JP5192921B2 - Ultrasonic diagnostic equipment - Google Patents
Ultrasonic diagnostic equipment Download PDFInfo
- Publication number
- JP5192921B2 JP5192921B2 JP2008163672A JP2008163672A JP5192921B2 JP 5192921 B2 JP5192921 B2 JP 5192921B2 JP 2008163672 A JP2008163672 A JP 2008163672A JP 2008163672 A JP2008163672 A JP 2008163672A JP 5192921 B2 JP5192921 B2 JP 5192921B2
- Authority
- JP
- Japan
- Prior art keywords
- cartilage
- shape
- point
- dimensional
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4209—Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
本発明は超音波診断装置に関し、特に膝の軟骨の診断のための装置に関する。 The present invention relates to an ultrasonic diagnostic apparatus, and more particularly to an apparatus for diagnosis of knee cartilage.
変形性膝関節症は、膝関節のクッションの役目を果たす軟骨の摩耗・すり減りなどが要因となって、膝の関節に炎症が起きたり、関節が変形したりして痛みが生じる病気である。変形性膝関節症は年齢とともに増加するが、発症前に、大腿骨軟骨の厚みや表面形状を正確に把握することにより変形性膝関節症に対する予防対策を施すことができる。高齢化で変形性膝関節症患者の増加が予想される現在、簡便な診断方法が期待されている。 Knee osteoarthritis is a disease in which the knee joint is inflamed or deformed, causing pain due to factors such as wear and abrasion of the cartilage that acts as a cushion for the knee joint. Although osteoarthritis of the knee increases with age, preventive measures against osteoarthritis of the knee can be taken by accurately grasping the thickness and surface shape of the femoral cartilage before onset. With the expectation that the number of knee osteoarthritis patients will increase with the aging of the population, a simple diagnostic method is expected.
変形性関節症の診断手法として、膝の中に関節鏡(内視鏡)を挿入して軟骨表面の状態を観察する方法や、レントゲン検査により関節の隙間の開き具合から推定する方法などが知られている。しかし、これらの診断手法では軟骨の厚みを計測することはできない。また、軟骨の三次元形状を抽出して提示することもできない。 Known methods for diagnosing osteoarthritis include a method of observing the condition of the cartilage surface by inserting an arthroscope (endoscope) into the knee, and a method of estimating from the degree of joint gap opening by X-ray examination. It has been. However, these diagnostic methods cannot measure the thickness of cartilage. In addition, the three-dimensional shape of cartilage cannot be extracted and presented.
これに対し、特許文献1には、関節内探触子を膝関節内に挿入して超音波を送受することで、膝関節の軟骨の厚みを評価するシステムが開示されている。しかし、このシステムは侵襲的であるため、健康診断の大勢の被検者の検査に手軽に利用できるものとはいえない。 On the other hand, Patent Document 1 discloses a system for evaluating the thickness of the cartilage of the knee joint by inserting an intra-joint probe into the knee joint and transmitting and receiving ultrasonic waves. However, since this system is invasive, it cannot be said that it can be easily used for examination of a large number of subjects for health examination.
また、MRI(Magnetic Resonance Imaging)装置は、非侵襲的な画像診断装置であり、原理上軟骨を骨や筋肉、体液などと区別して画像化することができ、軟骨の厚みも計測できる。しかしながら、MRIは利用コストが高額であり、測定にも時間が掛かるため、大勢の被検者の検査に用いるには適さない。 An MRI (Magnetic Resonance Imaging) apparatus is a non-invasive diagnostic imaging apparatus that can image cartilage in distinction from bones, muscles, body fluids, etc. in principle, and can also measure the thickness of cartilage. However, MRI is expensive to use and takes a long time to measure, so it is not suitable for testing many subjects.
また、計測により求めた軟骨の三次元形状を、同一被検者について過去に計測した軟骨の三次元形状と比較する場合、互いの形状同士を適切に位置合わせする必要がある。例えば、特許文献2には、MRIで求めた三次元の診断画像同士の位置合わせを行う装置が開示されている。 Further, when the three-dimensional shape of cartilage obtained by measurement is compared with the three-dimensional shape of cartilage measured in the past for the same subject, it is necessary to appropriately align the shapes of each other. For example, Patent Document 2 discloses an apparatus that aligns three-dimensional diagnostic images obtained by MRI.
本発明は、非侵襲で簡便に膝関節の軟骨の形状を計測すると共に、時を隔てて計測した軟骨同士の形状を位置合わせすることができる装置を提供することを特徴とする。 The present invention is characterized by providing a device capable of measuring the shape of cartilage of a knee joint in a non-invasive and simple manner and aligning the shapes of cartilages measured at intervals.
本発明に係る装置は、屈曲した膝の正面側の体表面から超音波ビームを走査することにより、膝内部の大腿骨遠位端の軟骨を含む三次元領域についてのボリュームデータを取得する送受波手段と、前記ボリュームデータにおける各ボクセルのエコーレベル値に基づき、前記ボリュームデータから前記軟骨に対応する部分を抽出する抽出手段と、前記抽出手段により抽出された前記軟骨に対応する部分の三次元形状情報を蓄積する蓄積手段と、前記蓄積手段に蓄積された過去の前記軟骨に対応する部分の三次元形状情報が表す第1の軟骨形状と、前記送受波手段により取得されたボリュームデータから前記抽出手段が抽出した現在の前記軟骨に対応する部分の三次元形状情報又は前記蓄積手段に蓄積された過去の前記軟骨に対応する部分の三次元形状情報が表す第2の軟骨形状と、を位置合わせする位置合わせ手段と、を備える。 The apparatus according to the present invention obtains volume data for a three-dimensional region including cartilage at the distal end of the femur inside the knee by scanning an ultrasonic beam from the front body surface of the bent knee. Means, extraction means for extracting a part corresponding to the cartilage from the volume data based on an echo level value of each voxel in the volume data, and a three-dimensional shape of the part corresponding to the cartilage extracted by the extraction means The extraction means from the storage means for storing information, the first cartilage shape represented by the three-dimensional shape information of the part corresponding to the past cartilage stored in the storage means, and the volume data acquired by the wave transmitting / receiving means The three-dimensional shape information of the part corresponding to the current cartilage extracted by the means or the tertiary of the part corresponding to the past cartilage stored in the storage means Comprising a second cartilage shape represented by the shape information, and alignment means for aligning, the.
この構成では、屈曲した膝の正面側の体表面から超音波ビームを走査する送受波手段を用いることで、軟骨荷重部を含んだボリュームデータを得ることができ、そのボリュームデータから軟骨に相当する部分を抽出することができる。そして、異なる複数の時点で抽出された軟骨に相当する部分同士の三次元形状同士を位置合わせ手段により位置合わせすることができる。位置合わせの結果、例えば、異なる複数の時点で抽出された軟骨形状の間で、同じ点や範囲を指定してそれらの点や範囲での軟骨の厚みその他の状態の変化を調べることが容易になる。 In this configuration, volume data including a cartilage load portion can be obtained by using a wave transmitting / receiving unit that scans an ultrasonic beam from the body surface on the front side of the bent knee, and corresponds to cartilage from the volume data. A part can be extracted. Then, the three-dimensional shapes of the portions corresponding to the cartilage extracted at a plurality of different time points can be aligned by the alignment means. As a result of alignment, for example, it is easy to specify the same point or range between cartilage shapes extracted at different points in time, and examine changes in cartilage thickness and other conditions at those points and ranges Become.
本発明では、前記位置合わせ手段は、前記第1の軟骨形状及び前記第2の軟骨形状の各々において軟骨荷重部に該当する点の指定をユーザから受け付け、指定された軟骨荷重部が一致するように前記第1の軟骨形状と前記第2の軟骨形状を位置合わせする。 In the present invention , the positioning means accepts designation of a point corresponding to the cartilage load portion in each of the first cartilage shape and the second cartilage shape from the user, and the designated cartilage load portion matches. And aligning the first cartilage shape and the second cartilage shape.
通常のパターンマッチングのように第1の軟骨形状と第2の軟骨形状とを様々にずらしながら総当たりで最良のマッチングを求めることも可能であるが、それでは計算量が膨大なものとなる。これに対して、この態様では、ユーザ(例えば診断者)にとって比較的分かりやすい軟骨荷重部をユーザに指定させ、これを位置合わせの基準とすることで、より少ない計算量で、妥当な位置合わせを実現できる。 Although it is possible to obtain the best matching with brute force while variously shifting the first cartilage shape and the second cartilage shape as in normal pattern matching, the calculation amount is enormous. On the other hand, in this aspect, by allowing the user (for example, a diagnostician) to specify a relatively easy-to-understand cartilage load portion and using this as a reference for alignment, reasonable alignment can be achieved with a smaller amount of calculation. Can be realized.
更に本発明では、前記位置合わせ手段は、前記第1の軟骨形状及び前記第2の軟骨形状の各々において軟骨の形状に応じた軸方向として、前記軟骨荷重部を通る、前記軟骨に対応する部分の長手方向又は短手方向の指定をユーザから受け付け、指定された軸方向が一致するように前記第1の軟骨形状と前記第2の軟骨形状を位置合わせする。
In a further the invention, the alignment means, as the first cartilage shape and axial direction according to the shape of the cartilage in each of the second cartilage shape, through the cartilage load portion, corresponding to the cartilage The designation of the longitudinal direction or the short direction of the part is received from the user, and the first cartilage shape and the second cartilage shape are aligned so that the designated axial directions coincide.
この態様では、更に第1の軟骨形状及び前記第2の軟骨形状にそれぞれ軸方向を指定させ、その軸方向が一致するように位置合わせするので、位置合わせのための計算量を更に減らすことができる。 In this aspect, the axial direction is further specified for the first cartilage shape and the second cartilage shape, and the alignment is performed so that the axial directions coincide with each other, so that the calculation amount for the alignment can be further reduced. it can.
更なる態様では、前記位置合わせ手段は、前記第1の軟骨形状及び前記第2の軟骨形状の各々について、前記軟骨荷重部と前記軸方向と前記大腿骨の骨軸の方向とにより規定される第1の平面での断面形状を求め、前記第1の軟骨形状についての前記断面形状と前記第2の軟骨形状についての前記断面形状とのマッチングにより、前記第1の軟骨形状と前記第2の軟骨形状を位置合わせする。 In a further aspect, the alignment means is defined by the cartilage load portion, the axial direction, and the direction of the bone axis of the femur for each of the first cartilage shape and the second cartilage shape. A cross-sectional shape in a first plane is obtained, and the first cartilage shape and the second cartilage shape are matched by matching the cross-sectional shape with respect to the first cartilage shape and the cross-sectional shape with respect to the second cartilage shape. Align cartilage shape.
この態様では、第1の軟骨形状と第2の軟骨形状の同一断面での断面形状同士のマッチングを行うことで、三次元形状同士のマッチングよりも更に計算量を減らすことができる。 In this aspect, by performing matching between cross-sectional shapes in the same cross section of the first cartilage shape and the second cartilage shape, the calculation amount can be further reduced as compared with matching between three-dimensional shapes.
更なる態様では、前記位置合わせ手段は、更に、前記第1の軟骨形状及び前記第2の軟骨形状の各々について、前記軟骨荷重部から前記大腿骨の骨軸の方向に延びる直線を含む平面であって、前記第1の平面とは異なる第2の平面での断面形状をそれぞれ求め、前記第1の軟骨形状の前記第2の平面についての断面形状と前記第2の軟骨形状の前記第2の平面についての断面形状とのマッチングにより、前記第1の軟骨形状と前記第2の軟骨形状を位置合わせする。 In a further aspect, the alignment means further includes a plane including a straight line extending from the cartilage load portion toward the bone axis of the femur for each of the first cartilage shape and the second cartilage shape. A cross-sectional shape on a second plane different from the first plane is obtained, and a cross-sectional shape on the second plane of the first cartilage shape and the second of the second cartilage shape are obtained. The first cartilage shape and the second cartilage shape are aligned by matching with the cross-sectional shape of the plane.
別の態様では、前記位置合わせ手段は、前記送受波手段と前記大腿骨の骨軸との配置関係に応じて、前記第1の軟骨形状及び前記第2の軟骨形状を、前記骨軸に沿って前記膝の外側から前記軟骨を見る方向で見たときの画像をそれぞれ生成して表示装置に表示させ、それら各画像上で軟骨荷重部をそれぞれユーザに指定させる。 In another aspect, the positioning means moves the first cartilage shape and the second cartilage shape along the bone axis according to the positional relationship between the wave transmitting / receiving means and the bone axis of the femur. Then, an image when the cartilage is viewed from the outside of the knee is generated and displayed on a display device, and a cartilage load portion is specified by the user on each of the images.
この態様によれば、ユーザにとって軟骨荷重部を指定しやすくなる。 According to this aspect, it becomes easy for the user to specify the cartilage load portion.
本発明によれば、非侵襲で簡便に膝関節の軟骨の形状を計測すると共に、時を隔てて計測した軟骨同士の形状を位置合わせすることができる According to the present invention, the shape of the cartilage of the knee joint can be measured easily and non-invasively, and the shapes of the cartilages measured over time can be aligned.
この実施形態では、膝関節における大腿骨遠位端部の軟骨の形状情報や厚みその他の評価値を、超音波を用いて取得・算出するとともに、時を隔てて計測した軟骨形状同士を位置合わせすることで、両者の比較を容易にする装置を提供する。 In this embodiment, the cartilage shape information and thickness and other evaluation values of the distal end of the femur in the knee joint are acquired and calculated using ultrasound, and the cartilage shapes measured at intervals are aligned. By doing so, an apparatus that facilitates comparison between the two is provided.
実施形態の装置構成例を説明する前に、当該装置が対象とする膝関節(特に人間の)の内部構造について、図1を参照して簡単に説明する。図1は、立位での右足の膝関節の、体の正面側から見たときの模式的な断面図である。 Before describing an apparatus configuration example of an embodiment, the internal structure of a knee joint (particularly human) targeted by the apparatus will be briefly described with reference to FIG. FIG. 1 is a schematic cross-sectional view of the knee joint of the right leg in a standing position when viewed from the front side of the body.
図1に示すように、膝関節は、大腿骨100の遠位端部と、脛骨120の近位端部と、膝蓋骨130とから構成される。大腿骨100の遠位端の表面は軟骨105で覆われ、脛骨120の近位端の表面は軟骨125で覆われている。骨(例えば大腿骨100)の表面のうち軟骨で覆われた部分は、軟骨下骨と呼ばれる。大腿骨100の軟骨105と脛骨の軟骨125との間には半月板110が存在している。大腿骨100の遠位端は、立位の身体の正面方向から見た場合、図示のように二股に分かれて突起(それぞれ内側顆、外側顆と呼ばれる)しており、内側顆及び外側顆の軟骨105は、内側及び外側の半月板110にそれぞれ空いた穴を介して、脛骨120の近位端の軟骨125と接している。なお、以上に説明した膝関節部分は滑膜及び関節包140により覆われている。 As shown in FIG. 1, the knee joint includes a distal end portion of the femur 100, a proximal end portion of the tibia 120, and a patella 130. The surface of the distal end of the femur 100 is covered with cartilage 105, and the surface of the proximal end of the tibia 120 is covered with cartilage 125. A portion of the surface of the bone (for example, the femur 100) covered with cartilage is called a subchondral bone. A meniscus 110 is present between the cartilage 105 of the femur 100 and the cartilage 125 of the tibia. When viewed from the front of the standing body, the distal end of the femur 100 has a bifurcated projection (referred to as a medial condyle and a lateral condyle, respectively) as shown in the figure. The cartilage 105 is in contact with the cartilage 125 at the proximal end of the tibia 120 through holes formed in the inner and outer meniscus 110, respectively. Note that the knee joint portion described above is covered with the synovium and the joint capsule 140.
大腿骨100の遠位端の軟骨105は、当該遠位端部の表面を広く覆っているが、そのうち立位の際に脛骨120の近位端の軟骨125と接する部分は、上半身の荷重を強く受ける部分である。この部分は、軟骨荷重部と呼ばれる。軟骨荷重部は摩耗しやすく、摩耗が著しくなると変形性膝関節症を引き起こす。変形性膝関節症の診断には軟骨荷重部の軟骨厚みが重要な判断指標となる。 The cartilage 105 at the distal end of the femur 100 covers the surface of the distal end widely, and a portion of the cartilage 125 that contacts the cartilage 125 at the proximal end of the tibia 120 in the standing position carries a load on the upper body. It is the part that receives strongly. This portion is called a cartilage load portion. The cartilage loading part is easily worn, and if the wear becomes significant, it causes knee osteoarthritis. For the diagnosis of knee osteoarthritis, the cartilage thickness of the cartilage loading part is an important judgment index.
人間の大腿骨100の遠位端の軟骨105の厚みは健常者で2〜3mm程度と薄いものである。したがって、超音波診断の手法でその厚みを精度よく測定しようとすれば、軟骨105の表面に対してできるだけ垂直に近い角度で超音波ビームを当てることが望ましい。ところが、立位では、大腿骨100の遠位端の軟骨荷重部は脛骨120の軟骨125に接しているので、仮にこの状態で軟骨荷重部の表面に垂直に近い角度で超音波ビームを当てようとすれば、脛骨側から上に向けて超音波ビームを当てる必要がある。しかし、そのような位置に超音波プローブを当てることは不可能である。また、仮にそのような位置に超音波プローブを配置できたとしても、軟骨は大腿骨又は脛骨の影になるので、超音波は軟骨には届きにくく、軟骨を画像化することは困難である。 The thickness of the cartilage 105 at the distal end of the human femur 100 is as thin as about 2 to 3 mm for a healthy person. Therefore, in order to accurately measure the thickness by an ultrasonic diagnostic technique, it is desirable to irradiate the ultrasonic beam at an angle as close to perpendicular to the surface of the cartilage 105 as possible. However, in the standing position, the cartilage load portion at the distal end of the femur 100 is in contact with the cartilage 125 of the tibia 120, and in this state, let's apply an ultrasonic beam at an angle close to the surface of the cartilage load portion. In this case, it is necessary to apply an ultrasonic beam from the tibia side upward. However, it is impossible to apply an ultrasonic probe to such a position. Even if the ultrasonic probe can be arranged at such a position, since the cartilage becomes a shadow of the femur or tibia, the ultrasonic wave hardly reaches the cartilage and it is difficult to image the cartilage.
これに対し、例えば椅子に座るなどして膝を大きく(例えば90度程度まで)曲げると、図2に示すように、大腿骨100遠位端の軟骨105の荷重部108が脛骨側から外れ、膝頭の正面側を向くようになる(図示の荷重部108は内側顆のものであり、外側顆の荷重部は図示を省略している。)。したがって、膝頭の正面側からプローブを当てれば、荷重部108の表面に対して垂直に近い角度で超音波ビームを当てることができる。そこで、この実施形態では、椅子に座るなどして膝を大きく曲げた状態で、超音波プローブにより大腿骨遠位端の軟骨の荷重部を含む膝内部の三次元領域のエコーを取得し、それらエコー信号に基づき軟骨の三次元形状を求める。 On the other hand, when the knee is bent largely (for example, up to about 90 degrees) by sitting on a chair, for example, the load portion 108 of the cartilage 105 at the distal end of the femur 100 is detached from the tibia side, as shown in FIG. It faces the front side of the kneecap (the load portion 108 shown is that of the medial condyle, and the load portion of the lateral condyle is not shown). Therefore, if the probe is applied from the front side of the kneecap, the ultrasonic beam can be applied at an angle close to perpendicular to the surface of the load portion 108. Therefore, in this embodiment, in a state where the knee is greatly bent by sitting on a chair or the like, echoes of a three-dimensional region inside the knee including the load part of the cartilage at the distal end of the femur are acquired by an ultrasonic probe, The three-dimensional shape of the cartilage is obtained based on the echo signal.
図3に、実施形態の超音波診断装置の機能構成の一例を示す。この例では、膝内部の三次元領域のエコーを取得するための超音波プローブとして、メカニカル三次元プローブ10を用いる。メカニカル三次元プローブ10は、振動素子が1次元配列された振動子アレイ12と、メカ走査機構14とを備える。 FIG. 3 shows an example of a functional configuration of the ultrasonic diagnostic apparatus according to the embodiment. In this example, the mechanical three-dimensional probe 10 is used as an ultrasonic probe for acquiring an echo of a three-dimensional region inside the knee. The mechanical three-dimensional probe 10 includes a transducer array 12 in which vibration elements are arranged one-dimensionally and a mechanical scanning mechanism 14.
振動アレイ12によって超音波ビームが形成され、その超音波ビームは電子走査される。電子走査方式としては電子セクタ走査、電子リニア走査等が公知である。 An ultrasonic beam is formed by the vibration array 12, and the ultrasonic beam is electronically scanned. As the electronic scanning method, electronic sector scanning, electronic linear scanning, and the like are known.
メカ走査機構14は、振動子アレイ12を、当該アレイ12の電子走査の走査面と略垂直な方向に機械走査する。振動子アレイ12による電子走査とメカ走査機構14による機械走査の組合せにより、三次元領域がカバーされる。すなわち、一回の電子走査により1つの電子走査面の断層画像データを得ることができ、機械走査の走査位置ごとに電子走査を行うことで、複数の電子走査面の断層画像データの集まりを得ることができる。機械走査範囲全体の断層画像データの集まりが、メカニカル三次元プローブ10の走査範囲についての1つのボリュームデータである。 The mechanical scanning mechanism 14 mechanically scans the transducer array 12 in a direction substantially perpendicular to the scanning surface of the array 12 for electronic scanning. A three-dimensional region is covered by a combination of electronic scanning by the transducer array 12 and mechanical scanning by the mechanical scanning mechanism 14. That is, tomographic image data of one electronic scanning surface can be obtained by one electronic scanning, and a collection of tomographic image data of a plurality of electronic scanning surfaces is obtained by performing electronic scanning for each scanning position of mechanical scanning. be able to. A collection of tomographic image data in the entire mechanical scanning range is one volume data for the scanning range of the mechanical three-dimensional probe 10.
振動子アレイ12の電子走査形状は特に限定されず、例えば軟骨105の横幅をカバーする程度の幅(アレイ長)を持つリニア走査の振動子アレイ12を用いることもできる。また、コンベックス走査、コンケーブ(凹形)走査のプローブを用いてもよい。 The electronic scanning shape of the transducer array 12 is not particularly limited. For example, a linear scanning transducer array 12 having a width (array length) enough to cover the lateral width of the cartilage 105 can be used. Further, a probe for convex scanning or concave (concave) scanning may be used.
また、例えば図4に示す例では、メカ走査機構14は、椅子等に座った状態で屈曲された膝に対し、太もも側から脛側まで膝頭に沿って上下にアーク(コンケーブ)走査を行う。図4は、被検者の膝を側面側から見た状態の図である。振動子アレイ12のアレイ方向は例えば図4の紙面に垂直な方向である。またメカ走査機構14の機械走査方向は、大腿骨100の遠位部に位置決めされた回転軸42を中心に、図中の矢印で示すように、上下に回転する方向である。回転軸42は、膝頭の両側にそれぞれ設ければよい。振動子アレイ12を収容する振動子部40の両側面には、各々の側の回転軸42から延びるアーム44が取り付けられており、図示しない駆動機構により振動子部40を矢印方向に動かすことができる。振動子部40の振動子アレイ12側には、水などの音響カップリング剤を封じた柔軟なスタンドオフ46が設けられている。測定時には、スタンドオフ46の一方の面が膝頭の形状に密着し、他方の面に沿って振動子アレイ12が矢印方向に移動する。図示は省略したが、これら振動子部40、回転軸42、アーム44、スタンドオフ46、振動子部40の駆動機構などは筐体内に収容することができる。その筐体には、膝を収容するための凹部が形成されており、その凹部にスタンドオフ46が設けられる。そして、その筐体を膝にかぶせてその凹部に膝頭を収容すると、スタンドオフ46やその近傍の筐体構造が例えば大腿200の上部や膝頭、脛等に当接する。これにより、回転軸42が大腿骨120の遠位部の、あらかじめ定めた範囲に位置決め固定されることになる。メカ走査機構14の走査は、モータなどを用いた自動走査でもよいし、手動で振動子部40を円弧状のガイドに沿って移動させる方式でもよい。メカ走査機構14は、振動子部40の回転位置(すなわち電子走査面の角度)を求めるエンコーダを備えている。このエンコーダの出力から、振動子アレイ12の電子走査面の角度が分かるので、その走査面における各点の三次元的な位置を求めることができる。 For example, in the example shown in FIG. 4, the mechanical scanning mechanism 14 performs an arc (concave) scanning up and down along the kneecap from the thigh side to the shin side with respect to the knee bent while sitting on a chair or the like. FIG. 4 is a view of the subject's knee as viewed from the side. The array direction of the transducer array 12 is, for example, a direction perpendicular to the paper surface of FIG. The mechanical scanning direction of the mechanical scanning mechanism 14 is a direction in which the mechanical scanning mechanism 14 rotates up and down as shown by arrows in the figure, with the rotation shaft 42 positioned at the distal portion of the femur 100 as the center. The rotation shafts 42 may be provided on both sides of the kneecap. Arms 44 extending from the respective rotating shafts 42 are attached to both side surfaces of the transducer unit 40 that accommodates the transducer array 12, and the transducer unit 40 can be moved in the direction of the arrow by a drive mechanism (not shown). it can. A flexible stand-off 46 in which an acoustic coupling agent such as water is sealed is provided on the transducer array 12 side of the transducer unit 40. At the time of measurement, one surface of the standoff 46 is in close contact with the shape of the kneecap, and the transducer array 12 moves in the direction of the arrow along the other surface. Although not shown, the vibrator unit 40, the rotating shaft 42, the arm 44, the standoff 46, the drive mechanism of the vibrator unit 40, and the like can be housed in a housing. The housing is formed with a recess for accommodating the knee, and a standoff 46 is provided in the recess. Then, when the housing is placed on the knee and the kneecap is housed in the recess, the standoff 46 and the housing structure in the vicinity thereof come into contact with the upper portion of the thigh 200, the kneecap, the shin, and the like. Thereby, the rotation shaft 42 is positioned and fixed in a predetermined range of the distal portion of the femur 120. The scanning of the mechanical scanning mechanism 14 may be automatic scanning using a motor or the like, or may be a method in which the transducer unit 40 is manually moved along an arcuate guide. The mechanical scanning mechanism 14 includes an encoder that obtains the rotational position of the transducer unit 40 (that is, the angle of the electronic scanning surface). Since the angle of the electronic scanning plane of the transducer array 12 is known from the output of this encoder, the three-dimensional position of each point on the scanning plane can be obtained.
なお、図4に例示したような走査機構はあくまで一例に過ぎない。例えば、機械的なアーク走査のための上に例示したものに限られない。また、筐体を上下及び/又は前後に移動させる機構を設け、この機構により回転軸42を膝に対して位置決めするようにしてもよい。また、アーク走査の代わりに図5に示すように曲げた膝の前面に沿って振動子部40(振動子の配列方向は紙面に垂直)をリニアに機械走査してもよい。もちろん、機械走査の形状は、アークやリニアに限られるものではない。なお、アーク走査は、略円弧状に湾曲している軟骨100の多くの範囲に対し、垂直に近い方向から超音波ビームを当てることができる。 Note that the scanning mechanism illustrated in FIG. 4 is merely an example. For example, it is not limited to the above-described examples for mechanical arc scanning. Further, a mechanism for moving the casing up and down and / or back and forth may be provided, and the rotation shaft 42 may be positioned with respect to the knee by this mechanism. Further, instead of arc scanning, the transducer unit 40 (the arrangement direction of the transducers is perpendicular to the paper surface) may be linearly scanned along the front surface of the bent knee as shown in FIG. Of course, the shape of mechanical scanning is not limited to arc or linear. In the arc scanning, an ultrasonic beam can be applied to a large range of the cartilage 100 that is curved in a substantially arc shape from a direction close to vertical.
また、以上の例は、身体の横方向に素子配列方向に一致させるように配置した振動子部40を、身体の縦方向に沿って機械的にアーク走査又はリニア走査するものであったが、これは一例に過ぎない。この代わりに、図6に示すように身体の縦方向を素子配列方向とした振動子部40を身体の横方向に機械走査するようにしてもよい。図6はリニア走査を示しているが、これに限らず、アーク走査や他の走査形状でも構わない。 In the above example, the transducer unit 40 arranged so as to match the element arrangement direction in the horizontal direction of the body is mechanically arc-scanned or linear-scanned along the vertical direction of the body. This is only an example. Instead of this, as shown in FIG. 6, the transducer unit 40 having the vertical direction of the body as the element arrangement direction may be mechanically scanned in the horizontal direction of the body. Although FIG. 6 shows linear scanning, the present invention is not limited to this, and arc scanning or other scanning shapes may be used.
図3の説明に戻ると、送受信部16は、振動子アレイ12及びメカ走査機構14を駆動・制御して超音波ビームの送受信、電子走査、機械走査を実現する。送受信部16は、送信部の機能と受信部の機能を備える。送信部は送信ビームフォーマーとして機能する。すなわち、送信部から複数の送信信号が振動子アレイ12の複数の振動素子に対して供給される。これによって振動子アレイ12から超音波ビームパルスが生体内に放射される。生体内からの反射波は、振動子アレイ12にて受波される。これにより複数の振動素子から複数の受信信号が出力される。それらの受信信号は送受信部16の受信部に入力される。受信部は受信ビームフォーマーとして機能する。すなわち、複数の受信信号に対して整相加算処理を適用する。また受信部は、対数圧縮処理、フィルタ処理等といった各種の信号処理を行う。そのような処理を経た受信信号が、座標変換部18に入力される。受信信号は、被検体内の各点でのエコーレベル値を表す。 Returning to the description of FIG. 3, the transmission / reception unit 16 drives and controls the transducer array 12 and the mechanical scanning mechanism 14 to realize transmission / reception of ultrasonic beams, electronic scanning, and mechanical scanning. The transmission / reception unit 16 includes a transmission unit function and a reception unit function. The transmission unit functions as a transmission beam former. That is, a plurality of transmission signals are supplied from the transmission unit to the plurality of vibration elements of the transducer array 12. Thereby, an ultrasonic beam pulse is emitted from the transducer array 12 into the living body. The reflected wave from the living body is received by the transducer array 12. Thereby, a plurality of reception signals are output from the plurality of vibration elements. Those received signals are input to the receiving unit of the transmitting / receiving unit 16. The receiving unit functions as a receiving beam former. That is, the phasing addition process is applied to a plurality of received signals. The receiving unit performs various signal processing such as logarithmic compression processing and filter processing. The reception signal that has undergone such processing is input to the coordinate conversion unit 18. The received signal represents an echo level value at each point in the subject.
座標変換部18は、入力された受信信号(エコー信号)に対し、表示、画像処理、保存などのためのあらかじめ定めた共通座標系、例えば三次元デカルト座標系(XYZ座標系)、への座標変換処理を施す。すなわち、受信信号は被検体内各点のエコー強度の情報を含んでいるが、この場合の各点は、プローブ10の電子走査及び機械走査の走査形状により規定されるプローブ座標系でのものである。例えば、図4の例のように電子リニア走査の振動子アレイ12を機械的にアーク走査する場合、被検体内の点は、機械アーク走査の回転角θ、電子リニア走査における走査位置x、及びプローブ10からの距離(深さ)dからなる座標系で表現される。電子走査位置x及び距離dは送受信部16から得ることができ、機械走査位置(回転角θ)はメカ走査機構14が備えるエンコーダから得ることができる。このように、送受信部16が出力する受信信号は、プローブ座標系でのボリュームデータを表す。座標変換部18は、ボリュームデータをプローブ座標系から表示等のための共通座標系に座標変換するのである。また、座標変換部18は、共通座標系の点(ボクセル)のうち受信信号のデータ(エコーレベル値)がない点のデータを、その点の周囲の各点のデータを補間することにより求める。医用三次元画像における座標変換や補間は周知技術なので、これ以上の説明は省略する。 The coordinate converter 18 coordinates the input received signal (echo signal) to a predetermined common coordinate system for display, image processing, storage, etc., for example, a three-dimensional Cartesian coordinate system (XYZ coordinate system). Perform conversion processing. In other words, the received signal includes information on the echo intensity at each point in the subject. In this case, each point is in the probe coordinate system defined by the scanning shape of the electronic scanning and mechanical scanning of the probe 10. is there. For example, when the electronic linear scanning transducer array 12 is mechanically arc-scanned as in the example of FIG. 4, the points in the subject are the rotation angle θ of the mechanical arc scanning, the scanning position x in the electronic linear scanning, and It is expressed in a coordinate system consisting of a distance (depth) d from the probe 10. The electronic scanning position x and the distance d can be obtained from the transmission / reception unit 16, and the mechanical scanning position (rotation angle θ) can be obtained from an encoder provided in the mechanical scanning mechanism 14. Thus, the reception signal output from the transmission / reception unit 16 represents volume data in the probe coordinate system. The coordinate conversion unit 18 converts the volume data from the probe coordinate system to a common coordinate system for display or the like. In addition, the coordinate conversion unit 18 obtains data of points having no received signal data (echo level value) among points (voxels) in the common coordinate system by interpolating data of points around the point. Since coordinate transformation and interpolation in a medical three-dimensional image are well-known techniques, further explanation is omitted.
座標変換部18により座標変換された受信信号は、三次元データメモリ20に書き込まれる。三次元データメモリ20には、表示等のための共通座標系での各点(ボクセル)のエコーレベル値が記憶されることになる。すなわち、三次元データメモリ20には、座標変換後のボリュームデータが記憶される。 The received signal that has undergone coordinate transformation by the coordinate transformation unit 18 is written into the three-dimensional data memory 20. The three-dimensional data memory 20 stores an echo level value of each point (voxel) in a common coordinate system for display or the like. That is, the volume data after coordinate conversion is stored in the three-dimensional data memory 20.
画像形成部28は、この三次元データメモリ20に記憶されたボリュームデータから、表示部30に表示する画像を生成する。例えば、画像形成部28は、指定された視点からボリュームデータをレンダリングすることで、その視点から見た被検体内部の三次元画像を生成する。また、画像形成部28は、ボリュームデータの中の指定された1以上の各断面(スライス)の画像を生成する機能を備えていてもよい。また、画像形成部28は、それら三次元画像や断面画像のうちの複数を1つの画面に配列する機能を持っていてもよい。 The image forming unit 28 generates an image to be displayed on the display unit 30 from the volume data stored in the three-dimensional data memory 20. For example, the image forming unit 28 renders volume data from a designated viewpoint, thereby generating a three-dimensional image inside the subject viewed from the viewpoint. Further, the image forming unit 28 may have a function of generating an image of one or more specified cross sections (slices) in the volume data. Further, the image forming unit 28 may have a function of arranging a plurality of these three-dimensional images and cross-sectional images on one screen.
また、画像形成部28は、後述する軟骨抽出部24により抽出される大腿骨遠位端の軟骨の三次元形状情報に基づき、軟骨の三次元画像や断面画像を生成する機能を備える。また、生成した軟骨の三次元画像や断面画像を、走査範囲全体の三次元画像や断面画像に合成する機能を備えていてもよい。この合成では、軟骨の画像を走査範囲の他の部分から強調するようにしてもよい。例えば、軟骨の画像の色を走査範囲の他の部分の色とは異なった色とするなどである。 The image forming unit 28 has a function of generating a three-dimensional image or a cross-sectional image of cartilage based on the three-dimensional shape information of the cartilage at the distal end of the femur extracted by the cartilage extracting unit 24 described later. Further, a function of synthesizing the generated three-dimensional image or cross-sectional image of cartilage with the three-dimensional image or cross-sectional image of the entire scanning range may be provided. In this synthesis, the cartilage image may be emphasized from other parts of the scanning range. For example, the color of the cartilage image may be different from the color of other parts of the scanning range.
また、画像形成部28は、後述する定量化処理部34により計算される軟骨についての定量化データ(例えば軟骨の厚みなど)を、例えば数値などの形で表示画像に合成する機能を備える。 Further, the image forming unit 28 has a function of combining quantification data (for example, cartilage thickness) of cartilage calculated by a quantification processing unit 34, which will be described later, with a display image in the form of numerical values, for example.
この他、必須ではないが、画像形成部28は、超音波診断装置が備える他の機能(例えばドプラ画像生成機能など)により得られる情報から、カラーフローマッピング画像(二次元血流画像)、カラー組織画像(組織運動表示画像)、パワードプラ画像などの各種画像を形成する機能を備えていてもよい。また、それら各種画像を、上述の三次元画像や軟骨の画像と合成して表示する機能を備えていてもよい。 In addition, although not essential, the image forming unit 28 uses a color flow mapping image (two-dimensional blood flow image), color, and the like from information obtained by other functions (for example, a Doppler image generation function) provided in the ultrasonic diagnostic apparatus. A function of forming various images such as a tissue image (tissue motion display image) and a power Doppler image may be provided. Moreover, you may provide the function which synthesize | combines and displays these various images with the above-mentioned three-dimensional image and the image of a cartilage.
画像形成部28は、例えばDSC(デジタルスキャンコンバータ)などにより構成される。画像形成部28によって生成された画像が、表示部30に表示される。 The image forming unit 28 is configured by, for example, a DSC (digital scan converter). An image generated by the image forming unit 28 is displayed on the display unit 30.
更に図3を参照して、軟骨抽出のための構成について説明する。 Further, a configuration for cartilage extraction will be described with reference to FIG.
画像前処理部22は、三次元データメモリ20中のボリュームデータ、又はそのボリュームデータ中の断面のスライスデータに対して、軟骨抽出に適した画像にするための前処理を行う。画像前処理部22が行う前処理は、例えばノイズ低減のための平滑化、又は軟骨境界を明確化させるためのエッジ強調、又はその両方を含んだ処理である。以下、一例として、軟骨の形状特徴を利用した前処理の例を、図7〜図13を参照して説明する。この例は、ボリュームデータを、一方向に並んだ複数の断面スライスデータ(例えばXYZ座標系でX軸方向についてあらかじめ定めた間隔ごとにX=一定の断面をとったもの)に分解し、スライスデータごとに前処理を行う場合の例である。 The image preprocessing unit 22 performs preprocessing for making an image suitable for cartilage extraction on the volume data in the three-dimensional data memory 20 or the slice data of the cross section in the volume data. The preprocessing performed by the image preprocessing unit 22 is, for example, processing including smoothing for noise reduction, edge enhancement for clarifying the cartilage boundary, or both. Hereinafter, as an example, an example of preprocessing using the shape feature of cartilage will be described with reference to FIGS. In this example, volume data is decomposed into a plurality of slice slice data arranged in one direction (for example, X = constant slice taken at predetermined intervals in the X-axis direction in the XYZ coordinate system) and slice data. It is an example in the case of performing preprocessing for each.
図7は、超音波ビームの走査により得られる膝内部の断層画像を模式的に例示する図である。このような断面画像は、例えば、三次元データメモリ20内のボリュームデータから取り出された1断面のスライスデータを表示したものである。図7の断面画像例では、大腿骨300の内部,軟骨305の内部,及び音響カップリング剤が封入されたスタンドオフ360の内部は、それぞれ音響的にほぼ等質なので、超音波はほぼ反射されず、超音波画像上では暗い画像となる。膝関節を囲む筋肉350等の組織は、組織の微細構造による反射により比較的輝度の高いまだらな画像となる。筋肉350等の組織と軟骨305とは音響インピーダンスの差が大きいので、それら両者の境界すなわち軟骨の表面は、高輝度となる。同様に軟骨305と大腿骨300(軟骨下骨)との境界も高輝度となる。 FIG. 7 is a diagram schematically illustrating a tomographic image inside the knee obtained by scanning with an ultrasonic beam. Such a cross-sectional image is, for example, a display of slice data of one cross section extracted from the volume data in the three-dimensional data memory 20. In the cross-sectional image example of FIG. 7, the inside of the femur 300, the inside of the cartilage 305, and the inside of the stand-off 360 in which the acoustic coupling agent is sealed are almost acoustically homogeneous, so that the ultrasonic waves are almost reflected. Instead, the image is dark on the ultrasonic image. A tissue such as the muscle 350 surrounding the knee joint becomes a mottled image with relatively high luminance due to reflection by the fine structure of the tissue. Since the acoustic impedance difference between the tissue such as the muscle 350 and the cartilage 305 is large, the boundary between them, that is, the surface of the cartilage has high brightness. Similarly, the boundary between the cartilage 305 and the femur 300 (subchondral bone) also has high brightness.
図7の模式図においては、軟骨305と筋肉350との境界部分に微細な凹凸があり、1画素の格子内に暗い部分と明るい部分とが様々な割合で混在しているが、これは境界部分の画素の輝度値が画素ごとに大きく揺らいでいることを表現したものである。 In the schematic diagram of FIG. 7, there are fine irregularities at the boundary between the cartilage 305 and the muscle 350, and dark portions and bright portions are mixed in various proportions within the lattice of one pixel. This represents that the luminance value of the pixel of the part fluctuates greatly for each pixel.
このような超音波断層画像に対し、この例では、軟骨の形状特徴を強調するような平滑化処理を実行する。軟骨(特に大腿骨遠位端のそれ)は、厚みが2,3mm程度で基本的にその表面が滑らかであり、大腿骨遠位端の表面に張り付いている。そこで、この例では、平滑化にあたり注目画素の周囲全方向の画素(ボクセル)の値を用いるのではなく、軟骨と他組織との境界面(断層像の場合は境界線)すなわち軟骨の輪郭に沿った方向の画素のみを用いるような平滑化方法を用いる。 In this example, a smoothing process that emphasizes the shape feature of cartilage is performed on such an ultrasonic tomographic image. The cartilage (especially that of the distal end of the femur) has a thickness of about 2 to 3 mm and is basically smooth and sticks to the surface of the distal end of the femur. Therefore, in this example, instead of using the values of pixels (voxels) in all directions around the target pixel for smoothing, the boundary surface between the cartilage and other tissues (the boundary line in the case of a tomographic image), that is, the outline of the cartilage A smoothing method using only pixels in the direction along the line is used.
この方法では、画像前処理部22は、スライスデータのある注目画素の平滑化値を得るにあたり、その注目画素を中心として通る一定長の直線上にある各画素の輝度値を抽出し、それらの分散を計算する。 In this method, the image preprocessing unit 22 extracts the luminance value of each pixel on a straight line of a certain length passing through the target pixel when obtaining a smoothed value of the target pixel in the slice data. Calculate the variance.
例えば、図8に示す例では、その一定長の長さを9画素としている。図8に示す1つ1つの格子が画素を示している。すなわち、図8の例では、スライスデータを構成する行列状に並んだ画素400群のうち、注目画素410を通る線分420が横切る9つの画素(図中では斜線ハッチングで示した)の輝度値(エコーレベル値)を取り出し、それらの分散値を計算する。分散値は例えば次式により計算すればよい。 For example, in the example shown in FIG. 8, the fixed length is 9 pixels. Each grid shown in FIG. 8 represents a pixel. That is, in the example of FIG. 8, the luminance values of nine pixels (indicated by hatching in the drawing) crossed by the line segment 420 passing through the pixel of interest 410 among the group of pixels 400 arranged in a matrix forming the slice data. (Echo level values) are taken out and their variance values are calculated. The variance value may be calculated by the following formula, for example.
分散値=1/n × Σ(Li - Lm)2 Variance = 1 / n × Σ (Li−Lm) 2
ここで、Li は、線分420上のn画素のうちのi(iは1からnまでの整数)番目の画素の輝度値であり、Lmはそれらn画素の輝度値の平均値である。Σは、i=1からi=nまでの総和である。なお、図8の例ではn=9であるが、9画素に限定されるわけではない。n個の画素のうちの1つは中心である注目画素410であり、その注目画素410の両側にそれぞれ残りの(n−1)個のうちの半数ずつが存在する。分散を求める際の線分の長さ(すなわち参照画素の数)は、スライスデータ(あるいはボリュームデータ)の解像度などを考慮して定めればよい。 Here, Li is the luminance value of the i-th pixel (i is an integer from 1 to n) of the n pixels on the line segment 420, and Lm is the average value of the luminance values of these n pixels. Σ is the sum from i = 1 to i = n. Although n = 9 in the example of FIG. 8, it is not limited to 9 pixels. One of the n pixels is the target pixel 410 as the center, and half of the remaining (n−1) pixels exist on both sides of the target pixel 410. The length of the line segment (that is, the number of reference pixels) for obtaining the variance may be determined in consideration of the resolution of slice data (or volume data).
このような分散値計算の処理を、図9に例示するように、1周(すなわちこの場合は0度から180度)の範囲で方向があらかじめ定めた間隔(例えば5度)ずつ異なる線分420−1、420−2,420−3,…のそれぞれについて行う。角度の刻み間隔は適宜定めればよい。分散計算対象の方向の線分420が横切るn個の画素は、都度計算してもよいが、注目画素に対するそれら各画素の相対位置を計算対象の方向ごとにあらかじめ計算して記憶装置(例えばリード・オンリー・メモリやハードディスク)に記憶しておき、計算対象の方向ごとにその相対位置と注目画素の位置から特定するようにしてもよい。 As illustrated in FIG. 9, such a variance value calculation process is performed by a line segment 420 whose direction is different by a predetermined interval (for example, 5 degrees) in one round (that is, 0 degrees to 180 degrees in this case). -1, 420-2, 420-3,... What is necessary is just to determine the interval of an angle | corner suitably. The n pixels crossed by the line segment 420 in the direction of variance calculation target may be calculated each time, but the relative position of each pixel with respect to the target pixel is calculated in advance for each direction of calculation target and the storage device (for example, lead It may be stored in an only memory or a hard disk and specified from the relative position and the position of the pixel of interest for each direction to be calculated.
このようにして注目画素を中心とする各方向の線分についての分散値が求められると、画像前処理部22は、それら各方向のなかで分散値が最大となる方向を特定する。特定された方向は、軟骨や大腿骨、筋肉、スタンドオフなどといった各媒体間の境界(言い換えれば各媒体の輪郭)の法線方向を表す。 When the variance value for the line segment in each direction centered on the target pixel is obtained in this way, the image preprocessing unit 22 identifies the direction in which the variance value is the maximum among these directions. The specified direction represents the normal direction of the boundary between the media such as cartilage, femur, muscle, and standoff (in other words, the contour of each media).
例えば、図10は、軟骨305と筋肉350との境界(言い換えれば軟骨の輪郭)より少し上に位置する注目画素410Aについての例である。この例では、注目画素410Aを中心とする各方向の線分420a、420b、420cのそれぞれについて、上述のように分散値を計算すると、線分420aについての分散値が最大となる。すなわち、それら各方向の線分420a〜cの中心(注目画素410A)の一方の側が横切る画素は筋肉350に属するので基本的に明るい画素であるのに対し、他方の側が横切る画素には軟骨305内の暗い画素が含まれる。そして、線分が軟骨305内に最も深く入った状態である線分420aのときにそれら暗い画素の数が最大となるため、分散値も最大となる。この線分420aの方向は、近傍にある軟骨305の輪郭に対する法線方向に近い方向となっている。 For example, FIG. 10 is an example of the pixel of interest 410A located slightly above the boundary between the cartilage 305 and the muscle 350 (in other words, the outline of the cartilage). In this example, when the variance value is calculated as described above for each of the line segments 420a, 420b, and 420c in each direction centered on the pixel of interest 410A, the variance value for the line segment 420a is maximized. That is, a pixel that crosses one side of the center (line of interest 410A) of the line segments 420a to 420c in each direction belongs to the muscle 350 and is basically a bright pixel, whereas a pixel that crosses the other side has a cartilage 305. Dark pixels within are included. And since the number of these dark pixels becomes the maximum at the line segment 420a in the state where the line segment is deepest in the cartilage 305, the dispersion value is also maximized. The direction of the line segment 420a is close to the normal direction to the contour of the cartilage 305 in the vicinity.
このように、注目画素410Aに対して上述の分散値が最大となる方向(線分420a)が特定できると、画像前処理部22は、スライスデータの面内で注目画素410Aの周囲近傍に存在する画素のうち、その方向に対し垂直な方向にある画素のみを用いてその注目画素の平滑化値を計算する。例えば、図11に示す例では、注目画素410Aを中心とし、分散最大方向に対して垂直な線分450aが横切る9つの画素(図ではドットハッチングで示した)の輝度値から、注目画素410Aの平滑化値が計算される。 As described above, when the direction (line segment 420a) in which the above-described variance value is maximum for the target pixel 410A can be specified, the image preprocessing unit 22 exists in the vicinity of the target pixel 410A in the plane of the slice data. The smoothed value of the target pixel is calculated using only the pixels in the direction perpendicular to the direction among the pixels to be processed. For example, in the example shown in FIG. 11, the luminance value of the pixel of interest 410A is determined from the luminance values of nine pixels (indicated by dot hatching in the figure) that the line segment 450a perpendicular to the maximum dispersion direction crosses around the pixel of interest 410A. A smoothing value is calculated.
分散最大方向に対して垂直な線分450aが横切る9つの画素は、都度計算してもよいが、方向ごとあらかじめ計算してハードディスク等の記憶装置に記憶しておき、その記憶データを読み出して利用するようにしてもよい。例えば、分散最大方向ごとに、それに垂直な線分450a上のそれら9つの参照画素の位置情報(例えば注目画素410Aに対する相対位置)を記憶装置に記憶しておき、分散最大方向が特定されればその方向に対応する各参照画素の相対位置をその記憶装置から求め、それら相対位置を注目画素の位置と組み合わせることで、各参照画素の絶対位置を特定すればよい。なお、参照画素の数を9個としたが、これは一例に過ぎない。参照画素の数は、軟骨表面の曲率、スライスデータ(あるいはボリュームデータ)の解像度、その解像度でのスペックルのサイズ(画素数)などを考慮して定めればよい。 The nine pixels that the line segment 450a perpendicular to the maximum dispersion direction crosses may be calculated each time, but each direction is calculated in advance and stored in a storage device such as a hard disk, and the stored data is read and used. You may make it do. For example, for each maximum variance direction, position information (for example, a relative position with respect to the target pixel 410A) of these nine reference pixels on the line segment 450a perpendicular to the maximum is stored in the storage device, and the maximum variance direction is specified. The absolute position of each reference pixel may be specified by obtaining the relative position of each reference pixel corresponding to the direction from the storage device and combining the relative position with the position of the target pixel. Although the number of reference pixels is nine, this is only an example. The number of reference pixels may be determined in consideration of the curvature of the cartilage surface, the resolution of slice data (or volume data), the speckle size (number of pixels) at that resolution, and the like.
線分420aは軟骨305と筋肉350との境界(すなわち軟骨の輪郭)の法線に近い方向の線なので、それに垂直な線分450aは、その境界に平行に近い方向の線分となる。注目画素410Aの全周囲の近傍画素の平均をとると、平均結果は軟骨305内の暗い画素も含んだ値となるが、軟骨305の輪郭の方向に沿った画素のみの平均であれば平均結果には軟骨305内の暗い画素は含まれにくい。 Since the line segment 420a is a line in a direction close to the normal line of the boundary between the cartilage 305 and the muscle 350 (that is, the outline of the cartilage), the line segment 450a perpendicular thereto is a line segment in a direction almost parallel to the boundary. Taking the average of neighboring pixels all around the pixel of interest 410A, the average result includes the dark pixels in the cartilage 305, but if the average of only the pixels along the contour direction of the cartilage 305, the average result Does not include dark pixels in the cartilage 305.
平滑化値は、例えば、それら9つの画素の輝度値の単純平均でよい。また、別の例として、例えば中心である注目画素410Aに近い画素ほど高い重みを与えた加重平均を平滑化値としてもよい。また、それら9つの画素の輝度値の平均値(単純平均又は加重平均)の大小に応じた係数をその平均値に乗じた値を平滑化値としてもよい。例えば平均値が高い(すなわち高輝度)ほど係数を大きくすることで、暗い部分と明るい部分のコントラストを向上させることもできる。いずれの場合でも、図11の例では、計算対象となる9つの画素はほとんど筋肉350に属する画素なので、注目画素410Aの平滑化値は高輝度値となる。 The smoothing value may be, for example, a simple average of the luminance values of these nine pixels. As another example, for example, a weighted average obtained by giving a higher weight to a pixel closer to the pixel of interest 410A at the center may be used as the smoothing value. Further, a smoothed value may be obtained by multiplying the average value by a coefficient corresponding to the magnitude of the average value (simple average or weighted average) of the luminance values of these nine pixels. For example, the contrast between a dark part and a bright part can be improved by increasing the coefficient as the average value is higher (that is, higher brightness). In any case, in the example of FIG. 11, the nine pixels to be calculated are mostly pixels belonging to the muscle 350, so the smoothed value of the pixel of interest 410A is a high luminance value.
また、図12のように注目画素410Bが筋肉350と軟骨305との境界に位置する場合、画像前処理部22は、分散最大となる線分420dに対して垂直な線分450dを通る9つの画素(ドットハッチングで示す)を平均することで注目画素410Bの平滑化値を求める。この場合、その線分450dは軟骨305の輪郭の接線に近いものであり、それら9つの画素は軟骨305の輪郭又はその近傍に位置する画素である。 In addition, when the target pixel 410B is located at the boundary between the muscle 350 and the cartilage 305 as shown in FIG. 12, the image pre-processing unit 22 has nine line segments 450d perpendicular to the line segment 420d having the maximum variance. The smoothed value of the target pixel 410B is obtained by averaging the pixels (indicated by dot hatching). In this case, the line segment 450d is close to the tangent line of the outline of the cartilage 305, and these nine pixels are pixels located at or near the outline of the cartilage 305.
また、図示は省略するが、注目画素410が軟骨305の内部に位置する場合は、図11の場合と同様の考え方で、その注目画素410についての平滑化値は、軟骨305の輪郭の方向に沿った軟骨305内部の画素の平均となる。 Although not shown, when the target pixel 410 is located inside the cartilage 305, the smoothing value for the target pixel 410 is in the direction of the contour of the cartilage 305 in the same way as in FIG. It is the average of the pixels inside the cartilage 305 along.
なお、以上に例示した平滑化処理は、軟骨305と筋肉350との境界に沿った方向だけでなく、筋肉350とスタンドオフ360(図7参照)との境界、筋肉350と大腿骨300との境界、軟骨305と大腿骨300との境界などのように、大きな組織同士の境界に沿った方向についても平滑化を行うことになる。 Note that the smoothing process exemplified above is performed not only in the direction along the boundary between the cartilage 305 and the muscle 350 but also at the boundary between the muscle 350 and the standoff 360 (see FIG. 7) and between the muscle 350 and the femur 300. Smoothing is also performed in the direction along the boundary between large tissues such as the boundary and the boundary between the cartilage 305 and the femur 300.
なお、個々の注目画素についてみれば上述の方法で求めた分散最大の方向が必ずしも注目画素近傍の組織境界の法線方向に近くなるとは限らないが、大局的にみれば分散最大の方向は近傍の組織境界の法線方向に近いと考えられる。特に、軟骨305の表面は滑らかなので、筋肉350と軟骨305との境界、軟骨305と大腿骨300(軟骨下骨)との境界については、分散最大の方向はそれら境界の法線方向に近い。 For each target pixel, the direction of maximum dispersion obtained by the above method is not necessarily close to the normal direction of the tissue boundary near the target pixel. It is considered to be close to the normal direction of the tissue boundary. In particular, since the surface of the cartilage 305 is smooth, regarding the boundary between the muscle 350 and the cartilage 305 and the boundary between the cartilage 305 and the femur 300 (subchondral bone), the direction of maximum dispersion is close to the normal direction of those boundaries.
以上に説明した組織境界の方向に沿った平滑化処理により、ノイズやスペックル等により必ずしも滑らかになっていない生スライスデータにおける軟骨305の輪郭(図10参照)が、図13に示すように滑らかになる。 By the smoothing process along the direction of the tissue boundary described above, the contour of the cartilage 305 (see FIG. 10) in the raw slice data that is not necessarily smooth due to noise, speckle, etc., is smooth as shown in FIG. become.
注目画素の全周囲の近傍画素を用いた単純な平滑化では組織境界(特に軟骨と他組織との境界)がぼけてしまうが、組織境界の方向を考慮したこの例の平滑化では、そのような境界のぼけは抑止できる。この意味で、この例の平滑化処理は、エッジの維持あるいは強調(例えば平均値に応じた係数を乗じたものを平滑化値とする場合)の効果を持った平滑化と言える。 Simple smoothing using neighboring pixels all around the pixel of interest blurs the tissue boundary (especially the boundary between cartilage and other tissues), but in this example smoothing considering the direction of the tissue boundary, The blurring of the border can be suppressed. In this sense, the smoothing processing in this example can be said to be smoothing having the effect of maintaining or enhancing edges (for example, when a smoothing value is obtained by multiplying a coefficient corresponding to an average value).
スライスデータ上の各画素をそれぞれ注目画素として、注目画素ごとに以上のような組織境界の方向性を考慮した平滑化を行うことで、スライスデータ全体を、組織境界を維持又は強調しつつ平滑化することができる。このような平滑化処理により、滑らかで鮮明な軟骨画像を得ることができる。なお、この平滑化処理では、筋肉350等の内部のスペックルは平滑化されるので、筋肉350は比較的高輝度の一様に近い画像となる。 Smoothing the entire slice data while maintaining or enhancing the tissue boundary by using each pixel on the slice data as the target pixel and performing smoothing in consideration of the directionality of the tissue boundary as described above for each target pixel. can do. By such a smoothing process, a smooth and clear cartilage image can be obtained. In this smoothing process, the speckles inside the muscle 350 and the like are smoothed, so that the muscle 350 becomes a relatively uniform image with relatively high luminance.
ボリュームデータを構成する各スライスデータについて上述のような方向性を考慮した平滑化処理を行うことで、ボリュームデータ全体についての平滑化が実現できる。 By performing the smoothing process in consideration of the directionality as described above on each slice data constituting the volume data, the entire volume data can be smoothed.
なお、以上に例示した組織境界の方向性を考慮した平滑化は一例に過ぎない。この代わりに、既存の平滑化フィルタ処理とエッジ強調フィルタ処理の組合せを用いてもよい。 Note that the smoothing in consideration of the directionality of the tissue boundary exemplified above is only an example. Instead, a combination of existing smoothing filter processing and edge enhancement filter processing may be used.
以上では、平滑化やエッジ強調(あるいはエッジ維持)に注目して説明したが、画像前処理部22は、そのような処理に加え、他の画像処理を行うものであってもよい。 In the above, description has been given focusing on smoothing and edge enhancement (or edge maintenance), but the image preprocessing unit 22 may perform other image processing in addition to such processing.
また、以上の例では、ボリュームデータをスライスデータに分解し、スライスデータごとに前処理を行ったが、ボリュームデータに対して直接同様の前処理を施すことも可能である。例えば、組織境界の方向性を考慮した平滑化を行う方式の場合、上述のスライスデータごとの処理では二次元面内の各方向の中から画素値の分散が最大となる方向を特定したが、ボリュームデータに対する処理では注目画素(ボクセル)に関し三次元の各方向の中から画素値の分散が最大になる方向を特定すればよい。そして、その方向に対して垂直な面(例えば注目画素を中心とする円板)が横切る画素に基づき(例えばそれら画素の平均演算により)注目画素の平滑化値を計算すればよい。 In the above example, the volume data is decomposed into slice data, and preprocessing is performed for each slice data. However, the same preprocessing can be directly performed on the volume data. For example, in the case of a method for performing smoothing in consideration of the directionality of the tissue boundary, the processing for each slice data described above specifies the direction in which the dispersion of pixel values is maximum from each direction in the two-dimensional plane. In the processing for the volume data, the direction in which the dispersion of pixel values is maximized may be specified from the three-dimensional directions for the target pixel (voxel). Then, the smoothing value of the target pixel may be calculated based on the pixels (for example, by averaging the pixels) crossed by a plane perpendicular to the direction (for example, a disk centered on the target pixel).
さて、以上のように画像前処理部22の前処理結果は、軟骨抽出部24に渡される。画像前処理部22がスライスデータ単位で前処理を行う場合、前処理結果はスライスデータ単位で軟骨抽出部24に渡してもよい。また、スライスデータごとの前処理結果をまとめたボリュームデータをまとめて軟骨抽出部24に渡してもよい。以下では、スライスデータ単位で受け渡し、処理する場合を例示する。 As described above, the preprocessing result of the image preprocessing unit 22 is passed to the cartilage extraction unit 24. When the image preprocessing unit 22 performs preprocessing in units of slice data, the preprocessing result may be passed to the cartilage extraction unit 24 in units of slice data. Further, the volume data obtained by collecting the preprocessing results for each slice data may be collectively delivered to the cartilage extraction unit 24. In the following, a case of passing and processing in units of slice data will be exemplified.
この例では、軟骨抽出部24は、前処理結果のスライスデータを反転・二値化する。反転・二値化では、例えば、画像(スライスデータ)の各画素の値を反転してから、その反転結果をあらかじめ定めたしきい値と比較して二値化する。この場合、反転処理は、例えば、画素が取り得る最大値(1画素8ビットなら画素値255)から、現在の画素値を減算する処理でよい。二値化のためのしきい値は、反転の結果明るくなった軟骨部分と、反転の結果暗くなった軟骨周囲部分(筋肉や、軟骨と大腿骨との境界など)と、を区別できる値を、実験等により求めればよい。なお、画素値を反転してから二値化する代わりに、二値化してから画素値を反転してもよい。 In this example, the cartilage extraction unit 24 inverts and binarizes the slice data of the preprocessing result. In the inversion / binarization, for example, the value of each pixel of the image (slice data) is inverted, and the inversion result is compared with a predetermined threshold value to be binarized. In this case, the inversion process may be, for example, a process of subtracting the current pixel value from the maximum value that can be taken by the pixel (pixel value 255 if one pixel is 8 bits). The threshold value for binarization is a value that can distinguish between cartilage parts that become bright as a result of inversion and parts around cartilage that become dark as a result of inversion (such as muscles and the boundary between cartilage and femur). What is necessary is just to obtain by experiment. Instead of binarizing after inverting the pixel value, the pixel value may be inverted after binarizing.
反転・二値化のうち、二値化処理は例えば画像を組織ごとの部分に区別して軟骨抽出を容易にするためのものである。また反転処理は、超音波画像上では暗くなっている軟骨部分を明るく(すなわち白く)することで、ユーザにとって軟骨部分が実体組織であることを直感的に分かりやすくするためである。また、反転処理は、後述するエッジ抽出との整合性のために行っている。すなわち、後で例示するエッジ抽出フィルタは二値データのH(ハイ:すなわち「1」)の領域のエッジを抽出するものであるため、軟骨のエッジを抽出するために反転処理を行っているのである。したがって、二値データのL(ロー:すなわち「0」)の領域を抽出するエッジ抽出フィルタを用いる場合や、二値化結果の画像を表示する必要がない場合には、反転処理は行わなくてもよい。 Of the inversion and binarization, binarization processing is for, for example, distinguishing an image into parts for each tissue and facilitating cartilage extraction. The inversion process is to make it easier for the user to intuitively understand that the cartilage portion is a solid tissue by brightening (that is, whitening) the cartilage portion that is dark on the ultrasound image. The inversion process is performed for consistency with edge extraction to be described later. That is, since the edge extraction filter exemplified later extracts the edge of the binary data H (high: “1”) region, the inversion process is performed to extract the cartilage edge. is there. Therefore, when an edge extraction filter that extracts an L (low: “0”) region of binary data is used or when it is not necessary to display an image of the binarization result, the inversion process is not performed. Also good.
図7に例示したスライスデータを、画像前処理部22による前処理後に反転・二値化すると、図14に示すような画像が得られる。図14の画像例では、軟骨305,大腿骨300などが白く、筋肉350等が黒く表示されている。 When the slice data illustrated in FIG. 7 is inverted and binarized after the preprocessing by the image preprocessing unit 22, an image as illustrated in FIG. 14 is obtained. In the image example of FIG. 14, the cartilage 305, the femur 300, etc. are displayed in white, and the muscle 350, etc. are displayed in black.
次に軟骨抽出部24は、反転・二値化後のスライスデータに対して、エッジ抽出処理を適用することで、そのスライスデータにおける組織境界のエッジを抽出する。抽出されるエッジには、軟骨の輪郭も含まれる。 Next, the cartilage extraction unit 24 applies an edge extraction process to the inverted and binarized slice data, thereby extracting tissue boundary edges in the slice data. The extracted edge includes the outline of the cartilage.
このエッジ抽出処理では、二値化後のスライスデータに対してエッジ抽出フィルタを適用すればよい。エッジ抽出フィルタとしては、例えば、Laplacianフィルタ、Prewittフィルタ、Sobelフィルタ等の公知の二次の微分フィルタを用いればよい。 In this edge extraction process, an edge extraction filter may be applied to the binarized slice data. As the edge extraction filter, for example, a known secondary differential filter such as a Laplacian filter, a Prewitt filter, or a Sobel filter may be used.
図14に例示した二値化後のスライスデータに対してエッジ抽出処理を行うと、例えば図15に示すような画像が得られる。エッジ抽出結果の二値画像では、エッジは黒(値“0”)、エッジ以外は白(値“1”)となる。図15では、軟骨輪郭306を含む、各種の境界が黒の輪郭線となっている。 When edge extraction processing is performed on the binarized slice data illustrated in FIG. 14, for example, an image as illustrated in FIG. 15 is obtained. In the binary image of the edge extraction result, the edge is black (value “0”), and other than the edge is white (value “1”). In FIG. 15, various boundaries including the cartilage contour 306 are black contour lines.
軟骨抽出部24は、スライスデータを表示した画面上で、ユーザから軟骨内部(あるいは軟骨表面上)の点(以下、基準点Rと呼ぶ)の指定を受け付ける。基準点Rの指定を受け付ける際の画面に表示する画像は、反転・二値化後の画像(図14参照)でもよいし、エッジ抽出結果の画像(図15参照)でもよい。なお、基準点Rの指定は、入力部32が備えるマウスなどのポインティングデバイスを用いて行えばよい。図16は、エッジ抽出結果の画像に対して指定された基準点Rを示している。 The cartilage extraction unit 24 receives designation of a point (hereinafter referred to as a reference point R) inside the cartilage (or on the cartilage surface) from the user on the screen displaying the slice data. The image displayed on the screen when receiving the designation of the reference point R may be an image after inversion and binarization (see FIG. 14) or an image of the edge extraction result (see FIG. 15). The reference point R may be specified using a pointing device such as a mouse provided in the input unit 32. FIG. 16 shows the reference point R designated for the image of the edge extraction result.
次に、軟骨抽出部24は、基準点Rの近傍から軟骨輪郭306上の点を求める。図17の例では、基準点Rを通る縦線と軟骨輪郭306との交点A(上側),B(下側)を求めている(図17では、煩雑さを避けるため、軟骨輪郭306以外のエッジは省略している。)。図17の例では、基準点Rを起点に上方向に1画素ずつ順に進みながら、その過程で最初に見つかった黒画素が軟骨輪郭306上の点Aと判別できる。同様に基準点Rから下方向に進んで最初に見つかった黒画素が点Bである。 Next, the cartilage extraction unit 24 obtains a point on the cartilage contour 306 from the vicinity of the reference point R. In the example of FIG. 17, intersections A (upper side) and B (lower side) of the vertical line passing through the reference point R and the cartilage contour 306 are obtained (in FIG. 17, other than the cartilage contour 306 is avoided in order to avoid complexity. Edges are omitted.) In the example of FIG. 17, the black pixel first found in the process can be determined as the point A on the cartilage contour 306 while sequentially proceeding one pixel at a time starting from the reference point R. Similarly, the black pixel which is found first after proceeding downward from the reference point R is the point B.
なお、軟骨305の内部にエッジが存在する場合を考慮するならば、軟骨抽出部24が、そのようにして求めた点A及びBの間隔を求め、その間隔が軟骨の厚み(通常2〜3mm程度)と比較して狭すぎる場合には、基準点Rの位置をあらかじめ定めた画素だけ横方向にずらしてから再度点A,Bを求めるようにしてもよい。その比較では、点AB間の間隔を、軟骨の厚みの知見に基づきあらかじめ定めたしきい値(例えば1.5mm)と比較すればよい。 If the case where an edge exists inside the cartilage 305 is considered, the cartilage extraction unit 24 obtains the distance between the points A and B thus obtained, and the distance is the thickness of the cartilage (usually 2 to 3 mm). If the reference point R is too narrow, the points A and B may be obtained again after shifting the position of the reference point R by a predetermined pixel in the horizontal direction. In the comparison, the interval between the points AB may be compared with a predetermined threshold value (for example, 1.5 mm) based on the knowledge of the cartilage thickness.
なお、図17(及び図7、図14〜図16)の例では、薄い軟骨305の画像が、画面中でほぼ横方向に延びるように位置しているので、上下方向をほぼ軟骨の厚みの方向とみなすことができる。被検者が椅子に腰掛けるなどして屈曲した膝に対して、メカニカル三次元プローブ10の筐体を一定の向きで当接させれば(例えば、そのような向きをプローブ10に表示して、ユーザがその向きに従って当接させるか、機構上その向きにしか当接しないようにするなどすればよい)、得られるボリュームデータ(及びそこから求められるスライスデータ)の座標系は既知であるので、スライスデータを自動的に図17,図7等のような向きにすることができる。 In the example of FIG. 17 (and FIG. 7, FIG. 14 to FIG. 16), the image of the thin cartilage 305 is positioned so as to extend substantially laterally in the screen. It can be regarded as a direction. If the subject of the mechanical three-dimensional probe 10 is brought into contact with a knee bent by a subject sitting on a chair or the like (for example, such a direction is displayed on the probe 10, The user may make contact according to the orientation or only contact the orientation according to the mechanism), and the coordinate system of the volume data (and slice data obtained therefrom) is known. The slice data can be automatically oriented as shown in FIGS.
以上のようにして、基準点Rの上下の軟骨輪郭306の点A,Bを特定すると、軟骨抽出部24は、各点A,Bに連結する黒画素の連結成分を探索する。例えば、点A,Bをそれぞれ起点として、注目画素の4近傍又は8近傍の画素から黒画素を探索し、黒画素が見つかればその黒画素を新たに注目画素として同様の探索を繰り返せばよい。以上のような探索処理により求められた黒画素の連結成分が、軟骨輪郭306である。図16に例示するエッジ抽出結果に対して探索処理を行えば、図18に示すように軟骨輪郭306のみが抽出できる。 As described above, when the points A and B of the cartilage contour 306 above and below the reference point R are specified, the cartilage extraction unit 24 searches for a connected component of black pixels connected to the points A and B. For example, starting from points A and B, a black pixel is searched from pixels in the vicinity of 4 or 8 of the target pixel, and if a black pixel is found, the same search may be repeated using the black pixel as a new target pixel. A connected component of black pixels obtained by the search process as described above is a cartilage contour 306. If search processing is performed on the edge extraction result illustrated in FIG. 16, only the cartilage contour 306 can be extracted as shown in FIG.
以上のような処理を、ボリュームデータ中の各スライスデータについて繰り返す。各スライスデータから抽出された軟骨輪郭306の組が、三次元的な軟骨の輪郭形状を表す。 The above processing is repeated for each slice data in the volume data. A set of cartilage contours 306 extracted from each slice data represents a three-dimensional cartilage contour shape.
以上の抽出処理では軟骨内部又は表面の基準点をユーザに指定させているが、ボリュームデータを構成する多数のスライスデータのそれぞれに対しそのような指定を行うのは煩雑である。そこで、ユーザが1つのスライスデータで基準点を1つ指定すれば、その基準点から残りのスライスデータでの軟骨の基準点を自動的に決定するようにすることも好適である。そのための処理の例を以下に示す。 In the above extraction processing, the user specifies the reference point inside or on the surface of the cartilage. However, it is troublesome to make such designation for each of a large number of slice data constituting the volume data. Therefore, if the user designates one reference point with one slice data, it is also preferable to automatically determine the reference point of the cartilage in the remaining slice data from the reference point. An example of the processing for that is shown below.
この例では、図19に示すように、あるスライスデータS0上でユーザが軟骨内の基準点R0を指定すると、軟骨抽出部24は、基準点R0を通る縦線と軟骨輪郭306との交点A0及びB0を起点としてそのスライスデータ上の軟骨輪郭306を抽出する。また、軟骨抽出部24は、それら点A0及びB0の中点C0の座標を求める。図では、一例として、ボリュームデータの座標系がXYZであり、各スライスデータはZ=一定の面であるとしている。したがって、中点C0の座標は(X,Y)で表される。 In this example, as shown in FIG. 19, when the user designates a reference point R 0 in the cartilage on a certain slice data S 0 , the cartilage extraction unit 24 uses the vertical line passing through the reference point R 0 and the cartilage contour 306. The cartilage contour 306 on the slice data is extracted with the intersection points A 0 and B 0 as the starting points. Further, cartilage extract unit 24 obtains the coordinates of the midpoint C 0 thereof points A 0 and B 0. In the figure, as an example, the coordinate system of the volume data is XYZ, and each slice data is assumed to be Z = a constant surface. Therefore, the coordinates of the midpoint C 0 are represented by (X, Y).
次に、軟骨抽出部24は、図20に示すように、ボリュームデータからスライスデータS0の隣のスライスデータS1を取り出し、そのスライスデータS1内で、点C0と同じ(X,Y)座標を持つ点を基準点R1とする。軟骨は三次元的に緩やかに湾曲した形状なので、あるスライスデータでの軟骨の上下輪郭の中点は、非常に高い確率で隣のスライスデータでも軟骨の上下輪郭の間に入ると考えられる。したがって、その基準点R1を用いて上述と同様の輪郭抽出処理を行うことができる。また、軟骨抽出部24は、それら基準点R1を通る縦線と軟骨輪郭306との交点A1及びB1の中点C1を求め、その中点C1の座標に基づき次のスライスデータS2の基準点R2を決定する。このように、スライスデータごとに基準点Rから軟骨輪郭306の点A,Bの中点Cを求め、その中点Cから隣のスライスデータでの基準点Rを定めるという処理を連鎖的に繰り返すことで、最初にあるスライスデータで基準点を1点指定すれば、残りの全てのスライスデータの基準点を自動的に定めることができる。 Next, as shown in FIG. 20, the cartilage extraction unit 24 extracts slice data S 1 adjacent to the slice data S 0 from the volume data, and is the same as the point C 0 (X, Y) in the slice data S 1 . ) A point having coordinates is set as a reference point R 1 . Since the cartilage is gently curved three-dimensionally, the midpoint of the upper and lower contours of the cartilage in a certain slice data is considered to fall between the upper and lower contours of the cartilage in the adjacent slice data with a very high probability. Therefore, the same contour extraction process as described above can be performed using the reference point R 1 . Further, cartilage extract unit 24, the center point C 1 of intersection A 1 and B 1 between the vertical line and the cartilage contour 306 therethrough reference points R 1 determined, the next slice data based on the coordinate its midpoint C 1 A reference point R 2 for S 2 is determined. In this way, the process of determining the midpoint C of the points A and B of the cartilage contour 306 from the reference point R for each slice data and determining the reference point R in the adjacent slice data from the midpoint C is repeated in a chain manner. Thus, if one reference point is designated in the first slice data, the reference points for all remaining slice data can be automatically determined.
なお、次のスライスデータでの基準点を求めるための点は、点A,Bの厳密な中点Cでなくてもよく、中点Cに近い範囲の点でよい。ユーザが指定した基準点そのものは、軟骨の厚み方向の上下いずれかの端に偏っている場合もあり、その場合にはその点に対応する点は隣のスライスデータでは軟骨の外に出てしまう可能性がある。これに対し、指定された基準点に基づき軟骨の上下の輪郭上の点A,Bを求め、それら上下の輪郭上の点から次のスライスデータの基準点を求めるようにすれば、軟骨の外にはみ出る可能性をほぼなくすことができる。 Note that the point for obtaining the reference point in the next slice data may not be the exact midpoint C of the points A and B, but may be a point in the range close to the midpoint C. The reference point specified by the user may be biased to either the upper or lower end in the cartilage thickness direction, and in this case, the point corresponding to that point goes out of the cartilage in the adjacent slice data. there is a possibility. On the other hand, if the points A and B on the upper and lower contours of the cartilage are obtained based on the designated reference point and the reference point of the next slice data is obtained from the points on the upper and lower contours, The possibility of overflowing can be almost eliminated.
また、このような基準点Rの自動決定処理では、あるスライスデータにて基準点Rから上下に向かって黒画素(輪郭)を探索する際に、軟骨の厚みを超える範囲まで探索しても黒画素が見つからなければ、スライスデータの配列方向についての軟骨端部に到達したと判定して処理を停止し、それ以降のスライスデータについては処理しないようにしてもよい。 Further, in such automatic determination processing of the reference point R, when searching for black pixels (contours) from the reference point R upward and downward with a certain slice data, even if searching to a range exceeding the thickness of the cartilage, it is black. If the pixel is not found, it may be determined that the end of the cartilage end in the arrangement direction of the slice data has been reached, and the processing may be stopped, and subsequent slice data may not be processed.
以上、軟骨輪郭抽出の処理例を説明した。以上ではスライスデータごとに軟骨輪郭を抽出したが、この実施形態の手法はこれに限らない。例えば二次元面内の4近傍や8近傍の代わりに、三次元空間における上下前後左右の6近傍、又は14近傍の画素を探索ウインドウとすることで、連結成分の探索は三次元のボリュームデータに対しても同様に行うことができる。したがって、ボリュームデータから直接三次元的な軟骨輪郭を抽出することもできる。 The example of the cartilage contour extraction process has been described above. In the above, the cartilage contour is extracted for each slice data, but the method of this embodiment is not limited to this. For example, instead of 4 or 8 neighbors in a two-dimensional plane, the search for connected components in the three-dimensional volume data can be performed by using pixels in the vicinity of the top, bottom, front, back, left, and right in the three-dimensional space as the search window. The same can be done for this. Therefore, a three-dimensional cartilage contour can be directly extracted from the volume data.
また、軟骨抽出部24が行う抽出処理の別の例として、次のような処理もある。すなわち、この処理では、反転・二値化後のスライスデータに対して、周知のラベリング処理を行うことで、図21に示すように、白及び黒の各連結成分1,2,3,4を抽出する。なお、ラベルの値1,2,3,4等は軟骨抽出部24が内部的に保持していればよく、必ずしも画面表示しなくてよい。そして、軟骨抽出部24は、画面表示した二値画像上で、ユーザに軟骨に該当する点をマウス等により指定させ、指定された点のラベル値を含む連結成分を、軟骨305として抽出する。 Another example of the extraction process performed by the cartilage extraction unit 24 is the following process. That is, in this process, the well-known labeling process is performed on the slice data after inversion and binarization, so that each of the white and black connected components 1, 2, 3, and 4 is obtained as shown in FIG. Extract. The label values 1, 2, 3, 4 and the like need only be held internally by the cartilage extraction unit 24 and need not necessarily be displayed on the screen. Then, the cartilage extraction unit 24 causes the user to designate a point corresponding to the cartilage with a mouse or the like on the binary image displayed on the screen, and extracts a connected component including the label value of the designated point as the cartilage 305.
さて、大腿骨遠位端の軟骨の抽出では、膝蓋骨による影が悪影響を及ぼす可能性がある。すなわち、図22に示すように、膝内部の超音波診断では、軟骨305の一部がプローブ10から見て膝蓋骨370の後ろに位置する。骨の背後は、超音波ビームの減衰や散乱などにより、エコーデータが小さく不鮮明になる。このため、輪郭抽出において軟骨305と膝蓋骨370の影375とが繋がってしまい、図23に例示するように、抽出される軟骨輪郭306に、膝蓋骨の影による不正確な部分308が含まれてしまう。そこで、以下では、そのような膝蓋骨の影響による不正確な部分を除去するために軟骨抽出部24が行う処理の例を説明する。 Now, in the extraction of the cartilage at the distal end of the femur, the shadow by the patella may have an adverse effect. That is, as shown in FIG. 22, in ultrasonic diagnosis inside the knee, a part of the cartilage 305 is located behind the patella 370 when viewed from the probe 10. Behind the bone, the echo data is small and unclear due to attenuation or scattering of the ultrasonic beam. Therefore, in the contour extraction, the cartilage 305 and the shadow 375 of the patella 370 are connected, and the extracted cartilage contour 306 includes an inaccurate portion 308 due to the shadow of the patella as illustrated in FIG. . Therefore, hereinafter, an example of processing performed by the cartilage extraction unit 24 in order to remove an inaccurate portion due to the influence of the patella will be described.
この処理の手順の一例を図24及び図25に示す。この手順では、軟骨抽出部24は、前述の例と同様、図26に例示するように、エッジ抽出結果のスライスデータ上で基準点Rの指定を受け付ける(S102)。そして、基準点Rから上下方向に向かってそれぞれ探索を行い、基準点から最も近い黒画素を見つける。見つかった黒画素が、軟骨の上下の輪郭線上の点A,Bである(S104)。ここで上側の輪郭は軟骨表面(すなわち軟骨とそれを覆う筋肉や体液との境界)であり、下側の輪郭は軟骨と大腿骨の軟骨下骨部との境界である。 An example of the procedure of this processing is shown in FIGS. In this procedure, the cartilage extraction unit 24 receives the designation of the reference point R on the slice data of the edge extraction result as illustrated in FIG. 26 as in the above example (S102). Then, a search is performed from the reference point R in the vertical direction to find a black pixel closest to the reference point. The black pixels found are points A and B on the upper and lower contour lines of the cartilage (S104). Here, the upper contour is the cartilage surface (that is, the boundary between the cartilage and the muscle and body fluid covering it), and the lower contour is the boundary between the cartilage and the subchondral bone of the femur.
次に軟骨抽出部24は、それら点A,Bをそれぞれ始点として、かつその始点から右方向及び左方向をそれぞれ進行方向として、輪郭端点検出処理(S200)を行う。この処理では、始点A,Bの2種類と、進行方向右、左の2種類と、の4種類の組合せのそれぞれについて、S200を実行することにより、軟骨の上側及び下側の輪郭のそれぞれについて、右端及び左端の点を求める。このステップS200の詳細手順の例を図25に示す。 Next, the cartilage extraction unit 24 performs contour end point detection processing (S200) with the points A and B as starting points and the right and left directions from the starting points as traveling directions, respectively. In this process, by executing S200 for each of the four types of combinations of the two types of start points A and B and the two types of right and left in the traveling direction, each of the upper and lower contours of the cartilage Find the right and left points. An example of the detailed procedure of step S200 is shown in FIG.
図25の手順では、まず、始点(点A又は点B)を注目点Piとし(S202)、注目点Piを通る接線の傾き角θiを計算する(S204)。接線の傾き角θiは、数値計算分野で用いられている公知の方法により求めればよい。例えば、注目点Piが属する輪郭線(注目輪郭線と呼ぶ)において、注目点Piの両隣の点を求め、それら両隣の点を結ぶ直線の傾きを、注目点Piを通る接線の傾き角θiとすればよい。両隣の点を用いるのは一例に過ぎず、この代わりに注目点から左右それぞれあらかじめ定めた画素数ずつ離れた2つの点を用いてもよい。図27の例では、接線の傾き角θiは、注目点Piから右方向に延びる基準線に対する角度で表現しており、時計回りが正の方向である(ただしこれは一例に過ぎない)。 In the procedure of FIG. 25, firstly, the starting point (point A or point B) as the target point P i (S202), calculates the inclination of a tangent line angle theta i through the point of interest P i (S204). The tangential inclination angle θ i may be obtained by a known method used in the field of numerical calculation. For example, the outline point of interest P i belongs (called the target contour), determine the points on both sides of the target point P i, the slope of a straight line connecting their neighboring points, and slope of the tangent line passing through the point of interest P i The angle θ i may be used. The use of both adjacent points is merely an example, and two points separated by a predetermined number of pixels on the left and right sides from the point of interest may be used instead. In the example of FIG. 27, the inclination angle θ i of the tangent line is expressed as an angle with respect to the reference line extending rightward from the point of interest P i , and the clockwise direction is a positive direction (however, this is only an example). .
次に軟骨抽出部24は、注目輪郭線上で注目点Piに対し進行方向にある隣接点Pi+1を探索する(S206)。この探索では、例えば図28に示す参照ウインドウを用いればよい。すなわち、進行方向が右方向の場合は、(a)のように、注目点Piの上下及び右、右上、右下の5画素からなる参照ウインドウ内に黒画素があれば、その黒画素を隣接点Pi+1とすればよい。進行方向が左方向の場合は、(b)のように、注目点Piの上下及び左、左上、左下の5画素からなる参照ウインドウを用いればよい。参照ウインドウ内の画素には優先順位が設定されており、参照ウインドウ内に黒画素が複数存在する場合は、それら黒がそのうち最も優先順位の高い画素が隣接点Pi+1として検出される。 Next cartilage extract unit 24 searches for a neighboring point P i + 1 in the traveling direction with respect to the point of interest P i in interest contour (S206). In this search, for example, a reference window shown in FIG. 28 may be used. That is, when the traveling direction is the right direction, as shown in (a), upper and lower and right of the target point P i, upper right, if there is a black pixel in the reference window of five pixels in the lower right, the black pixel What is necessary is just to set it as the adjacent point Pi + 1 . If the traveling direction is the left direction, so as in (b), however, upper and lower and left target point P i, the upper left, may be used a reference window comprising a lower left 5 pixels. Priorities are set for the pixels in the reference window. When there are a plurality of black pixels in the reference window, the pixel having the highest priority among the black pixels is detected as the adjacent point P i + 1 .
次に軟骨抽出部24は、S206で隣接点Pi+1が見つかったかどうかを判定し(S208)、見つかった場合は隣接点Pi+1を通る接線の傾き角θi+1を計算する(S210)(図27参照)。そして、隣接点Pi+1を通る接線の傾き角θi+1と注目点Piを通る接線の傾き角θiとの差(絶対値)を求め、その差と、あらかじめ設定されたしきい値Thとを比較する(S212)。しきい値Thは、軟骨表面の曲率に応じて、例えば5度や10度などとあらかじめ定めておけばよい。 Next, the cartilage extraction unit 24 determines whether or not the adjacent point P i + 1 is found in S206 (S208), and if found, calculates the inclination angle θ i + 1 of the tangent line passing through the adjacent point P i + 1. (S210) (refer FIG. 27). Then, a difference between the tangent slope angle theta i through the point of interest P i and the gradient of the tangent angle theta i + 1 through the adjacent point P i + 1 (absolute value), and the difference, to a preset The threshold value Th is compared (S212). The threshold Th may be determined in advance, for example, 5 degrees or 10 degrees according to the curvature of the cartilage surface.
その比較で、その差がしきい値より小さければ、隣接点Pi+1は、膝蓋骨の影響の部分には該当しないと判断し、隣接点Pi+1を次の注目点Piとし、隣接点Pi+1に対応する接線の傾き角θi+1を次の注目点Piに対応する傾き角θiとし(S214)、S206以下の処理を繰り返す。 In the comparison, if the difference is less than the threshold value, the adjacent point P i + 1, in part of the effects of the patella is determined that not the case, the neighboring point P i + 1 as the next target point P i, the tangent slope angle theta i + 1 corresponding to the neighboring point P i + 1 and the inclination angle theta i corresponding to the next target point P i (S214), S206 and repeats the following process.
ステップS206〜S214を繰り返すうちに、隣接点Pi+1が膝蓋骨の影による不正確な部分(図23の部分308)に達する(これに対し注目点Piは軟骨の輪郭上)と、θiとθi+1の差が大きくなる。すると、ステップS212の判定結果が否定(No)となり、処理はステップS216に進む。ステップS216では、軟骨抽出部24は、その時点での注目点Piを、進行方向についての軟骨輪郭の端点として記憶する。 While repeating steps S206 to S214, when the adjacent point P i + 1 reaches an inaccurate portion (portion 308 in FIG. 23) due to the shadow of the patella (in contrast, the attention point P i is on the outline of the cartilage), θ The difference between i and θ i + 1 increases. Then, the determination result of step S212 is negative (No), and the process proceeds to step S216. In step S216, the cartilage extraction unit 24 stores the attention point P i at that time as the end point of the cartilage contour in the traveling direction.
例えば、図29に例示するように、軟骨の上側の輪郭上の点Aから右方向に処理を進めた場合、ステップS216では、点ARが上側輪郭の右端の点として記憶される。同様に点BRが下側輪郭の右端の点として記憶される。 For example, as illustrated in FIG. 29, when advancing the process to the right from point A on the upper cartilage contour, step S216, the point A R is stored as the rightmost point of the upper edge. Likewise the point B R is stored as a point right end of the lower contour.
また、ステップS206〜S214の処理ループで、注目点Piを進行方向に移動させていくうちに、注目点Piが軟骨輪郭の端に到達してしまう場合もある。この場合、ステップS206で進行方向の隣接点Pi+1を探しても見つからないので、処理はステップS208からステップS216に進み、軟骨抽出部24は、その時点の注目点Piを、進行方向についての軟骨輪郭の端点として記憶する。例えば、図23の軟骨輪郭306で、上下の点A,B(図28参照)からそれぞれ左方向に処理を進めると、どちらも軟骨輪郭306の左端の同じ点に到達し、その点を端点として記憶して処理が終わる。 Further, in the processing loop of steps S206~S214, while going to move the target point P i in the traveling direction, there is a case where the point of interest P i will reach the edge of the cartilage contour. In this case, since the adjacent point P i + 1 in the traveling direction is not found even if it is searched in step S206, the process proceeds from step S208 to step S216, and the cartilage extracting unit 24 determines the point of interest P i at that time as the traveling direction. Is stored as the end point of the cartilage contour. For example, in the cartilage contour 306 in FIG. 23, when the processing proceeds in the left direction from the upper and lower points A and B (see FIG. 28), both reach the same point at the left end of the cartilage contour 306, and that point is the end point. Memorize and finish the process.
以上のようにして軟骨輪郭の各端点が求められると、軟骨抽出部24は、軟骨の上側、下側の各輪郭線の右端点同士、左端点同士をそれぞれ直線で結ぶ(S106,S108)。S106及びS108はどちらを先に実行してもよい。なお、上下の端点が同一点である場合は、それら両者の直線で結ぶ必要はない。 When the end points of the cartilage contour are obtained as described above, the cartilage extraction unit 24 connects the right end points and the left end points of the upper and lower contour lines of the cartilage with straight lines, respectively (S106, S108). Either of S106 and S108 may be executed first. When the upper and lower end points are the same point, it is not necessary to connect them by a straight line between them.
以上のような処理を図23に例示した、不正確な部分308を含んだ軟骨輪郭306に適用すると、図30に例示するように、不正確な部分308が除かれた、閉じた軟骨輪郭306aが求められる。 When the above process is applied to the cartilage contour 306 including the inaccurate portion 308 illustrated in FIG. 23, the closed cartilage contour 306a from which the inaccurate portion 308 is removed as illustrated in FIG. Is required.
以上に説明した図24及び図25の処理をボリュームデータ中の各スライスデータについて繰り返す。これにより求められたスライスデータごとの軟骨輪郭306aを組み合わせることで、膝蓋骨の影響による不正確な部分が除かれた、三次元の軟骨輪郭の表面形状が求められる。なお、この処理にも、前述の基準点Rの自動決定処理を適用することができる。基準点Rの自動決定処理を適用した場合、前述と同様に、ボリュームデータに含まれるスライスデータのうち軟骨輪郭306を含まないスライスデータには、図24及び図25の処理をしないようにすることもできる。 24 and 25 described above are repeated for each slice data in the volume data. By combining the cartilage contour 306a for each slice data obtained in this way, the surface shape of the three-dimensional cartilage contour from which an inaccurate portion due to the influence of the patella is removed is obtained. Note that the automatic determination process for the reference point R described above can also be applied to this process. When the automatic determination process of the reference point R is applied, the slice data that does not include the cartilage contour 306 among the slice data included in the volume data is not subjected to the processes of FIGS. You can also.
以上説明したように、図24及ぶ図25の処理手順では、注目点と隣接点との間での接線の傾き角の変化(差)が軽微である間は、隣接点は軟骨輪郭306上にある(すなわち不正確な部分308上にはない)と判断する。すなわち、そのような場合には、隣接点は、軟骨輪郭306上にある注目点に対して軟骨輪郭306に沿って滑らかに連続しているので、隣接点は軟骨輪郭306上の点であると判定するのである。これに対し、注目点と隣接点との間での接線の傾き角の変化が急峻(すなわち、しきい値Th以上)となると、隣接点が不正確な部分308に入ってしまったと判断し、その隣接点の直前の注目点までが正確な軟骨輪郭306であると判断するのである。 As described above, in the processing procedure of FIG. 24 and FIG. 25, while the change (difference) in the inclination angle of the tangent line between the target point and the adjacent point is slight, the adjacent point is on the cartilage contour 306. It is determined that there is (that is, not on the inaccurate portion 308). That is, in such a case, the adjacent points are smoothly continuous along the cartilage contour 306 with respect to the target points on the cartilage contour 306, and therefore the adjacent points are points on the cartilage contour 306. Judgment is made. On the other hand, when the change in the inclination angle of the tangent line between the target point and the adjacent point becomes steep (that is, the threshold Th or more), it is determined that the adjacent point has entered the inaccurate portion 308, It is determined that the cartilage contour 306 is accurate up to the attention point immediately before the adjacent point.
以上のような処理により、基準点Rの近傍にある軟骨輪郭306上の点A,Bに対してそれぞれ滑らかに連続する輪郭部分が、不正確な部分308が除去された正確な軟骨輪郭として抽出される。 Through the processing as described above, a contour portion that smoothly continues with respect to the points A and B on the cartilage contour 306 in the vicinity of the reference point R is extracted as an accurate cartilage contour from which the inaccurate portion 308 is removed. Is done.
以上の例では、輪郭の接線方向が急峻に変化する点を軟骨輪郭306の端点と判定したが、端点を見出すために着目する特徴は接線方向に限らない。輪郭の法線方向が急峻に変化する点を端点と判定してもよい。また、輪郭の微分係数が急激に変化する点を端点と判定してもよい。いずれにしても、この実施形態では、輪郭の方向性を示す特徴量が急峻に変化する点を端点と判定すればよい。 In the above example, the point at which the tangential direction of the contour changes sharply is determined as the end point of the cartilage contour 306, but the feature of interest for finding the end point is not limited to the tangential direction. A point at which the normal direction of the contour changes sharply may be determined as an end point. Further, a point where the contour differential coefficient changes abruptly may be determined as an end point. In any case, in this embodiment, the point at which the feature amount indicating the directionality of the contour changes sharply may be determined as the end point.
また、以上の例では、接線方向の傾き角の差をしきい値との比較することで、輪郭の方向性が急峻に変化したかどうかを判定したが、判定条件はこれに限るものではない。 In the above example, it is determined whether or not the directionality of the contour has changed sharply by comparing the difference in inclination angle in the tangential direction with a threshold value. However, the determination condition is not limited to this. .
次に、軟骨輪郭306から不正確な部分308を除去する処理の変形例を説明する。この例では、軟骨に対して三次元的な関心領域(以下、ROIという。ROIはRegion Of Interestの略)を設定し、輪郭のうちROIから外れる部分を除去する。この方法では、不正確な部分308を完全に除去することは困難だが、かなりの部分は除去することができ、しかも演算処理の高速化が期待できる。以下、この変形例におけるROIの設定方法の例を説明する。 Next, a modified example of the process of removing the inaccurate portion 308 from the cartilage contour 306 will be described. In this example, a three-dimensional region of interest (hereinafter referred to as ROI, where ROI is an abbreviation of Region Of Interest) is set for cartilage, and a portion of the contour that deviates from the ROI is removed. With this method, it is difficult to completely remove the inaccurate portion 308, but a considerable portion can be removed, and the calculation processing can be speeded up. Hereinafter, an example of the ROI setting method in this modification will be described.
この例では、画像前処理部22による組織境界の方向性を考慮した平滑化結果のボリュームデータ(より好適にはそれを反転・二値化した後のデータ)をボリュームレンダリングして表示部30に三次元表示する。そして、その三次元画像表示を入力部32を介してユーザに操作させ、視点位置や視線方向を選ばせることで、図31に示すように大腿骨遠位端の軟骨305をほぼ正面から見た状態が表示されるようにする。図31の例では、便宜上、軟骨305の三次元的な奥行きを等高線で表示しているが、実際の三次元表示はこのような表示に限るものではない。また、実際の超音波計測では、膝蓋骨の影になる部分があるので、軟骨の三次元形状の全体が図31のようにはっきりと見えるわけではないが、図31では説明の便宜上、明確な形状を示しておく。 In this example, the volume data (more preferably, the data after inversion / binarization) of the smoothed result in consideration of the directionality of the tissue boundary by the image preprocessing unit 22 is volume-rendered and displayed on the display unit 30. 3D display. Then, by allowing the user to operate the three-dimensional image display via the input unit 32 and selecting the viewpoint position and the line-of-sight direction, the cartilage 305 at the distal end of the femur is viewed from substantially the front as shown in FIG. Make sure the status is displayed. In the example of FIG. 31, for convenience, the three-dimensional depth of the cartilage 305 is displayed with contour lines, but the actual three-dimensional display is not limited to such a display. Further, in actual ultrasonic measurement, since there is a portion that becomes a shadow of the patella, the entire three-dimensional shape of the cartilage is not clearly visible as shown in FIG. 31, but in FIG. Let me show you.
次に、軟骨305の二股に分かれた部分のうちの内側顆(図では二股のうちの左側)の抽出のために、内側顆で最も視点に近い点(ここがおおよそ軟骨荷重部である)を通る横方向の軸(XY軸)と縦方向の軸(VW軸)とを入力部32を介してユーザに指定させる。XY軸は内側顆の短軸であり、VW軸は内側顆の長軸である。なお、内側顆を取り上げたのは、内側顆の方が膝蓋骨により覆われる部分が少ない(特に内側顆の荷重部は、一般に、図4〜図6のように膝を大きく曲げた状態では、膝蓋骨にはほとんど隠されない)ので、軟骨についての計測に好適だからである。 Next, in order to extract the medial condyle (the left side of the bifurcated in the figure) of the bifurcated portion of the cartilage 305, the point closest to the viewpoint on the medial condyle (this is roughly the cartilage loading portion) The user is allowed to designate a horizontal axis (XY axis) and a vertical axis (VW axis) through the input unit 32. The XY axis is the short axis of the medial condyle, and the VW axis is the long axis of the medial condyle. The medial condyle is taken up because the medial condyle is less covered by the patella (especially the load part of the medial condyle is generally the patella when the knee is largely bent as shown in FIGS. This is because it is suitable for measurement of cartilage.
次に、VW軸を通り、視点から奥行方向に延びる平面(VW面500)でボリュームデータを切断し、その切断面の断層画像を表示部30に表示させる。図32はそのようなVW面500の断層画像の例である。図では、煩雑さを避けるために軟骨502の輪郭のみを示し周囲の組織の画像は示していないが、実際の断層画像では、周囲の組織の画像が存在する。ユーザは、このような断層画像を見ながら入力部32(例えばポインティングデバイス)を操作して、軟骨502の形状に沿った曲線504を指定する。 Next, the volume data is cut by a plane (VW plane 500) extending in the depth direction from the viewpoint through the VW axis, and a tomographic image of the cut plane is displayed on the display unit 30. FIG. 32 shows an example of such a tomographic image of the VW surface 500. In the drawing, only the outline of the cartilage 502 is shown and the surrounding tissue image is not shown in order to avoid complication, but the image of the surrounding tissue exists in the actual tomographic image. The user operates the input unit 32 (for example, a pointing device) while viewing such a tomographic image, and designates a curve 504 along the shape of the cartilage 502.
また、XY軸を通り、視点から奥行方向に延びる平面(XY面510)でボリュームデータを切断し、その切断面の断層画像を表示部30に表示させる。図33はそのようなXY面510の断層画像の例である。図では、煩雑さを避けるために軟骨512の輪郭のみを示し周囲の組織の画像は示していない。ユーザは、このような断層画像を見ながら入力部32を操作して、軟骨512を内包するROIの輪郭線514を指定する。ROIの輪郭線514は、軟骨512よりある程度大きくなるように指定すればよい。 Further, the volume data is cut by a plane (XY plane 510) passing through the XY axis and extending in the depth direction from the viewpoint, and a tomographic image of the cut plane is displayed on the display unit 30. FIG. 33 shows an example of such a tomographic image of the XY plane 510. In the figure, in order to avoid complexity, only the outline of the cartilage 512 is shown, and the image of the surrounding tissue is not shown. The user operates the input unit 32 while viewing such a tomographic image, and designates the ROI outline 514 that encloses the cartilage 512. The ROI outline 514 may be specified to be somewhat larger than the cartilage 512.
抽出ROI設定部34(図3参照)は、以上のように指定された輪郭線514を、その中心(すなわちVW軸上の点)が曲線504を通るように平行移動させることで、三次元的なROIが設定する。すなわち、平行移動により、図34に例示するように、XY面に平行な各面510−1〜510−5で、それぞれ輪郭線514−1〜514−5が求められ、それら輪郭線の集まりにより囲まれる内部の領域が三次元的なROIとなる。 The extraction ROI setting unit 34 (see FIG. 3) translates the contour line 514 designated as described above so that its center (that is, a point on the VW axis) passes through the curve 504, thereby obtaining a three-dimensional view. Set ROI. That is, as illustrated in FIG. 34, contour lines 514-1 to 514-5 are obtained by parallel movement on the respective surfaces 510-1 to 510-5 parallel to the XY plane, and the contour lines are collected. The enclosed inner region becomes a three-dimensional ROI.
軟骨抽出部24は、元の反転・二値化後のボリュームデータ、あるいはエッジ抽出後のボリュームデータ(図23参照)のうち、そのように求められた三次元的なROIの内部のみを切り出す。これにより、膝蓋骨の影響による不正確な部分308(図23参照)のかなりの部分を除去することができる。 The cartilage extraction unit 24 cuts out only the inside of the three-dimensional ROI thus obtained from the original volume data after inversion / binarization or volume data after edge extraction (see FIG. 23). Thereby, a considerable portion of the inaccurate portion 308 (see FIG. 23) due to the influence of the patella can be removed.
以上、軟骨抽出部24の処理内容の例を説明した。再び図3に戻ると、軟骨抽出部24により求められた軟骨の三次元形状データは、三次元データメモリ26に記憶される。画像形成部28は、その三次元データメモリ26内のデータをレンダリングして、三次元の軟骨画像を生成し、表示部30に表示する。画像形成部28は、レンダリングした軟骨画像を三次元データメモリ20内の、膝内部全体の生のボリュームデータをレンダリングした三次元画像と合成した画像を生成し、表示してもよい。合成は、例えば、軟骨画像を、膝内部全体の画像とは異なる色で表示し、両者を重畳するような処理でもよい。また、画像形成部28は、三次元データメモリ26内の軟骨形状のデータに基づき、ユーザから指定された断面での軟骨形状を表す画像を形成し、表示部30に表示してもよい。 The example of the processing content of the cartilage extraction unit 24 has been described above. Returning to FIG. 3 again, the three-dimensional shape data of the cartilage obtained by the cartilage extraction unit 24 is stored in the three-dimensional data memory 26. The image forming unit 28 renders the data in the three-dimensional data memory 26 to generate a three-dimensional cartilage image and displays it on the display unit 30. The image forming unit 28 may generate and display an image obtained by synthesizing the rendered cartilage image with a three-dimensional image obtained by rendering the raw volume data of the entire knee in the three-dimensional data memory 20. The synthesis may be, for example, a process in which the cartilage image is displayed in a color different from the image of the entire inside of the knee, and both are superimposed. The image forming unit 28 may form an image representing the cartilage shape in the cross section designated by the user based on the cartilage shape data in the three-dimensional data memory 26 and display the image on the display unit 30.
次に、抽出された軟骨形状の情報に基づく、軟骨の定量評価のための仕組みについて説明する。この定量評価のために、この実施形態の超音波診断装置は、定量化処理部36,厚み計算部38及び計測ROI設定部39を備える。 Next, a mechanism for quantitative evaluation of cartilage based on the extracted cartilage shape information will be described. For this quantitative evaluation, the ultrasonic diagnostic apparatus of this embodiment includes a quantification processing unit 36, a thickness calculation unit 38, and a measurement ROI setting unit 39.
定量化処理部36は、軟骨の厚みに基づく定量評価情報の計算や、その計算のための制御を行う。厚み計算部38は、定量評価情報を求めるための基礎情報として、軟骨の三次元形状上で選ばれた位置での軟骨の厚みを計算する。この厚み計算の手順の一例を、図35に示す。 The quantification processing unit 36 performs calculation of quantitative evaluation information based on the thickness of the cartilage and control for the calculation. The thickness calculator 38 calculates the thickness of the cartilage at a position selected on the three-dimensional shape of the cartilage as basic information for obtaining quantitative evaluation information. An example of the thickness calculation procedure is shown in FIG.
図35の手順では、定量化処理部36が、三次元データメモリ26内の軟骨形状のデータに基づき軟骨の三次元画像を生成し、表示部30に表示させる(S300)。ユーザは、必要に応じて、入力部32のポインティングデバイス等を操作して軟骨の三次元画像の向きを見やすい向きに変更する。そして、ユーザは、軟骨の三次元的な輪郭(表面)上で、厚みを計算したい点又は範囲を指定し、定量化処理部36はその指定された点又は範囲を認識する(S302)。範囲が指定された場合、定量化処理部36は、その範囲に含まれる軟骨輪郭上の複数の点(画素=ボクセル)をそれぞれ厚み計算の対象点とする。以下では、図36に例示するように、厚み計算の対象点Aが1つ指定されたとして説明する。超音波計測では膝蓋骨の影に該当する部分等、見えない部分もあるが、図36でも、図31と同様便宜的に軟骨600の全体形状を示している。 In the procedure of FIG. 35, the quantification processing unit 36 generates a three-dimensional image of cartilage based on the cartilage shape data in the three-dimensional data memory 26 and displays it on the display unit 30 (S300). If necessary, the user operates the pointing device or the like of the input unit 32 to change the direction of the three-dimensional image of the cartilage so that it can be easily seen. Then, the user designates a point or range for calculating the thickness on the three-dimensional outline (surface) of the cartilage, and the quantification processing unit 36 recognizes the designated point or range (S302). When the range is designated, the quantification processing unit 36 sets a plurality of points (pixels = voxels) on the cartilage contour included in the range as thickness calculation target points. In the following description, it is assumed that one target point A for thickness calculation is designated as illustrated in FIG. Although there are portions that cannot be seen such as a portion corresponding to the shadow of the patella in ultrasonic measurement, FIG. 36 also shows the entire shape of the cartilage 600 for the sake of convenience as in FIG.
なお、図36の例では、大腿骨遠位端の軟骨600の内側顆602にある軟骨荷重部に該当する点が計算対象点Aとして指定されている。例えば、大腿骨の骨軸(大腿骨の長手方向に向かって延びる大腿骨の中心軸)に平行に膝の外側から膝内部を見る方向を視線方向とする軟骨の三次元画像を形成した場合に、内側顆の軟骨荷重部は、その三次元画像中の内側顆602の範囲の中で、最も高い点(すなわち最も視点から見て手前の点)である。 In the example of FIG. 36, a point corresponding to the cartilage load portion in the medial condyle 602 of the cartilage 600 at the distal end of the femur is designated as the calculation target point A. For example, when a three-dimensional image of cartilage is formed parallel to the femoral bone axis (the central axis of the femur extending in the longitudinal direction of the femur) with the direction of gaze as viewed from the outside of the knee The cartilage loading portion of the medial condyle is the highest point (that is, the closest point from the viewpoint) in the range of the medial condyle 602 in the three-dimensional image.
ここで、例えば被検者が椅子に腰掛けた状態では、水平面内での太ももの伸びる方向がほぼ大腿骨の骨軸の方向と見なせるようになる。あるいは、椅子の座面の角度を適切に決めておくことで、大腿骨の骨軸の方向が水平面内になるようにすることができる。このようにしておけば、メカニカル三次元プローブ10を膝に対して位置決め配置した場合に、メカニカル三次元プローブ10の座標系と大腿骨の骨軸方向との位置関係を既知とすることができる。したがって、画像形成部28は、プローブ10により得られたボリュームデータあるいはそこから抽出した軟骨の形状を、骨軸方向を視線方向(例えば骨軸に沿って膝の外側から大腿骨遠位端の軟骨を見る方向)としてレンダリングすることができる。このようにレンダリングすれば、図36のように、視点側から見て最も手前側の点がほぼ軟骨荷重部であるような軟骨の三次元画像表示を自動生成することができる。ユーザは、その表示上で、軟骨荷重部の点(又は軟骨荷重部に該当するある程度の大きさの範囲)を指定することできる。 Here, for example, when the subject sits on a chair, the direction in which the thigh extends in the horizontal plane can be regarded as the direction of the bone axis of the femur. Alternatively, by appropriately determining the angle of the seat surface of the chair, the direction of the bone axis of the femur can be in the horizontal plane. In this way, when the mechanical three-dimensional probe 10 is positioned with respect to the knee, the positional relationship between the coordinate system of the mechanical three-dimensional probe 10 and the bone axis direction of the femur can be known. Therefore, the image forming unit 28 uses the volume data obtained by the probe 10 or the shape of the cartilage extracted from the volume data in the sight line direction (for example, the cartilage at the distal end of the femur along the bone axis from the outside of the knee). Can be rendered as). If rendering is performed in this way, it is possible to automatically generate a three-dimensional image display of cartilage in which the point closest to the viewpoint as viewed from the viewpoint side is approximately the cartilage load portion as shown in FIG. On the display, the user can designate a point of the cartilage load portion (or a range having a certain size corresponding to the cartilage load portion).
また、上述のように、視点側から見て最も手前側の点がほぼ軟骨荷重部であるような軟骨の三次元画像表示を自動生成することができれば、軟骨荷重部の点又は範囲をユーザが指定する代わりに、その三次元画像上で最も手前側の点や範囲を軟骨荷重部として自動検出することもできる。自動検出は、ユーザ指定の場合よりも精度は劣るかも知れないが、処理速度の向上には有益である。 In addition, as described above, if a three-dimensional image display of cartilage in which the closest point when viewed from the viewpoint side is approximately the cartilage load portion can be automatically generated, the user can select the point or range of the cartilage load portion. Instead of specifying, it is also possible to automatically detect the closest point or range on the three-dimensional image as a cartilage load portion. Although automatic detection may be inferior to the accuracy specified by the user, it is useful for improving the processing speed.
さて計算対象点Aが指定されると、厚み計算部38は、その計算対象点Aにおける軟骨輪郭表面の法線方向を求める。 When the calculation target point A is designated, the thickness calculation unit 38 obtains the normal direction of the cartilage contour surface at the calculation target point A.
この法線方向の算出のために、厚み演算部37は、一例として、軟骨輪郭の面のうちその点Aの周囲近傍の中から、3つの参照点B,C,Dを求める(S304)。3つの参照点は、一例として、図37(図36の対象点A近傍を拡大した図)に例示するように、計算対象点Aからみて周囲360度の範囲で均等な方向(すなわち120度間隔の3方向)に位置するように選択することが好ましい。また、対象点Aから各参照点B,C,Dまでの距離はほぼ均等とすることが好ましい。その距離は1画素(ボクセル)程度でもよいが、数画素(例えば5,6画素程度)とした方が後の法線方向特定の精度向上が見込める。 In order to calculate the normal direction, for example, the thickness calculator 37 obtains three reference points B, C, and D from the vicinity of the point A in the surface of the cartilage contour (S304). As an example, the three reference points are shown in FIG. 37 (an enlarged view of the vicinity of the target point A in FIG. 36). Are preferably selected so as to be located in the three directions. Further, it is preferable that the distances from the target point A to the reference points B, C, D are substantially equal. The distance may be about one pixel (voxel), but if the number is set to several pixels (for example, about 5 or 6 pixels), the accuracy of specifying the normal direction can be improved later.
次に、厚み計算部38は、それら参照点B,C,Dを通る平面Eの方程式を求める(S306)。このステップでは、平面の方程式
ax+by+cz+d=0
に参照点B,C,Dの三次元座標が(Bx,By,Bz),(Cx,Cy,Cz),(Dx,Dy,Dz)をそれぞれ代入することで、a,b,c,dを変数とする3つの式を求める。そして、それら3つの式からなる連立方程式を解くことで、変数a,b,c,dの比を求めることができ、その比から平面Eの方程式が求められる。この平面Eは、計算対象点Aにおける軟骨輪郭の接平面にほぼ等しい。
Next, the thickness calculation part 38 calculates | requires the equation of the plane E passing through those reference points B, C, and D (S306). In this step, the plane equation ax + by + cz + d = 0
By substituting (Bx, By, Bz), (Cx, Cy, Cz), (Dx, Dy, Dz) for the three-dimensional coordinates of the reference points B, C, D, respectively, a, b, c, d Three equations are obtained using as variables. Then, by solving the simultaneous equations composed of these three equations, the ratio of the variables a, b, c, and d can be obtained, and the equation of the plane E is obtained from the ratio. This plane E is substantially equal to the tangent plane of the cartilage contour at the calculation target point A.
この処理では、その平面Eの法線方向を、計算対象点Aにおける輪郭表面の法線方向と見なす。平面ax+by+cz+d=0の法線ベクトルは(a,b,c)で表されるので、連立方程式を解いて変数a,b,c,dの比が分かれば、法線ベクトルも特定できる。 In this processing, the normal direction of the plane E is regarded as the normal direction of the contour surface at the calculation target point A. Since the normal vector of the plane ax + by + cz + d = 0 is expressed by (a, b, c), the normal vector can be specified by solving the simultaneous equations and knowing the ratio of the variables a, b, c, d.
なお、法線ベクトルを求めるために用いる各参照点B,C,Dの三次元座標として、軟骨輪郭上の点のうち当該参照点の周囲近傍の複数点(画素)の三次元座標の平均値を用いてもよい。例えば、図38の例では、白抜きの丸印で示す点Bの三次元座標として、当該点B自身の三次元座標と、点Bの8近傍の点(黒丸印)の三次元座標と、の平均値を用いている。このように参照点の近傍点の座標を平均することで、抽出された軟骨輪郭に含まれる高周波な誤差成分を打ち消すことができ、法線ベクトルの精度を高めることが期待される。 As the three-dimensional coordinates of the reference points B, C, and D used for obtaining the normal vector, the average value of the three-dimensional coordinates of a plurality of points (pixels) near the reference point among the points on the cartilage contour. May be used. For example, in the example of FIG. 38, as the three-dimensional coordinates of the point B indicated by the white circle, the three-dimensional coordinates of the point B itself, the three-dimensional coordinates of the points in the vicinity of the point B (black circles), The average value is used. By averaging the coordinates of the neighboring points of the reference point in this way, it is possible to cancel the high-frequency error component included in the extracted cartilage contour, and it is expected to improve the accuracy of the normal vector.
次に厚み計算部38は、図39に示すように、計算対象点Aを通り、求めた法線ベクトルの方向に延びる直線を求める(S308)。これが、対象点Aを通る軟骨輪郭の法線である。厚み計算部38は、その法線が軟骨の三次元的な輪郭面と交わる点を、図40に例示するように、上下それぞれの輪郭面につき1つずつ求める(S310)。図40の例では、煩雑さを避けるため、点Aを通る法線が属する面で三次元的な軟骨輪郭を切断したときの断面図を模式的に示している。図示のように、2つの交点のうち一方の点は計算対象点A自身である。もう一方の交点を点Fとする。 Next, as shown in FIG. 39, the thickness calculator 38 obtains a straight line that passes through the calculation target point A and extends in the direction of the obtained normal vector (S308). This is the normal line of the cartilage contour passing through the target point A. As shown in FIG. 40, the thickness calculator 38 obtains one point where the normal intersects the three-dimensional contour surface of the cartilage, one for each of the upper and lower contour surfaces (S310). In the example of FIG. 40, in order to avoid complexity, a cross-sectional view when a three-dimensional cartilage contour is cut along a plane to which a normal passing through the point A belongs is schematically shown. As illustrated, one of the two intersections is the calculation target point A itself. The other intersection is defined as point F.
厚み計算部38は、それら2つの交点AFを結ぶ線分の長さを計算する。この長さが、計算対象点Aの位置での軟骨の厚みである(S312)。 The thickness calculation unit 38 calculates the length of the line segment connecting the two intersection points AF. This length is the thickness of the cartilage at the position of the calculation target point A (S312).
以上では計算対象点Aの周囲の3つの参照点を用いて法線ベクトルを求めたが、これは一例に過ぎない。この他にも例えば、計算対象点Aの近傍の複数の軟骨輪郭上の点の座標から、最小自乗法等の回帰演算により計算対象点Aでの軟骨輪郭の接平面の方程式を求め、この方程式の係数から法線ベクトルを求めてもよい。 In the above, the normal vector is obtained using the three reference points around the calculation target point A, but this is only an example. In addition to this, for example, an equation of the tangent plane of the cartilage contour at the calculation target point A is obtained from the coordinates of a plurality of points on the cartilage contour in the vicinity of the calculation target point A by a regression operation such as a least square method. A normal vector may be obtained from the coefficient of.
以上では、軟骨表面、すなわち軟骨とそれを覆う筋肉や体液との境界の面に計算対象点を設定する場合を例示した。これに対し、軟骨の裏面、すなわち軟骨と大腿骨遠位端(軟骨下骨)との境界面に計算対象点を設定することもできる。これには、例えば、軟骨の三次元表示において軟骨の裏面側を表示し、その裏面上でユーザに計算対象点を指定させればよい。このとき、例えば、前述したメカニカル三次元プローブ10の座標系と大腿骨の骨軸方向との関係を既知である状況では、軟骨のボリュームデータを、大腿骨の骨軸に沿って大腿骨側からその軟骨を見る視線方向から見た状態でレンダリングすれば、軟骨の三次元画像を、視点から見て最も奥の点がほぼ軟骨荷重部であるような姿勢で表示することができる。したがって、ユーザはこの表示を見て、軟骨裏面側で軟骨荷重部に相当する点を指定することができる。そのような視点からの三次元画像から、軟骨荷重部に相当する点を自動判定してもよい。また、軟骨表面側でユーザに点を指定させ、その点を通る視線方向の直線が軟骨裏面に交わる点を求め、その点を計測対象点としてもよい。軟骨表面は、対向する骨の軟骨との摩擦による摩耗などで、凹凸が生じている場合がある。そのような場合、凹凸の部分に計測対象点を設定すると、その点での法線方向が正しい厚みの方向とはかなりずれたものとなる可能性がある。これに対し、軟骨裏面は大腿骨に張り付いており、そのような摩擦を受けないので、滑らかさを維持しており、そのような問題は少ない。 In the above, the case where the calculation target point is set on the surface of the cartilage surface, that is, the boundary surface between the cartilage and the muscle or body fluid covering the cartilage is exemplified. On the other hand, the calculation target point can be set on the back surface of the cartilage, that is, the boundary surface between the cartilage and the distal end of the femur (subchondral bone). For this purpose, for example, the back side of the cartilage is displayed in the three-dimensional display of the cartilage, and the user can specify the calculation target point on the back side. At this time, for example, in a situation where the relationship between the coordinate system of the mechanical three-dimensional probe 10 and the bone axis direction of the femur is known, the volume data of the cartilage is obtained from the femur side along the bone axis of the femur. If rendering is performed in a state where the cartilage is viewed from the line of sight, the three-dimensional image of the cartilage can be displayed in a posture such that the innermost point when viewed from the viewpoint is the cartilage load portion. Therefore, the user can specify a point corresponding to the cartilage load portion on the back side of the cartilage by viewing this display. A point corresponding to the cartilage load portion may be automatically determined from the three-dimensional image from such a viewpoint. Alternatively, a point may be specified by the user on the cartilage surface side, a point where a line of sight line direction passing through the point intersects the cartilage back surface, and the point may be set as a measurement target point. The cartilage surface may be uneven due to wear due to friction with the cartilage of the opposing bone. In such a case, if a measurement target point is set in the uneven portion, there is a possibility that the normal direction at that point is considerably deviated from the correct thickness direction. On the other hand, the back surface of the cartilage sticks to the femur and does not receive such friction, so it maintains smoothness and there are few such problems.
なお、一般的には、軟骨表面(軟骨と筋肉や体液との境界)も十分に滑らかな場合が多いので、軟骨表面上から軟骨荷重部等の計測対象点を選んでも精度の問題が生じない場合は多い。 In general, since the cartilage surface (boundary between cartilage and muscle or body fluid) is often smooth enough, even if a measurement target point such as a cartilage load part is selected from the cartilage surface, there is no problem in accuracy. There are many cases.
以上、ある1点における軟骨の厚みの計算の仕方を説明した。この他にも、定量化処理部36は、軟骨の三次元画像上である程度の面積を持つ計測対象範囲の指定を受け付け、その範囲内の複数の点での軟骨の厚みについての統計情報を求めてもよい。この処理の例を図41に示す。 The method for calculating the cartilage thickness at a certain point has been described above. In addition, the quantification processing unit 36 receives designation of a measurement target range having a certain area on the three-dimensional image of cartilage, and obtains statistical information about the thickness of the cartilage at a plurality of points within the range. May be. An example of this processing is shown in FIG.
図41の手順では、まず定量化処理部36は、軟骨輪郭の三次元画像を表示部30に表示して(S320)、ユーザから計測対象範囲(計測ROI)の指定を受け付ける(S322)。ユーザは、入力部32のポインティングデバイス等を操作して、計測ROIを指定する。指定された計測ROIの情報は、計測ROI設定部39により認識され、定量化処理部36に伝えられる。 In the procedure of FIG. 41, first, the quantification processing unit 36 displays a three-dimensional image of the cartilage contour on the display unit 30 (S320), and receives designation of a measurement target range (measurement ROI) from the user (S322). The user operates the pointing device or the like of the input unit 32 to specify the measurement ROI. Information on the designated measurement ROI is recognized by the measurement ROI setting unit 39 and transmitted to the quantification processing unit 36.
図42の例では、内側顆602の軟骨荷重部を含んだ範囲が、計測ROI610に指定されている。計測ROI610内に多数表示された黒丸が、そのROI内の点(すなわち画素=ボクセル)を模式的に示している。また図43は、内側顆602全体が計測ROI610に指定された場合の例である(図では、そのROIに含まれる計測対象の点を黒丸で示している)。
定量化処理部36は、指定された計測ROI内の各点ごとに、その点での軟骨の厚みを厚み計算部38に計算させる(S324)。そして定量化処理部36は、それら各点での軟骨の厚みを統計処理する(S326)。
In the example of FIG. 42, the range including the cartilage load portion of the medial condyle 602 is designated as the measurement ROI 610. A large number of black circles displayed in the measurement ROI 610 schematically indicate points in the ROI (that is, pixels = voxels). FIG. 43 shows an example in which the entire medial condyle 602 is designated as the measurement ROI 610 (in the figure, the measurement target points included in the ROI are indicated by black circles).
The quantification processing unit 36 causes the thickness calculation unit 38 to calculate the thickness of the cartilage at each point in the designated measurement ROI (S324). Then, the quantification processing unit 36 statistically processes the cartilage thickness at each of these points (S326).
統計処理は、例えば、それら各点での厚みの平均値又は分散又は標準偏差等の統計的特徴量のうちの1種類以上を求める処理である。また、統計処理は。図44に示すように、各点での厚みの分布マップ画像を生成する処理でもよい。図44は、内側顆602の部分の拡大画像を模式的に示しており、計測ROI内の点のうち、その点での軟骨厚みが当該ROI内での平均値以下の部分620と、平均値を超える部分622とを、表示形態(例えば色や濃度)で区別して表示している。分布マップ画像は、例えば、三次元空間におけるそれら各点の画素値を、その点での軟骨厚みに応じた値にすることにより生成できる。すなわち、この分布マップ画像は三次元的な画像である。図44の例では、軟骨厚みが平均値以下の点と、平均値を超える点という二段階の分布マップ画像を生成したが、段階数が更に多い分布マップ画像を生成することもできる。 The statistical process is a process for obtaining one or more kinds of statistical feature values such as an average value or variance or standard deviation of the thickness at each point. Also, statistical processing. As shown in FIG. 44, a process of generating a thickness distribution map image at each point may be performed. FIG. 44 schematically shows an enlarged image of the portion of the medial condyle 602. Of the points in the measurement ROI, the portion 620 in which the cartilage thickness at that point is equal to or less than the average value in the ROI, and the average value The portion 622 exceeding the range 622 is distinguished and displayed in a display form (for example, color or density). The distribution map image can be generated, for example, by setting the pixel value of each point in the three-dimensional space to a value corresponding to the cartilage thickness at that point. That is, this distribution map image is a three-dimensional image. In the example of FIG. 44, a two-stage distribution map image having a point where the cartilage thickness is equal to or less than the average value and a point exceeding the average value is generated, but a distribution map image having a larger number of stages can also be generated.
また、定量化処理部36は、図45に示すように、計測ROI内の各点での軟骨厚みの度数分布を求めてもよい。 Further, the quantification processing unit 36 may obtain the frequency distribution of the cartilage thickness at each point in the measurement ROI as shown in FIG.
また、定量化処理部36は、軟骨の厚みに関する評価値以外の評価値を求めてもよい。例えば、三次元データメモリ26に保持された軟骨の三次元形状の情報から、軟骨の体積を求めることができる。また、軟骨表面の凹凸度を求めることもできる。凹凸度は、例えば、軟骨輪郭に該当するボクセルの数を計数し、その計数値を単位面積当たりに正規化することで求めればよい。単位面積当たりの軟骨輪郭のボクセル数が多いほど、凹凸度が高いと言える。 Further, the quantification processing unit 36 may obtain an evaluation value other than the evaluation value related to the thickness of the cartilage. For example, the volume of the cartilage can be obtained from the information of the three-dimensional shape of the cartilage held in the three-dimensional data memory 26. Moreover, the unevenness | corrugation degree of the cartilage surface can also be calculated | required. The degree of unevenness may be obtained, for example, by counting the number of voxels corresponding to the cartilage contour and normalizing the counted value per unit area. It can be said that the greater the number of voxels in the cartilage contour per unit area, the higher the degree of unevenness.
定量化処理部36が求めた定量情報は、画像形成部28により、膝内部の三次元画像又は軟骨の三次元画像又はそれら両者を合成したもの、に対して合成され、表示部30に表示される。例えば、定量化処理部36が計測ROIでの軟骨厚みの平均値等の統計値を求めた場合、画像形成部28は、その平均値の数値情報を、三次元画像等を表示した画面上に重畳する。計測ROIが設定されている場合は、その数値情報はそのROI内又は近傍に重畳してもよい。また、定量化処理部36が計測ROIでの軟骨厚みの分布マップ画像を求めた場合、画像形成部28は、その分布マップ画像を、膝内部の三次元画像や軟骨の三次元画像に重畳すればよい。また、画像形成部28は、計測ROI内の各点での軟骨厚みの度数分布を、三次元画像と並べて、あるいは別画面で、表示部30に表示させてもよい。 The quantitative information obtained by the quantification processing unit 36 is synthesized by the image forming unit 28 with respect to the three-dimensional image inside the knee, the three-dimensional image of the cartilage, or a combination thereof, and displayed on the display unit 30. The For example, when the quantification processing unit 36 obtains a statistical value such as an average value of cartilage thickness in the measurement ROI, the image forming unit 28 displays numerical information of the average value on a screen displaying a three-dimensional image or the like. Superimpose. When the measurement ROI is set, the numerical information may be superimposed in or near the ROI. When the quantification processing unit 36 obtains the distribution map image of the cartilage thickness in the measurement ROI, the image forming unit 28 superimposes the distribution map image on the three-dimensional image inside the knee or the three-dimensional image of the cartilage. That's fine. The image forming unit 28 may display the frequency distribution of the cartilage thickness at each point in the measurement ROI on the display unit 30 side by side with the three-dimensional image or on a separate screen.
次に、実施形態の超音波診断装置における、軟骨の厚み等の評価値の経時的変化を求めるための支援機能について説明する。 Next, a description will be given of a support function for obtaining a temporal change in an evaluation value such as a thickness of cartilage in the ultrasonic diagnostic apparatus according to the embodiment.
例えば同一点での軟骨の厚みの経時的変化を正しく求めるには、異なる時点で求められた軟骨形状同士を正しく位置合わせする必要がある。 For example, in order to correctly obtain the change with time in the thickness of the cartilage at the same point, it is necessary to correctly align the cartilage shapes obtained at different time points.
この位置合わせ処理を行うのが、図3における定量化処理部36中の位置合わせ部62である。データベース60は、過去の計測結果を蓄積するデータベースである。例えばデータベース60には、被検者の膝の計測が行われる都度、軟骨抽出部24が抽出した軟骨の形状情報(輪郭形状あるいはボリュームデータ)が、被検者のID(識別)情報及び計測日時に対応づけて登録される。被検者のID情報は、入力部32からユーザ(診断者)が入力したり、入力部32が備えるカードリーダにより被検者のIDカードを読み取ったり、カルテ情報などを管理する診断情報管理システム(図示省略)から取得したりすればよい。また、データベース60には、軟骨形状のデータの他にも、メカニカル三次元プローブ10により得られた(三次元データメモリ20内の)生のボリュームデータを登録してもよい。また、画像前処理部22の前処理結果のボリュームデータを登録してもよい。また、厚み計算部38が計算した軟骨荷重部の厚みや、軟骨荷重部近傍の厚みの統計値などといった評価値を登録してもよい。なお、データベース60には、登録された軟骨形状等が右足、左足のいずれのものであるかを示す情報も併せて登録する。 This alignment processing is performed by the alignment unit 62 in the quantification processing unit 36 in FIG. The database 60 is a database that accumulates past measurement results. For example, each time the subject's knee is measured, the cartilage shape information (contour shape or volume data) extracted by the cartilage extraction unit 24 is stored in the database 60 as the subject's ID (identification) information and measurement date and time. It is registered in association with. A diagnosis information management system for inputting ID information of a subject by a user (diagnostic) from the input unit 32, reading the ID card of the subject by a card reader included in the input unit 32, and managing medical record information and the like (Not shown). In addition to cartilage shape data, raw volume data (in the three-dimensional data memory 20) obtained by the mechanical three-dimensional probe 10 may be registered in the database 60. Further, the volume data of the preprocessing result of the image preprocessing unit 22 may be registered. Further, an evaluation value such as a thickness of the cartilage load portion calculated by the thickness calculation unit 38 or a statistical value of the thickness in the vicinity of the cartilage load portion may be registered. The database 60 also registers information indicating whether the registered cartilage shape or the like is the right foot or the left foot.
さて、2つの画像の位置合わせを行うには、例えば平面画像で考えた場合、一方の画像を回転、平行移動させ、他方の画像とピクセル毎に比較し、その差が最小になるような回転角、平行移動量を求めれば良い。つまり、画像の幅をw、高さをhとすると、一方の画像を−180度〜+180度まで例えば1度ずつ回転させ、x方向に−w〜+wまで1画素ずつ移動させ、y方向に−h〜+hまで1画素ずつ移動させながら、その都度他方の画像と比較し、最適な回転角、平行移動量を見つければ良い。しかし、この方法では処理するのに莫大な時間がかかってしまう。例えば、画像サイズが512×512画素であれば、1024×1024×360=94,371,840回もの比較演算が必要となる。奥行きある三次元画像データの場合はさらに莫大な処理時間となってしまう。 Now, to align the two images, for example, when considering a planar image, rotate and translate one image, compare it with the other image for each pixel, and rotate so that the difference is minimized What is necessary is just to obtain | require an angle and a parallel displacement. In other words, if the width of the image is w and the height is h, one image is rotated by, for example, 1 degree from −180 degrees to +180 degrees, moved by 1 pixel in the x direction from −w to + w, and moved in the y direction. What is necessary is just to find the optimal rotation angle and amount of parallel movement each time it is moved pixel by pixel from -h to + h, and compared with the other image each time. However, this method takes an enormous amount of time to process. For example, if the image size is 512 × 512 pixels, 1024 × 1024 × 360 = 94,371,840 comparison operations are required. In the case of deep three-dimensional image data, the processing time becomes enormous.
これに対し、以下に例示する処理方法では、比較演算の範囲を、軟骨の形状に沿った範囲に限定することで、処理時間の低減を図る。この処理方法を、図46に示す。 On the other hand, in the processing method exemplified below, the processing time is reduced by limiting the range of the comparison calculation to a range along the shape of the cartilage. This processing method is shown in FIG.
図46では、今回新たに計測した被検者の軟骨形状と、同じ被検者についての前回の軟骨形状の計測結果とを位置合わせする場合の例を説明する。 FIG. 46 illustrates an example in which the cartilage shape of the subject newly measured this time is aligned with the previous measurement result of the cartilage shape for the same subject.
図46の手順では、まず、被検者の膝内部をメカニカル三次元プローブ10により計測し、前述の処理によりその被検者の膝軟骨の今回の形状計測結果を得る(S400)。このとき得られた膝内部の生のボリュームデータや、軟骨の三次元形状データを、その被検者のID情報に対応づけてデータベース60に登録してもよい。 In the procedure of FIG. 46, first, the inside of the subject's knee is measured by the mechanical three-dimensional probe 10, and the current shape measurement result of the subject's knee cartilage is obtained by the above-described processing (S400). The raw volume data inside the knee and the three-dimensional shape data of cartilage obtained at this time may be registered in the database 60 in association with the ID information of the subject.
超音波診断装置は、前回との比較を行うモードを有している。診断者がそのモードの実行を指示すると、位置合わせ部62は、その被検者の前回計測時の軟骨形状のデータをデータベース60から読み出す(S402)。ここで、今回の計測の最初に入力された被検者のID情報に対応づけて登録されている(今回の計測結果を除く)最新の軟骨形状のデータをデータベース60から検索すればよい。なお、今回計測したのが右足であれば、データベース60から前回の右足の軟骨形状データを検索する。 The ultrasonic diagnostic apparatus has a mode for comparing with the previous time. When the diagnostician instructs execution of the mode, the alignment unit 62 reads out cartilage shape data at the time of the previous measurement of the subject from the database 60 (S402). Here, the latest cartilage shape data registered in association with the ID information of the subject input at the beginning of the current measurement (excluding the current measurement result) may be searched from the database 60. If the right foot is measured this time, the previous right foot cartilage shape data is searched from the database 60.
次に、位置合わせ部62は、画像形成部28に対し、計測した今回の軟骨形状のデータと検索した前回の軟骨形状のデータとを渡し、それら軟骨形状の三次元画像を例えば一画面上に左右に並べて配置した表示画像を生成させ、表示部30に表示させる。なお、前回と今回の画像を一画面に並べて表示する代わりに、一画面に1つずつ表示し、その都度以下の視点の変更や軸指定などの捜査を受けるようにしてもよい。 Next, the alignment unit 62 passes the measured cartilage shape data and the searched previous cartilage shape data to the image forming unit 28, and displays the three-dimensional images of the cartilage shape on one screen, for example. Display images arranged side by side are generated and displayed on the display unit 30. Note that instead of displaying the previous and current images side by side on one screen, they may be displayed one by one on the screen and subjected to investigations such as changing the viewpoint or specifying the axis each time.
診断者は、画面表示された前回及び今回の軟骨三次元画像のそれぞれについて、入力部32が備えるポインティングデバイスなどを操作することにより、レンダリングの際の視点(あるいは視線方向)を変更することができる。この視点変更により、前回及び今回の軟骨三次元画像を、それぞれ、軟骨の内側顆における軟骨荷重部が正面に来る向きにする。このときの三次元画像の視線方向は、大腿骨の骨軸の方向にほぼ等しく、また軟骨荷重部での軟骨の厚みの方向にもほぼ等しい。 The diagnostician can change the viewpoint (or line-of-sight direction) at the time of rendering by operating a pointing device or the like included in the input unit 32 for each of the previous and current three-dimensional cartilage images displayed on the screen. . By changing the viewpoint, the previous and current cartilage three-dimensional images are oriented in the direction in which the cartilage load portion in the medial condyle of the cartilage comes to the front. At this time, the line-of-sight direction of the three-dimensional image is substantially equal to the direction of the bone axis of the femur, and is also substantially equal to the direction of the thickness of the cartilage at the cartilage load portion.
なお、前述の例のように、メカニカル三次元プローブ10と被検者の膝や太股との相対位置関係を機械的に規制するなどすれば、プローブ10の座標系と大腿骨の骨軸方向との位置関係を既知とすることができ、視点側から見て最も手前側の点がほぼ軟骨荷重部であるような軟骨の三次元画像表示を自動生成することができる。この場合、診断者は、視点変更を行わなくてよく、仮に行うとしても微少な変更でよい。 If the relative positional relationship between the mechanical three-dimensional probe 10 and the subject's knee or thigh is mechanically restricted as in the above example, the coordinate system of the probe 10 and the bone axis direction of the femur The three-dimensional image display of the cartilage can be automatically generated so that the point on the most front side when viewed from the viewpoint side is substantially the cartilage load portion. In this case, the diagnostician does not need to change the viewpoint, and even if it is performed, it may be a slight change.
このようにして前回及び今回の軟骨三次元画像の向きが調整されると、次に位置合わせ部62は、診断者に、それら各軟骨三次元画像上で、内側顆の軟骨荷重部及びその荷重部を通る軟骨長手軸を指定させる(S404)。例えば図36に示されるように、軟骨の内側顆602は、軟骨荷重部が正面に向く方向から見た場合、内側顆と外側顆が並んでいる方向を横方向とすると、おおむね縦に長い形状をなしている。S404では、診断者は、ポインティングデバイスなどを用いて、軟骨荷重部を指定すると共に、その軟骨荷重部を通り内側顆の形状の長手方向に延びる線を長手軸として指定する。 When the orientations of the previous and current cartilage 3D images are adjusted in this manner, the alignment unit 62 then asks the diagnostician on the cartilage 3D images of the cartilage and the load on the medial condyle. The cartilage longitudinal axis passing through the part is designated (S404). For example, as shown in FIG. 36, the cartilage inner condyle 602 has a generally long shape when viewed from the direction in which the cartilage loading portion faces the front and the direction in which the medial condyle and the outer condyle are aligned is a horizontal direction. I am doing. In S404, the diagnostician designates the cartilage load portion using a pointing device or the like, and designates a line extending through the cartilage load portion in the longitudinal direction of the shape of the medial condyle as the longitudinal axis.
図47には、今回の軟骨三次元画像(A)と前回の軟骨三次元画像(B)とのそれぞれにおいて(図では内側顆の荷重部近傍を拡大して示す)、軟骨荷重部630a及び630bと長手軸632a及び632bとが指定された状態を模式的に示している。 FIG. 47 shows cartilage load portions 630a and 630b in the cartilage three-dimensional image (A) and the previous cartilage three-dimensional image (B) (in the drawing, the vicinity of the load portion of the medial condyle is enlarged). And the longitudinal axes 632a and 632b are schematically shown.
位置合わせ部62は、診断者が画面上で軟骨荷重部として指定した点から、レンダリングの視線方向に延びる直線と軟骨形状の手前側の表面との交点を、三次元空間での軟骨荷重部の点として求める。同様に、軟骨長手軸の三次元空間での方向は、視線方向に垂直な面内で、画面上で指定された方向に延びる方向となる。位置合わせ部62は、求めた三次元空間での軟骨荷重部の点を通る、その方向の軸を、軟骨長手軸と認識する。 The alignment unit 62 determines the intersection of the straight line extending in the line-of-sight direction of rendering and the front surface of the cartilage shape from the point designated as the cartilage load unit on the screen by the diagnostician, as the cartilage load unit in the three-dimensional space. Find as a point. Similarly, the direction of the cartilage longitudinal axis in the three-dimensional space is a direction extending in a direction specified on the screen in a plane perpendicular to the line-of-sight direction. The alignment unit 62 recognizes the axis in the direction passing through the point of the cartilage load portion in the obtained three-dimensional space as the cartilage longitudinal axis.
なお、超音波診断では、膝蓋骨の影などの影響により内側顆全体を抽出できない場合もあるが、そのような場合でも、診断者は、内側顆のうちの抽出できた部分の形状や、外側顆、膝蓋面(内側顆と外側顆との間の部分)などとの関係を考慮することで、本来の長手軸方向を推定して指定することができる。 In ultrasonic diagnosis, the entire medial condyle may not be extracted due to the influence of the shadow of the patella, but even in such a case, the diagnostician can determine the shape of the extracted part of the medial condyle or the lateral condyle. Considering the relationship with the patella surface (portion between the medial condyle and the lateral condyle), the original longitudinal axis direction can be estimated and designated.
また、位置合わせ部62は、視線方向に垂直な面内で長手軸に垂直で、かつ三次元空間上で特定された軟骨荷重部の点を通る軸を、軟骨の短手軸として求める。図47には、今回及び前回の軟骨三次元画像での短手軸634a及び634bが示されている。 Further, the alignment unit 62 obtains, as a short axis of cartilage, an axis that is perpendicular to the longitudinal axis in a plane perpendicular to the line-of-sight direction and passes through the point of the cartilage load portion specified in the three-dimensional space. FIG. 47 shows short axes 634a and 634b in the current and previous three-dimensional cartilage images.
以上では、診断者に軟骨荷重部と長手軸方向を指定させたが、この代わりに軟骨荷重部と短手軸方向を指定させてもよい。また、長手軸と短手軸を指定させてもよく、この場合、例えば、それら両者の交点を軟骨形状の手前側の面に投影した点が軟骨荷重部となる。 In the above description, the diagnostician is allowed to specify the cartilage load portion and the longitudinal axis direction. Alternatively, the cartilage load portion and the short axis direction may be specified. In addition, the long axis and the short axis may be designated. In this case, for example, a point obtained by projecting the intersection of the two onto the front surface of the cartilage shape is the cartilage load portion.
次に、位置合わせ部62は、今回と前回の軟骨三次元画像の間で軟骨荷重部同士が一致するように今回の軟骨三次元画像を平行移動させるとともに、長手軸同士が一致するように今回の軟骨三次元画像を回転させる(S406)。 Next, the alignment unit 62 translates the current cartilage three-dimensional image so that the cartilage load portions match between the current and previous cartilage three-dimensional images, and this time so that the longitudinal axes match. The cartilage three-dimensional image is rotated (S406).
次に、位置合わせ部62は、前回と今回の軟骨三次元形状の各々について、それぞれ、指定された軟骨荷重部を通り長手軸及び視線方向にそれぞれ延びる直線を含んだ平面で切断した断面形状(長手軸断面と呼ぶ)を求める(S408)。例えば、図48の(A)には今回の長手軸断面640aが、(B)には前回の長手軸断面640bが、それぞれ例示されている。 Next, the alignment unit 62 cuts each of the previous and current cartilage three-dimensional shapes by a cross-sectional shape cut along a plane including straight lines that extend in the longitudinal axis and the line-of-sight direction through the designated cartilage load part, respectively ( (Referred to as the longitudinal cross section) (S408). For example, FIG. 48A illustrates the current longitudinal axis section 640a, and FIG. 48B illustrates the previous longitudinal axis section 640b.
次に位置合わせ部62は、今回の長手軸断面を前回の長手軸断面に位置合わせするための平行移動量及び回転角度を計算し、その計算結果に従って今回の軟骨三次元形状を平行移動及び回転させる。(S410)(詳細は後述)。 Next, the alignment unit 62 calculates a translation amount and a rotation angle for aligning the current longitudinal axis section with the previous longitudinal axis section, and translates and rotates the current three-dimensional cartilage shape according to the calculation result. Let (S410) (details will be described later).
次に位置合わせ部62は、前回と今回の軟骨三次元形状の各々について、それぞれ、指定された軟骨荷重部を通り短手軸及び視線方向にそれぞれ延びる直線を含んだ平面で切断した断面形状(短手軸断面と呼ぶ)を求める(S412)。そして、今回の短手軸断面を前回の短手軸断面に位置合わせするための平行移動量及び回転角度を計算し、その計算結果に従って今回の軟骨三次元形状を平行移動及び回転させる。(S414)(詳細は後述)。以上により、今回の軟骨三次元画像が前回の軟骨三次元画像に対して三次元的に位置合わせされた状態となる。 Next, the alignment unit 62 cuts each of the previous and current cartilage three-dimensional shapes by a cross-sectional shape cut along a plane including straight lines extending through the specified cartilage load portion and extending in the lateral axis and the line-of-sight direction, respectively ( (Referred to as a short-axis cross section) (S412). Then, a translation amount and a rotation angle for aligning the current short axis section with the previous short axis section are calculated, and the current cartilage three-dimensional shape is translated and rotated according to the calculation result. (S414) (details will be described later). Thus, the current cartilage 3D image is three-dimensionally aligned with the previous cartilage 3D image.
次に、図49を参照して、長手軸断面及び短手軸断面についての位置合わせ(S410及びS414)の具体的な処理手順の例を説明する。以下では、長手軸断面同士の位置合わせの場合を例にとって説明するが、短手軸断面同士も同様の処理により位置合わせできる。 Next, an example of a specific processing procedure for alignment (S410 and S414) for the longitudinal axis section and the short axis section will be described with reference to FIG. In the following description, the case of alignment of the longitudinal axis cross sections will be described as an example, but the short axis cross sections can be aligned by the same processing.
図49の手順では、まず位置合わせ部62は、今回の軟骨の長手軸断面形状の凸側の輪郭線(すなわち軟骨と筋肉等との境界)上に基準点Kを設定すると共に、前回の長手軸断面形状の凸側の輪郭線上に、例えば横方向について等間隔に、n個の検査点K1,K2,…,Knを設定する(S500)。図50の(A)には、今回の長手軸断面640aの表面に設定された基準点Kが例示され、(B)には前回の長手軸断面640bの表面に設定された検査点K1,K2,…,Knが例示される。以下では、説明を簡略化するため、今回の軟骨の長手軸断面形状を「断面形状X」と呼び、前回の軟骨の長手軸断面形状を「断面形状Y」と呼ぶことにする。 In the procedure of FIG. 49, the alignment unit 62 first sets the reference point K on the convex outline (that is, the boundary between cartilage and muscle, etc.) of the longitudinal cross-sectional shape of the cartilage this time, and the previous longitudinal length. N inspection points K1, K2,..., Kn are set on the convex outline of the axial cross-sectional shape, for example, at equal intervals in the horizontal direction (S500). FIG. 50A illustrates the reference point K set on the surface of the current longitudinal section 640a, and FIG. 50B illustrates the inspection points K1, K2 set on the surface of the previous longitudinal section 640b. ,..., Kn are exemplified. Hereinafter, in order to simplify the description, the cross-sectional shape of the longitudinal axis of the cartilage this time is referred to as “cross-sectional shape X”, and the cross-sectional shape of the longitudinal axis of the previous cartilage is referred to as “cross-sectional shape Y”.
基準点Kとしては、例えば、表示画面上での断面形状Xの右端と左端との中点に該当する凸側の輪郭線上の点を選んでもよい。また、別の例として、指定された軟骨荷重部の点を基準点Kとしてもよい。また、検査点の個数nは、必要とする位置合わせの精度に応じて定めておけばよい。 As the reference point K, for example, a point on the convex outline corresponding to the midpoint between the right end and the left end of the cross-sectional shape X on the display screen may be selected. As another example, the point of the designated cartilage load portion may be used as the reference point K. The number n of inspection points may be determined according to the required alignment accuracy.
次に位置合わせ部62は、カウンタjを1に初期化し(S502)、断面形状Xの基準点Kが断面形状Yの検査点Kjに一致するように、断面形状Xを平行移動させる(S504)。図51は、平行移動後の断面形状X(640a)とY(640b)との位置関係を示す。 Next, the alignment unit 62 initializes the counter j to 1 (S502), and translates the sectional shape X so that the reference point K of the sectional shape X coincides with the inspection point Kj of the sectional shape Y (S504). . FIG. 51 shows the positional relationship between the cross-sectional shapes X (640a) and Y (640b) after translation.
そして位置合わせ部62は、この状態で、断面形状XとYとの重なり部分の面積を算出し、算出した面積をメモリ等に記憶する(S506)。面積は、例えば、重なり部分に含まれる画素の数を計数することで求めることができる。図52にハッチングで明示した部分650が重なり部分の例である。ここで、算出した面積は、jの値(この時点では1)及び断面形状Xの回転角度(この時点では0度)と対応づけて記憶しておく。なお、jの値の代わりに、基準点Kから検査点Kjまでのベクトル(平行移動を表す)をメモリに記憶しておいてもよい。 In this state, the alignment unit 62 calculates the area of the overlapping portion of the cross-sectional shapes X and Y, and stores the calculated area in a memory or the like (S506). The area can be obtained, for example, by counting the number of pixels included in the overlapping portion. In FIG. 52, a portion 650 indicated by hatching is an example of an overlapping portion. Here, the calculated area is stored in association with the value of j (1 at this time) and the rotation angle of the cross-sectional shape X (0 degrees at this time). Instead of the value of j, a vector (representing translation) from the reference point K to the inspection point Kj may be stored in the memory.
次に、位置合わせ部62は、断面形状Xを360度回転させ終わったかどうかを判定する(S508)。360度回転させ終わっていなければ、位置合わせ部62は、基準点Kを検査点Kjに一致させた状態で、基準点K回りに、あらかじめ定めた向き(図52の例では反時計回り)にあらかじめ定めた単位角度(例えば1度)だけ、断面形状X(640a)を回転させる(S510)。そして、再びS506で、断面形状XとYとの交わり部分の面積を計算し、その時点での平行移動ベクトル及び回転角度を表す情報と関連づけてメモリ等に記憶する。 Next, the alignment unit 62 determines whether or not the cross-sectional shape X has been rotated 360 degrees (S508). If the rotation is not completed 360 degrees, the alignment unit 62 rotates around the reference point K in a predetermined direction (counterclockwise in the example of FIG. 52) with the reference point K aligned with the inspection point Kj. The cross-sectional shape X (640a) is rotated by a predetermined unit angle (for example, 1 degree) (S510). In S506 again, the area of the intersection of the cross-sectional shapes X and Y is calculated and stored in a memory or the like in association with the information indicating the translation vector and the rotation angle at that time.
基準点Kをある検査点Kjに一致させた状態で、S506〜S510の処理を繰り返す。そして、断面形状Xを360度回転させ終えると、S508の判定結果が肯定(Yes)となる。この場合、位置合わせ部62は、カウンタjの値がn(検査点Kjの総数)に達したか否かを判定し(S512)、達していなければjを1増加させて(S514)、ステップS504に戻る。すなわち、次の検査点Kjについて、同様の処理(S504〜S510)を繰り返す。 With the reference point K matched with a certain inspection point Kj, the processing of S506 to S510 is repeated. When the cross-sectional shape X is rotated 360 degrees, the determination result in S508 is affirmative (Yes). In this case, the alignment unit 62 determines whether or not the value of the counter j has reached n (total number of inspection points Kj) (S512). If not, j is incremented by 1 (S514), step The process returns to S504. That is, the same processing (S504 to S510) is repeated for the next inspection point Kj.
S504〜S514の処理をjがnに達するまで繰り返すと、S512の判定結果が肯定となる。この場合、位置合わせ部62は、メモリ等に記憶した重なり部分の面積の最大値を求める。断面形状X(640a)とY(640b)の重なり部分の面積が最大となった状態を図53に例示する。位置合わせ部62は、その面積の最大値に対応づけて記憶された平行移動量(ベクトル)及び回転角度だけ、今回の軟骨三次元画像を平行移動及び回転させる(S516)。 If the processing of S504 to S514 is repeated until j reaches n, the determination result of S512 becomes affirmative. In this case, the alignment unit 62 obtains the maximum value of the area of the overlapping portion stored in the memory or the like. FIG. 53 illustrates a state in which the area of the overlapping portion of the cross-sectional shapes X (640a) and Y (640b) is maximized. The alignment unit 62 translates and rotates the current three-dimensional cartilage image by the translation amount (vector) and the rotation angle stored in association with the maximum value of the area (S516).
以上の処理により、長手軸断面形状を用いた位置合わせが完了する。この位置合わせは、今回の軟骨三次元画像を平行移動させ、短手軸回りに回転させるものである。 With the above processing, alignment using the longitudinal axis cross-sectional shape is completed. In this alignment, the current three-dimensional cartilage image is translated and rotated around the short axis.
この後、S414で短手軸断面形状について同様の処理(図49)を行うことにより、今回の軟骨三次元画像を更に平行移動及び長手軸回りに回転させ、前回の軟骨三次元画像に位置合わせすることができる。 Thereafter, the same processing (FIG. 49) is performed on the short-axis cross-sectional shape in S414, whereby the current cartilage 3D image is further translated and rotated around the longitudinal axis, and aligned with the previous cartilage 3D image. can do.
図49の手順では、今回の断面形状Xの基準点を前回の断面形状Yの全域に渡って設定された検査点の全てに対してそれぞれ移動させた場合について、それぞれ検査を行ったが、検査点の分布範囲を絞り込み、検査点の数を減らすこともできる。例えば、今回の断面形状Xの軟骨荷重部を基準点とし、前回の断面形状Yにおける軟骨荷重部の近傍のあらかじめ定めた範囲に検査点を設定するようにしてもよい。こうすることで、計算回数を低減することができる。 In the procedure of FIG. 49, the inspection is performed for the case where the reference point of the current cross-sectional shape X is moved with respect to all the inspection points set over the entire area of the previous cross-sectional shape Y. It is also possible to narrow down the point distribution range and reduce the number of inspection points. For example, the inspection point may be set in a predetermined range in the vicinity of the cartilage load portion in the previous cross-sectional shape Y with the cartilage load portion of the current cross-sectional shape X as a reference point. By doing so, the number of calculations can be reduced.
以上のように今回と前回の軟骨三次元画像を位置合わせすることで、それら両者を精度よく比較することができる。例えば、位置合わせをした後では、前回又は今回の軟骨三次元画像のいずれか一方の画像上で注目点を指定すれば、他方の画像上でその注目点に該当する点を特定することができる。今回と前回の軟骨三次元画像において各々の注目点での軟骨厚みを計算すれば、今回と前回とでほぼ同じ部位の厚みを求めることができる。 As described above, by aligning the current and previous three-dimensional cartilage images, it is possible to accurately compare the two. For example, after positioning, if a point of interest is specified on one of the previous or current cartilage three-dimensional images, the point corresponding to the point of interest can be identified on the other image. . If the cartilage thickness at each point of interest in the current and previous cartilage 3D images is calculated, the thickness of almost the same part in this time and the previous time can be obtained.
したがって、図3に示した経時変化算出部64は、例えば診断者から指定された同一点での軟骨厚みを、今回及び前回の軟骨三次元画像(又は軟骨輪郭形状)から求め、求めた両者の厚みを例えば並べて表示するための画像を生成することができる。また、その同一点での厚みが前回から今回までにどれだけ変化したか(増加又は減少)を計算し、その変化量を表示することもできる。 Accordingly, the temporal change calculation unit 64 shown in FIG. 3 obtains, for example, the cartilage thickness at the same point designated by the diagnosis from the current and previous cartilage three-dimensional images (or cartilage contour shape), For example, an image for displaying the thicknesses side by side can be generated. It is also possible to calculate how much the thickness at the same point has changed from the previous time to this time (increase or decrease) and display the amount of change.
また、位置合わせを行えば、診断者が前回又は今回の軟骨三次元画像のうちの一方の上で、広さを持つ関心領域(例えば軟骨荷重部とその近傍範囲)を指定すると、他方の三次元画像上でそれに対応する関心領域が定まる。したがって、経時変化算出部64は、前回と今回との間で、同じ関心領域内の複数の点での軟骨厚みの統計情報(平均、分散、分布マップなど)をそれぞれ求めることができる。また、前回と今回での同じ関心領域での統計情報同士の差や比較結果なども、経時変化を示す分析結果の一種として求めることができる。 In addition, if the alignment is performed, when the diagnostician designates a region of interest having a size (for example, a cartilage load portion and its vicinity) on one of the previous or current three-dimensional cartilage images, the other tertiary A region of interest corresponding to the original image is determined. Therefore, the temporal change calculation unit 64 can obtain statistical information (average, variance, distribution map, etc.) of cartilage thickness at a plurality of points in the same region of interest between the previous time and this time. In addition, the difference between the statistical information in the same region of interest in the previous time and the current time, the comparison result, and the like can also be obtained as a kind of analysis result indicating a change with time.
また、超音波計測により得られた膝内部の生のボリュームデータと軟骨抽出結果の位置関係は既知なので、前回と今回の軟骨三次元画像同士の位置合わせのための平行移動及び回転と同じだけ、今回の生のボリュームデータを平行移動及び回転させれば、今回のボリュームデータを前回のボリュームデータに位置合わせすることができる。 Also, since the positional relationship between the raw volume data inside the knee obtained by ultrasonic measurement and the cartilage extraction result is known, only the same translation and rotation for positioning between the previous and current cartilage 3D images, If the current raw volume data is translated and rotated, the current volume data can be aligned with the previous volume data.
以上では、前回の軟骨三次元画像を基準とし、これに今回のものを位置合わせする場合を説明したが、位置合わせは前回と今回のどちらを基準にしても構わない。また、例えば基準となるXYZ座標系を定めておき、前回と今回の軟骨三次元画像の両方をそれら基準の座標系に位置合わせするようにしてもよい。この場合、例えば軟骨荷重部を基準座標系の原点とし、軟骨の長手軸、短手軸、三次元画像において軟骨荷重部が正面を向いた状態での視線方向を、例えばX軸、Y軸、Z軸の正の方向に一致するように位置合わせ(座標変換)すればよい。 In the above, the case where the previous three-dimensional cartilage image is used as a reference and the current one is aligned with the previous one has been described. However, the alignment may be performed based on either the previous or the current one. Further, for example, a reference XYZ coordinate system may be defined, and both the previous and current cartilage 3D images may be aligned with the reference coordinate system. In this case, for example, the cartilage load portion is the origin of the reference coordinate system, and the line of sight in the state where the cartilage load portion faces the front in the longitudinal axis, the short axis, and the three-dimensional image of the cartilage, for example, the X axis, the Y axis, Positioning (coordinate conversion) may be performed so as to coincide with the positive direction of the Z axis.
また、以上の例では、今回新たに計測した軟骨形状と、記憶された前回の軟骨形状とを位置合わせして比較した。しかしながら、当業者ならば理解できるように、上述の位置合わせ処理は、前回と今回の計測結果の位置合わせに限らず、同じ被検者についての異なる2時点での計測結果同士の位置合わせ一般に適用可能である。例えば、データベース60に蓄積された同一被検者の過去の複数時点での計測結果情報の中から、診断者が2以上の各時点での軟骨形状を読み出し、それらを上述の処理により相互に位置合わせすることができる。 In the above example, the newly measured cartilage shape is compared with the stored previous cartilage shape for comparison. However, as can be understood by those skilled in the art, the above alignment process is not limited to the alignment of the previous and current measurement results, but is generally applied to the alignment of measurement results at two different time points for the same subject. Is possible. For example, the diagnostician reads out cartilage shapes at two or more time points from the measurement result information of the same subject stored in the database 60 at a plurality of past times, and positions them mutually by the above processing. Can be combined.
以上の例では、同一被検者の異なる時点の軟骨形状同士を位置合わせする基準として、軟骨の長手軸方向(又は短手軸方向)をユーザに指定させた。しかし、長手軸方向(又は短手軸方向)の代わりに、軟骨の形状における他の特徴的な方向を基準方向としてユーザに指定させてもよい。 In the above example, the longitudinal axis direction (or the short axis direction) of the cartilage is specified by the user as a reference for aligning the cartilage shapes of the same subject at different points in time. However, instead of the long axis direction (or short axis direction), the user may designate another characteristic direction in the shape of the cartilage as the reference direction.
以上に説明した例では、図3に示したように、画像前処理部22及び軟骨抽出部24は、三次元データメモリ20内の座標変換後のボリュームデータに対して処理を行った。しかし、これは一例に過ぎない。この代わりに、電子走査により得られる1フレームの画像ごとに、画像前処理部22及び軟骨抽出部24が処理を行ってもよい。この場合の装置構成の例を図54に示す。図54において、図3と同様の構成要素には同一符号を付して説明を省略する。 In the example described above, as illustrated in FIG. 3, the image preprocessing unit 22 and the cartilage extraction unit 24 perform processing on the volume data after coordinate conversion in the three-dimensional data memory 20. However, this is only an example. Instead, the image preprocessing unit 22 and the cartilage extraction unit 24 may perform processing for each frame image obtained by electronic scanning. An example of the device configuration in this case is shown in FIG. In FIG. 54, the same components as those of FIG.
図54の例では、送受信部16により求められた1電子走査フレームの画像データがフレームメモリ52に蓄積される。画像前処理部22はこのフレームメモリ52内の画像データに対して上述の前処理を行い、軟骨抽出部24はその前処理結果に対して上述の軟骨抽出処理を行う。そして、座標変換部54は、軟骨抽出部24が抽出した電子走査フレームごとの軟骨輪郭の形状を、表示や保存のための共通座標系に変換し、その変換結果を三次元データメモリ26に蓄積する。また、フレームメモリ52内の電子走査フレームのデータは、座標変換部18により共通座標系へと座標変換され、その変換結果が三次元データメモリ20に格納される。 In the example of FIG. 54, image data of one electronic scanning frame obtained by the transmission / reception unit 16 is accumulated in the frame memory 52. The image preprocessing unit 22 performs the above-described preprocessing on the image data in the frame memory 52, and the cartilage extraction unit 24 performs the above-described cartilage extraction processing on the preprocessing result. Then, the coordinate conversion unit 54 converts the shape of the cartilage contour for each electronic scanning frame extracted by the cartilage extraction unit 24 into a common coordinate system for display and storage, and stores the conversion result in the three-dimensional data memory 26. To do. The data of the electronic scanning frame in the frame memory 52 is coordinate-converted into a common coordinate system by the coordinate conversion unit 18, and the conversion result is stored in the three-dimensional data memory 20.
また、以上の例では、軟骨に該当する部分(例えば基準点R)をユーザに指定させ、これを元に軟骨抽出を行ったが、これは必須ではない。例えば、回転軸42(図4参照)を膝に対して適切に位置決めすることで、軟骨の画像がボリュームデータ中の、あらかじめ定めた範囲内に位置するようにすることができる。このようなボリュームデータ(あるいはその中のスライスデータ)(例えばエッジ抽出後が好適)と、例えばあらかじめ用意した軟骨の形状・サイズを表すテンプレート画像とのマッチング処理を行うことで、おおよそ軟骨であると推定される部分を求め、その中のある点乃至領域を基準点Rなどに選ぶことができる。このような処理は自動化することができる。 In the above example, the user specifies a portion corresponding to cartilage (for example, the reference point R), and cartilage extraction is performed based on this, but this is not essential. For example, by appropriately positioning the rotation shaft 42 (see FIG. 4) with respect to the knee, the cartilage image can be positioned within a predetermined range in the volume data. By performing matching processing between such volume data (or slice data therein) (for example, after edge extraction is suitable) and a template image representing the shape and size of cartilage prepared in advance, the cartilage is roughly cartilage. An estimated portion can be obtained, and a certain point or region can be selected as the reference point R or the like. Such processing can be automated.
また、以上では膝内部のボリュームデータを得るために、電子走査の振動子アレイ12とメカ走査機構14を組み合わせたプローブ10を用いたが、この代わりに、電子的に二次元走査を行うプローブを用いてもよい。 In the above, the probe 10 that combines the electronic scanning transducer array 12 and the mechanical scanning mechanism 14 is used to obtain volume data in the knee. Instead, a probe that electronically performs two-dimensional scanning is used. It may be used.
以上に説明した実施形態によれば、超音波プローブという非侵襲で、かつMRIなどと比較して低コストの装置を用いて、大腿骨遠位端の軟骨の三次元形状を抽出することができる。そして、同一被検者について異なる時点で求めた軟骨形状同士を位置合わせすることで、異なる時点での軟骨の状態(例えば厚み)同士の比較精度を高めることが期待できる。 According to the embodiment described above, it is possible to extract the three-dimensional shape of the cartilage at the distal end of the femur using a non-invasive ultrasound probe and a low-cost apparatus compared to MRI or the like. . Then, by aligning the cartilage shapes obtained at different points in time for the same subject, it can be expected that the accuracy of comparison between the cartilage states (for example, thickness) at different points in time will be improved.
また、上記実施形態では、ユーザに軟骨荷重部や長手軸などの軟骨の特徴点、特徴方向を指定させ、それた特徴点、特徴方向を合わせるように、異なる時点での軟骨形状同士を位置合わせしている。これにより、比較的少ない計算処理量で精度の高い位置合わせを実現できる。 Further, in the above embodiment, the user specifies the cartilage feature point and the feature direction such as the cartilage load portion and the longitudinal axis, and aligns the cartilage shapes at different time points so as to match the feature point and the feature direction. doing. As a result, highly accurate alignment can be realized with a relatively small amount of calculation processing.
また、上記実施形態では、指定された軟骨荷重部及び長手軸方向により規定される面で三次元の軟骨形状を切断した断面同士でマッチングを行うことで、三次元形状同士のマッチングよりも計算量を低減することができる。 Further, in the above embodiment, by performing matching between the cross sections obtained by cutting the three-dimensional cartilage shape on the surface defined by the designated cartilage load portion and the longitudinal axis direction, the calculation amount is more than the matching of the three-dimensional shapes. Can be reduced.
また、上記実施形態では、プローブと大腿骨骨軸との既知の位置関係に応じて、抽出した軟骨の三次元画像の向きを調整することで、変形性膝関節症の注目部位である軟骨荷重部を見つけやすい向きの軟骨の三次元表示を生成することができる。ユーザはこの表示を見ながら、軟骨荷重部に該当する点又は範囲を、容易に指定することができる。 In the above embodiment, the cartilage load that is the site of interest in osteoarthritis of the knee is adjusted by adjusting the orientation of the extracted three-dimensional image of the cartilage according to the known positional relationship between the probe and the femoral bone axis. It is possible to generate a three-dimensional display of cartilage in a direction that facilitates finding the part. The user can easily specify a point or range corresponding to the cartilage load portion while viewing this display.
10 メカニカル三次元プローブ、12 振動子アレイ、14 メカ走査機構、16 送受信部、18 座標変換部、20 三次元データメモリ、22 画像前処理部、24 軟骨抽出部、26 三次元データメモリ、28 画像形成部、30 表示部、32 入力部、34 抽出ROI設定部、40 振動子部、42 回転軸、44 アーム、46 スタンドオフ、100 大腿骨。 10 mechanical 3D probe, 12 transducer array, 14 mechanical scanning mechanism, 16 transmission / reception unit, 18 coordinate conversion unit, 20 3D data memory, 22 image preprocessing unit, 24 cartilage extraction unit, 26 3D data memory, 28 image Forming unit, 30 display unit, 32 input unit, 34 extraction ROI setting unit, 40 transducer unit, 42 rotation axis, 44 arm, 46 standoff, 100 femur.
Claims (4)
前記ボリュームデータにおける各ボクセルのエコーレベル値に基づき、前記ボリュームデータから前記軟骨に対応する部分を抽出する抽出手段と、
前記抽出手段により抽出された前記軟骨に対応する部分の三次元形状情報を蓄積する蓄積手段と、
前記蓄積手段に蓄積された過去の前記軟骨に対応する部分の三次元形状情報が表す第1の軟骨形状と、前記送受波手段により取得されたボリュームデータから前記抽出手段が抽出した現在の前記軟骨に対応する部分の三次元形状情報又は前記蓄積手段に蓄積された過去の前記軟骨に対応する部分の三次元形状情報が表す第2の軟骨形状と、を位置合わせする位置合わせ手段と、
を備え、
前記位置合わせ手段は、前記第1の軟骨形状及び前記第2の軟骨形状の各々において軟骨荷重部に該当する点の指定をユーザから受け付け、指定された軟骨荷重部が一致するように前記第1の軟骨形状と前記第2の軟骨形状を位置合わせすると共に、
前記位置合わせ手段は、前記第1の軟骨形状及び前記第2の軟骨形状の各々において軟骨の形状に応じた軸方向として、前記軟骨荷重部を通る、前記軟骨に対応する部分の長手方向又は短手方向の指定をユーザから受け付け、指定された軸方向が一致するように前記第1の軟骨形状と前記第2の軟骨形状を位置合わせする、ことを特徴とする超音波診断装置。 A wave transmitting / receiving means for acquiring volume data about a three-dimensional region including cartilage at the distal end of the femur inside the knee by scanning an ultrasonic beam from the body surface on the front side of the bent knee;
Based on the echo level value of each voxel in the volume data, extraction means for extracting a portion corresponding to the cartilage from the volume data;
Storage means for storing the three-dimensional shape information of the portion corresponding to the cartilage extracted by the extraction means;
The first cartilage shape represented by the three-dimensional shape information of the past corresponding to the cartilage accumulated in the accumulating means, and the current cartilage extracted by the extracting means from the volume data acquired by the wave transmitting / receiving means Positioning means for positioning the three-dimensional shape information of the part corresponding to the second cartilage shape represented by the three-dimensional shape information of the part corresponding to the past cartilage stored in the storage means,
With
The positioning means receives designation of a point corresponding to a cartilage load portion in each of the first cartilage shape and the second cartilage shape from a user, and the first cartilage load portion matches the first cartilage load portion. And aligning the second cartilage shape with the second cartilage shape,
In the first cartilage shape and the second cartilage shape, the positioning means has a longitudinal direction or a short direction of a portion corresponding to the cartilage passing through the cartilage load portion as an axial direction corresponding to the cartilage shape in each of the first cartilage shape and the second cartilage shape. accepting a designation of the hand direction from a user, the given axial aligning the first cartilage shape as the second cartilage shaped to match, the ultrasonic diagnostic apparatus you wherein a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008163672A JP5192921B2 (en) | 2008-06-23 | 2008-06-23 | Ultrasonic diagnostic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008163672A JP5192921B2 (en) | 2008-06-23 | 2008-06-23 | Ultrasonic diagnostic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010000305A JP2010000305A (en) | 2010-01-07 |
JP5192921B2 true JP5192921B2 (en) | 2013-05-08 |
Family
ID=41582501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008163672A Expired - Fee Related JP5192921B2 (en) | 2008-06-23 | 2008-06-23 | Ultrasonic diagnostic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5192921B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101194283B1 (en) | 2010-05-17 | 2012-10-24 | 삼성메디슨 주식회사 | Ultrasound system for measuring image using figure template and method for operating ultrasound system |
EP2387949A1 (en) | 2010-05-17 | 2011-11-23 | Samsung Medison Co., Ltd. | Ultrasound system for measuring image using figure template and method for operating ultrasound system |
KR101194284B1 (en) * | 2010-05-17 | 2012-10-24 | 삼성메디슨 주식회사 | Ultrasound system for measuring angle of image and method for operating ultrasound system |
JP5558932B2 (en) * | 2010-06-24 | 2014-07-23 | 日立アロカメディカル株式会社 | Ultrasonic diagnostic equipment |
WO2014103512A1 (en) * | 2012-12-28 | 2014-07-03 | 古野電気株式会社 | Soft tissue cartilage interface detection method, soft tissue cartilage interface detection device, and soft tissue cartilage interface detection program |
JP6393538B2 (en) * | 2014-07-10 | 2018-09-19 | コニカミノルタメディカルソリューションズ株式会社 | Medical image processing apparatus, medical image processing system, medical image processing method, and medical image processing program |
JP6147782B2 (en) * | 2015-02-17 | 2017-06-14 | 東芝メディカルシステムズ株式会社 | Medical image diagnostic apparatus and medical image processing apparatus |
JP6534940B2 (en) * | 2016-01-27 | 2019-06-26 | 株式会社 レキシー | Surgical support device, surgical support system and program |
JP6659501B2 (en) | 2016-09-14 | 2020-03-04 | 富士フイルム株式会社 | Cartilage quantification device, method and program |
CN108784705B (en) * | 2018-05-28 | 2020-12-15 | 上海交通大学 | High-performance analysis method for joint image |
JP7107522B2 (en) * | 2018-06-07 | 2022-07-27 | 古野電気株式会社 | Ultrasonic analysis device, ultrasonic analysis method and ultrasonic analysis program |
JP7242852B2 (en) * | 2019-06-07 | 2023-03-20 | 富士フイルム株式会社 | JOINT PROJECTION PLANE SETTING DEVICE, METHOD AND PROGRAM |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0765146A (en) * | 1993-08-24 | 1995-03-10 | Toshiba Corp | Ultrasonic diagnostic system |
US7468075B2 (en) * | 2001-05-25 | 2008-12-23 | Conformis, Inc. | Methods and compositions for articular repair |
JP2002532126A (en) * | 1998-09-14 | 2002-10-02 | スタンフォード ユニバーシティ | Joint condition evaluation and damage prevention device |
JP4688262B2 (en) * | 2000-07-27 | 2011-05-25 | アロカ株式会社 | Ultrasonic diagnostic equipment |
JP2005102945A (en) * | 2003-09-30 | 2005-04-21 | Ssb:Kk | Biotissue multidimensional visualization equipment |
JP4887491B2 (en) * | 2006-04-18 | 2012-02-29 | 国立大学法人九州工業大学 | MEDICAL IMAGE PROCESSING METHOD, DEVICE THEREOF, AND PROGRAM |
JP2007325778A (en) * | 2006-06-08 | 2007-12-20 | Toshiba Corp | Ultrasonic image diagnosis system and its processing program |
-
2008
- 2008-06-23 JP JP2008163672A patent/JP5192921B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010000305A (en) | 2010-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5192921B2 (en) | Ultrasonic diagnostic equipment | |
JP6994494B2 (en) | Elastography measurement system and its method | |
JP5302578B2 (en) | Ultrasonic diagnostic equipment | |
JP5235103B2 (en) | Ultrasonic diagnostic equipment | |
US6290648B1 (en) | Ultrasonic diagnostic apparatus | |
AU2002251559B9 (en) | Three-dimensional joint structure measuring method | |
JP4997225B2 (en) | Dual array transducer probe for real-time mechanical imaging of the prostate | |
KR101984824B1 (en) | Method and apparatus for analyzing elastography of tissue using ultrasound | |
JP2000126182A (en) | Tumor diagnosing method | |
JP2008073305A (en) | Ultrasonic breast diagnostic system | |
WO2006123742A1 (en) | Image diagnosing device | |
JP2017108769A (en) | Image processing device, image processing method, and ultrasonic diagnostic device equipped with image processing device | |
Chen et al. | Improvement of 3-D ultrasound spine imaging technique using fast reconstruction algorithm | |
US12053326B2 (en) | Apparatus and method for automatic ultrasound segmentation for visualization and measurement | |
JP2022040216A (en) | Medical imaging apparatus | |
JP5525355B2 (en) | Ultrasonic diagnostic equipment | |
JP2020018767A (en) | Ultrasonic diagnosis system | |
JP5185713B2 (en) | Artificial joint search device | |
CN116158784A (en) | Ultrasonic diagnostic apparatus, ultrasonic image analysis apparatus, and control method thereof | |
CN109069117B (en) | Ultrasonic diagnostic apparatus | |
JP2011125757A (en) | Ultrasonic image data processor | |
EP3449838B1 (en) | Imaging method and device | |
KR102106542B1 (en) | Method and apparatus for analyzing elastography of tissue using ultrasound | |
Banerjee | Automatic Assessment of Scoliosis Using 3D Ultrasound Imaging and Convolutional Neural Network | |
CN113164158A (en) | Device and method for detecting bone fractures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130201 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160208 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |