JP5301965B2 - Vapor growth equipment - Google Patents

Vapor growth equipment Download PDF

Info

Publication number
JP5301965B2
JP5301965B2 JP2008305299A JP2008305299A JP5301965B2 JP 5301965 B2 JP5301965 B2 JP 5301965B2 JP 2008305299 A JP2008305299 A JP 2008305299A JP 2008305299 A JP2008305299 A JP 2008305299A JP 5301965 B2 JP5301965 B2 JP 5301965B2
Authority
JP
Japan
Prior art keywords
substrate
semiconductor substrate
substrate holder
semiconductor
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008305299A
Other languages
Japanese (ja)
Other versions
JP2010126796A (en
Inventor
英司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008305299A priority Critical patent/JP5301965B2/en
Publication of JP2010126796A publication Critical patent/JP2010126796A/en
Application granted granted Critical
Publication of JP5301965B2 publication Critical patent/JP5301965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor deposition apparatus which suppresses variation in the oscillation wavelength of a nitride base compound semiconductor element to be manufactured and manufactures a plurality of nitride base compound semiconductor elements having high yield from one semiconductor substrate. <P>SOLUTION: The vapor deposition apparatus 101 includes: a substrate holder 108 holding a semiconductor substrate 107 placed thereon; and a heater heating the semiconductor substrate 107 from below the substrate holder 109, wherein a face of the substrate holder 108, the face being confronted with the semiconductor substrate 107, is formed so as to have almost the same shape as that of the warpage of the face of the semiconductor substrate 107, the face being confronted with the substrate holder 108. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、気相成長装置に関し、特に基板を保持する基板ホルダーを備えた気相成長装置に関する。   The present invention relates to a vapor phase growth apparatus, and more particularly, to a vapor phase growth apparatus provided with a substrate holder for holding a substrate.

GaN、AlN、InNおよびこれらの混晶に代表される窒化物系III−V族化合物半導体結晶はバンドギャップが直接遷移型であり、半導体発光素子への利用が期待されている。特に、InGaNの混晶は、紫外光から赤色光にいたる波長の光を発光させることが可能である。このため、すでに、InGaNの混晶を用いて紫外光から緑色光にいたる波長の発光ダイオード素子並びに青紫レーザダイオード素子が実用化されている。これらの半導体発光素子は、高密度光ディスクやフルカラーディスプレー、さらには環境・医療分野など、広く応用が考えられている。   Nitride-based III-V group compound semiconductor crystals represented by GaN, AlN, InN, and mixed crystals thereof have a direct band gap and are expected to be used for semiconductor light emitting devices. In particular, a mixed crystal of InGaN can emit light having a wavelength ranging from ultraviolet light to red light. For this reason, light-emitting diode elements and blue-violet laser diode elements having wavelengths from ultraviolet light to green light using AlGaN mixed crystals have already been put into practical use. These semiconductor light-emitting elements are widely considered to be applied to high-density optical discs, full-color displays, and environmental / medical fields.

また、発光ダイオード素子、レーザダイオード素子などの半導体発光素子の製造方法として、有機金属化学気相蒸着法(Metal Organic Chemical Vapor Deposition:以下、MOCVD法と呼称する)が一般的に用いられるこのMOCVD法を用いて化合物半導体の薄膜成長を行なう気相成長装置はMOCVD装置と呼ばれる。   Further, as a method for manufacturing a semiconductor light emitting device such as a light emitting diode device or a laser diode device, this MOCVD method in which a metal organic chemical vapor deposition (hereinafter referred to as MOCVD method) is generally used. A vapor phase growth apparatus that performs thin film growth of a compound semiconductor by using a metal is called an MOCVD apparatus.

図21は、従来の典型的なMOCVD装置の反応室の構成を説明する断面図である。従来のMOCVD装置501では、反応室502内に原料ガスを基板上に効率よく導くために管状のフローチャネル503が設けられている。このフローチャネル503は、その両端が反応室502外部に向けて開口し、その開口部はフローチャネル503の両端でガス供給口517とガス排出口518を形成している。また、フローチャネル503の長手方向の略中央部には基板ホルダー508上に載置された半導体基板507表面がフローチャンネル503内部に臨む開口部が形成されている。そして、ガス供給口517からフローチャネル503内部に導入された成膜原料成分を含有する原料ガスは半導体基板507表面と接触して反応・成膜し、半導体基板507表面に化合物半導体薄膜が形成される。また、半導体基板507表面で反応に寄与しなかった原料ガスはガス排出口518から反応室502外部に排出される。   FIG. 21 is a cross-sectional view illustrating the configuration of a reaction chamber of a conventional typical MOCVD apparatus. In the conventional MOCVD apparatus 501, a tubular flow channel 503 is provided in the reaction chamber 502 in order to efficiently guide the source gas onto the substrate. Both ends of the flow channel 503 are opened toward the outside of the reaction chamber 502, and the openings form gas supply ports 517 and gas discharge ports 518 at both ends of the flow channel 503. In addition, an opening is formed at a substantially central portion in the longitudinal direction of the flow channel 503 so that the surface of the semiconductor substrate 507 placed on the substrate holder 508 faces the inside of the flow channel 503. Then, the raw material gas containing the film forming raw material component introduced into the flow channel 503 from the gas supply port 517 comes into contact with the surface of the semiconductor substrate 507 to react and form a film, and a compound semiconductor thin film is formed on the surface of the semiconductor substrate 507. The The source gas that has not contributed to the reaction on the surface of the semiconductor substrate 507 is discharged from the gas discharge port 518 to the outside of the reaction chamber 502.

このとき、半導体基板507を保持する基板ホルダー508の下部には、半導体基板507を加熱するための加熱ヒータ509が設けられ、結晶成長に最適な反応状態になるよう半導体基板507を加熱することができる。また、加熱ヒータ509と基板ホルダー508との間には、通常、均熱板515が設けられる。この均熱板515は加熱ヒータ509からの熱を基板ホルダー508に均一に熱伝導させる。なお、加熱ヒータ509からの熱を直接半導体基板507全域にわたり均一に熱伝導することができれば、均熱板515を省略することができる。   At this time, a heater 509 for heating the semiconductor substrate 507 is provided below the substrate holder 508 that holds the semiconductor substrate 507 so that the semiconductor substrate 507 is heated so as to be in an optimum reaction state for crystal growth. it can. A soaking plate 515 is usually provided between the heater 509 and the substrate holder 508. The soaking plate 515 conducts heat from the heater 509 uniformly to the substrate holder 508. Note that the heat equalizing plate 515 can be omitted if the heat from the heater 509 can be directly conducted uniformly over the entire area of the semiconductor substrate 507.

しかしながら、上記MOCVD装置501では半導体基板507上に成長させた化合物半導体薄膜の結晶性および層厚が半導体基板507全域にわたり不均一になるという不都合があり、製造歩留まりが低下するという問題があった。   However, the MOCVD apparatus 501 has a problem in that the crystallinity and layer thickness of the compound semiconductor thin film grown on the semiconductor substrate 507 are not uniform over the entire semiconductor substrate 507, resulting in a decrease in manufacturing yield.

このような問題に対して、本発明者は成膜原料成分を含有する原料ガスが半導体基板507表面で接触して反応・成膜する際、半導体基板507の表面温度が同一基板面内で不均一になっていることに起因して、成長する化合物半導体薄膜の結晶性および層厚が半導体基板507面内において不均一になり、作製される窒化物系化合物半導体素子の発振波長にバラツキが発生することを見出した。   In response to such a problem, the present inventor, when a source gas containing a film forming raw material component contacts and reacts on the surface of the semiconductor substrate 507, the surface temperature of the semiconductor substrate 507 is not within the same substrate surface. Due to the uniformity, the crystallinity and layer thickness of the growing compound semiconductor thin film become non-uniform in the plane of the semiconductor substrate 507, and the oscillation wavelength of the nitride-based compound semiconductor device produced varies. I found out.

また、半導体基板507の表面温度が面内で不均一になる原因として、半導体基板507の反り形状が半導体基板507毎に異なり、半導体基板507と基板ホルダー508との接触度合いが異なることが挙げられる。   Further, the reason why the surface temperature of the semiconductor substrate 507 is non-uniform in the surface is that the warped shape of the semiconductor substrate 507 differs for each semiconductor substrate 507, and the degree of contact between the semiconductor substrate 507 and the substrate holder 508 is different. .

例えば、本発明者が特許文献1で開示したGaN基板では、成長させた化合物半導体薄膜の表面平坦性が悪化する問題を解決するために、ストライプ状の溝からなる掘り込み領域を半導体基板507上に形成し、半導体基板507表面に化合物半導体薄膜を成長させて窒化物系化合物半導体素子を作成する。しかし、ストライプ状の溝からなる掘り込み領域を形成した半導体基板507は化合物半導体薄膜を成長させる前後で異なる反りの形状をとる。   For example, in the GaN substrate disclosed in Patent Document 1 by the present inventor, in order to solve the problem that the surface flatness of the grown compound semiconductor thin film deteriorates, a digging region composed of stripe-shaped grooves is formed on the semiconductor substrate 507. Then, a compound semiconductor thin film is grown on the surface of the semiconductor substrate 507 to form a nitride compound semiconductor element. However, the semiconductor substrate 507 on which the digging region composed of stripe-shaped grooves is formed has different warp shapes before and after the compound semiconductor thin film is grown.

図22は本発明者が特許文献1で開示したGaN基板において、化合物半導体薄膜を形成する前の半導体基板507の反り量を示すヒストグラムである。ここで、図22において示す中心部が負の反り量を示すGaN基板とは、化合物半導体を成膜する方向と逆方向に反っている凹状の基板であり、このGaN基板の成膜面を下にして水平板上に基板を静置したとき、GaN基板の端部が接触し且つ基板中心部が浮き上がる反り形状をいう。このとき水平板と浮き上がった基板中心部との距離を反り量としている。図22に示すように、化合物半導体薄膜が形成される前の半導体基板507にはその中心部近傍に反りがあり、その反り方向及び反り量は基板ごとのバラツキが大きい。このため、このような形状の半導体基板507の成膜面を上にして基板ホルダー508上に載置した場合、加熱ヒータ509から基板ホルダー508へ熱伝導した熱が半導体基板507の基板面内へ不均一に熱伝導し、半導体基板507の表面温度が基板面内で不均一となっていた。   FIG. 22 is a histogram showing the amount of warpage of the semiconductor substrate 507 before the compound semiconductor thin film is formed on the GaN substrate disclosed in Patent Document 1 by the present inventor. Here, the GaN substrate having a negative curvature at the center shown in FIG. 22 is a concave substrate that is warped in the direction opposite to the direction in which the compound semiconductor is deposited. When the substrate is placed on the horizontal plate, the warped shape is such that the end of the GaN substrate contacts and the center of the substrate is lifted. At this time, the distance between the horizontal plate and the central portion of the substrate that is lifted is defined as the amount of warpage. As shown in FIG. 22, the semiconductor substrate 507 before the compound semiconductor thin film is formed has a warp in the vicinity of the center thereof, and the warp direction and the warp amount vary greatly from substrate to substrate. For this reason, when the semiconductor substrate 507 having such a shape is placed on the substrate holder 508 with the film formation surface facing upward, the heat conducted from the heater 509 to the substrate holder 508 enters the substrate surface of the semiconductor substrate 507. Heat conduction was unevenly performed, and the surface temperature of the semiconductor substrate 507 was uneven within the substrate surface.

また、図23は従来の半導体基板の上面図であり、図24は図23に示した半導体基板のX−X’線およびY−Y’線における薄膜形成が行われる前の反り量を示す図であり、図25は図23に示した半導体基板507のX−X’線およびY−Y’線における薄膜形成が行われた後の反り量を示す図である。ここで、半導体基板507は特許文献1で開示された作製方法と同様の方法により、掘り込み領域がY方向に350μmの間隔を隔てて周期的に複数形成され、掘り込み領域のY方向のオフ角θaが−0.28°、X方向のオフ角θbが−0.03°、掘り込み領域の開口幅が3μm、深さが3μmに加工された半導体基板である。また、X方向は〈11−20〉で半導体基板507上に形成された掘り込み領域に垂直な方向であり、Y方向は〈1−100〉で半導体基板507上に形成された掘り込み領域に対して水平な方向である。また「掘り込み領域」とは、特許文献1で開示されている半導体基板507表面でストライプ状に加工された凹部を意味する。図24および図25に示すように、薄膜形成が行われる前後で掘り込み領域が形成された半導体基板507はX方向において凸状、Y方向において凹状に変形し、X、Y方向における基板の反り量には大きな差が見られる。特に、半導体基板507のX方向における半導体基板507の反りは、薄膜形成が行われる前後で逆転している。   FIG. 23 is a top view of a conventional semiconductor substrate, and FIG. 24 is a diagram showing the amount of warpage before thin film formation is performed on the XX ′ line and the YY ′ line of the semiconductor substrate shown in FIG. FIG. 25 is a diagram showing a warpage amount after thin film formation is performed on the XX ′ line and the YY ′ line of the semiconductor substrate 507 shown in FIG. Here, a plurality of digging regions are periodically formed in the Y direction at intervals of 350 μm by a method similar to the manufacturing method disclosed in Patent Document 1, and the digging region is turned off in the Y direction. The semiconductor substrate is processed to have an angle θa of −0.28 °, an off angle θb in the X direction of −0.03 °, an opening width of the digging region of 3 μm, and a depth of 3 μm. In addition, the X direction is a direction perpendicular to the digging region formed on the semiconductor substrate 507 at <11-20>, and the Y direction is a digging region formed on the semiconductor substrate 507 at <1-100>. The horizontal direction. The “digging area” means a recess processed into a stripe shape on the surface of the semiconductor substrate 507 disclosed in Patent Document 1. As shown in FIGS. 24 and 25, the semiconductor substrate 507 in which the digging region is formed before and after the thin film formation is deformed into a convex shape in the X direction and a concave shape in the Y direction, and the warpage of the substrate in the X and Y directions. There is a big difference in quantity. In particular, the warpage of the semiconductor substrate 507 in the X direction of the semiconductor substrate 507 is reversed before and after the thin film formation is performed.

また、図26は従来の気相成長装置を構成する基板ホルダーの上面図であり、図27は図26に示したX−X’線に沿った断面図であり、図28は図26に示したY−Y’線に沿った断面図である。図26〜図28に示すように、図25に示したX方向において凸状、Y方向において凹状に変形した半導体基板507を基板ホルダー508上に載置したとき、半導体基板507はX方向において凸状、Y方向において凹状に変形しているため、X方向において半導体基板507の端部が基板ホルダー508と接触し、半導体基板507底面と基板ホルダー508の基板載置面508aとの間に空隙が生じる。このため、基板ホルダー508と半導体基板507との接触部分を介した熱伝導及び基板ホルダー508の基板載置面508aと半導体基板507底面との空隙の大きさに応じた輻射熱により半導体基板507が基板面内において不均一に加熱され、半導体基板507表面の温度が面内で不均一となっていた。   FIG. 26 is a top view of a substrate holder constituting a conventional vapor phase growth apparatus, FIG. 27 is a cross-sectional view taken along line XX ′ shown in FIG. 26, and FIG. 28 is shown in FIG. It is sectional drawing along line YY '. As shown in FIGS. 26 to 28, when the semiconductor substrate 507 deformed into a convex shape in the X direction and a concave shape in the Y direction shown in FIG. 25 is placed on the substrate holder 508, the semiconductor substrate 507 is convex in the X direction. Since the end of the semiconductor substrate 507 is in contact with the substrate holder 508 in the X direction, a gap is formed between the bottom surface of the semiconductor substrate 507 and the substrate mounting surface 508a of the substrate holder 508. Arise. For this reason, the semiconductor substrate 507 is formed by the heat conduction through the contact portion between the substrate holder 508 and the semiconductor substrate 507 and the radiant heat corresponding to the size of the gap between the substrate mounting surface 508a of the substrate holder 508 and the bottom surface of the semiconductor substrate 507. The surface of the semiconductor substrate 507 was heated unevenly within the surface, and the temperature of the surface of the semiconductor substrate 507 was uneven within the surface.

また、図23〜図25に示したX方向において凸状、Y方向において凹状に変形した複数の半導体基板507をチップ状に分割して窒化物半導体レーザ素子を複数作製し、各窒化物半導体レーザ素子の分割前の半導体基板507における発振波長の面内分布を図29、図30のグラフにまとめた。図29は図23に示したX−X’線に沿った発振波長の面内分布であり、図30は図23に示したY−Y’線に沿った発振波長の面内分布である。図29、図30のグラフが示すように、窒化物系半導体レーザ素子の波長面内分布に標準偏差σに最大σ=1.9nmのバラツキがあり、基板毎の波長は標準偏差σに最大σ=2.5nmのバラツキがあった。また、図23〜図25と図29、図30とを比較した場合、基板ホルダー508の基板載置面508aと半導体基板507との空隙が大きく、基板載置面508aと半導体基板507との距離が離れている部分から得られる窒化物半導体レーザ素子はその距離に応じて発振波長が長波長化していることがわかる。このことから、半導体基板507と基板ホルダー508の基板載置面との距離が離れた部位では基板ホルダー508からの輻射熱が減少し、半導体基板507の表面温度が低下するため、この部分を分割して得られる窒化物半導体レーザ素子の発振波長が長波長化し、発振波長の半導体基板面内分布全域の不均一化が起きていると考えられる。   Further, a plurality of nitride semiconductor laser elements are produced by dividing the plurality of semiconductor substrates 507 deformed into a convex shape in the X direction and a concave shape in the Y direction shown in FIGS. The in-plane distribution of the oscillation wavelength in the semiconductor substrate 507 before the element division is summarized in the graphs of FIGS. 29 shows the in-plane distribution of the oscillation wavelength along the line X-X ′ shown in FIG. 23, and FIG. 30 shows the in-plane distribution of the oscillation wavelength along the line Y-Y ′ shown in FIG. 23. As shown in the graphs of FIGS. 29 and 30, the wavelength deviation of the nitride-based semiconductor laser element has a variation of a maximum σ = 1.9 nm in the standard deviation σ, and the wavelength of each substrate has a maximum σ in the standard deviation σ. = There was a variation of 2.5 nm. In addition, when FIGS. 23 to 25 are compared with FIGS. 29 and 30, the gap between the substrate placement surface 508a of the substrate holder 508 and the semiconductor substrate 507 is large, and the distance between the substrate placement surface 508a and the semiconductor substrate 507 is large. It can be seen that in the nitride semiconductor laser element obtained from the part where the distance is long, the oscillation wavelength becomes longer according to the distance. For this reason, since the radiant heat from the substrate holder 508 is reduced at a portion where the distance between the semiconductor substrate 507 and the substrate mounting surface of the substrate holder 508 is increased, the surface temperature of the semiconductor substrate 507 is lowered. It is considered that the oscillation wavelength of the nitride semiconductor laser element obtained in this way has become longer, and nonuniformity of the entire distribution of the oscillation wavelength in the semiconductor substrate surface has occurred.

また、半導体基板507の表面温度が面内で不均一になる他の原因として、基板ホルダー508や加熱ヒータ514の製作精度の問題により、加熱ヒータ514と基板ホルダー508との接触面又は均熱板515と基板ホルダー508との接触面の平面度や鏡面度により接触度合いが異なることが挙げられる。基板ホルダー508と加熱ヒータ514との接触面または基板ホルダー508と均熱板515との接触面の加工精度が悪く、平面度にバラツキが発生している場合、加熱ヒータ514毎、均熱板515毎で基板ホルダー508との間の密着度にバラツキが発生する。その結果、基板ホルダー508への熱伝導にバラツキが発生し、基板ホルダー508の面内における温度分布が不均一になり、半導体基板507への熱輻射量が変化することにより半導体基板507の面内温度が不均一になっていた。   Further, as another cause of the non-uniform surface temperature of the semiconductor substrate 507, the contact surface between the heater 514 and the substrate holder 508 or a soaking plate is caused by the problem of the manufacturing accuracy of the substrate holder 508 and the heater 514. For example, the degree of contact varies depending on the flatness and mirror surface of the contact surface between 515 and the substrate holder 508. When the processing accuracy of the contact surface between the substrate holder 508 and the heater 514 or the contact surface between the substrate holder 508 and the soaking plate 515 is poor and the flatness is uneven, the soaking plate 515 is provided for each heater 514. Every time, the degree of adhesion with the substrate holder 508 varies. As a result, variation occurs in the heat conduction to the substrate holder 508, the temperature distribution in the surface of the substrate holder 508 becomes non-uniform, and the amount of heat radiation to the semiconductor substrate 507 changes to change the in-plane of the semiconductor substrate 507. The temperature was uneven.

特開2006−134926号公報JP 2006-134926 A

本発明は、上記のような課題を解決するためになされたものであり、この発明の目的は、作製される窒化物系化合物半導体素子の発振波長のバラツキを抑え、一枚の半導体基板から良品の割合が高い窒化物系化合物半導体素子を複数作製することが可能な気相成長装置を提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to suppress variation in the oscillation wavelength of a nitride-based compound semiconductor device to be manufactured, and to make a non-defective product from a single semiconductor substrate. It is an object of the present invention to provide a vapor phase growth apparatus capable of producing a plurality of nitride compound semiconductor elements having a high ratio.

上記目的を達成するために、本発明の第1の構成による気相成長装置では、原料ガス供給口および原料ガス排気口と、原料ガス供給口と原料ガス排気口との間に配された開口部とを含み、原料ガス供給口から原料ガス排気口に向かって原料ガスを流すフローチャネルと、フローチャネルの開口部に面するように基板が載置される基板ホルダーと、基板ホルダーの下部に設けられ基板を加熱する加熱ヒータとを備え、基板ホルダーは、載置される基板と対向する面が、基板の反りの形状と略同一に、もしくは、基板の反りの形状に合わせて少なくとも1つ以上の段差を持って階段状に形成されていることを特徴とする。   In order to achieve the above object, in the vapor phase growth apparatus according to the first configuration of the present invention, the source gas supply port, the source gas exhaust port, and the opening disposed between the source gas supply port and the source gas exhaust port A flow channel for flowing the source gas from the source gas supply port toward the source gas exhaust port, a substrate holder on which the substrate is placed facing the opening of the flow channel, and a lower portion of the substrate holder Provided with a heater for heating the substrate, and the substrate holder has at least one surface facing the substrate to be placed that is substantially the same as the shape of the substrate warp or in accordance with the shape of the substrate warp. It is characterized by having a stepped shape with the above steps.

第1の構成によると、基板ホルダーの基板と対向する面が基板の反りの形状と略同一に形成されているため、対向する基板ホルダーと基板との距離は基板面内において略同一になる。これにより、基板ホルダーからの輻射熱が基板面内において略均一に熱伝導する。したがって、基板の表面温度を基板面内で略均一とすることができ、成膜原料成分を含有する原料ガスが基板表面で接触して反応・成膜する際、成長する化合物半導体薄膜の結晶性および層厚が基板全域にわたり均一化し、作成される窒化物系化合物半導体素子の発振波長のバラツキを抑えることができる。   According to the first configuration, since the surface of the substrate holder that faces the substrate is formed to have substantially the same shape as the warp of the substrate, the distance between the facing substrate holder and the substrate is substantially the same in the substrate surface. Thereby, the radiant heat from the substrate holder conducts heat substantially uniformly within the substrate surface. Therefore, the surface temperature of the substrate can be made substantially uniform within the substrate surface, and the crystallinity of the compound semiconductor thin film that grows when the source gas containing the deposition source component contacts and reacts on the substrate surface to form a film. In addition, the layer thickness is made uniform over the entire substrate, and variations in the oscillation wavelength of the nitride-based compound semiconductor device to be produced can be suppressed.

また、本発明の第2の構成による気相成長装置では、載置される基板と対向する面に、基板を支持する複数の第1凸部を有することを特徴とする。   Further, the vapor phase growth apparatus according to the second configuration of the present invention is characterized in that a plurality of first protrusions for supporting the substrate are provided on a surface facing the substrate to be placed.

第2の構成によると、基板の反り形状が基板毎に異なる場合でも、複数の第1凸部により基板を支持することにより、基板を基板ホルダーと面で接触しないように保持することができる。これにより、基板毎に基板ホルダーとの接触度合いが異なることに起因して、基板の表面温度が基板面内で不均一になるのを防ぐことができる。また、薄膜形成が行われる前後で反りの形状が変形する基板を載置する場合において、第1凸部の高さを基板の変形時に基板と基板ホルダーとが接触しない程度に十分高く設けることにより、薄膜形成が行われる前後で基板と基板ホルダーとが接触するのを防ぐことができる。これにより、薄膜形成が行われる前後で反りの形状が変形する基板を基板ホルダーに載置した場合でも、基板と基板ホルダーとの接触度合により、基板の表面温度が基板面内で不均一になるのを防ぐことができる。なお、第1凸部は基板ホルダー上に2点設けることにより基板を保持することができ、3点以上設けることにより、基板をより安定して保持することができる。ここで、第1凸部の頂部は基板を支持する際、基板と当接するが、基板保持の安定性の観点から、第1凸部の頂部を平面的に見た場合に5mm以上の長さを有するとともに、1mm以上の幅を有するように構成されていること好ましい。また、基板ホルダーの基板載置面から第1凸部の頂部までの距離である第1凸部の高さを高く設けることにより、薄膜形成が行われる前後で基板と基板ホルダーが接触するのを防ぐことができるが、基板ホルダーから第1凸部を介して基板へ伝導する熱および、基板ホルダーから基板への熱輻射分による加熱性を考慮して、第1凸部の高さを、5〜5000μmとなるように設けるのが好ましく、50〜2000μmとなるように設けるのがより好ましい。また、第1凸部を複数設ける場合、各第1凸部の高さが必ずしも一律に等しい必要はなく基板の反りの形状に応じて各第1凸部の高さを変えてもよい。   According to the second configuration, even when the warpage shape of the substrate is different for each substrate, the substrate can be held so as not to come into contact with the substrate holder by supporting the substrate by the plurality of first convex portions. Thereby, it is possible to prevent the surface temperature of the substrate from becoming uneven in the substrate surface due to the difference in contact with the substrate holder for each substrate. In addition, when placing a substrate whose warped shape is deformed before and after thin film formation, the height of the first convex portion is set high enough to prevent the substrate and the substrate holder from contacting each other when the substrate is deformed. It is possible to prevent the substrate and the substrate holder from contacting each other before and after the thin film is formed. As a result, even when a substrate whose warping shape is deformed before and after thin film formation is placed on the substrate holder, the surface temperature of the substrate becomes non-uniform in the substrate plane due to the degree of contact between the substrate and the substrate holder. Can be prevented. In addition, a board | substrate can be hold | maintained by providing two 1st convex parts on a board | substrate holder, and a board | substrate can be hold | maintained more stably by providing three or more points. Here, the top of the first convex part comes into contact with the substrate when supporting the substrate, but from the viewpoint of the stability of holding the substrate, the top of the first convex part has a length of 5 mm or more when viewed in plan. It is preferable that it is comprised so that it may have 1 mm or more of width. Also, by providing a high height for the first convex portion, which is the distance from the substrate mounting surface of the substrate holder to the top of the first convex portion, the substrate and the substrate holder can be brought into contact before and after thin film formation is performed. The height of the first convex portion is set to 5 in consideration of heat conducted from the substrate holder to the substrate through the first convex portion and heatability due to heat radiation from the substrate holder to the substrate. It is preferable to provide the thickness of ˜5000 μm, and it is more preferable to provide the thickness of 50 to 2,000 μm. When a plurality of first protrusions are provided, the height of each first protrusion does not necessarily have to be equal, and the height of each first protrusion may be changed according to the shape of the warp of the substrate.

また、本発明の第3の構成による気相成長装置では、基板ホルダーと加熱ヒータとの間に配された均熱板をさらに備え、均熱板は、基板ホルダーと対向する面が、基板ホルダーの均熱板と対向する面の形状と略同一、もしくは、少なくとも1つ以上の段差を持って階段状であることを特徴とする。   The vapor phase growth apparatus according to the third configuration of the present invention further includes a soaking plate disposed between the substrate holder and the heater, and the soaking plate has a surface facing the substrate holder, It is characterized in that it is substantially the same as the shape of the surface facing the soaking plate, or is stepped with at least one step.

第3の構成によると、基板ホルダーと加熱ヒータとの間に配された均熱板の基板ホルダーと対向する面の形状が基板ホルダーの均熱板と対向する面の形状と略同一であるため、互いに対向する均熱板と基板ホルダーとの距離は面内において略同一になる。これにより、均熱板からの輻射熱または当接面からの熱が基板ホルダーへ面内において略均一に熱伝導し、基板ホルダーの基板と対向する面を均熱板の基板ホルダーと対向する面の反りの形状に応じた温度分布に加熱することができる。したがって、均熱板の基板ホルダーと対向する面の形状と基板ホルダーと基板との基板面内における距離の関係から、表面温度が基板面内で略均一になるよう基板を加熱することができる。そして、成膜原料成分を含有する原料ガスが基板表面で接触して反応・成膜する際、成長する化合物半導体薄膜の結晶性および層厚が基板全域にわたり均一化し、作成される窒化物系化合物半導体素子の発振波長のバラツキを抑えることができる。   According to the third configuration, the shape of the surface of the soaking plate disposed between the substrate holder and the heater is substantially the same as the shape of the surface of the substrate holder facing the soaking plate. The distance between the soaking plates facing each other and the substrate holder is substantially the same in the plane. As a result, the radiant heat from the heat equalizing plate or the heat from the contact surface conducts heat to the substrate holder substantially uniformly within the surface, and the surface of the substrate holder facing the substrate is the surface of the heat equalizing plate facing the substrate holder. It can be heated to a temperature distribution according to the shape of the warp. Therefore, the substrate can be heated so that the surface temperature is substantially uniform in the substrate plane, based on the relationship between the shape of the surface of the soaking plate facing the substrate holder and the distance between the substrate holder and the substrate in the substrate plane. Nitride-based compounds produced by uniformizing the crystallinity and layer thickness of the growing compound semiconductor thin film over the entire area when the source gas containing the film-forming raw material components contacts and reacts and forms a film on the substrate surface. Variations in the oscillation wavelength of the semiconductor element can be suppressed.

また、本発明の第4の構成による気相成長装置では、均熱板は、基板ホルダーと対向する面が、基板の反りの形状と略同一、もしくは、基板の反りの形状に合わせて少なくとも1つ以上の段差を持って階段状に形成されていることを特徴とする。   In the vapor phase growth apparatus according to the fourth configuration of the present invention, the surface of the soaking plate facing the substrate holder is substantially the same as the shape of the warp of the substrate, or at least 1 according to the shape of the warp of the substrate. It is characterized by being formed in a staircase shape having two or more steps.

第4の構成によると、基板ホルダーに基板を載置したとき、基板の基板ホルダーと対向する面は均熱板の基板ホルダーと対向する面の形状と略同一であるため、対向する均熱板と基板との距離は基板ホルダーを介して基板面内において略同一になる。これにより、均熱板から基板ホルダーを介して基板面内において略均一に基板へ熱伝導し、基板の表面温度を基板面内で略均一にすることができる。したがって、基板の表面温度を基板面内で略均一とすることができ、成膜原料成分を含有する原料ガスが基板表面で接触して反応・成膜する際、成長する化合物半導体薄膜の結晶性および層厚が基板全域にわたり均一化し、作成される窒化物系化合物半導体素子の発振波長のバラツキを抑えることができる。   According to the fourth configuration, when the substrate is placed on the substrate holder, the surface of the substrate facing the substrate holder is substantially the same as the shape of the surface of the heat equalizing plate facing the substrate holder. The distance between the substrate and the substrate is substantially the same in the substrate surface via the substrate holder. Thereby, heat can be conducted from the soaking plate to the substrate substantially uniformly in the substrate surface via the substrate holder, and the surface temperature of the substrate can be made substantially uniform in the substrate surface. Therefore, the surface temperature of the substrate can be made substantially uniform within the substrate surface, and the crystallinity of the compound semiconductor thin film that grows when the source gas containing the deposition source component contacts and reacts on the substrate surface to form a film. In addition, the layer thickness is made uniform over the entire substrate, and variations in the oscillation wavelength of the nitride-based compound semiconductor device to be produced can be suppressed.

また、本発明の第5の構成による気相成長装置では、均熱板は基板ホルダーと面で接触していないことを特徴とする。   In the vapor phase growth apparatus according to the fifth configuration of the present invention, the soaking plate is not in contact with the substrate holder on the surface.

第5の構成によると、均熱板と基板ホルダーとが面で接触していないため、均熱板から輻射熱により基板ホルダーを加熱することができる。このため、均熱板からの熱を基板ホルダーへ面内で均一に熱伝導させることができる。これにより、基板ホルダーと均熱板との接触度合いが異なることに起因として、基板ホルダーの面内温度が不均一になるのを防ぎ、均熱板からの輻射熱により基板ホルダーを略均一に加熱することができる。   According to the fifth configuration, since the soaking plate and the substrate holder are not in contact with each other, the substrate holder can be heated by radiant heat from the soaking plate. For this reason, the heat from the soaking plate can be uniformly conducted in the plane to the substrate holder. This prevents the in-plane temperature of the substrate holder from becoming uneven due to the difference in contact between the substrate holder and the soaking plate, and the substrate holder is heated substantially uniformly by the radiant heat from the soaking plate. be able to.

また、本発明の第6の構成による気相成長装置では、基板ホルダーと対向する面に、基板ホルダーと接する複数の第2凸部を有することを特徴とする。   Further, the vapor phase growth apparatus according to the sixth configuration of the present invention is characterized in that a plurality of second convex portions in contact with the substrate holder are provided on a surface facing the substrate holder.

第6の構成によると、基板ホルダーや均熱板の製作精度の問題により、基板ホルダーと均熱板の接触面の平面度や鏡面度により接触度合いが異なる場合でも、第2凸部により基板ホルダーを均熱板と面で接触しないように支持することができる。これにより、基板ホルダーと均熱板との接触度合いが異なることに起因として、基板ホルダーの面内温度が不均一になるのを防ぎ、均熱板からの輻射熱により基板ホルダーを略均一に加熱することができる。なお、第2凸部を複数設ける場合、各第2凸部の高さが必ずしも一律に等しい必要はなく均熱板及び基板ホルダーの形状に応じて各第1凸部の高さを変えてもよい。   According to the sixth configuration, even if the degree of contact differs depending on the flatness or mirror surface of the contact surface between the substrate holder and the heat equalizing plate due to the problem of manufacturing accuracy of the substrate holder or the heat equalizing plate, the substrate holder is formed by the second convex portion. Can be supported so as not to come into contact with the soaking plate. This prevents the in-plane temperature of the substrate holder from becoming uneven due to the difference in contact between the substrate holder and the soaking plate, and the substrate holder is heated substantially uniformly by the radiant heat from the soaking plate. be able to. In addition, when providing two or more 2nd convex parts, even if it changes the height of each 1st convex part according to the shape of a soaking plate and a substrate holder, the height of each 2nd convex part does not necessarily need to be equal equally. Good.

また、上記第1から第6までの構成において、基板の反りの形状と略同一になるように基板ホルダー又は均熱板を加工するかわりに、基板の反りの形状に合わせて少なくとも1つ以上の段差(ステップ)を持つ階段状に基板ホルダー又は均熱板を加工した場合においても、上記第1から第6までの構成と同様の効果を得ることができる。この場合、段差(ステップ)の数を多くするほど、加工された基板ホルダー又は均熱板の面は基板の反りの形状に近似し、略同一化する。例えば、基板ホルダーの基板と対向する面を格子状に複数の面に分割し、各分割面と対向する基板との距離が略同一になるよう隣接する分割面に段差(ステップ)を持たせて階段状に加工することで、各分割面からの輻射熱により基板の面内温度が均一になるように基板を加熱することができる。これにより、基板の表面温度を基板面内でより均一に加熱することができ、成膜原料成分を含有する原料ガスが基板表面で接触して反応・成膜する際、成長する化合物半導体薄膜の結晶性および層厚が基板全域にわたり均一化し、作成される窒化物系化合物半導体素子の発振波長のバラツキを抑えることができる。また、段差(ステップ)の形状は任意の形状に加工することができ、分割面の形状は四角形状又は円形状が好ましい。また、四角形状及び円形状の面を組み合わせて複数の段差(ステップ)を加工することも可能である。また、各分割面は対向する基板の反りの形状に応じて傾斜させてもよい。また、分割面は格子状に複数分割する場合に限らず、基板中心と対向する面のみを四角形状に1つ段差を持たせて階段状に凹ませたり、凸ませて分割面を形成してもよい。   In the first to sixth configurations, instead of processing the substrate holder or the heat equalizing plate so as to be substantially the same as the shape of the warp of the substrate, at least one or more in accordance with the shape of the warp of the substrate. Even when the substrate holder or the heat equalizing plate is processed into a stepped shape having steps, the same effects as those of the first to sixth configurations can be obtained. In this case, as the number of steps (steps) is increased, the surface of the processed substrate holder or the soaking plate approximates the shape of the warp of the substrate and becomes substantially the same. For example, the surface of the substrate holder that faces the substrate is divided into a plurality of surfaces in a lattice shape, and a step (step) is provided between adjacent divided surfaces so that the distance between each divided surface and the facing substrate is substantially the same. By processing in a staircase pattern, the substrate can be heated so that the in-plane temperature of the substrate becomes uniform due to the radiant heat from each divided surface. Thereby, the surface temperature of the substrate can be heated more uniformly in the substrate surface, and when the source gas containing the film forming raw material component contacts and reacts on the substrate surface, the compound semiconductor thin film that grows The crystallinity and the layer thickness are uniform over the entire substrate, and variations in the oscillation wavelength of the nitride-based compound semiconductor device to be produced can be suppressed. Further, the shape of the step (step) can be processed into an arbitrary shape, and the shape of the dividing surface is preferably a square shape or a circular shape. It is also possible to process a plurality of steps by combining square and circular surfaces. Moreover, each division surface may be inclined according to the shape of the warp of the opposing substrate. In addition, the dividing surface is not limited to the case of dividing into a plurality of grids, and only the surface facing the center of the substrate is recessed in a stepped shape with one step in a square shape, or the dividing surface is formed by projecting. Also good.

本発明の気相成長装置は、基板の反り量バラツキによる基板面内における温度のバラツキを小さくする手段が設けられているので、薄膜の結晶性および層厚、特に活性層の発光波長の基板面内での均一性を確保することができる。   Since the vapor phase growth apparatus of the present invention is provided with means for reducing temperature variations in the substrate surface due to variations in the amount of warpage of the substrate, the crystallinity and layer thickness of the thin film, particularly the substrate surface of the emission wavelength of the active layer It is possible to ensure uniformity in the inside.

以下、本発明を具体化した実施形態を、図面に基づいて詳細に説明する。なお、以下の実施形態では、気相成長装置の一例であるMOCVD装置に本発明を適用した例について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments embodying the present invention will be described in detail with reference to the drawings. In the following embodiment, an example in which the present invention is applied to an MOCVD apparatus which is an example of a vapor phase growth apparatus will be described.

(第1実施形態)
図1は、本発明の第1実施形態による気相成長装置の反応室の断面図であり、図2は図1に示した本発明の第1実施形態による気相成長装置を構成する基板ホルダーの上面図であり、図3は図2に示したX−X’線に沿った断面図であり、図4は図2に示したY−Y’線に沿った断面図である。ここで、X方向は〈11−20〉で半導体基板上に形成された掘り込み領域に垂直な方向であり、Y方向は〈1−100〉で半導体基板上に形成された掘り込み領域に対して水平な方向である。まず、図1〜図4を参照して、本発明の第1実施形態のMOCVD装置101について説明する。
(First embodiment)
FIG. 1 is a cross-sectional view of a reaction chamber of a vapor phase growth apparatus according to a first embodiment of the present invention, and FIG. 2 is a substrate holder constituting the vapor phase growth apparatus according to the first embodiment of the present invention shown in FIG. 3 is a sectional view taken along line XX ′ shown in FIG. 2, and FIG. 4 is a sectional view taken along line YY ′ shown in FIG. Here, the X direction is a direction perpendicular to the digging region formed on the semiconductor substrate at <11-20>, and the Y direction is relative to the digging region formed on the semiconductor substrate at <1-100>. Horizontal direction. First, the MOCVD apparatus 101 according to the first embodiment of the present invention will be described with reference to FIGS.

第1実施形態のMOCVD装置101は、図1に示すように、反応室102内に原料ガスを基板上に効率よく導くために管状のフローチャネル103が設けられ、フローチャネル103の両端でガス供給口117とガス排出口118を形成している。また、フローチャネル103の長手方向の略中央部には基板ホルダー108上に載置された半導体基板107表面がフローチャンネル103内部に臨む開口部が形成されている。また、基板回転機構111が設置され、基板回転機構111は半導体基板107を基板ホルダー108とともに、基板回転機構111の回転により回転させる。これにより、基板回転機構111を回転させながら半導体基板107表面に薄膜形成を行うことで、半導体基板107全域にわたり形成される化合物半導体薄膜の結晶性および層厚を均一化することができる。また、半導体基板107を保持する基板ホルダー108の下部には、半導体基板107を加熱するための加熱ヒータ109が設けられ、結晶成長に最適な反応状態になるよう半導体基板107を加熱することができる。また、反応室102内には、図示しないが半導体基板107と基板ホルダー108を自動搬出入するための自動搬出入機が設けられている。   In the MOCVD apparatus 101 of the first embodiment, as shown in FIG. 1, a tubular flow channel 103 is provided in a reaction chamber 102 in order to efficiently introduce a source gas onto a substrate, and gas is supplied at both ends of the flow channel 103. A port 117 and a gas discharge port 118 are formed. In addition, an opening is formed at a substantially central portion in the longitudinal direction of the flow channel 103 so that the surface of the semiconductor substrate 107 placed on the substrate holder 108 faces the inside of the flow channel 103. A substrate rotation mechanism 111 is installed, and the substrate rotation mechanism 111 rotates the semiconductor substrate 107 together with the substrate holder 108 by the rotation of the substrate rotation mechanism 111. Thereby, by forming a thin film on the surface of the semiconductor substrate 107 while rotating the substrate rotating mechanism 111, the crystallinity and the layer thickness of the compound semiconductor thin film formed over the entire area of the semiconductor substrate 107 can be made uniform. In addition, a heater 109 for heating the semiconductor substrate 107 is provided below the substrate holder 108 that holds the semiconductor substrate 107, and the semiconductor substrate 107 can be heated so as to be in an optimal reaction state for crystal growth. . The reaction chamber 102 is provided with an automatic loading / unloading machine (not shown) for automatically loading / unloading the semiconductor substrate 107 and the substrate holder 108.

また、図2に示すように、基板ホルダー108の上面には基板ホルダー108の回転中心に対して等しい円周角で第1凸部105が4点設けられ、これら第1凸部105が半導体基板107をフローティング状に支持する。これにより、半導体基板107毎に基板ホルダー108との接触度合いが異なることに起因して、半導体基板107の表面温度が基板面内で不均一になるのを防ぐことができる。また、本実施形態では、掘り込み領域がY方向に形成された半導体基板107を2点の第1凸部105でY方向に支持するとともに、残り2点の第1凸部105で掘り込み領域と垂直方向であるX方向に支持する。なお、第1凸部105と半導体基板107に形成された掘り込み領域の延在方向との位置関係は上記場合に限定されず、半導体基板107の反りの形状に応じて変更することができる。例えば、図5は図1に示した本発明の第1実施形態による気相成長装置を構成する基板ホルダーの上面図であるが、図5に示すように、掘り込み領域の延在方向(Y方向)が線状に並んだ2点の第1凸部105に対して45°の角度を有するように各第1凸部105を回転させて基板ホルダー108上に載置しても、半導体基板107の面内温度を均一に加熱することができる。なお、第1凸部105は基板ホルダー108上に2点設けることにより半導体基板107を保持することができ、3点以上設けることにより、半導体基板107をより安定して保持することができる。ここで、第1凸部105の頂部は半導体基板107を支持する際、半導体基板107と当接するが、半導体基板107保持の安定性の観点から、第1凸部105の頂部を平面的に見た場合に5mm以上の長さを有するとともに1mm以上の幅を有するように構成されているのが好ましい。   As shown in FIG. 2, four first convex portions 105 are provided on the upper surface of the substrate holder 108 at the same circumferential angle with respect to the rotation center of the substrate holder 108, and these first convex portions 105 are provided on the semiconductor substrate. 107 is supported in a floating state. As a result, it is possible to prevent the surface temperature of the semiconductor substrate 107 from becoming uneven in the substrate plane due to the difference in contact between the semiconductor substrate 107 and the substrate holder 108. In this embodiment, the semiconductor substrate 107 in which the digging region is formed in the Y direction is supported by the two first convex portions 105 in the Y direction, and the digging region is formed by the remaining two first convex portions 105. And support in the X direction, which is the vertical direction. Note that the positional relationship between the first protrusion 105 and the extending direction of the digging region formed in the semiconductor substrate 107 is not limited to the above case, and can be changed according to the warp shape of the semiconductor substrate 107. For example, FIG. 5 is a top view of the substrate holder constituting the vapor phase growth apparatus according to the first embodiment of the present invention shown in FIG. 1, but as shown in FIG. Even if each first protrusion 105 is rotated and placed on the substrate holder 108 so as to have an angle of 45 ° with respect to the two first protrusions 105 arranged in a line (direction), the semiconductor substrate The in-plane temperature 107 can be heated uniformly. The first protrusion 105 can hold the semiconductor substrate 107 by providing two points on the substrate holder 108, and can hold the semiconductor substrate 107 more stably by providing three or more points. Here, the top of the first protrusion 105 abuts the semiconductor substrate 107 when supporting the semiconductor substrate 107. From the viewpoint of the stability of holding the semiconductor substrate 107, the top of the first protrusion 105 is viewed in a plan view. In this case, it is preferable to have a length of 5 mm or more and a width of 1 mm or more.

また、図3および図4に示すように、第1凸部105は、薄膜形成による半導体基板107の変形時に基板ホルダー108と半導体基板107とが接触しない程度に十分高さを有している。具体的には、第1凸部105は約100μmの高さを有している。これにより、薄膜形成が行われる前後で半導体基板107と基板ホルダー108とが接触するのを防ぐことができる。したがって、薄膜形成が行われる前後で反りの形状が変形する半導体基板107を基板ホルダー108に載置した場合でも、半導体基板107と基板ホルダー108との接触度合により、半導体基板107の表面温度が基板面内で不均一になるのを防ぐことができる。なお、基板ホルダー108の基板載置面108aから第1凸部105の頂部までの距離である第1凸部105の高さを高く設けることにより、薄膜形成が行われる前後で半導体基板107と基板ホルダー108が接触するのを防ぐことができるが、基板ホルダー108から第1凸部105を介して半導体基板107へ伝導する熱および、基板ホルダー108から半導体基板107への熱輻射分による加熱性を考慮して、第1凸部105の高さは、5〜5000μmとなるように設けるのが好ましく、50〜2000μmとなるように設けるのがより好ましい。   Further, as shown in FIGS. 3 and 4, the first convex portion 105 is sufficiently high so that the substrate holder 108 and the semiconductor substrate 107 do not come into contact with each other when the semiconductor substrate 107 is deformed by thin film formation. Specifically, the first convex portion 105 has a height of about 100 μm. Thereby, it is possible to prevent the semiconductor substrate 107 and the substrate holder 108 from contacting each other before and after the thin film is formed. Therefore, even when the semiconductor substrate 107 whose warping shape is deformed before and after the thin film formation is placed on the substrate holder 108, the surface temperature of the semiconductor substrate 107 depends on the degree of contact between the semiconductor substrate 107 and the substrate holder 108. It is possible to prevent non-uniformity in the plane. The semiconductor substrate 107 and the substrate before and after the thin film formation is performed by providing a high height for the first convex portion 105, which is a distance from the substrate placement surface 108 a of the substrate holder 108 to the top portion of the first convex portion 105. Although it is possible to prevent the holder 108 from coming into contact, the heat conduction from the substrate holder 108 to the semiconductor substrate 107 through the first convex portion 105 and the heat radiation due to the heat radiation from the substrate holder 108 to the semiconductor substrate 107 are improved. Considering this, the height of the first convex portion 105 is preferably provided so as to be 5 to 5000 μm, and more preferably provided so as to be 50 to 2000 μm.

また、図3および図4に示すように、基板ホルダー108の半導体基板107と対向する基板載置面108aは、薄膜形成が行われた後の半導体基板107の基板ホルダー108と対向する面の反りの形状と略同一形状にするため、X方向において0μm、Y方向において下に40μm凹んだ形状に加工されている。このような形状に基板載置面108aを成形することにより、薄膜形成が行われる前の半導体基板107を基板ホルダー108aに載置したとき、対向する基板ホルダー108と半導体基板107との距離は半導体基板107の基板面内において不均一であるが、薄膜形成が行われ半導体基板107が変形した後、対向する基板ホルダー108と半導体基板107との距離は半導体基板107の基板面内において略均一になる。これにより、基板変形後、基板ホルダー108からの輻射熱が基板面内において略均一に半導体基板107に熱伝導し、半導体基板107の表面温度を面内で略均一に加熱することができる。なお、半導体基板107の反り方向及び反り量は基板ごとのバラツキが大きいため、想定される基板反り量の最大値から基板載置面108aの反りの形状を決定することにより、半導体基板107ごとの反り量のバラツキによる半導体基板107の表面温度の面内分布の不均一化を防止することができる。   Further, as shown in FIGS. 3 and 4, the substrate mounting surface 108a of the substrate holder 108 facing the semiconductor substrate 107 is warped of the surface of the semiconductor substrate 107 facing the substrate holder 108 after the thin film is formed. In order to make it substantially the same shape as the above, it is processed into a shape that is 0 μm in the X direction and 40 μm in the Y direction. By forming the substrate mounting surface 108a in such a shape, when the semiconductor substrate 107 before thin film formation is placed on the substrate holder 108a, the distance between the opposing substrate holder 108 and the semiconductor substrate 107 is the semiconductor Although the substrate 107 is not uniform within the substrate surface, the distance between the opposing substrate holder 108 and the semiconductor substrate 107 after the thin film is formed and the semiconductor substrate 107 is deformed is substantially uniform within the substrate surface of the semiconductor substrate 107. Become. Thereby, after the substrate is deformed, the radiant heat from the substrate holder 108 is thermally conducted to the semiconductor substrate 107 substantially uniformly in the substrate surface, and the surface temperature of the semiconductor substrate 107 can be heated substantially uniformly in the surface. Since the warpage direction and the warpage amount of the semiconductor substrate 107 vary greatly from one substrate to another, the shape of the warpage of the substrate mounting surface 108a is determined from the maximum value of the assumed substrate warpage amount. The in-plane distribution of the surface temperature of the semiconductor substrate 107 due to variations in the amount of warpage can be prevented.

なお、半導体基板107の反りの形状と略同一になるように基板載置面108aを加工するかわりに、半導体基板107の反りの形状に合わせて少なくとも1つ以上の段差(ステップ)を持つ階段状に基板載置面108aを加工した場合においても、同様の効果を得ることができる。この場合、段差(ステップ)の数を多くするほど、加工された基板載置面108aは半導体基板107の反りの形状に近似し、略同一化する。例えば、基板載置面108aを格子状に複数の面に分割し、各分割面と対向する半導体基板107との距離が略同一になるよう隣接する分割面に段差(ステップ)を持たせて階段状に加工することで、各分割面からの輻射熱により基板の面内温度が均一になるように半導体基板107を加熱することができる。また、段差(ステップ)の形状は任意の形状に加工することができ、分割面の形状は四角形状又は円形状が好ましい。また、四角形状及び円形状の面を組み合わせて複数の段差(ステップ)を加工することも可能である。また、各分割面は対向する半導体基板107の反りの形状に応じて傾斜させてもよい。また、分割面は格子状に複数分割する場合に限らず、基板中心と対向する面のみを四角形状に1つ段差を持たせて階段状に凹ませたり、凸ませて分割面を形成してもよい。   Instead of processing the substrate mounting surface 108a so as to be substantially the same as the warp shape of the semiconductor substrate 107, a stepped shape having at least one step according to the warp shape of the semiconductor substrate 107 is provided. The same effect can be obtained even when the substrate mounting surface 108a is processed. In this case, as the number of steps (steps) increases, the processed substrate mounting surface 108a approximates the warped shape of the semiconductor substrate 107 and becomes substantially the same. For example, the substrate mounting surface 108a is divided into a plurality of surfaces in a grid pattern, and steps are provided on adjacent divided surfaces so that the distances between the divided surfaces and the semiconductor substrate 107 facing each other are substantially the same. By processing into the shape, the semiconductor substrate 107 can be heated so that the in-plane temperature of the substrate becomes uniform due to the radiant heat from each divided surface. Further, the shape of the step (step) can be processed into an arbitrary shape, and the shape of the dividing surface is preferably a square shape or a circular shape. It is also possible to process a plurality of steps by combining square and circular surfaces. Moreover, each division surface may be inclined according to the shape of the warp of the semiconductor substrate 107 facing each other. In addition, the dividing surface is not limited to the case of dividing into a plurality of grids, and only the surface facing the center of the substrate is recessed in a stepped shape with one step in a square shape, or the dividing surface is formed by projecting. Also good.

次に、特許文献(特開2006−134926)に開示された作製方法と同様の方法により、Y方向に延在する掘り込み領域が350μmの間隔を隔ててX方向に周期的に複数形成され、掘り込み領域のY方向のオフ角θaが−0.28°、X方向のオフ角θbが−0.03°、掘り込み領域の開口幅が3μm、深さが3μmに加工された半導体基板107を上記第1実施形態のMOCVD装置101の第1凸部105が設けられた基板ホルダー108上に載置し、MOCVD法により、所定の成長条件で半導体基板107上に複数の窒化物半導体薄膜から成る窒化物半導体成長層を積層した。なお、上記掘り込み領域が形成された半導体基板107は薄膜形成を行なう前後の反りの形状は、図24および図25で示した反り量と略同一の反り量を示す基板である。   Next, by a method similar to the manufacturing method disclosed in the patent document (Japanese Patent Laid-Open No. 2006-134926), a plurality of digging regions extending in the Y direction are periodically formed in the X direction with an interval of 350 μm, Semiconductor substrate 107 in which the Y-direction off-angle θa of the digging region is −0.28 °, the X-direction off-angle θb is −0.03 °, the opening width of the digging region is 3 μm, and the depth is 3 μm. Is mounted on the substrate holder 108 provided with the first convex portion 105 of the MOCVD apparatus 101 of the first embodiment, and a plurality of nitride semiconductor thin films are formed on the semiconductor substrate 107 under a predetermined growth condition by MOCVD. A nitride semiconductor growth layer was stacked. The semiconductor substrate 107 in which the digging region is formed is a substrate in which the warpage shape before and after the thin film formation is substantially the same as the warpage amount shown in FIGS.

このようにして窒化物半導体成長層が形成された半導体基板107をチップ状に分割して窒化物半導体レーザ素子を複数作製し、各窒化物半導体レーザ素子に分割前の半導体基板107における発振波長面内分布を図6および図7のグラフにまとめた。図6は図2に示したX−X’線に沿った発振波長の面内分布であり、図7は図2に示したY−Y’線に沿った発振波長の面内分布である。なお、窒化物半導体成長層の具体的な積層方法及び窒化物半導体レーザ素子の具体的な作製方法について特許文献(特開2006−134926)および周知の技術を用いて実施されるので、その詳細な説明は以下省略する。図6および図7のグラフより、窒化物系半導体レーザ素子の波長面内分布の標準偏差σをσ=0.59nmのバラツキに抑えることができた。したがって、載置面の形状が半導体基板の反りの形状に関係なく平面状に形成された基板ホルダーを用いて窒化物半導体成長層を積層して得られた図29および図30に示す測定値と比較して各発振波長のバラツキが低く抑えられ、非常に高い製造歩留まり結果を得ることができた。   The semiconductor substrate 107 on which the nitride semiconductor growth layer is formed in this manner is divided into chips to produce a plurality of nitride semiconductor laser elements, and the oscillation wavelength plane of the semiconductor substrate 107 before the division is divided into each nitride semiconductor laser element. The internal distribution is summarized in the graphs of FIG. 6 and FIG. 6 shows the in-plane distribution of the oscillation wavelength along the line X-X ′ shown in FIG. 2, and FIG. 7 shows the in-plane distribution of the oscillation wavelength along the line Y-Y ′ shown in FIG. 2. Note that a specific method for stacking the nitride semiconductor growth layer and a specific method for manufacturing the nitride semiconductor laser element are implemented using a patent document (Japanese Patent Laid-Open No. 2006-134926) and a well-known technique. The description is omitted below. From the graphs of FIGS. 6 and 7, the standard deviation σ of the in-wavelength distribution of the nitride-based semiconductor laser element could be suppressed to a variation of σ = 0.59 nm. Accordingly, the measurement values shown in FIGS. 29 and 30 obtained by stacking the nitride semiconductor growth layers using the substrate holder in which the shape of the mounting surface is formed in a planar shape regardless of the shape of the warp of the semiconductor substrate; In comparison, the variation in each oscillation wavelength was kept low, and a very high production yield result could be obtained.

なお、図8〜図10は第1実施形態による気相成長装置の変形例を説明する図であり、図8は、基板ホルダーの上面図であり、図9は図8に示したX−X’線に沿った断面図であり、図10は図8に示したY−Y’線に沿った断面図である。ここで、X方向は〈11−20〉で半導体基板上に形成された掘り込み領域に垂直な方向であり、Y方向は〈1−100〉で半導体基板上に形成された掘り込み領域に対して水平な方向である。   8 to 10 are views for explaining a modification of the vapor phase growth apparatus according to the first embodiment, FIG. 8 is a top view of the substrate holder, and FIG. 9 is an XX shown in FIG. FIG. 10 is a cross-sectional view taken along the line YY ′ shown in FIG. 8. Here, the X direction is a direction perpendicular to the digging region formed on the semiconductor substrate at <11-20>, and the Y direction is relative to the digging region formed on the semiconductor substrate at <1-100>. Horizontal direction.

図8〜図10に示す第1実施形態の変形例では、掘り込み領域が形成されていない半導体基板607を載置するための基板ホルダー608が用いられ、この基板載置面608aの形状は薄膜形成後の半導体基板607の反りの形状と略同一になるよう加工されている。このため、図9および図10に示すようにX方向において下に40μm、Y方向において下に40μm凹んだ状態に加工され、この半導体基板607の変形後、半導体基板607と基板ホルダー608との距離が基板面内において略同一となるよう設計されている。なお、基板ホルダー607以外の構成は上記第1実施形態の気相成長装置101と同一であり説明を省略する。   In the modification of the first embodiment shown in FIGS. 8 to 10, a substrate holder 608 for mounting a semiconductor substrate 607 in which no digging region is formed is used, and the shape of the substrate mounting surface 608 a is a thin film. The processed semiconductor substrate 607 is processed so as to have substantially the same shape as the warp. For this reason, as shown in FIGS. 9 and 10, the semiconductor substrate 607 is processed to be recessed by 40 μm downward in the X direction and 40 μm downward in the Y direction. After the deformation of the semiconductor substrate 607, the distance between the semiconductor substrate 607 and the substrate holder 608 Are designed to be substantially the same in the substrate plane. The configuration other than the substrate holder 607 is the same as that of the vapor phase growth apparatus 101 of the first embodiment, and a description thereof will be omitted.

ここで、この基板ホルダー108上に掘り込み領域が形成されていない半導体基板607を載置し、MOCVD法により、所定の成長条件で半導体基板607上に複数の窒化物半導体薄膜から成る窒化物半導体成長層を積層し、窒化物半導体成長層が形成された半導体基板607をチップ状に分割して窒化物半導体レーザ素子を複数作成したところ、各窒化物半導体レーザ素子の分割前の半導体基板607における発振波長面内分布の標準偏差σをσ=0.55nmのバラツキに抑えることができた。   Here, a semiconductor substrate 607 on which no digging region is formed is placed on the substrate holder 108, and a nitride semiconductor comprising a plurality of nitride semiconductor thin films on the semiconductor substrate 607 under a predetermined growth condition by MOCVD. When a plurality of nitride semiconductor laser elements are produced by stacking the growth layers and dividing the semiconductor substrate 607 on which the nitride semiconductor growth layer is formed into chips, a plurality of nitride semiconductor laser elements are formed on the semiconductor substrate 607 before the division of each nitride semiconductor laser element. The standard deviation σ of the oscillation wavelength in-plane distribution could be suppressed to a variation of σ = 0.55 nm.

また、載置面の形状が平面状に形成された基板ホルダーを用いて同様の方法により窒化物半導体成長層を積層して、窒化物半導体レーザ素子を複数作成したところ、各窒化物半導体レーザ素子の分割前の半導体基板における発振波長面内分布の標準偏差σはσ=1.37nmのバラツキがあった。すなわち、上述のように薄膜形成が行われた後、変形した半導体基板107または半導体基板607の反りの形状と略同一形状に基板載置面108aまたは基板載置面608aを加工することにより、半導体基板を基板ホルダーに載置して、成膜原料成分を含有する原料ガスが半導体基板表面で接触して反応・成膜した場合、薄膜形成が行われ半導体基板が変形し、対向する基板ホルダーと半導体基板との距離は半導体基板の基板面内において略均一になる。これにより、半導体基板の変形後、基板ホルダーからの輻射熱が基板面内において略均一に半導体基板に熱伝導し、半導体基板の表面温度が面内で略均一になるよう加熱することができ、その後成長する化合物半導体薄膜の結晶性および層厚が半導体基板全域にわたり均一化し、作製される窒化物系化合物半導体素子の発振波長のバラツキを抑えることができる。   Further, when a plurality of nitride semiconductor laser elements are formed by laminating nitride semiconductor growth layers by a similar method using a substrate holder having a mounting surface formed in a flat shape, each nitride semiconductor laser element is obtained. The standard deviation σ of the oscillation wavelength in-plane distribution in the semiconductor substrate before the division was σ = 1.37 nm. That is, after the thin film is formed as described above, the substrate mounting surface 108a or the substrate mounting surface 608a is processed into a shape substantially the same as the warped shape of the deformed semiconductor substrate 107 or the semiconductor substrate 607. When a substrate is placed on a substrate holder and a source gas containing a film forming raw material component contacts and reacts on the surface of the semiconductor substrate, a thin film is formed and the semiconductor substrate is deformed. The distance from the semiconductor substrate is substantially uniform within the substrate surface of the semiconductor substrate. Thereby, after the deformation of the semiconductor substrate, the radiant heat from the substrate holder is thermally conducted to the semiconductor substrate substantially uniformly in the substrate surface, and can be heated so that the surface temperature of the semiconductor substrate becomes substantially uniform in the surface. The crystallinity and layer thickness of the growing compound semiconductor thin film are made uniform over the entire semiconductor substrate, and variations in the oscillation wavelength of the nitride compound semiconductor element to be manufactured can be suppressed.

(第2実施形態)
図11は、第2実施形態による気相成長装置を構成する基板ホルダーを示す上面図であり、図12は図11に示したX−X’線に沿った断面図であり、図13は図11に示したY−Y’線に沿った断面図である。ここで、X方向は〈11−20〉で半導体基板上に形成された掘り込み領域に垂直な方向であり、Y方向は〈1−100〉で半導体基板上に形成された掘り込み領域に対して水平な方向である。図11〜図13を参照して、本発明の第2実施形態のMOCVD装置201について説明する。
(Second Embodiment)
11 is a top view showing a substrate holder constituting the vapor phase growth apparatus according to the second embodiment, FIG. 12 is a cross-sectional view taken along line XX ′ shown in FIG. 11, and FIG. 12 is a cross-sectional view taken along line YY ′ shown in FIG. Here, the X direction is a direction perpendicular to the digging region formed on the semiconductor substrate at <11-20>, and the Y direction is relative to the digging region formed on the semiconductor substrate at <1-100>. Horizontal direction. A MOCVD apparatus 201 according to the second embodiment of the present invention will be described with reference to FIGS.

第2実施形態のMOCVD装置201は、図11〜図13に示すように、反応室内の基板ホルダー208と加熱ヒータ209との間に均熱板215が配され、基板ホルダー208の半導体基板207と対向する面である基板載置面208aは平面状に形成されている。また、均熱板215の基板ホルダー208と対向する面は薄膜形成が行われた後の半導体基板207の反りの形状と略同一にするために、均熱板215の基板ホルダー208と対向する面がX方向は上に5μm凸、Y方向は下に40μm凹んだ形状に加工されている。また、基板ホルダー208の均熱板215との接触面は均熱板215の形状に合わせて加工されている。つまり、均熱板215の基板ホルダー208と対向する面は、基板ホルダー208の均熱板215と対向する面の形状と略同一であり、均熱板215と基板ホルダー208とが面で接触し、均熱板215と基板ホルダー208との間に空隙がない。このため、均熱板215から基板ホルダー208へ均一に熱伝導させることができる。なお、半導体基板207の反り方向及び反り量は基板ごとのバラツキが大きいため、想定されるX方向およびY方向における基板反り量の最大値から基板載置面208aの形状を決定することにより、半導体基板207ごとの反り量のバラツキによる半導体基板207の表面温度の面内分布の不均一化を防止することができる。   In the MOCVD apparatus 201 of the second embodiment, as shown in FIGS. 11 to 13, a soaking plate 215 is disposed between the substrate holder 208 and the heater 209 in the reaction chamber, and the semiconductor substrate 207 of the substrate holder 208 and The substrate mounting surface 208a, which is an opposing surface, is formed in a flat shape. Further, the surface of the soaking plate 215 that faces the substrate holder 208 is substantially the same as the shape of the warp of the semiconductor substrate 207 after the thin film is formed. However, it is processed into a shape in which the X direction protrudes upward by 5 μm and the Y direction decreases downward by 40 μm. Further, the contact surface of the substrate holder 208 with the soaking plate 215 is processed according to the shape of the soaking plate 215. That is, the surface of the soaking plate 215 facing the substrate holder 208 is substantially the same as the shape of the surface of the substrate holder 208 facing the soaking plate 215, and the soaking plate 215 and the substrate holder 208 are in contact with each other. There is no gap between the soaking plate 215 and the substrate holder 208. For this reason, heat can be uniformly conducted from the soaking plate 215 to the substrate holder 208. Since the warpage direction and the warpage amount of the semiconductor substrate 207 vary greatly from one substrate to another, the shape of the substrate mounting surface 208a is determined by determining the shape of the substrate mounting surface 208a from the maximum value of the warpage amount in the X direction and the Y direction. It is possible to prevent the in-plane distribution of the surface temperature of the semiconductor substrate 207 from being uneven due to variations in the amount of warpage for each substrate 207.

なお、均熱板215の基板ホルダー208と対向する面は薄膜形成が行われた後の半導体基板207の反りの形状と略同一になるように加工するかわりに、半導体基板207の反りの形状に合わせて少なくとも1つ以上の段差(ステップ)を持つ階段状に加工した場合においても、同様の効果を得ることができる。この場合、段差(ステップ)の数を多くするほど、加工された均熱板215の基板ホルダー208と対向する面は半導体基板107の反りの形状に近似し、略同一化する。また、段差(ステップ)の形状は任意の形状に加工することができ、分割面の形状は四角形状又は円形状が好ましい。また、四角形状及び円形状の面を組み合わせて複数の段差(ステップ)を加工することも可能である。また、各分割面は対向する半導体基板207の反りの形状に応じて傾斜させてもよい。また、分割面は格子状に複数分割する場合に限らず、基板中心と対向する面のみを四角形状に1つ段差を持たせて階段状に凹ませたり、凸ませて分割面を形成してもよい。   Instead of processing the surface of the soaking plate 215 facing the substrate holder 208 so as to be substantially the same as the shape of the warp of the semiconductor substrate 207 after the thin film is formed, the shape of the warp of the semiconductor substrate 207 is changed. The same effect can be obtained even when processing into a stepped shape having at least one step (step). In this case, as the number of steps (steps) increases, the surface of the processed heat equalizing plate 215 facing the substrate holder 208 approximates the shape of the warp of the semiconductor substrate 107 and becomes substantially the same. Further, the shape of the step (step) can be processed into an arbitrary shape, and the shape of the dividing surface is preferably a square shape or a circular shape. It is also possible to process a plurality of steps by combining square and circular surfaces. Moreover, each division surface may be inclined according to the shape of the warp of the semiconductor substrate 207 facing each other. In addition, the dividing surface is not limited to the case of dividing into a plurality of grids, and only the surface facing the center of the substrate is recessed in a stepped shape with one step in a square shape, or the dividing surface is formed by projecting. Also good.

また、基板ホルダー208の均熱板215側の面は均熱板の215の形状に合わせて加工されているが、半導体基板207側の面は平面状に形成されている。このため、均熱板215の熱は接触する基板ホルダー208に熱伝導し、基板載置面208aを均熱板215の反りの形状に応じた面内温度分布で加熱することができる。このとき、均熱板215の基板ホルダー208と対向する面の反りの形状は、半導体基板207の基板ホルダー208と対向する面の反りの形状と略同一であるため、基板載置面208を結果的に輻射熱により半導体基板207を基板面内で略均一に加熱可能な温度分布に加熱することができる。   The surface of the substrate holder 208 on the side of the soaking plate 215 is processed according to the shape of the soaking plate 215, but the surface on the side of the semiconductor substrate 207 is formed in a flat shape. For this reason, the heat of the soaking plate 215 is conducted to the substrate holder 208 in contact, and the substrate mounting surface 208a can be heated with an in-plane temperature distribution corresponding to the warp shape of the soaking plate 215. At this time, the shape of the warp of the surface of the heat equalizing plate 215 facing the substrate holder 208 is substantially the same as the shape of the warp of the surface of the semiconductor substrate 207 facing the substrate holder 208, so that the substrate mounting surface 208 is the result. In particular, the semiconductor substrate 207 can be heated to a temperature distribution that can be heated substantially uniformly within the substrate surface by radiant heat.

また、基板ホルダー208上面には基板ホルダー208の回転中心に対して等しい円周角で第1凸部205が4点設けられ、これら第1凸部205が半導体基板207をフローティング状に支持する。これにより、半導体基板207毎に基板ホルダー208との接触度合いが異なることに起因して、半導体基板207の表面温度が基板面内で不均一になるのを防ぐことができる。このとき、掘り込み領域がY方向に形成された半導体基板207を2点の第1凸部205でY方向に支持するとともに、残り2点の第1凸部205で掘り込み領域と垂直方向であるX方向に支持する。   In addition, four first convex portions 205 are provided on the upper surface of the substrate holder 208 at equal circumferential angles with respect to the rotation center of the substrate holder 208, and these first convex portions 205 support the semiconductor substrate 207 in a floating state. As a result, it is possible to prevent the surface temperature of the semiconductor substrate 207 from becoming nonuniform within the substrate surface due to the difference in contact between the semiconductor substrate 207 and the substrate holder 208. At this time, the semiconductor substrate 207 in which the digging region is formed in the Y direction is supported by the two first convex portions 205 in the Y direction, and the remaining two first convex portions 205 are perpendicular to the digging region. Support in a certain X direction.

また、第1凸部205は、薄膜形成による半導体基板207の変形時に基板ホルダー208と半導体基板207とが接触しない程度に十分高さを有している。具体的には、第1凸部205は約200μmの高さを有している。   Further, the first convex portion 205 has a sufficient height so that the substrate holder 208 and the semiconductor substrate 207 do not come into contact with each other when the semiconductor substrate 207 is deformed by thin film formation. Specifically, the first convex portion 205 has a height of about 200 μm.

また、輻射熱は距離の2乗に反比例するため、平面状の基板載置面208aと反った形状の半導体基板207間の距離を第1凸部205の高さを調節することにより、基板載置面208aから半導体基板207への輻射熱による加熱分布の影響を調整することができる。このため、本実施形態において基板載置面208aが基板載置面208aと半導体基板207との基板面内における距離に応じた温度分布で加熱されていない場合、第1凸部205の高さを調節して、基板載置面208aからの輻射熱による基板面内における加熱分布の強弱を調整することで半導体基板207の表面温度を基板面内で略均一にすることができる。   Further, since the radiant heat is inversely proportional to the square of the distance, the distance between the planar substrate placement surface 208a and the warped semiconductor substrate 207 is adjusted by adjusting the height of the first convex portion 205 to place the substrate placement. The influence of the heating distribution due to the radiant heat from the surface 208a to the semiconductor substrate 207 can be adjusted. Therefore, in this embodiment, when the substrate placement surface 208a is not heated with a temperature distribution corresponding to the distance in the substrate surface between the substrate placement surface 208a and the semiconductor substrate 207, the height of the first convex portion 205 is increased. The surface temperature of the semiconductor substrate 207 can be made substantially uniform in the substrate surface by adjusting the intensity of the heating distribution in the substrate surface due to the radiant heat from the substrate mounting surface 208a.

ここで、特許文献(特開2006−134926)に開示された作製方法と同様の方法により、Y方向に延在する掘り込み領域が350μmの間隔を隔ててX方向に周期的に複数形成され、掘り込み領域のY方向のオフ角θaが−0.33°、X方向のオフ角θbが−0.06°、掘り込み領域の開口幅が3μm、深さが3μmに加工された半導体基板207を上記第2実施形態のMOCVD装置201の基板ホルダー208上に載置し、MOCVD法により、半導体基板207を所定の成長条件で半導体基板207上に複数の窒化物半導体薄膜から成る窒化物半導体成長層を積層した。   Here, by a method similar to the manufacturing method disclosed in the patent document (Japanese Patent Laid-Open No. 2006-134926), a plurality of digging regions extending in the Y direction are periodically formed in the X direction with an interval of 350 μm, The semiconductor substrate 207 processed in such a manner that the off angle θa in the Y direction of the digging region is −0.33 °, the off angle θb in the X direction is −0.06 °, the opening width of the digging region is 3 μm, and the depth is 3 μm. Is mounted on the substrate holder 208 of the MOCVD apparatus 201 of the second embodiment, and the semiconductor substrate 207 is grown on the semiconductor substrate 207 by a MOCVD method under a predetermined growth condition. Layers were laminated.

このようにして窒化物半導体成長層が形成された半導体基板207をチップ状に分割して窒化物半導体レーザ素子を複数作製したところ、各窒化物半導体レーザ素子の分割前の半導体基板207における発振波長面内分布の標準偏差σをσ=0.65nmのバラツキに抑えることができた。   Thus, when the semiconductor substrate 207 on which the nitride semiconductor growth layer is formed is divided into chips to produce a plurality of nitride semiconductor laser elements, the oscillation wavelength in the semiconductor substrate 207 before the division of each nitride semiconductor laser element is obtained. The standard deviation σ of the in-plane distribution could be suppressed to a variation of σ = 0.65 nm.

また、均熱板の基板ホルダーと対向する面を平面状に形成するとともに、載置面の形状が半導体基板の反りの形状に関係なく平面状に形成された基板ホルダーを用いて窒化物半導体成長層を積層して、窒化物半導体レーザ素子を複数作製したところ、各窒化物半導体レーザ素子の分割前の半導体基板における発振波長面内分布の標準偏差σはσ=1.37nmのバラツキがあった。すなわち、上述のように、薄膜形成が行われた後、変形した半導体基板207の反りの形状と略同一形状に均熱板215の基板ホルダー208と対向する面を加工することにより、基板ホルダー208に半導体基板207を載置して、成膜原料成分を含有する原料ガスが半導体基板207表面で接触して反応・成膜した場合、薄膜形成が行われ半導体基板207が変形した後、均熱板215の基板ホルダー208と対向する面と半導体基板207との距離は半導体基板207の基板面内において略均一になる。これにより、均熱板215からの熱が基板ホルダー208を介して半導体基板207の基板面内において略均一に熱伝導し、半導体基板207の表面温度を基板面内で略均一にすることができる。そして、半導体基板207の表面温度が基板面内で略均一になるよう加熱することができ、その後成長する化合物半導体薄膜の結晶性および層厚が半導体基板207全域にわたり均一化し、作成される窒化物系化合物半導体素子の発振波長のバラツキを抑えることができる。   In addition, the surface of the soaking plate facing the substrate holder is formed in a planar shape, and nitride semiconductor growth is performed using the substrate holder in which the mounting surface is formed in a planar shape regardless of the warp shape of the semiconductor substrate. When a plurality of nitride semiconductor laser elements were fabricated by stacking layers, the standard deviation σ of the oscillation wavelength in-plane distribution in the semiconductor substrate before the division of each nitride semiconductor laser element had a variation of σ = 1.37 nm. . That is, as described above, after the thin film is formed, the surface of the heat equalizing plate 215 facing the substrate holder 208 is processed into the substantially same shape as the warped shape of the deformed semiconductor substrate 207, thereby forming the substrate holder 208. When the semiconductor substrate 207 is placed on the surface of the semiconductor substrate 207 and a source gas containing a film forming raw material component is brought into contact with the surface of the semiconductor substrate 207 to react and form a film, after the thin film is formed and the semiconductor substrate 207 is deformed, soaking is performed. The distance between the surface of the plate 215 facing the substrate holder 208 and the semiconductor substrate 207 is substantially uniform within the substrate surface of the semiconductor substrate 207. As a result, heat from the soaking plate 215 is thermally conducted substantially uniformly in the substrate surface of the semiconductor substrate 207 via the substrate holder 208, and the surface temperature of the semiconductor substrate 207 can be substantially uniform in the substrate surface. . Then, the surface temperature of the semiconductor substrate 207 can be heated so as to be substantially uniform within the substrate surface, and the crystallinity and layer thickness of the compound semiconductor thin film grown thereafter are uniformized over the entire area of the semiconductor substrate 207, and thus formed nitride Variation in the oscillation wavelength of the compound semiconductor device can be suppressed.

(第3実施形態)
図14は、第3実施形態による気相成長装置を構成する基板ホルダーの上面図であり、図15は図14に示したX−X’線に沿った断面図であり、図16は図14に示したY−Y’線に沿った断面図である。ここで、X方向は〈11−20〉で半導体基板上に形成された掘り込み領域に垂直な方向であり、Y方向は〈1−100〉で半導体基板上に形成された掘り込み領域に対して水平な方向である。図14〜図16を参照して、本発明の第3実施形態のMOCVD装置301について説明する。
(Third embodiment)
FIG. 14 is a top view of the substrate holder constituting the vapor phase growth apparatus according to the third embodiment, FIG. 15 is a cross-sectional view taken along the line XX ′ shown in FIG. 14, and FIG. It is sectional drawing along the YY 'line shown in FIG. Here, the X direction is a direction perpendicular to the digging region formed on the semiconductor substrate at <11-20>, and the Y direction is relative to the digging region formed on the semiconductor substrate at <1-100>. Horizontal direction. With reference to FIGS. 14-16, the MOCVD apparatus 301 of 3rd Embodiment of this invention is demonstrated.

第3実施形態のMOCVD装置301は、図14〜図16に示すように、反応室内の基板ホルダー308と加熱ヒータ309との間に均熱板315が配され、基板ホルダー308の半導体基板307と対向する面である基板載置面308aは、薄膜形成が行われた後の半導体基板307の反りの形状と略同一形状にするため、X方向において上に5μm凸、Y方向において下に40μm凹んだ形状に加工されている。また、均熱板315の基板ホルダー308と対向する面も薄膜形成が行われた後の半導体基板307の反りの形状と略同一にするため、X方向は上に5μm凸、Y方向は下に40μm凹んだ形状に加工されている。また、基板ホルダー308は均熱板315と面で当接するよう均熱板315との接触面は均熱板315の形状に合わせて加工されている。つまり、均熱板315の基板ホルダー308と対向する面は、基板ホルダー308の均熱板315と対向する面の形状と略同一であり、均熱板315と基板ホルダー308とが面で接触し、均熱板315と基板ホルダー308との間に空隙がない。このため、均熱板315から基板ホルダー308へ均一に熱伝導させることができる。なお、半導体基板307の反り方向及び反り量は基板ごとのバラツキが大きいため、想定されるX方向およびY方向における基板反り量の最大値から基板載置面308aの形状を決定することにより、半導体基板307ごとの反り量のバラツキによる半導体基板307の表面温度の面内分布の不均一化を防止することができる。   In the MOCVD apparatus 301 of the third embodiment, as shown in FIGS. 14 to 16, a soaking plate 315 is disposed between the substrate holder 308 and the heater 309 in the reaction chamber, and the semiconductor substrate 307 of the substrate holder 308 The substrate mounting surface 308a, which is an opposing surface, has a convex shape of 5 μm upward in the X direction and a concave of 40 μm downward in the Y direction so as to have substantially the same shape as the warpage of the semiconductor substrate 307 after the thin film is formed. It is processed into a shape. Further, the surface of the soaking plate 315 facing the substrate holder 308 is also made substantially the same as the warped shape of the semiconductor substrate 307 after the thin film is formed, so that the X direction protrudes upward by 5 μm and the Y direction decreases downward. It is processed into a 40 μm concave shape. Further, the contact surface with the heat equalizing plate 315 is processed in accordance with the shape of the heat equalizing plate 315 so that the substrate holder 308 contacts the heat equalizing plate 315 with the surface. That is, the surface of the soaking plate 315 facing the substrate holder 308 is substantially the same as the shape of the surface of the substrate holder 308 facing the soaking plate 315, and the soaking plate 315 and the substrate holder 308 are in contact with each other. There is no gap between the soaking plate 315 and the substrate holder 308. For this reason, heat can be uniformly conducted from the soaking plate 315 to the substrate holder 308. Since the warpage direction and the warpage amount of the semiconductor substrate 307 vary greatly from one substrate to another, the shape of the substrate mounting surface 308a is determined by determining the shape of the substrate placement surface 308a from the maximum value of the warpage amount in the X direction and the Y direction. It is possible to prevent the in-plane distribution of the surface temperature of the semiconductor substrate 307 from being uneven due to variations in the amount of warpage for each substrate 307.

また、基板ホルダー308の均熱板315側の面は均熱板の315の形状に合わせて加工され、半導体基板307側の面は半導体基板307の反りの形状と略同一形状に形成されている。このため、基板面内における半導体基板307と基板載置面308aとの距離および基板載置面308aと均熱板315の基板ホルダー308と対向する面との距離がそれぞれ略均一になる。これにより均熱板315からの熱伝導により、基板載置面308aが面内で略均一に加熱され、基板載置面308aからの輻射熱により半導体基板307を基板面内で略均一に加熱することができる。   The surface of the substrate holder 308 on the heat equalizing plate 315 side is processed according to the shape of the heat equalizing plate 315, and the surface on the semiconductor substrate 307 side is formed in substantially the same shape as the warped shape of the semiconductor substrate 307. . For this reason, the distance between the semiconductor substrate 307 and the substrate placement surface 308a and the distance between the substrate placement surface 308a and the surface of the soaking plate 315 facing the substrate holder 308 in the substrate surface are substantially uniform. As a result, the substrate placement surface 308a is heated substantially uniformly within the surface by heat conduction from the soaking plate 315, and the semiconductor substrate 307 is heated substantially uniformly within the substrate surface by radiant heat from the substrate placement surface 308a. Can do.

なお、薄膜形成が行われた後の半導体基板307の反りの形状と略同一になるように基板載置面308a及び均熱板315の基板ホルダー308と対向する面を加工するかわりに、半導体基板307の反りの形状に合わせて少なくとも1つ以上の段差(ステップ)を持つ階段状に基板載置面308a及び均熱板315の基板ホルダー308と対向する面を加工した場合においても、同様の効果を得ることができる。この場合、段差(ステップ)の数を多くするほど、加工された基板載置面308a及び均熱板315の基板ホルダー308と対向する面は半導体基板307の反りの形状に近似し、略同一化する。例えば、基板載置面308a及び均熱板315の基板ホルダー308と対向する面をそれぞれ格子状に複数の面に分割し、各分割面と対向する半導体基板307との距離が略同一になるよう隣接する分割面に段差(ステップ)を持たせて階段状に加工することで、均熱板315からの熱伝導により、基板載置面308aが面内で略均一に加熱され、基板載置面308aからの輻射熱により半導体基板307を基板面内で略均一に加熱することができる。このとき、基板載置面308a及び均熱板315の基板ホルダー308と対向する面は同一に加工する必要はなく、半導体基板307が面内で略均一に加熱されるようにそれぞれの形状を加工しても良い。   Instead of processing the substrate mounting surface 308a and the surface of the soaking plate 315 facing the substrate holder 308 so as to be substantially the same as the warped shape of the semiconductor substrate 307 after thin film formation, the semiconductor substrate The same effect can be obtained when the substrate mounting surface 308a and the surface facing the substrate holder 308 of the soaking plate 315 are processed into a stepped shape having at least one step according to the shape of the warp 307. Can be obtained. In this case, as the number of steps is increased, the processed substrate mounting surface 308a and the surface of the heat equalizing plate 315 facing the substrate holder 308 approximate to the warped shape of the semiconductor substrate 307 and are substantially identical. To do. For example, the substrate mounting surface 308a and the surface of the heat equalizing plate 315 facing the substrate holder 308 are each divided into a plurality of surfaces in a lattice shape so that the distance between each divided surface and the semiconductor substrate 307 facing each other is substantially the same. By processing the adjacent divided surfaces in steps with steps, the substrate placement surface 308a is heated substantially uniformly within the surface by heat conduction from the heat equalizing plate 315, and the substrate placement surface. The semiconductor substrate 307 can be heated substantially uniformly within the substrate surface by the radiant heat from 308a. At this time, it is not necessary to process the substrate mounting surface 308a and the surface of the soaking plate 315 facing the substrate holder 308 in the same way, and the respective shapes are processed so that the semiconductor substrate 307 is heated substantially uniformly in the surface. You may do it.

また、基板ホルダー308上面には基板ホルダー308の回転中心に対して等しい円周角で第1凸部305が4点設けられ、これら第1凸部305が半導体基板307をフローティング状に支持する。これにより、半導体基板307毎に基板ホルダー308との接触度合いが異なることに起因して、半導体基板307の表面温度が基板面内で不均一になるのを防ぐことができる。このとき、掘り込み領域がY方向に形成された半導体基板307を2点の第1凸部305でY方向に支持するとともに、残り2点の第1凸部305で掘り込み領域と垂直方向であるX方向に支持する。   Further, four first convex portions 305 are provided on the upper surface of the substrate holder 308 at equal circumferential angles with respect to the rotation center of the substrate holder 308, and these first convex portions 305 support the semiconductor substrate 307 in a floating state. Accordingly, it is possible to prevent the surface temperature of the semiconductor substrate 307 from becoming nonuniform within the substrate surface due to the difference in contact between the semiconductor substrate 307 and the substrate holder 308. At this time, the semiconductor substrate 307 in which the digging region is formed in the Y direction is supported in the Y direction by the two first convex portions 305 and the remaining two first convex portions 305 are perpendicular to the digging region. Support in a certain X direction.

また、第1凸部305は、薄膜形成による半導体基板307の変形時に基板ホルダー308と半導体基板307とが接触しない程度に十分高さを有している。具体的には、第1凸部305は約100μmの高さを有している。   Further, the first convex portion 305 is sufficiently high so that the substrate holder 308 and the semiconductor substrate 307 do not come into contact with each other when the semiconductor substrate 307 is deformed by thin film formation. Specifically, the first convex portion 305 has a height of about 100 μm.

また、輻射熱は距離の2乗に反比例するが、本実施形態の基板載置面308aは半導体基板307の反りの形状と略同一であるため、基板載置面308aと半導体基板307間の距離により、基板面内における基板載置面308aから半導体基板307への輻射熱による加熱分布の強弱は変化しない。このため、第1凸部305の高さを低く調節して、基板面内における基板載置面308aからの輻射熱により半導体基板307を強く加熱することができる。   Although the radiant heat is inversely proportional to the square of the distance, the substrate placement surface 308a of the present embodiment is substantially the same as the shape of the warp of the semiconductor substrate 307. Therefore, depending on the distance between the substrate placement surface 308a and the semiconductor substrate 307. The intensity of the heating distribution due to radiant heat from the substrate mounting surface 308a to the semiconductor substrate 307 in the substrate plane does not change. For this reason, the height of the 1st convex part 305 can be adjusted low, and the semiconductor substrate 307 can be heated strongly by the radiant heat from the board | substrate mounting surface 308a in a board | substrate surface.

ここで、特許文献(特開2006−134926)に開示された作製方法と同様の方法により、Y方向に延在する掘り込み領域が350μmの間隔を隔ててX方向に周期的に複数形成され、掘り込み領域のY方向のオフ角θaが−0.33°、X方向のオフ角θbが−0.06°、掘り込み領域の開口幅が3μm、深さが3μmに加工された半導体基板307を上記第3実施形態のMOCVD装置301の基板ホルダー308上に載置し、MOCVD法により、半導体基板307を所定の成長条件で半導体基板307上に複数の窒化物半導体薄膜から成る窒化物半導体成長層を積層した。   Here, by a method similar to the manufacturing method disclosed in the patent document (Japanese Patent Laid-Open No. 2006-134926), a plurality of digging regions extending in the Y direction are periodically formed in the X direction with an interval of 350 μm, Semiconductor substrate 307 processed to have an off angle θa in the Y direction of −0.33 °, an off angle θb in the X direction of −0.06 °, an opening width of the dug region of 3 μm, and a depth of 3 μm. Is mounted on the substrate holder 308 of the MOCVD apparatus 301 of the third embodiment, and the semiconductor substrate 307 is grown on the semiconductor substrate 307 by a MOCVD method under a predetermined growth condition. Layers were laminated.

このようにして窒化物半導体成長層が形成された半導体基板307をチップ状に分割して窒化物半導体レーザ素子を複数作製したところ、各窒化物半導体レーザ素子の分割前の半導体基板307における発振波長面内分布の標準偏差σをσ=0.50nmのバラツキに抑えることができた。   Thus, when the semiconductor substrate 307 on which the nitride semiconductor growth layer is formed is divided into chips to produce a plurality of nitride semiconductor laser elements, the oscillation wavelength in the semiconductor substrate 307 before the division of each nitride semiconductor laser element is obtained. The standard deviation σ of the in-plane distribution could be suppressed to a variation of σ = 0.50 nm.

また、均熱板の基板ホルダーと対向する面を平面状に形成するとともに、載置面の形状が半導体基板の反りの形状に関係なく平面状に形成された基板ホルダーを用いて窒化物半導体成長層を積層して、窒化物半導体レーザ素子を複数作製したとろ、各窒化物半導体レーザ素子の分割前の半導体基板における発振波長面内分布の標準偏差σはσ=1.37nmのバラツキであった。すなわち、上述のように、薄膜形成が行われた後、変形する半導体基板307の反りの形状と略同一形状に基板載置面308a及び均熱板315の基板ホルダー308と対向する面を加工することにより、基板ホルダー308に半導体基板307を載置して、成膜原料成分を含有する原料ガスが半導体基板307表面で接触して反応・成膜した場合、薄膜形成が行われ半導体基板307が変形した後、基板面内における半導体基板307と基板載置面308aとの距離および基板載置面308aと均熱板315の基板ホルダー308と対向する面との距離が略均一になる。これにより、均熱板315からの熱伝導により、基板載置面308aが面内で略均一に加熱され、基板載置面308aからの輻射熱により半導体基板307を基板面内で略均一に加熱され、その後、成長する化合物半導体薄膜の結晶性および層厚が基板全域にわたり均一化し、作製される窒化物系化合物半導体素子の発振波長のバラツキを抑えることができる。   In addition, the surface of the soaking plate facing the substrate holder is formed in a planar shape, and nitride semiconductor growth is performed using the substrate holder in which the mounting surface is formed in a planar shape regardless of the warp shape of the semiconductor substrate. When a plurality of nitride semiconductor laser elements were fabricated by stacking layers, the standard deviation σ of the oscillation wavelength in-plane distribution in the semiconductor substrate before the division of each nitride semiconductor laser element was a variation of σ = 1.37 nm. . That is, as described above, after the thin film is formed, the surface of the substrate mounting surface 308a and the surface of the heat equalizing plate 315 facing the substrate holder 308 are processed into substantially the same shape as the warped shape of the semiconductor substrate 307 to be deformed. As a result, when the semiconductor substrate 307 is placed on the substrate holder 308 and the source gas containing the deposition source component contacts and reacts on the surface of the semiconductor substrate 307, a thin film is formed and the semiconductor substrate 307 is After the deformation, the distance between the semiconductor substrate 307 and the substrate placement surface 308a in the substrate surface and the distance between the substrate placement surface 308a and the surface of the heat equalizing plate 315 facing the substrate holder 308 become substantially uniform. As a result, the substrate placement surface 308a is heated substantially uniformly within the surface by heat conduction from the soaking plate 315, and the semiconductor substrate 307 is heated substantially uniformly within the substrate surface by radiant heat from the substrate placement surface 308a. Thereafter, the crystallinity and layer thickness of the growing compound semiconductor thin film are made uniform over the entire substrate, and variations in the oscillation wavelength of the nitride-based compound semiconductor element to be manufactured can be suppressed.

(第4実施形態)
図17は、第4実施形態による気相成長装置を構成する基板ホルダーの上面図であり、図18は図17に示したX−X’線に沿った断面図であり、図19は図17に示したY−Y’線に沿った断面図である。ここで、X方向は〈11−20〉で半導体基板上に形成された掘り込み領域に垂直な方向であり、Y方向は〈1−100〉で半導体基板上に形成された掘り込み領域に対して水平な方向である。図17〜図19を参照して、本発明の第4実施形態のMOCVD装置301について説明する。
(Fourth embodiment)
FIG. 17 is a top view of the substrate holder constituting the vapor phase growth apparatus according to the fourth embodiment, FIG. 18 is a cross-sectional view taken along the line XX ′ shown in FIG. 17, and FIG. It is sectional drawing along the YY 'line shown in FIG. Here, the X direction is a direction perpendicular to the digging region formed on the semiconductor substrate at <11-20>, and the Y direction is relative to the digging region formed on the semiconductor substrate at <1-100>. Horizontal direction. With reference to FIGS. 17-19, the MOCVD apparatus 301 of 4th Embodiment of this invention is demonstrated.

第4実施形態のMOCVD装置401は、図17〜図19に示すように、反応室内の基板ホルダー408と加熱ヒータ409との間に均熱板415が配され、基板ホルダー408の半導体基板407と対向する面である基板載置面408aは、薄膜形成が行われた後の半導体基板407の反りの形状と略同一形状にするため、X方向において上に5μm凸、Y方向において下に40μm凹んだ形状に加工されている。また、均熱板415の基板ホルダー408と対向する面も薄膜形成が行われた後の半導体基板407の反りの形状と略同一にするため、X方向は上に5μm凸、Y方向は下に40μm凹んだ形状に加工されている。また、基板ホルダー408の均熱板415と対向する面は均熱板415の形状に合わせて加工されるとともに、均熱板415上に第2凸部406が4点設けられ、これら第2凸部406が基板ホルダー408をフローティング状に支持している。つまり、均熱板415の基板ホルダー408と対向する面は、基板ホルダー408の均熱板415と対向する面の形状と略同一であり、このような形状に均熱板415および基板ホルダー408を成形することにより、基板ホルダー408の載置面408aに半導体基板407を載置したとき、均熱板415からの輻射熱により基板ホルダー408が加熱され、基板載置面408aからの輻射熱により半導体基板407を加熱することができる。なお、半導体基板407の反り方向及び反り量は基板ごとのバラツキが大きいため、想定されるX方向およびY方向における基板反り量の最大値から基板載置面408aの形状を決定することにより、半導体基板407ごとの反り量のバラツキによる半導体基板407の表面温度の面内分布の不均一化を防止することができる。   In the MOCVD apparatus 401 of the fourth embodiment, as shown in FIGS. 17 to 19, a soaking plate 415 is disposed between the substrate holder 408 and the heater 409 in the reaction chamber, and the semiconductor substrate 407 of the substrate holder 408 The substrate mounting surface 408a, which is an opposing surface, has a convex shape that is 5 μm upward in the X direction and 40 μm downward in the Y direction so as to have substantially the same shape as the warpage of the semiconductor substrate 407 after the thin film is formed. It is processed into a shape. Further, the surface of the soaking plate 415 facing the substrate holder 408 is also made substantially the same as the warped shape of the semiconductor substrate 407 after the thin film is formed, so that the X direction protrudes upward by 5 μm and the Y direction decreases downward. It is processed into a 40 μm concave shape. Further, the surface of the substrate holder 408 facing the soaking plate 415 is processed according to the shape of the soaking plate 415, and four second convex portions 406 are provided on the soaking plate 415. The part 406 supports the substrate holder 408 in a floating state. That is, the surface of the heat soaking plate 415 facing the substrate holder 408 is substantially the same as the shape of the surface of the substrate holder 408 facing the heat soaking plate 415, and the heat soaking plate 415 and the substrate holder 408 are formed in such a shape. By molding, when the semiconductor substrate 407 is placed on the placement surface 408a of the substrate holder 408, the substrate holder 408 is heated by the radiant heat from the soaking plate 415, and the semiconductor substrate 407 is radiated from the substrate placement surface 408a. Can be heated. Since the warpage direction and the warpage amount of the semiconductor substrate 407 vary greatly from one substrate to another, the shape of the substrate mounting surface 408a is determined by determining the shape of the substrate placement surface 408a from the maximum value of the warpage amount in the X direction and the Y direction. It is possible to prevent the in-plane distribution of the surface temperature of the semiconductor substrate 407 from being uneven due to variations in the amount of warpage for each substrate 407.

このとき、基板載置面408aと均熱板415の基板ホルダー408と対向する面はともに半導体基板407の反りの形状と略同一形状に形成されているため、基板面内における半導体基板407と基板載置面408aとの距離および基板載置面408aと均熱板415の基板ホルダー408と対向する面との距離はそれぞれ略均一になる。また、均熱板415上に設けられた第2凸部406が基板ホルダー408をフローティング状に支持しているため、均熱板415からの熱を基板ホルダー408へ輻射熱により熱伝導することができる。このため、均熱板415と基板ホルダー408の接触面の加工精度の不良により均熱板415から基板ホルダー408へ不均一に熱伝導することを防止することができる。以上より、均熱板415からの輻射熱により、基板載置面408aが面内で略均一に加熱され、基板載置面408aからの輻射熱により半導体基板407を基板面内で略均一に加熱することができる。   At this time, since both the substrate mounting surface 408a and the surface of the heat equalizing plate 415 facing the substrate holder 408 are formed in substantially the same shape as the warpage of the semiconductor substrate 407, the semiconductor substrate 407 and the substrate in the substrate surface are formed. The distance between the mounting surface 408a and the distance between the substrate mounting surface 408a and the surface of the soaking plate 415 facing the substrate holder 408 are substantially uniform. Further, since the second convex portion 406 provided on the soaking plate 415 supports the substrate holder 408 in a floating state, heat from the soaking plate 415 can be conducted to the substrate holder 408 by radiant heat. . For this reason, non-uniform heat conduction from the soaking plate 415 to the substrate holder 408 due to poor processing accuracy of the contact surface between the soaking plate 415 and the substrate holder 408 can be prevented. As described above, the substrate placement surface 408a is heated substantially uniformly within the surface by the radiant heat from the heat equalizing plate 415, and the semiconductor substrate 407 is heated substantially uniformly within the substrate surface by the radiant heat from the substrate placement surface 408a. Can do.

なお、薄膜形成が行われた後の半導体基板407の反りの形状と略同一になるように基板載置面408a及び均熱板415の基板ホルダー408と対向する面を加工するかわりに、半導体基板407の反りの形状に合わせて少なくとも1つ以上の段差(ステップ)を持つ階段状に基板載置面408a及び均熱板415の基板ホルダー308と対向する面を加工した場合においても、同様の効果を得ることができる。この場合、段差(ステップ)の数を多くするほど、加工された基板載置面408a及び均熱板415の基板ホルダー408と対向する面は半導体基板407の反りの形状に近似し、略同一化する。例えば、基板載置面408a及び均熱板415の基板ホルダー408と対向する面をそれぞれ格子状に複数の面に分割し、各分割面と対向する半導体基板407との距離が略同一になるよう隣接する分割面に段差(ステップ)を持たせて階段状に加工することで、均熱板415からの熱伝導により、基板載置面408aが面内で略均一に加熱され、基板載置面408aからの輻射熱により半導体基板407を基板面内で略均一に加熱することができる。このとき、基板載置面408a及び均熱板415の基板ホルダー408と対向する面は同一に加工する必要はなく、半導体基板407が面内で略均一に加熱されるようにそれぞれの形状を加工しても良い。   Instead of processing the substrate mounting surface 408a and the surface of the soaking plate 415 facing the substrate holder 408 so as to be substantially the same as the warped shape of the semiconductor substrate 407 after thin film formation, the semiconductor substrate The same effect can be obtained even when the substrate mounting surface 408a and the surface facing the substrate holder 308 of the soaking plate 415 are processed into a stepped shape having at least one step according to the shape of the warp 407. Can be obtained. In this case, as the number of steps is increased, the processed substrate mounting surface 408a and the surface of the soaking plate 415 facing the substrate holder 408 approximate to the warped shape of the semiconductor substrate 407 and are substantially identical. To do. For example, the substrate mounting surface 408a and the surface of the soaking plate 415 facing the substrate holder 408 are each divided into a plurality of surfaces in a lattice shape so that the distance between each divided surface and the semiconductor substrate 407 facing each other is substantially the same. By processing the adjacent divided surfaces in steps with steps, the substrate placement surface 408a is heated substantially uniformly within the surface by heat conduction from the soaking plate 415, and the substrate placement surface. The semiconductor substrate 407 can be heated substantially uniformly in the substrate plane by the radiant heat from 408a. At this time, it is not necessary to process the substrate mounting surface 408a and the surface of the soaking plate 415 facing the substrate holder 408 in the same manner, and the respective shapes are processed so that the semiconductor substrate 407 is heated substantially uniformly within the surface. You may do it.

また、基板ホルダー408上面には基板ホルダー408の回転中心に対して等しい円周角で第1凸部405が4点設けられ、これら第1凸部405が半導体基板407をフローティング状に支持する。これにより、半導体基板407毎に基板ホルダー408との接触度合いが異なることに起因して、半導体基板407の表面温度が基板面内で不均一になるのを防ぐことができる。このとき、掘り込み領域がY方向に形成された半導体基板407を2点の第1凸部405でY方向に支持するとともに、残り2点の第1凸部405で掘り込み領域と垂直方向であるX方向に支持する。   Further, four first convex portions 405 are provided on the upper surface of the substrate holder 408 at equal circumferential angles with respect to the rotation center of the substrate holder 408, and these first convex portions 405 support the semiconductor substrate 407 in a floating state. As a result, it is possible to prevent the surface temperature of the semiconductor substrate 407 from becoming uneven in the substrate surface due to the difference in contact between the semiconductor substrate 407 and the substrate holder 408. At this time, the semiconductor substrate 407 in which the digging region is formed in the Y direction is supported in the Y direction by the two first convex portions 405, and the remaining two first convex portions 405 are perpendicular to the digging region. Support in a certain X direction.

また、第1凸部405は、薄膜形成による半導体基板407の変形時に基板ホルダー408と半導体基板407とが接触しない程度に十分高さを有している。具体的には、第1凸部405は約100μmの高さを有している。   The first convex portion 405 is sufficiently high to prevent the substrate holder 408 and the semiconductor substrate 407 from contacting each other when the semiconductor substrate 407 is deformed by forming a thin film. Specifically, the first convex portion 405 has a height of about 100 μm.

また、輻射熱は距離の2乗に反比例するが、本実施形態の基板載置面408aは半導体基板407の反りの形状と略同一であるため、基板載置面408aと半導体基板407間の距離により、基板面内における基板載置面408aから半導体基板407への輻射熱による加熱分布の強弱は変化しない。このため、第1凸部405の高さを低く調節して、基板面内における基板載置面408aからの輻射熱により半導体基板407を強く加熱することができる。また、第2凸部406についても第1凸部405と同様に、均熱板415と基板ホルダー408との対向する面の距離が面内において略同一であるため、第2凸部406の高さを低く調節して、基板面内における均熱板415からの輻射熱により基板ホルダー408を強く加熱することができる。   Although the radiant heat is inversely proportional to the square of the distance, the substrate mounting surface 408a of the present embodiment is substantially the same as the shape of the warp of the semiconductor substrate 407, and therefore depends on the distance between the substrate mounting surface 408a and the semiconductor substrate 407. The intensity of the heating distribution due to radiant heat from the substrate mounting surface 408a to the semiconductor substrate 407 in the substrate surface does not change. Therefore, the semiconductor substrate 407 can be strongly heated by radiant heat from the substrate mounting surface 408a in the substrate surface by adjusting the height of the first convex portion 405 to be low. Similarly to the first convex portion 405, the second convex portion 406 also has a substantially equal distance between the opposing surfaces of the heat equalizing plate 415 and the substrate holder 408, so that the height of the second convex portion 406 is high. The substrate holder 408 can be strongly heated by radiant heat from the soaking plate 415 in the substrate surface by adjusting the height to be low.

ここで、特許文献(特開2006−134926)に開示された作製方法と同様の方法により、Y方向に延在する掘り込み領域が350μmの間隔を隔ててX方向に周期的に複数形成され、掘り込み領域のY方向のオフ角θaが−0.33°、X方向のオフ角θbが−0.06°、掘り込み領域の開口幅が3μm、深さが3μmに加工された半導体基板407を上記第4実施形態のMOCVD装置401の第1凸部405が設けられた基板ホルダー408上に載置し、MOCVD法により、半導体基板407を所定の成長条件で半導体基板407上に複数の窒化物半導体薄膜から成る窒化物半導体成長層を積層した。   Here, by a method similar to the manufacturing method disclosed in the patent document (Japanese Patent Laid-Open No. 2006-134926), a plurality of digging regions extending in the Y direction are periodically formed in the X direction with an interval of 350 μm, Semiconductor substrate 407 processed to have an off angle θa in the Y direction of −0.33 °, an off angle θb in the X direction of −0.06 °, an opening width of the dug region of 3 μm, and a depth of 3 μm. Is mounted on the substrate holder 408 provided with the first convex portion 405 of the MOCVD apparatus 401 of the fourth embodiment, and the semiconductor substrate 407 is nitrided on the semiconductor substrate 407 under a predetermined growth condition by MOCVD. A nitride semiconductor growth layer comprising a thin semiconductor film was laminated.

このようにして窒化物半導体成長層が形成された半導体基板407をチップ状に分割して窒化物半導体レーザ素子を複数作成し、各窒化物半導体レーザ素子の分割前の半導体基板407における発振波長面内分布を図20のグラフにまとめた。図20は図17に示したX−X’線に沿った発振波長の面内分布である。図20のグラフより、窒化物系半導体レーザ素子の波長面内分布の標準偏差σをσ=0.1nmのバラツキに抑えることができ、基板毎の波長は標準偏差σに最大σ=2.5nmのバラツキがあった。   The semiconductor substrate 407 thus formed with the nitride semiconductor growth layer is divided into chips to produce a plurality of nitride semiconductor laser elements, and the oscillation wavelength plane of the semiconductor substrate 407 before the division of each nitride semiconductor laser element The internal distribution is summarized in the graph of FIG. FIG. 20 shows the in-plane distribution of the oscillation wavelength along the line X-X ′ shown in FIG. 17. From the graph of FIG. 20, the standard deviation σ of the in-wavelength distribution of the nitride-based semiconductor laser device can be suppressed to a variation of σ = 0.1 nm, and the wavelength for each substrate is σ = 2.5 nm at the maximum with the standard deviation σ. There was a variation.

また、均熱板の基板ホルダーと対向する面を平面状に形成するとともに、載置面の形状が半導体基板の反りの形状に関係なく平面状に形成された基板ホルダーを用いて窒化物半導体成長層を積層して、窒化物半導体レーザ素子を複数作成し、各窒化物半導体レーザ素子の分割前の半導体基板における発振波長の面内分布の標準偏差σはσ=1.37nmのバラツキがあった。   In addition, the surface of the soaking plate facing the substrate holder is formed in a planar shape, and nitride semiconductor growth is performed using the substrate holder in which the mounting surface is formed in a planar shape regardless of the warp shape of the semiconductor substrate. A plurality of nitride semiconductor laser elements are formed by stacking layers, and the standard deviation σ of the in-plane distribution of the oscillation wavelength in the semiconductor substrate before the division of each nitride semiconductor laser element has a variation of σ = 1.37 nm. .

すなわち、上述のように、薄膜形成が行われた後、変形する半導体基板407の反りの形状と略同一形状に基板載置面408a及び均熱板415の基板ホルダー408と対向する面を加工することにより、基板ホルダー408に半導体基板407を載置して、成膜原料成分を含有する原料ガスが半導体基板407表面で接触して反応・成膜した場合、薄膜形成が行われ半導体基板407が変形した後、基板面内における半導体基板407と基板載置面408aとの距離および基板載置面408aと均熱板415の基板ホルダー408と対向する面との距離が略均一になる。また、均熱板415上には第2凸部406が4点設けられ、これら第2凸部406が基板ホルダー408をフローティング状に支持している。これにより、均熱板315からの輻射熱により基板載置面408aが面内で略均一に加熱され、基板載置面408aからの輻射熱により半導体基板407を基板面内で略均一に加熱され、その後、成長する化合物半導体薄膜の結晶性および層厚が基板全域にわたり均一化し、作製される窒化物系化合物半導体素子の発振波長のバラツキを抑えることができる。   That is, as described above, after the thin film is formed, the surface of the substrate mounting surface 408a and the soaking plate 415 facing the substrate holder 408 is processed into substantially the same shape as the warped shape of the semiconductor substrate 407 to be deformed. Thus, when the semiconductor substrate 407 is placed on the substrate holder 408 and the source gas containing the deposition source component contacts and reacts on the surface of the semiconductor substrate 407, a thin film is formed and the semiconductor substrate 407 is After the deformation, the distance between the semiconductor substrate 407 and the substrate placement surface 408a in the substrate surface and the distance between the substrate placement surface 408a and the surface of the heat equalizing plate 415 facing the substrate holder 408 become substantially uniform. Further, four second convex portions 406 are provided on the soaking plate 415, and these second convex portions 406 support the substrate holder 408 in a floating state. As a result, the substrate mounting surface 408a is heated substantially uniformly within the surface by the radiant heat from the soaking plate 315, and the semiconductor substrate 407 is heated approximately uniformly within the substrate surface by the radiant heat from the substrate mounting surface 408a. The crystallinity and layer thickness of the growing compound semiconductor thin film can be made uniform over the entire substrate, and variations in the oscillation wavelength of the nitride-based compound semiconductor device to be produced can be suppressed.

本発明の第1実施形態による気相成長装置の反応室の断面図である。It is sectional drawing of the reaction chamber of the vapor phase growth apparatus by 1st Embodiment of this invention. 本発明の第1実施形態による気相成長装置を構成する基板ホルダーの上面図である。It is a top view of the substrate holder which comprises the vapor phase growth apparatus by 1st Embodiment of this invention. 図2のX−X’線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line X-X ′ in FIG. 2. 図2のY−Y’線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line Y-Y ′ of FIG. 2. 本発明の第1実施形態による気相成長装置を構成する基板ホルダーの変形例を示す上面図である。It is a top view which shows the modification of the substrate holder which comprises the vapor phase growth apparatus by 1st Embodiment of this invention. 図2のX−X’線に沿った発振波長の面内分布である。3 is an in-plane distribution of oscillation wavelengths along the line X-X ′ in FIG. 2. 図2のY−Y’線に沿った発振波長の面内分布である。3 is an in-plane distribution of oscillation wavelengths along the line Y-Y ′ in FIG. 2. 本発明の第1実施形態による気相成長装置を構成する基板ホルダーの変形例を示す上面図である。It is a top view which shows the modification of the substrate holder which comprises the vapor phase growth apparatus by 1st Embodiment of this invention. 図8のX−X’線に沿った断面図である。It is sectional drawing along the X-X 'line | wire of FIG. 図8のY−Y’線に沿った断面図である。FIG. 9 is a cross-sectional view taken along line Y-Y ′ of FIG. 8. 本発明の第2実施形態による気相成長装置を構成する基板ホルダーの上面図である。It is a top view of the substrate holder which comprises the vapor phase growth apparatus by 2nd Embodiment of this invention. 図11のX−X’線に沿った断面図である。It is sectional drawing along the X-X 'line | wire of FIG. 図11のY−Y’線に沿った断面図である。FIG. 12 is a cross-sectional view taken along line Y-Y ′ of FIG. 11. 本発明の第3実施形態による気相成長装置を構成する基板ホルダーの上面図である。It is a top view of the substrate holder which comprises the vapor phase growth apparatus by 3rd Embodiment of this invention. 図14のX−X’線に沿った断面図である。It is sectional drawing along the X-X 'line | wire of FIG. 図14のY−Y’線に沿った断面図である。FIG. 15 is a cross-sectional view taken along line Y-Y ′ of FIG. 14. 本発明の第4実施形態による気相成長装置を構成する基板ホルダーの上面図である。It is a top view of the substrate holder which comprises the vapor phase growth apparatus by 4th Embodiment of this invention. 図17のX−X’線に沿った断面図である。It is sectional drawing along the X-X 'line | wire of FIG. 図18のY−Y’線に沿った断面図である。It is sectional drawing along the Y-Y 'line | wire of FIG. 図17のX−X’線に沿った発振波長の面内分布である。18 is an in-plane distribution of oscillation wavelengths along the line X-X ′ in FIG. 17. 従来の気相成長装置の反応室の断面図である。It is sectional drawing of the reaction chamber of the conventional vapor phase growth apparatus. 化合物半導体薄膜を形成する前の半導体基板の反り量を示すヒストグラムである。It is a histogram which shows the curvature amount of the semiconductor substrate before forming a compound semiconductor thin film. 半導体基板の上面図である。It is a top view of a semiconductor substrate. 図23に示した半導体基板のX−X’線およびY−Y’線における薄膜形成が行われる前の反り量を示す図である。It is a figure which shows the curvature amount before thin film formation is performed in the X-X 'line | wire and Y-Y' line | wire of the semiconductor substrate shown in FIG. 図23に示した半導体基板107のX−X’線およびY−Y’線における薄膜形成が行われた後の反り量を示す図である。It is a figure which shows the curvature amount after thin film formation was performed in the X-X 'line | wire and Y-Y' line | wire of the semiconductor substrate 107 shown in FIG. 従来の気相成長装置を構成する基板ホルダーの上面図である。It is a top view of the substrate holder which comprises the conventional vapor phase growth apparatus. 図26のX−X’線に沿った断面図である。FIG. 27 is a cross-sectional view taken along line X-X ′ of FIG. 26. 図26のY−Y’線に沿った断面図である。FIG. 27 is a cross-sectional view taken along line Y-Y ′ of FIG. 26. 図23のX−X’線に沿った発振波長の面内分布である。24 is an in-plane distribution of oscillation wavelengths along the line X-X ′ in FIG. 23. 図23のY−Y’線に沿った発振波長の面内分布である。24 is an in-plane distribution of oscillation wavelengths along the line Y-Y ′ in FIG. 23.

符号の説明Explanation of symbols

101 501 MOCVD装置
102 502 反応室
103 503 フローチャンネル
105、205、305、405、505 第1凸部
406、506 第2凸部
107、207、307、407、507 半導体基板
108、208、308、408、508 基板ホルダー
109 509 加熱ヒータ
111 511 基板回転機構
115、215、315、415、515 均熱板
117 517 ガス供給口
118 518 ガス排出口
101 501 MOCVD apparatus 102 502 Reaction chamber 103 503 Flow channel 105, 205, 305, 405, 505 First convex portion
406, 506 Second convex portion 107, 207, 307, 407, 507 Semiconductor substrate 108, 208, 308, 408, 508 Substrate holder 109 509 Heater 111 511 Substrate rotation mechanism 115, 215, 315, 415, 515 Soaking plate 117 517 Gas supply port 118 518 Gas exhaust port

Claims (4)

原料ガス供給口および原料ガス排気口と、前記原料ガス供給口と前記原料ガス排気口との間に配された開口部とを含み、前記原料ガス供給口から前記原料ガス排気口に向かって原料ガスを流すフローチャネルと、
前記フローチャネルの前記開口部に面するように基板が載置される基板ホルダーと、
前記基板ホルダーの下部に設けられ基板を加熱する加熱ヒータとを備え、
前記基板ホルダーと前記加熱ヒータとの間に均熱板を配し、
前記均熱板は、前記基板ホルダーと対向する面が薄膜形成後の前記基板の反りの形状に合わせて形成されていることを特徴とする気相成長装置。
A raw material gas supply port, a raw material gas exhaust port, and an opening disposed between the raw material gas supply port and the raw material gas exhaust port, and the raw material from the raw material gas supply port toward the raw material gas exhaust port A flow channel for flowing gas;
A substrate holder on which a substrate is placed so as to face the opening of the flow channel;
A heater provided at a lower part of the substrate holder for heating the substrate,
Distributing a soaking plate between the substrate holder and the heater,
The vapor phase growth apparatus characterized in that the soaking plate has a surface facing the substrate holder formed in accordance with the shape of warping of the substrate after the thin film is formed .
前記基板ホルダーは、載置される基板と対向する面に、基板を支持する複数の第1凸部を有することを特徴とする請求項1に記載の気相成長装置。   The vapor phase growth apparatus according to claim 1, wherein the substrate holder has a plurality of first protrusions that support the substrate on a surface facing the substrate to be placed. 前記基板ホルダーは、前記均熱板と対向する面が前記均熱板の反りの形状に合わせて形成されていることを特徴とする請求項1又は請求項2に記載の気相成長装置。 3. The vapor phase growth apparatus according to claim 1 , wherein a surface of the substrate holder that faces the soaking plate is formed in accordance with a warping shape of the soaking plate . 4. 前記基板ホルダーと前記均熱板とは複数の第2凸部を介して空隙を形成して配置されることを特徴とする請求項1〜請求項3のいずれかに記載の気相成長装置。 4. The vapor phase growth apparatus according to claim 1, wherein the substrate holder and the soaking plate are arranged with a gap formed therebetween via a plurality of second convex portions . 5.
JP2008305299A 2008-11-28 2008-11-28 Vapor growth equipment Active JP5301965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008305299A JP5301965B2 (en) 2008-11-28 2008-11-28 Vapor growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008305299A JP5301965B2 (en) 2008-11-28 2008-11-28 Vapor growth equipment

Publications (2)

Publication Number Publication Date
JP2010126796A JP2010126796A (en) 2010-06-10
JP5301965B2 true JP5301965B2 (en) 2013-09-25

Family

ID=42327385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008305299A Active JP5301965B2 (en) 2008-11-28 2008-11-28 Vapor growth equipment

Country Status (1)

Country Link
JP (1) JP5301965B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828169A (en) * 2011-06-13 2012-12-19 北京北方微电子基地设备工艺研究中心有限责任公司 Tray of slide glass, tray apparatus and growth equipment of crystal film
JP2013145859A (en) * 2011-12-16 2013-07-25 Stanley Electric Co Ltd Semiconductor manufacturing apparatus
JP5794194B2 (en) 2012-04-19 2015-10-14 東京エレクトロン株式会社 Substrate processing equipment
KR102107522B1 (en) * 2013-05-28 2020-05-07 엘지이노텍 주식회사 Susceptor
KR102203022B1 (en) * 2014-03-25 2021-01-14 엘지이노텍 주식회사 Susceptor
JP2018129317A (en) * 2017-02-06 2018-08-16 三菱電機株式会社 Susceptor
CN114851409A (en) * 2022-04-14 2022-08-05 中环领先半导体材料有限公司 Heating method for improving film forming uniformity of wafer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154437A (en) * 1997-07-30 1999-02-26 Kyocera Corp Method of forming compound semiconductor film
JP3868933B2 (en) * 2003-07-17 2007-01-17 直江津電子工業株式会社 Atmospheric pressure CVD equipment
JP2006012951A (en) * 2004-06-23 2006-01-12 Sharp Corp Vapor phase growth system
JP2010080614A (en) * 2008-09-25 2010-04-08 Sanyo Electric Co Ltd Substrate tray and vapor deposition apparatus equipped with the same

Also Published As

Publication number Publication date
JP2010126796A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP5301965B2 (en) Vapor growth equipment
KR101127748B1 (en) Wafer guide, mocvd equipment, and nitride semiconductor growth mehtod
JP5001349B2 (en) Susceptor and semiconductor manufacturing apparatus having the same
EP2037485B1 (en) Fabrication apparatus and fabrication method of semiconductor device produced by heating a substrate
US9487862B2 (en) Semiconductor growing apparatus
KR102025717B1 (en) Chemical vapor deposition apparatus and method of manufacturing led using the same
KR101808054B1 (en) Susceptor and method of manufacturing epitaxial wafer
JP2010080614A (en) Substrate tray and vapor deposition apparatus equipped with the same
KR20180045807A (en) Vapor deposition device, annular holder, and vapor deposition method
JP2018037537A (en) Vapor growth device
US20220005728A1 (en) Wafer susceptor and chemical vapor deposition apparatus
JP3962509B2 (en) Vapor growth equipment
US20120107990A1 (en) Method for manufacturing semiconductor light emitting device and semiconductor crystal growth apparatus
JP2013004593A (en) Substrate support apparatus and vapor deposition apparatus
US20090277387A1 (en) Susceptor and chemical vapor deposition apparatus including the same
JP5490597B2 (en) Vapor growth apparatus, method for producing epitaxial growth layer, and susceptor for vapor growth
KR20090068586A (en) Wafer for chemical vapor deposition and method for fabricating the same
KR100925060B1 (en) Susceptor for Chemical Vapor Deposition Apparatus
CN217418861U (en) Epitaxial graphite base
JP2016082161A (en) Vapor growth device and soaking plate
KR20190094903A (en) Apparatus for manufacturing semiconductor
TWI772005B (en) Semiconductor wafer carrier structure and metal-organic chemical vapor deposition device
US20230253225A1 (en) Graphite disc
CN114855267B (en) Wafer epitaxial growth system and wafer epitaxial growth method
CN111816584B (en) Shower head, semiconductor manufacturing apparatus including the same, and semiconductor manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Ref document number: 5301965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350