding to the shadow of the patella in communication with the portion corresponding to the cartilage in the volume data Diagnostic device.
ことを特徴とする請求項1に記載の超音波診断装置。 The extraction means distinguishes a portion corresponding to the cartilage and a portion corresponding to the shadow of the patella based on the continuity of the contour obtained based on the echo level value of each voxel of the volume data, and the shadow of the patella. A portion corresponding to the cartilage is extracted and a portion corresponding to the cartilage is extracted,
The ultrasonic diagnostic apparatus according to claim 1 .
前記ボリュームデータに基づき表示された前記膝内部の画像において、ユーザから軟骨の内部又は表面に該当する基準点の指定を受け付ける指定手段と、
前記ボリュームデータの各ボクセルのエコーレベル値に基づき求められる輪郭から、指定された前記基準点の近傍の輪郭部分を特定し、当該輪郭部分に対し滑らかに連続する輪郭を、前記膝蓋骨の影に対応する部分が除去された前記軟骨に対応する輪郭として検出する検出手段と、
を備える、
ことを特徴とする請求項2に記載の超音波診断装置。 The extraction means includes
In the image inside the knee displayed based on the volume data, designation means for accepting designation of a reference point corresponding to the inside or surface of the cartilage from the user;
From the contour obtained based on the echo level value of each voxel of the volume data, the contour portion in the vicinity of the designated reference point is specified, and the contour that is smoothly continuous with the contour portion corresponds to the shadow of the patella. Detecting means for detecting a contour corresponding to the cartilage from which a portion to be removed is removed;
Comprising
The ultrasonic diagnostic apparatus according to claim 2 .
前記ボリュームデータにおいて、前記基準点の近傍の輪郭部分に連続する輪郭部分を順次探索し、探索した前記輪郭部分の方向が、あらかじめ定めた急峻変化条件を満たした場合に探索を停止し、当該停止までに探索された輪郭部分を、前記軟骨に対応する輪郭として検出する、
ことを特徴とする請求項3記載の超音波診断装置。 The detection means includes
In the volume data, search is sequentially performed for a contour portion that is continuous with a contour portion in the vicinity of the reference point, and when the direction of the searched contour portion satisfies a predetermined steep change condition, the search is stopped and the stop is performed. Detecting the contour portion searched so far as the contour corresponding to the cartilage,
The ultrasonic diagnostic apparatus according to claim 3 .
前記指定手段は、前記ボリュームデータ中の1つの断面スライスデータに基づき表示された2次元画像上で最初の基準点の指定を受け付け、
前記検出手段は、
第1の断面スライスデータの各ボクセルのエコーレベル値に基づき求められる輪郭から、基準点の両側のそれぞれについて近傍の輪郭部分を特定し、それら両側の輪郭部分のそれぞれに対し滑らかに連続する輪郭を検出する第1の手段と、
前記第1の断面スライスデータにおける、前記基準点の両側のそれぞれについて特定された近傍の輪郭部分の略中央の点を伝搬点として求め、前記第1の断面スライスデータに隣接する第2の断面スライスデータにおいて前記伝搬点に対応する点を、当該第2の断面スライスデータにおける基準点に決定する第2の手段と、
を備え、前記指定手段が受け付けた最初の基準点から順に各断面スライスデータの基準点を前記第2の手段に決定させ、前記第2の手段が決定した基準点に基づき前記第1の手段に当該基準点を含む断面スライスデータでの輪郭を検出させる、
ことを特徴とする請求項3記載の超音波診断装置。 The volume data can be divided into a plurality of cross-sectional slice data,
The designation means accepts designation of a first reference point on a two-dimensional image displayed based on one slice slice data in the volume data;
The detection means includes
From the contour obtained based on the echo level value of each voxel of the first slice slice data, a neighboring contour portion is specified for each of both sides of the reference point, and a smoothly continuous contour is provided for each of the contour portions on both sides. A first means for detecting;
A second cross-sectional slice adjacent to the first cross-sectional slice data is obtained as a propagation point by determining a substantially center point of the adjacent contour portion specified for each of both sides of the reference point in the first cross-sectional slice data. A second means for determining a point corresponding to the propagation point in the data as a reference point in the second cross-sectional slice data;
The second means determines the reference point of each slice slice data in order from the first reference point received by the specifying means, and the first means determines the reference point determined by the second means. To detect the contour in the slice data including the reference point,
The ultrasonic diagnostic apparatus according to claim 3 .
前記ボリュームデータにおける各ボクセルのエコーレベル値に基づき、前記ボリュームデータから前記軟骨に対応する部分を抽出する抽出手段と、
を備え、
前記抽出手段は、前記ボリュームデータに対し、組織境界の方向に沿って平滑化を行う平滑手段を備え、前記平滑手段による平滑化後のボリュームデータから前記軟骨に対応する部分を抽出し、
前記平滑手段は、
前記ボリュームデータ中の注目点について、複数の方向の中から当該注目点を中心とする当該方向の線分上の各点の画素値の分散が最大となる方向を判定する方向判定手段と、
前記注目点を通る線分であって、前記方向判定手段が判定した方向に垂直な方向の線分の上の各点の画素値に基づき、前記注目点の平滑化された画素値を計算する計算手段と、
を備え、前記ボリュームデータの各点をそれぞれ注目点として前記方向判定手段及び前記計算手段を動作させることを特徴とする請求項6記載の超音波診断装置。 A wave transmitting / receiving means for acquiring volume data about a three-dimensional region including cartilage at the distal end of the femur inside the knee by scanning an ultrasonic beam from the body surface on the front side of the bent knee;
Based on the echo level value of each voxel in the volume data, extraction means for extracting a portion corresponding to the cartilage from the volume data;
With
The extraction means includes a smoothing means for smoothing the volume data along a tissue boundary direction, and extracts a portion corresponding to the cartilage from the volume data smoothed by the smoothing means,
The smoothing means includes
Direction determination means for determining a direction in which the variance of pixel values of each point on a line segment in the direction around the target point is the maximum among the target points in the volume data;
A smoothed pixel value of the point of interest is calculated based on the pixel value of each point on the line segment passing through the point of interest and perpendicular to the direction determined by the direction determination unit. Calculation means;
The ultrasonic diagnostic apparatus according to claim 6 , wherein the direction determination unit and the calculation unit are operated with each point of the volume data as a point of interest.
前記抽出手段は、
前記ボリュームデータ中の断面スライスデータごとに、当該断面スライスデータ中の各ボクセルのエコーレベル値に基づき、軟骨に対応する部分を抽出し、
スライスデータごとに抽出された軟骨に対応する部分を合成して前記ボリュームデータにおける軟骨に対応する部分を求める、
ことを特徴とする請求項1記載の超音波診断装置。 The volume data can be divided into a plurality of cross-sectional slice data,
The extraction means includes
For each cross-sectional slice data in the volume data, based on the echo level value of each voxel in the cross-sectional slice data, extract a portion corresponding to cartilage,
Synthesize a portion corresponding to cartilage extracted for each slice data to obtain a portion corresponding to cartilage in the volume data,
The ultrasonic diagnostic apparatus according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008159204A JP5302578B2 (en) | 2008-06-18 | 2008-06-18 | Ultrasonic diagnostic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008159204A JP5302578B2 (en) | 2008-06-18 | 2008-06-18 | Ultrasonic diagnostic equipment |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011075222A Division JP2011125757A (en) | 2011-03-30 | 2011-03-30 | Ultrasonic image data processor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010000125A JP2010000125A (en) | 2010-01-07 |
JP5302578B2 true JP5302578B2 (en) | 2013-10-02 |
Family
ID=41582345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008159204A Expired - Fee Related JP5302578B2 (en) | 2008-06-18 | 2008-06-18 | Ultrasonic diagnostic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5302578B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015053007A1 (en) * | 2013-10-07 | 2015-04-16 | 古野電気株式会社 | Ultrasound diagnosis device, ultrasound diagnosis method, and ultrasound diagnosis program |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5525355B2 (en) * | 2010-07-12 | 2014-06-18 | 国立大学法人 東京大学 | Ultrasonic diagnostic equipment |
JP5632680B2 (en) | 2010-08-25 | 2014-11-26 | 日立アロカメディカル株式会社 | Ultrasonic image processing device |
US8777854B2 (en) * | 2011-09-06 | 2014-07-15 | General Electric Company | Method and system for ultrasound based automated detection, quantification and tracking of pathologies |
KR101333911B1 (en) * | 2011-11-02 | 2013-12-02 | 아주대학교산학협력단 | Simply-designed probe fixation device for the tight contracts in the suboccipital area |
JP6224341B2 (en) * | 2013-04-24 | 2017-11-01 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | Fixing device and ultrasonic diagnostic apparatus |
US10568604B2 (en) | 2014-03-12 | 2020-02-25 | Furuno Electric Co., Ltd. | Method and device for ultrasonic diagnosis |
CN109223045A (en) * | 2017-07-11 | 2019-01-18 | 中慧医学成像有限公司 | A kind of method of adjustment of orthopedic brace |
JP7326151B2 (en) * | 2019-12-27 | 2023-08-15 | キヤノンメディカルシステムズ株式会社 | Ultrasound diagnostic device, medical information processing device, and medical information processing program |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0736820B2 (en) * | 1990-09-14 | 1995-04-26 | アロカ株式会社 | Image contour enhancement processor |
US7468075B2 (en) * | 2001-05-25 | 2008-12-23 | Conformis, Inc. | Methods and compositions for articular repair |
JP3283456B2 (en) * | 1997-12-08 | 2002-05-20 | オリンパス光学工業株式会社 | Ultrasound image diagnostic apparatus and ultrasonic image processing method |
JP2002532126A (en) * | 1998-09-14 | 2002-10-02 | スタンフォード ユニバーシティ | Joint condition evaluation and damage prevention device |
US6381350B1 (en) * | 1999-07-02 | 2002-04-30 | The Cleveland Clinic Foundation | Intravascular ultrasonic analysis using active contour method and system |
JP4688262B2 (en) * | 2000-07-27 | 2011-05-25 | アロカ株式会社 | Ultrasonic diagnostic equipment |
JP3944059B2 (en) * | 2002-11-14 | 2007-07-11 | アロカ株式会社 | Ultrasonic diagnostic equipment |
JP2005102945A (en) * | 2003-09-30 | 2005-04-21 | Ssb:Kk | Biotissue multidimensional visualization equipment |
-
2008
- 2008-06-18 JP JP2008159204A patent/JP5302578B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015053007A1 (en) * | 2013-10-07 | 2015-04-16 | 古野電気株式会社 | Ultrasound diagnosis device, ultrasound diagnosis method, and ultrasound diagnosis program |
CN105636520A (en) * | 2013-10-07 | 2016-06-01 | 古野电气株式会社 | Ultrasound diagnosis device, ultrasound diagnosis method, and ultrasound diagnosis program |
JP6038338B2 (en) * | 2013-10-07 | 2016-12-07 | 古野電気株式会社 | Ultrasonic diagnostic apparatus, ultrasonic diagnostic method, and ultrasonic diagnostic program |
CN105636520B (en) * | 2013-10-07 | 2018-12-07 | 古野电气株式会社 | Diagnostic ultrasound equipment and characteristic quantity calculating method |
US11020088B2 (en) | 2013-10-07 | 2021-06-01 | Furuno Electric Co., Ltd. | Program, method and device for ultrasonic diagnosis |
Also Published As
Publication number | Publication date |
---|---|
JP2010000125A (en) | 2010-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5302578B2 (en) | Ultrasonic diagnostic equipment | |
JP5192921B2 (en) | Ultrasonic diagnostic equipment | |
JP5235103B2 (en) | Ultrasonic diagnostic equipment | |
JP2020072937A (en) | Elastography measurement system and method of the same | |
EP2135557B1 (en) | Ultrasonic diagnostic apparatus | |
US20150250446A1 (en) | Ultrasound diagnostic apparatus, image processing apparatus, and image processing method | |
JP5002181B2 (en) | Ultrasonic diagnostic apparatus and ultrasonic diagnostic apparatus control method | |
Sherebrin et al. | Freehand three-dimensional ultrasound: implementation and applications | |
JPH1156845A (en) | Ultrasonic image processor for diagnosing chest and ultrasonography | |
WO2006123742A1 (en) | Image diagnosing device | |
JP2008073305A (en) | Ultrasonic breast diagnostic system | |
EP2260766A1 (en) | Ultrasonic diagnosis apparatus and medical image processing method | |
Chen et al. | Improvement of 3-D ultrasound spine imaging technique using fast reconstruction algorithm | |
US11517284B2 (en) | Ultrasound imaging apparatus with bank tank | |
EP4149360B1 (en) | Making measurements of the hip | |
JP5525355B2 (en) | Ultrasonic diagnostic equipment | |
JP2011041804A (en) | Ultrasonic system and method for measuring number of embryonic rib | |
JP5185713B2 (en) | Artificial joint search device | |
JP2011125757A (en) | Ultrasonic image data processor | |
CN116158784A (en) | Ultrasonic diagnostic apparatus, ultrasonic image analysis apparatus, and control method thereof | |
Loizou | Ultrasound image analysis of the carotid artery | |
Leong et al. | Observer performance in characterization of carotid plaque texture and surface characteristics with 3D versus 2D ultrasound | |
EP3449838B1 (en) | Imaging method and device | |
EP3928712A1 (en) | Making measurements of the hip | |
KR102106542B1 (en) | Method and apparatus for analyzing elastography of tissue using ultrasound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110325 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110330 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130618 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130621 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |