JP5299977B2 - Electrophoretic support and method for separating and analyzing biological components using the same. - Google Patents

Electrophoretic support and method for separating and analyzing biological components using the same. Download PDF

Info

Publication number
JP5299977B2
JP5299977B2 JP2010161131A JP2010161131A JP5299977B2 JP 5299977 B2 JP5299977 B2 JP 5299977B2 JP 2010161131 A JP2010161131 A JP 2010161131A JP 2010161131 A JP2010161131 A JP 2010161131A JP 5299977 B2 JP5299977 B2 JP 5299977B2
Authority
JP
Japan
Prior art keywords
electrophoresis
support
biological component
affinity
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010161131A
Other languages
Japanese (ja)
Other versions
JP2011039043A (en
Inventor
昭彦 亀山
裕樹 松野
譲 池原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to PCT/JP2010/062039 priority Critical patent/WO2011007857A1/en
Priority to JP2010161131A priority patent/JP5299977B2/en
Publication of JP2011039043A publication Critical patent/JP2011039043A/en
Application granted granted Critical
Publication of JP5299977B2 publication Critical patent/JP5299977B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44747Composition of gel or of carrier mixture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/558Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody
    • G01N33/561Immunoelectrophoresis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Electrochemistry (AREA)
  • Cell Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Provided is a support for electrophoresis which, when used for separating and analyzing a specific component of a living organism by means of electrophoresis while utilizing interaction with components of the organism, does not necessitate a transfer step after migration and hence renders the analysis easy, and which does not pose problems such as a decrease in quantitativeness due to transfer. Also provided is a separation/analysis method in which the support is used. The electrophoretic support is obtained by immobilizing a substance having an affinity for components of a living organism on a film of a hydrophobic polymer and then forming a layer of a hydrophilic polymer on the hydrophobic-polymer film. With the support, it is possible to separate a specific component while utilizing interaction with components of the living organism, and easy specific detection which needs no transfer step has become possible.

Description

本発明は、生体由来試料のような複雑な混合物を、支持体に固定化された物質との相互作用と電気泳動とにより泳動分離するための電気泳動用支持体、および該支持体を用いた生体成分の分離分析法に関する。   The present invention uses an electrophoretic support for electrophoretic separation of a complex mixture such as a biological sample by interaction with a substance immobilized on the support and electrophoresis, and the support. The present invention relates to a method for separating and analyzing biological components.

生体内に存在するタンパク質は、癌などの疾患時にその発現量が変化することが知られており、疾患により変化した分子群を捕えることで、新規診断マーカーとしての応用が期待できる。特に糖タンパク質は、疾患時の量的変化に加え、構造上の質的変化、特に翻訳後修飾によって付加される糖鎖構造の変化が知られており、疾患により変化した糖鎖構造やそれらを含む分子群を捕えることで、より優れた新規診断マーカーとして利用できる可能性がある。そのため、質的な違いに基づく糖タンパク質群の分離分析法や、ある特定の糖鎖を有する糖タンパク質の特異的検出法は、疾患の診断や治療にとって大切な臨床検査の1つとなる可能性が高い。   It is known that the expression level of a protein present in a living body changes during a disease such as cancer, and application as a novel diagnostic marker can be expected by capturing a molecular group that has changed due to the disease. In particular, glycoproteins are known to have qualitative changes in structure in addition to quantitative changes during disease, especially changes in sugar chain structure added by post-translational modification. There is a possibility that it can be used as a better new diagnostic marker by capturing a molecular group. Therefore, separation and analysis methods for glycoprotein groups based on qualitative differences and specific detection methods for glycoproteins having a specific sugar chain may be one of the important clinical tests for disease diagnosis and treatment. high.

特定の糖鎖構造を持つ糖タンパク質群を分離する技術としては、分離状態を視覚的にとらえることができる電気泳動法が好ましく用いられており、具体的にはレクチン親和性電気泳動法が知られている(特許文献1、非特許文献1参照)。
これらの方法は、レクチンを含ませたセルロースアセテート膜もしくはアガロースゲル中で電気泳動を行い、レクチンに対する親和性の違いを利用して糖鎖構造が異なる糖タンパク質を分離する技術である。
糖鎖の違いに基づく疾患の診断に利用される糖タンパク質としては、アルカリフォスファターゼ(ALP)やα−フェトプロテイン(AFP)などが知られている。AFPは、肝細胞癌およびヨークサック腫瘍に特異性の高い腫瘍マーカーとして診断に用いられているが、慢性肝炎、肝硬変等の良性肝疾患でも高値となるため、血清AFP値のみを指標とした場合、良性疾患と肝細胞癌の鑑別は困難である。
As a technique for separating a group of glycoproteins having a specific sugar chain structure, an electrophoresis method capable of visually grasping the separation state is preferably used, and specifically, a lectin affinity electrophoresis method is known. (See Patent Document 1 and Non-Patent Document 1).
These methods are techniques in which electrophoresis is performed in a cellulose acetate membrane or agarose gel containing lectin, and glycoproteins having different sugar chain structures are separated using a difference in affinity for lectin.
Alkaline phosphatase (ALP) and α-fetoprotein (AFP) are known as glycoproteins used for diagnosis of diseases based on differences in sugar chains. AFP is used for diagnosis as a tumor marker with high specificity for hepatocellular carcinoma and Yorksack tumor, but it is also high in benign liver diseases such as chronic hepatitis and cirrhosis. Differentiating benign disease from hepatocellular carcinoma is difficult.

そこで、AFP分子上の糖鎖の癌性変化をレクチンとの親和性を利用して検出し、肝細胞癌由来AFPを分別測定する手法が開発された。
レンズマメレクチン(Lens culimaris agglutinin-A:LCA)を用いた親和性電気泳動において分離されるバンドを、陽極側よりL1(LCA非結合性)、L2(LCA弱結合性)およびL3(LCA結合性)分画とするとき、肝良性疾患患者AFPの大部分がL1分画に出現するのに対して、肝細胞癌患者ではL3分画の占める比率が増加する。これを利用して、肝細胞癌と良性肝疾患の鑑別等に用いる方法が臨床診断法として利用されている。
また、この方法は最近の生化学研究においてもAFPの分離解析法として使用されている(非特許文献2参照)。
Thus, a technique has been developed in which a cancerous change of a sugar chain on an AFP molecule is detected by utilizing affinity with a lectin to separately measure AFP derived from hepatocellular carcinoma.
The bands separated in affinity electrophoresis using lentil lectin (Lens culimaris agglutinin-A: LCA) were separated from the anode side by L1 (non-LCA binding), L2 (LCA weak binding) and L3 (LCA binding). When fractionation is performed, the majority of hepatic benign disease patients AFP appear in the L1 fraction, whereas the proportion occupied by the L3 fraction increases in hepatocellular carcinoma patients. Utilizing this, a method used for differentiation of hepatocellular carcinoma and benign liver disease is used as a clinical diagnostic method.
This method is also used as a separation analysis method of AFP in recent biochemical research (see Non-Patent Document 2).

特表2003−527600号公報Special table 2003-527600 gazette 特開2009−265078号公報JP 2009-265078 A 特願2010−088769Japanese Patent Application No. 2010-088769

Taketa K et al. Antibody-affinity blotting, a sensitive technique for the detection of α-fetoprotein separated by lectin affinity electrophoresis in agarose gels. Electrophoresis 1985, 6, 492-497.Taketa K et al. Antibody-affinity blotting, a sensitive technique for the detection of α-fetoprotein separated by lectin affinity electrophoresis in agarose gels. Electrophoresis 1985, 6, 492-497. Nakagawa T et al. Glycomic analysis of alpha-fetoprotein L3 in hepatoma cell lines and hepatocellular carcinoma patients. J. Proteome Res. 2008, 7, 2222-2233.Nakagawa T et al. Glycomic analysis of alpha-fetoprotein L3 in hepatoma cell lines and hepatocellular carcinoma patients.J. Proteome Res. 2008, 7, 2222-2233. Matsuno YK et al. Supported molecular matrix electrophoresis: a new tool for characterization of glycoproteins. Anal. Chem. 2009, 81, 3816-3823.Matsuno YK et al. Supported molecular matrix electrophoresis: a new tool for characterization of glycoproteins. Anal. Chem. 2009, 81, 3816-3823.

上記の方法は、いずれも分離した成分を抗体などにより高感度に検出する場合、泳動後、分離されたタンパク質を、ポリフッ化ビニリデン(以下、「PVDF」という。)膜やニトロセルロース膜などの疎水性ポリマー膜に転写固定化する工程を経る。そのため、従来法は、簡便さの点において課題があり、臨床診断法としての普及の障害となっている。また、泳動分離されたタンパク質を疎水性ポリマー膜に転写する場合には、転写効率に起因する定量性の低下などが問題となる場合がある。
また、従来法では泳動層であるゲルまたはセルロースアセテート膜の孔内にレクチンを含ませて電気泳動を行うため、レクチンはこれらの支持体には固定化されていない。従って、種類の異なる複数のレクチンを一枚のゲルや膜に固定し配置することが難しく、そのため、臨床診断法としての普及において重要な要素である、スループットの向上やコストの削減などが難しい。
In any of the above methods, when the separated component is detected with high sensitivity using an antibody or the like, the separated protein is subjected to hydrophobic treatment such as polyvinylidene fluoride (hereinafter referred to as “PVDF”) membrane or nitrocellulose membrane after electrophoresis. Through a step of immobilizing and immobilizing on the conductive polymer film. Therefore, the conventional method has a problem in terms of simplicity, and is an obstacle to the spread as a clinical diagnostic method. Moreover, when transferring the separated protein to a hydrophobic polymer film, there may be a problem such as a decrease in quantitativeness due to transfer efficiency.
Further, in the conventional method, since lectin is contained in the pores of the gel or cellulose acetate membrane as the migration layer for electrophoresis, the lectin is not immobilized on these supports. Therefore, it is difficult to fix and arrange a plurality of different types of lectins on a single gel or membrane. For this reason, it is difficult to improve throughput and reduce costs, which are important factors in the spread of clinical diagnostic methods.

本発明は、以上のような事情に鑑みてなされたものであり、生体成分との相互作用を利用して電気泳動法により特定成分を分離分析する際に、泳動後の転写工程を必要とせずに、簡便に実施でき、しかも、転写による定量性の低下などの問題を生じることのない、電気泳動用支持体、および該支持体を用いた分離分析法を提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above, and does not require a transfer step after electrophoresis when a specific component is separated and analyzed by electrophoresis using an interaction with a biological component. In addition, it is an object of the present invention to provide a support for electrophoresis and a separation analysis method using the support, which can be carried out easily and do not cause problems such as a decrease in quantitativeness due to transcription. is there.

本発明者らは、既に、疎水性ポリマー膜上に親水性ポリマー層を有することを特徴とする電気泳動用支持体を用いるタンパク質の電気泳動分離法(分子マトリックス電気泳動法:supported molecular matrix electrophoresis 以下、「SMME」という。)を提案している。この方法は、泳動後に別の疎水性ポリマー膜へ転写することなく、色素や抗体などで染色し検出することができる泳動技術である(特許文献2、特許文献3、非特許文献3参照)。
しかし、これらの文献では、生体成分との相互作用を利用して、特定の成分を分離する技術に関しては開示していない。
The present inventors have already carried out a method of electrophoresis separation of proteins using a support for electrophoresis characterized by having a hydrophilic polymer layer on a hydrophobic polymer membrane (molecular matrix electrophoresis: , "SMME"). This method is an electrophoresis technique that can be detected by staining with a dye or an antibody without transfer to another hydrophobic polymer film after electrophoresis (see Patent Document 2, Patent Document 3, and Non-Patent Document 3).
However, these documents do not disclose a technique for separating a specific component by utilizing an interaction with a biological component.

そこで、本発明者らは、試料中の特定の成分を分離分析するために、上記のSMMEを適用することを検討した結果、疎水性ポリマー膜に、生体成分と親和性を持つ物質を固定化することにより、上記目的を達成できることを見いだした。
すなわち、上記SMMEでは、ベースとなる支持体に疎水性ポリマー膜を使用するため、疎水結合により簡単に物質を膜に固定化することができる。従って、生体成分に親和性を有する物質を疎水性ポリマー膜へ固定化した後、該疎水性ポリマー膜上に親水性ポリマー層を形成したものを電気泳動支持体とすることで、生体成分との相互作用を利用した特定成分の分離が可能となり、また転写工程を要しない簡便な特異的検出が可能となることを見いだした。
Therefore, the present inventors examined the application of the above-mentioned SMME in order to separate and analyze specific components in a sample, and as a result, immobilized a substance having affinity for biological components on the hydrophobic polymer membrane. It was found that the above purpose can be achieved by doing so.
That is, in the SMME, since a hydrophobic polymer membrane is used as a base support, a substance can be easily fixed to the membrane by a hydrophobic bond. Therefore, after immobilizing a substance having an affinity for a biological component on a hydrophobic polymer film, a substance in which a hydrophilic polymer layer is formed on the hydrophobic polymer film is used as an electrophoretic support. It has been found that specific components can be separated using interaction, and that simple and specific detection that does not require a transcription step is possible.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]試料中に含まれる生体成分と親和性を持つ物質を固定化した疎水性ポリマー膜上に親水性ポリマー層を有することを特徴とする電気泳動用支持体。
[2]前記生体成分、及び生体成分と親和性を持つ物質が、何れもタンパク質であることを特徴とする[1]に記載の電気泳動用支持体。
[3]前記生体成分が糖タンパク質であり、前記生体成分と親和性を持つ物質がレクチンであることを特徴とする[1]に記載の電気泳動用支持体。
[4]前記生体成分がリポタンパク質であり、前記生体成分と親和性を持つ物質がレクチンであることを特徴とする[1]に記載の電気泳動用支持体。
[5]前記生体成分がレクチンであり、前記生体成分と親和性を持つ物質が糖タンパク質であることを特徴とする[1]に記載の電気泳動用支持体。
[6]前記生体成分がレクチンであり、前記生体成分と親和性を持つ物質が糖脂質であることを特徴とする[1]に記載の電気泳動用支持体。
[7]前記生体成分及び前記生体成分と親和性を持つ物質のいずれか一方が抗体であり、他方が抗原であることを特徴とする[1]に記載の電気泳動用支持体。
[8][1]〜[7]のいずれかに記載の電気泳動用支持体を用い、固定化した物質の生体成分との親和性を利用して試料中に含まれる特定の生体成分を分離検出することを特徴とする分離分析方法。
[9][1]〜[7]のいずれかに記載の電気泳動用支持体を備えることを特徴とする、生体成分の分離分析用キット。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] A support for electrophoresis, comprising a hydrophilic polymer layer on a hydrophobic polymer film on which a substance having an affinity for a biological component contained in a sample is immobilized.
[2] The electrophoretic support according to [1], wherein the biological component and the substance having affinity for the biological component are both proteins.
[3] The electrophoretic support according to [1], wherein the biological component is a glycoprotein and the substance having an affinity for the biological component is a lectin.
[4] The electrophoresis support according to [1], wherein the biological component is lipoprotein, and the substance having affinity for the biological component is lectin.
[5] The electrophoretic support according to [1], wherein the biological component is a lectin and the substance having an affinity for the biological component is a glycoprotein.
[6] The support for electrophoresis according to [1], wherein the biological component is a lectin, and the substance having an affinity for the biological component is a glycolipid.
[7] The electrophoresis support according to [1], wherein one of the biological component and the substance having an affinity for the biological component is an antibody, and the other is an antigen.
[8] Using the electrophoresis support according to any one of [1] to [7], the specific biological component contained in the sample is separated using the affinity of the immobilized substance with the biological component. A separation analysis method characterized by detecting.
[9] A kit for separation and analysis of biological components, comprising the electrophoresis support according to any one of [1] to [7].

本発明により、生体成分との相互作用を利用して特定成分を分離した後に、別の疎水性ポリマー膜へ転写することなく色素や抗体などで検出することができる電気泳動支持体を提供することができる。
また、本発明の電気泳動支持体においては、生体成分と親和性を有する物質は、従来のように泳動層に「含ませる」ものとは異なり、疎水性ポリマー層に「固定」され、その上に泳動層である親水性ポリマー層を有しているため、例えば、特定の泳動レーンや所定の箇所のみにレクチン溶液を塗布し固定化することで、固定するレクチンの量を節約しコストを下げることができるばかりでなく、種類の異なるレクチンを一枚の支持体膜上に複数配置することも可能となる。
したがって、本発明によれば、疾患診断マーカーの迅速・簡便・高感度検出が可能となり、臨床現場で普及させやすい診断キットへの応用が期待できる。
According to the present invention, there is provided an electrophoretic support that can be detected with a dye, an antibody, or the like without separating a specific component by utilizing an interaction with a biological component and then transferring it to another hydrophobic polymer film. Can do.
In addition, in the electrophoretic support of the present invention, a substance having an affinity for a biological component is “fixed” to the hydrophobic polymer layer, unlike the conventional substance that is “included” in the electrophoretic layer. Since it has a hydrophilic polymer layer that is a migration layer, for example, by applying and immobilizing a lectin solution only on a specific migration lane or a predetermined location, the amount of lectin to be immobilized can be saved and the cost can be reduced. In addition, it is possible to place a plurality of different types of lectins on a single support membrane.
Therefore, according to the present invention, it is possible to detect a disease diagnosis marker quickly, simply, and with high sensitivity, and application to a diagnostic kit that can be easily spread in clinical settings can be expected.

ハプトグロビンおよびアシアロハプトグロビンを、それぞれレクチンを固定化していない支持体およびシアル酸認識レクチンを固定化した疎水性ポリマー膜を用いて、電気泳動した結果を示す図。The figure which shows the result of having electrophoresed the haptoglobin and the asialohaptoglobin using the support body which has not fix | immobilized the lectin, and the hydrophobic polymer film | membrane which fixed the sialic acid recognition lectin, respectively. ハプトグロビンと抗ハプトグロビン抗体による抗原抗体反応を、疎水性ポリマー膜を用いた電気泳動上で検出した結果を示す図。The figure which shows the result of having detected the antigen antibody reaction by a haptoglobin and an anti- haptoglobin antibody on the electrophoresis using a hydrophobic polymer membrane. レクチンを固定化した疎水性ポリマー膜を乾燥させた後に使用した結果を示す図。The figure which shows the result used after drying the hydrophobic polymer membrane which fix | immobilized the lectin. リポタンパク質のレクチン親和性電気泳動を本発明により実施した結果を示す図。The figure which shows the result of having implemented the lectin affinity electrophoresis of the lipoprotein by this invention. ハプトグロビンを固定化していない疎水性ポリマー膜、および固定化した疎水性ポリマー膜を用いて、レクチンを泳動した結果を示す図。The figure which shows the result of having migrated the lectin using the hydrophobic polymer membrane which has not fix | immobilized haptoglobin, and the immobilized hydrophobic polymer membrane. 糖脂質を固定化していない疎水性ポリマー膜、および固定化した疎水性ポリマー膜を用いて、レクチンを泳動した結果を示す図。The figure which shows the result of having electrophoresed lectin using the hydrophobic polymer membrane which is not fix | immobilizing glycolipid, and the hydrophobic polymer membrane which was fix | immobilized.

本発明の電気泳動法を用いた分離分析法は、生体成分と親和性を持つ物質を固定化した疎水性ポリマー膜上に親水性ポリマー層を有する電気泳動用支持体を用いることを特徴とする。
本発明に用いる疎水性のポリマー膜とは、タンパク質を疎水性相互作用によって強く結合保持する性質を有するポリマー膜であって、本来、この膜に、精製したタンパク質溶液を添加するか、又はゲル電気泳動によって分離したタンパク質を転写し、膜上で糖タンパク質や抗原タンパクなどの同定をおこなうために、もっぱら、タンパク質固定化用に用いられているものである。
本発明においても、従来、電気泳動法により分離されたタンパク質を転写する膜として用いられているものをそのまま使用できるが、具体的には、PVDF膜、ポリテトラフルオロエチレン膜(PTFE)、ナイロン膜(Nylon)、ニトロセルロース膜を挙げることができるが、タンパク質吸着能および泳動分離の分解能の点からPVDF膜が最も好ましい。
The separation analysis method using the electrophoresis method of the present invention is characterized by using an electrophoretic support having a hydrophilic polymer layer on a hydrophobic polymer membrane on which a substance having affinity for a biological component is immobilized. .
The hydrophobic polymer membrane used in the present invention is a polymer membrane having a property of strongly binding and holding proteins by hydrophobic interaction, and originally a purified protein solution is added to this membrane, or gel electrolysis is performed. It is used exclusively for protein immobilization in order to transcribe proteins separated by electrophoresis and identify glycoproteins and antigenic proteins on the membrane.
Also in the present invention, those conventionally used as membranes for transferring proteins separated by electrophoresis can be used as they are. Specifically, PVDF membranes, polytetrafluoroethylene membranes (PTFE), nylon membranes can be used. (Nylon) and nitrocellulose membranes can be mentioned, but PVDF membranes are most preferred from the viewpoint of protein adsorption capacity and resolution of electrophoretic separation.

本発明においては、前記の疎水性のポリマー膜に、試料中の生体成分と親和性を持つ物質を固定した後、更にその上に親水性ポリマー層を形成した電気泳動用支持体を用いることにより、試料中に含まれる特定の生体成分を、転写工程を必要としない、簡便な方法で、分離分析することが可能となるものである。   In the present invention, by using a support for electrophoresis in which a hydrophilic polymer layer is further formed thereon after fixing a substance having affinity for a biological component in a sample to the hydrophobic polymer film. The specific biological component contained in the sample can be separated and analyzed by a simple method that does not require a transcription step.

本発明において使用される試料中の生体成分と親和性を持つ物質は、従来、親和性電気泳動法において通常用いられている物質であり、例えば、タンパク質間の相互作用により試料中の生体成分と結合する性質を有するものであり、具体的には、糖鎖とレクチン間、や、抗原と抗体間、等の相互作用により結合するものである。
より具体的には、分析対象となる生体成分が、アルカリフォスファターゼ(ALP)やα−フェトプロテイン(AFP)などの、疾患の診断に利用される糖タンパク質である場合は、生体成分と親和性を持つ物質は、小麦胚芽レクチンやレンズマメレクチン等のレクチンであり、また、分析対象となる生体成分が抗原であるときは、生体成分と親和性を持つ物質は抗体であり、分析対象となる生体成分が抗体であるときは、生体成分と親和性を持つ物質は抗原である。
A substance having an affinity for a biological component in a sample used in the present invention is a substance that is conventionally used in affinity electrophoresis, and for example, a biological component in a sample due to an interaction between proteins. It has a property of binding, and specifically, it binds by an interaction such as between a sugar chain and a lectin, or between an antigen and an antibody.
More specifically, when the biological component to be analyzed is a glycoprotein used for diagnosis of a disease such as alkaline phosphatase (ALP) or α-fetoprotein (AFP), it has an affinity for the biological component. The substance is a lectin such as wheat germ lectin or lentil lectin, and when the biological component to be analyzed is an antigen, the substance having affinity for the biological component is an antibody, and the biological component to be analyzed is When an antibody is used, a substance having an affinity for a biological component is an antigen.

また、本発明において、これらの生体成分と親和性を持つ物質を、疎水性ポリマー膜に固定する方法としては、これらの物質を溶解した溶液中に、疎水性のポリマー膜を浸漬する方法、これらの物質を溶解した溶液を、疎水性のポリマー膜上に塗布する方法などが挙げられる。
さらに、これらの物質は、疎水性ポリマーの全面に固定されてもよく、或いは、所定の箇所のみに固定されてもよい。
例えば、レクチンに対する親和性の違いを利用して糖鎖構造が異なる糖タンパク質を分離する場合には、疎水性ポリマーの全面にレクチンを固定し、また、抗原抗体反応を利用した分離検出においては、泳動原点から離れた所定の箇所に、抗原又は抗体を固定する。
Further, in the present invention, as a method for fixing substances having affinity for these biological components to the hydrophobic polymer film, a method of immersing the hydrophobic polymer film in a solution in which these substances are dissolved, these And a method in which a solution in which the above substance is dissolved is applied on a hydrophobic polymer film.
Furthermore, these substances may be fixed on the entire surface of the hydrophobic polymer, or may be fixed only at predetermined positions.
For example, when separating glycoproteins with different sugar chain structures using the difference in affinity for lectins, lectins are immobilized on the entire surface of the hydrophobic polymer, and in separation detection using antigen-antibody reaction, An antigen or antibody is fixed at a predetermined location away from the migration origin.

生体成分と親和性を持つ物質が固定された疎水性のポリマー膜上に、親水性のポリマー層を形成する方法としては、具体的には、該疎水性のポリマー膜を、親水性ポリマー溶液中に浸漬する方法、疎水性のポリマー膜上に親水性ポリマーを塗布する方法、親水性ポリマーフィルムを積層する等の方法が挙げられる。ポリマー層を形成した後、そのまま泳動用緩衝液に膜を浸漬して電気泳動に用いることもできるし、またポリマー層を形成した後、一旦、乾燥させたものを泳動用緩衝液に浸漬して電気泳動に用いることもできる。   As a method for forming a hydrophilic polymer layer on a hydrophobic polymer film on which a substance having an affinity for a biological component is fixed, specifically, the hydrophobic polymer film is placed in a hydrophilic polymer solution. And a method of applying a hydrophilic polymer on a hydrophobic polymer film, and a method of laminating a hydrophilic polymer film. After the polymer layer is formed, the membrane can be used as it is for electrophoresis by immersing the membrane in the electrophoresis buffer. Alternatively, after the polymer layer is formed, the dried layer is immersed in the electrophoresis buffer. It can also be used for electrophoresis.

本発明において、親水性の層を形成するポリマーとしては、ポリマーの構成ユニットに酸素や窒素のようなヘテロ原子を少なくとも一つ含むポリマーであって水接触角が60°以下の水との親和性を有するポリマーである。例としてポリビニルピロリドン、ポリビニルアルコール、ポリアクリルアミド、ポリエチレングリコール、ポリエチレンオキシドなどが挙げられるが、特に、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコールが、分離能の点から好ましく、最も好ましいのは、ポリビニルアルコールである。
また、本発明において用いられる親水性ポリマーの分子量としては、1,000〜4,000,000が好ましい。
In the present invention, the polymer that forms the hydrophilic layer is a polymer that contains at least one heteroatom such as oxygen or nitrogen in the polymer constituent unit and has an affinity for water with a water contact angle of 60 ° or less. It is a polymer having Examples include polyvinyl pyrrolidone, polyvinyl alcohol, polyacrylamide, polyethylene glycol, polyethylene oxide and the like. In particular, polyvinyl pyrrolidone, polyvinyl alcohol, and polyethylene glycol are preferable from the viewpoint of separation ability, and most preferable is polyvinyl alcohol. .
The molecular weight of the hydrophilic polymer used in the present invention is preferably 1,000 to 4,000,000.

本発明に用いる装置としては、従来のセルロースアセテート膜電気泳動装置をそのまま用いることができ、具体的には、EPC105AA型セルロースアセテート膜電気泳動装置(アドバンテック社製)などが使用できる。
本発明の前記電気泳動用支持体を用いた電気泳動は、「蛋白質・酵素の基礎実験法」(南江堂)、「新生化学実験講座3・糖質II」(東京化学同人)等に記載された手法に従っておこなう。
すなわち、電気泳動用緩衝液としては、ベロナール緩衝液、トリス緩衝液、ピリジン−ギ酸緩衝液等を使用する。タンパク質および糖タンパク質の分離にはベロナール緩衝液やトリス緩衝液を中性付近のpHで使用するのが好ましい。ムチン様糖タンパク質およびプロテオグリカン型糖タンパク質に対してより明確な分離を行うにはピリジン−ギ酸緩衝液(pH3.0〜pH5.0)が好ましい。また、検体の塗布量は、一般的には、1スポットあたり、あるいは幅1cmあたり、0.8〜2.4μLとされており、通電条件としては、幅1cmあたり0.5〜1.5mA程度の電流を流すことが好ましい。また、電気泳動中の支持体の温度は、一般的に10〜20℃の範囲において、一定とする。
As an apparatus used in the present invention, a conventional cellulose acetate membrane electrophoresis apparatus can be used as it is, and specifically, an EPC105AA type cellulose acetate membrane electrophoresis apparatus (manufactured by Advantech) or the like can be used.
Electrophoresis using the electrophoretic support of the present invention is described in “Basic Experiments for Proteins and Enzymes” (Nan-Edo), “Shinsei Kagaku Kogaku Koza 3. Carbohydrate II” (Tokyo Kagaku Dojin), etc. Follow the method.
That is, as the electrophoresis buffer, veronal buffer, Tris buffer, pyridine-formate buffer, or the like is used. For separation of proteins and glycoproteins, it is preferable to use veronal buffer or Tris buffer at a pH near neutral. A pyridine-formic acid buffer solution (pH 3.0 to pH 5.0) is preferable for more clearly separating mucin-like glycoprotein and proteoglycan glycoprotein. In addition, the amount of sample applied is generally 0.8 to 2.4 μL per spot or 1 cm width, and the energization condition is about 0.5 to 1.5 mA per 1 cm width. It is preferable to pass the current. The temperature of the support during electrophoresis is generally constant in the range of 10 to 20 ° C.

前述のとおり、本発明の前記電気泳動用支持体は、さらに別の膜に転写することなく、そのまま、抗体染色により特定のタンパク質を検出することができるものである。   As described above, the electrophoresis support of the present invention can detect a specific protein by antibody staining as it is without being transferred to another membrane.

以下、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。
〈実施例1〉
本実施例では、ハプトグロビン(ヒト血漿由来)とシアル酸結合レクチンを例に用いて、SMME膜上でのレクチン親和性電気泳動を検討した。
(アシアロハプトグロビンの調製)
ハプトグロビン(25μg)を50mMリン酸緩衝液(pH6.5、12.5μl)に溶解し、シアリダーゼ(1mU/1μl)を加え、37℃で一晩反応させた。反応後、試料溶液の一部を電気泳動に供した。ハプトグロビンおよびアシアロハプトグロビンは100ngを膜にアプライした。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this Example.
<Example 1>
In this example, lectin affinity electrophoresis on an SMME membrane was examined using haptoglobin (derived from human plasma) and sialic acid-binding lectin as examples.
(Preparation of asialohaptoglobin)
Haptoglobin (25 μg) was dissolved in 50 mM phosphate buffer (pH 6.5, 12.5 μl), sialidase (1 mU / 1 μl) was added, and the mixture was reacted at 37 ° C. overnight. After the reaction, a part of the sample solution was subjected to electrophoresis. Haptoglobin and asialohaptoglobin applied 100 ng to the membrane.

(支持体の作成)
市販のPVDF膜(Immobilon-P,ミリポア社製)を適した大きさに切り取り、メタノールに数分間浸した。ついで、該PVDF膜をメタノールから取りだし、0.06Mバルビタールナトリウム緩衝液(pH8.6)に30分間浸した。その後、膜を0.2mg/mlの濃度でシアル酸結合レクチンを含む前記緩衝液に30分間浸し、ついで0.25%のポリビニルアルコールを含む前記緩衝液に30分間浸した。試料をスポットする直前に、前記緩衝液から膜を取りだし、膜に付着した過剰の溶液をろ紙でかるく拭き取った後、使用した。
(Create support)
A commercially available PVDF membrane (Immobilon-P, manufactured by Millipore) was cut to a suitable size and immersed in methanol for several minutes. Next, the PVDF membrane was taken out of methanol and immersed in 0.06 M barbital sodium buffer (pH 8.6) for 30 minutes. Thereafter, the membrane was immersed in the buffer containing sialic acid-binding lectin at a concentration of 0.2 mg / ml for 30 minutes, and then immersed in the buffer containing 0.25% polyvinyl alcohol for 30 minutes. Immediately before spotting the sample, the membrane was taken out from the buffer solution, and the excess solution adhering to the membrane was wiped off with filter paper and used.

(電気泳動)
泳動槽には、セルロースアセテート膜電気泳動装置(EPC105AA型、アドバンテック社製)を使用した。通電条件は、膜の幅1cmあたり1.0mAとし、泳動時間は30分間とした。泳動緩衝液には0.06Mバルビタールナトリウム緩衝液(pH8.6)を使用した。
(Electrophoresis)
For the electrophoresis tank, a cellulose acetate membrane electrophoresis apparatus (EPC105AA type, manufactured by Advantech) was used. The energization conditions were 1.0 mA per 1 cm film width, and the migration time was 30 minutes. As the running buffer, 0.06 M barbital sodium buffer (pH 8.6) was used.

(染色方法)
ハプトグロビン抗体による免疫染色は、泳動後の膜をアセトン中で15分間振とうし、ハプトグロビンを膜へ固定化した後、従来公知の方法に従い実施した。すなわち、固定化後の膜を5%ウシ血清アルブミン(BSA)を含むリン酸緩衝性食塩水(PBS)中で1時間振とうしてブロッキングした。膜をPBS−T(0.05% tween)で5分間洗浄し、この洗浄操作を合計3回繰り返した。
振とう洗浄後、ウサギ抗ヒトハプトグロビン抗体(IgG、1mg/ml)をPBS−Tで2000倍希釈した溶液に浸し、1時間振とうした。その後、膜をPBS−T(0.05% tween)で5分間洗浄し、この洗浄操作を合計3回繰り返した後、西洋ワサビペルオキシダーゼ標識されたヤギ抗ウサギIgG抗体をPBS−Tで2000倍希釈した溶液に浸し、1時間振とうした。その後、膜をPBS−T(0.05% tween)で5分間洗浄し、この洗浄操作を合計3回繰り返した後、PBSで洗浄しコニカイムノステインキット(イムノステインHRP-1000、コニカミノルタ社製)により検出した。
(Dyeing method)
Immunostaining with a haptoglobin antibody was performed according to a conventionally known method after shaking the membrane after electrophoresis in acetone for 15 minutes to immobilize the haptoglobin on the membrane. That is, the immobilized membrane was blocked by shaking for 1 hour in phosphate buffered saline (PBS) containing 5% bovine serum albumin (BSA). The membrane was washed with PBS-T (0.05% tween) for 5 minutes, and this washing operation was repeated a total of 3 times.
After washing with shaking, the rabbit anti-human haptoglobin antibody (IgG, 1 mg / ml) was immersed in a solution diluted 2000 times with PBS-T and shaken for 1 hour. Thereafter, the membrane was washed with PBS-T (0.05% tween) for 5 minutes, and this washing operation was repeated a total of 3 times, and then horseradish peroxidase-labeled goat anti-rabbit IgG antibody was diluted 2000 times with PBS-T. It was immersed in the solution and shaken for 1 hour. Thereafter, the membrane was washed with PBS-T (0.05% tween) for 5 minutes, and this washing operation was repeated a total of 3 times, followed by washing with PBS and Konica Immunostain Kit (Immunostein HRP-1000, manufactured by Konica Minolta). ).

(泳動結果)
シアル酸結合レクチンによるハプトグロビンのレクチン親和性電気泳動の結果を図1に示す。レクチンを固定化しない場合、ハプトグロビンは図の位置に泳動される(左図、左レーン)。α2−6結合したシアル酸を認識するニホンニワトコレクチン(SSA)を固定化した場合、ハプトグロビンはレクチンとの相互作用によりスメアーなスポットとして泳動された(左図、中央レーン)。α2−3結合したシアル酸を認識するイヌエンジュレクチン(MAM)を固定化した場合、ハプトグロビン中にマイナー成分として含まれるα2−3シアル酸を多く含む分子群がレクチンとの相互作用により分離された(左図、右レーン、矢印)。これらの結果は、ハプトグロビンに含まれるシアル酸の80%がα2−6結合であるという既報と一致した。
一方、シアリダーゼ処理によりシアル酸を除去したアシアロハプトグロビンを用いた場合では(右図)、いずれのレクチンを固定化した場合においても、相互作用による泳動パターンの変化はほとんど観察されず、単一のスポットとして観察された。
以上の結果から、本発明により、疎水性ポリマー膜上でレクチンとの相互作用を利用した特定の糖タンパク質の電気泳動分離が可能であり、かつ転写を必要としない簡便な検出が可能であることが分かった。
(Electrophoresis result)
The results of lectin affinity electrophoresis of haptoglobin with sialic acid binding lectin are shown in FIG. When lectin is not immobilized, haptoglobin migrates to the position shown in the figure (left figure, left lane). When Japanese chick collectin (SSA), which recognizes α2-6-bound sialic acid, was immobilized, haptoglobin migrated as a smear spot due to interaction with lectin (left figure, center lane). When canine endlectin (MAM) that recognizes α2-3 linked sialic acid was immobilized, a molecular group containing a large amount of α2-3 sialic acid contained as a minor component in haptoglobin was separated by interaction with lectin ( (Left figure, right lane, arrow). These results were consistent with the previous report that 80% of the sialic acid contained in haptoglobin was α2-6 linked.
On the other hand, when using asialohaptoglobin from which sialic acid has been removed by sialidase treatment (right figure), no change in the electrophoretic pattern due to interaction is observed when any lectin is immobilized. As observed.
From the above results, according to the present invention, it is possible to perform electrophoretic separation of a specific glycoprotein using interaction with a lectin on a hydrophobic polymer membrane and to enable simple detection that does not require transcription. I understood.

〈実施例2〉
本実施例では、ハプトグロビンと抗ハプトグロビン抗体の結合を例として用い、SMME膜上での抗原抗体反応を利用した分離検出の可能性を検討した。
(支持体の作成)
市販のPVDF膜(Immobilon-P,ミリポア社製)を適した大きさに切り取り、メタノールに数分間浸した。ついで、該PVDF膜をメタノールから取りだし、0.06Mバルビタールナトリウム緩衝液(pH8.6)に30分間浸した。その後、原点から0.5cmの位置に、ウシ血清アルブミン(BSA)(1μg)、ハプトグロビン(1μg)、及びヒト血漿タンパク(約3μg)をそれぞれスポットし固定化した。膜を乾燥した後、再度メタノールに数分間浸し、0.25%のポリビニルアルコールを含む前記緩衝液に30分間浸した。試料をスポットする直前に、前記緩衝液から膜を取りだし、膜に付着した過剰の溶液をろ紙でかるく拭き取った後、使用した。サンプルはウサギ抗ヒトハプトグロビン抗体(100ng)をアプライし泳動した。
<Example 2>
In this example, the binding of haptoglobin and anti-haptoglobin antibody was used as an example, and the possibility of separation detection using antigen-antibody reaction on the SMME membrane was examined.
(Create support)
A commercially available PVDF membrane (Immobilon-P, manufactured by Millipore) was cut to a suitable size and immersed in methanol for several minutes. Next, the PVDF membrane was taken out of methanol and immersed in 0.06 M barbital sodium buffer (pH 8.6) for 30 minutes. Thereafter, bovine serum albumin (BSA) (1 μg), haptoglobin (1 μg), and human plasma protein (about 3 μg) were spotted and immobilized at a position 0.5 cm from the origin. After the membrane was dried, it was again immersed in methanol for several minutes and then immersed in the buffer containing 0.25% polyvinyl alcohol for 30 minutes. Immediately before spotting the sample, the membrane was taken out from the buffer solution, and the excess solution adhering to the membrane was wiped off with filter paper and used. A sample was applied with a rabbit anti-human haptoglobin antibody (100 ng) and electrophoresed.

(電気泳動)
実施例1と同様の手順により行った。
(染色方法)
スポットの検出は従来公知の方法に従い実施した。すなわち、泳動後の膜をアセトン中で振とうすることなく、PBS−Tで5分間洗浄し、この洗浄操作を合計3回繰り返した。振とう洗浄後、西洋ワサビペルオキシダーゼ標識されたヤギ抗ウサギIgG抗体をPBS−Tで1000倍希釈した溶液に浸し、1時間振とうした。その後、膜をPBS−T(0.05% tween)で5分間洗浄し、この洗浄操作を合計3回繰り返した後、PBSで洗浄しコニカイムノステインキット(イムノステインHRP-1000、コニカミノルタ社製)により検出した。
(Electrophoresis)
The same procedure as in Example 1 was performed.
(Dyeing method)
Spot detection was performed according to a conventionally known method. That is, the membrane after electrophoresis was washed with PBS-T for 5 minutes without shaking in acetone, and this washing operation was repeated three times in total. After washing with shaking, a goat anti-rabbit IgG antibody labeled with horseradish peroxidase was immersed in a solution diluted 1000 times with PBS-T and shaken for 1 hour. Thereafter, the membrane was washed with PBS-T (0.05% tween) for 5 minutes, and this washing operation was repeated a total of 3 times, followed by washing with PBS and Konica Immunostain Kit (Immunostein HRP-1000, manufactured by Konica Minolta). ).

(泳動結果)
BSA、ハプトグロビン、ヒト血漿タンパクをそれぞれ固定化した支持体を用いるSMME法により、抗ハプトグロビン抗体を泳動し、2次抗体により染色した結果を図2に示す。
図のように、タンパク質を固定化しない場合(左端レーン)とBSAを固定化した場合(左から2番目のレーン)では、抗原抗体反応は起きないため、固定化した位置にスポットは観察されない。一方、ハプトグロビン(右から2番目のレーン)とハプトグロビンを含むヒト血漿タンパク質(右端レーン)を固定化した場合では、結合した抗ハプトグロビン抗体がスポットとして検出された。
以上の結果から、本発明により、疎水性ポリマー膜上で抗原抗体反応を利用したタンパク質の電気泳動分離が可能であり、かつ転写を必要としない簡便な検出が可能であることが分かった。
(Electrophoresis result)
FIG. 2 shows the results of anti-haptoglobin antibody migration by the SMME method using a support on which BSA, haptoglobin, and human plasma protein are immobilized, and staining with a secondary antibody.
As shown in the figure, when the protein is not immobilized (left end lane) and when BSA is immobilized (second lane from the left), no antigen-antibody reaction occurs, so no spot is observed at the immobilized position. On the other hand, when haptoglobin (second lane from the right) and human plasma protein containing haptoglobin (right lane) were immobilized, the bound anti-haptoglobin antibody was detected as a spot.
From the above results, it was found that the present invention enables electrophoretic separation of proteins using an antigen-antibody reaction on a hydrophobic polymer membrane, and simple detection that does not require transcription.

〈実施例3〉
本実施例では、レクチンを疎水性ポリマー膜に固定化し、次いで親水性ポリマー層を形成させた後、一度乾燥させた支持体膜が、本発明において使用可能であることを確認した。
(試料)
サンプルにはハプトグロビン(100ng)を使用し、固定化するレクチンにはSSAを使用した。
(支持体の作成)
実施例1と同様の手順により作成した支持体を一度乾燥させた後、20%メタノールで再湿潤させ、0.06Mバルビタールナトリウム緩衝液(pH8.6)に30分間浸した。試料をスポットする直前に、前記緩衝液から膜を取りだし、膜に付着した過剰の溶液をろ紙でかるく拭き取った後、使用した。
(電気泳動)
実施例1と同様の手順により実施した。
(染色方法)
実施例1と同様の手順により実施した。
<Example 3>
In this example, it was confirmed that a support membrane, which was immobilized on a hydrophobic polymer membrane and then dried after forming a hydrophilic polymer layer, could be used in the present invention.
(sample)
Haptoglobin (100 ng) was used for the sample, and SSA was used for the lectin to be immobilized.
(Create support)
The support prepared by the same procedure as in Example 1 was dried once, then re-wetted with 20% methanol, and immersed in 0.06M barbital sodium buffer (pH 8.6) for 30 minutes. Immediately before spotting the sample, the membrane was taken out from the buffer solution, and the excess solution adhering to the membrane was wiped off with filter paper and used.
(Electrophoresis)
The same procedure as in Example 1 was performed.
(Dyeing method)
The same procedure as in Example 1 was performed.

(泳動結果)
SSAをPVDF膜に固定化した後、ポリビニルアルコールでコーティングした支持体でハプトグロビンを泳動した結果を図3に示す。左のレーンは支持体膜を作成してすぐに使用した場合、右のレーンは作成後に一度乾燥させ、使用直前に再湿潤させたものを使用した場合の結果をそれぞれ示している。
図3に示すように、本発明の支持体は、一度乾燥させた後においても使用でき、その性能は作成後すぐに使用した場合とほぼ同様であることが分かった。従って、乾燥した状態で膜支持体を提供することが可能となり、安定で扱いやすいキットとしての提供が期待できる。
(Electrophoresis result)
FIG. 3 shows the results of electrophoresis of haptoglobin on a support coated with polyvinyl alcohol after SSA was immobilized on a PVDF membrane. The left lane shows the results when the support membrane was prepared and used immediately, and the right lane shows the results when the product once dried and re-moistened just before use is used.
As shown in FIG. 3, it was found that the support of the present invention can be used even after it has been dried once, and its performance is almost the same as when used immediately after preparation. Therefore, it is possible to provide the membrane support in a dry state, and it can be expected to provide a stable and easy-to-handle kit.

〈実施例4〉
本実施例では、レクチンとリポタンパク質を例に用いて、SMME膜上でのレクチン親和性電気泳動を検討した。
(試料)
リポタンパク質にはHDL、LDL、VLDLを使用し、1〜2μg相当をアプライした。固定化するレクチンにはSSAを用いた。
(支持体の作成)
実施例1と同様の手順により作成した。
(電気泳動)
実施例1と同様の手順により実施した。
(染色方法)
染色にはFat Red 7Bを使用し、60%メタノールにより脱色した。
<Example 4>
In this example, lectin affinity electrophoresis on an SMME membrane was examined using lectins and lipoproteins as examples.
(sample)
HDL, LDL, and VLDL were used as lipoproteins, and 1-2 μg equivalent was applied. SSA was used as the lectin to be immobilized.
(Create support)
The same procedure as in Example 1 was used.
(Electrophoresis)
The same procedure as in Example 1 was performed.
(Dyeing method)
For staining, Fat Red 7B was used and decolorized with 60% methanol.

(泳動結果)
SSAを固定化した支持体によるリポタンパク質のレクチン親和性電気泳動の結果を図4に示す。左の図はレクチンを固定化しない場合、右の図はSSAを固定化した場合の結果をそれぞれ示している。HDL(左レーン)にはシアル酸がほとんど存在しないため、SSAとの相互作用が観察されず、SSAを固定化していない場合とほぼ同様の位置に泳動される。一方、LDL(中央レーン)とVLDL(右レーン)は分子内にシアル酸を多く含むため、SSAとの相互作用によりスメアーなスポットとして観察される。
以上の結果から、本発明は、リポタンパク質にも応用可能であり、リポタンパク質中の糖鎖を指標とする疾患の診断などに有効となることが期待できる。
(Electrophoresis result)
FIG. 4 shows the results of lectin affinity electrophoresis of lipoproteins using a support on which SSA is immobilized. The left figure shows the results when the lectin is not immobilized, and the right figure shows the results when the SSA is immobilized. Since there is almost no sialic acid in HDL (left lane), no interaction with SSA is observed, and migration occurs at almost the same position as when SSA is not immobilized. On the other hand, since LDL (center lane) and VLDL (right lane) contain a large amount of sialic acid in the molecule, they are observed as smear spots due to the interaction with SSA.
From the above results, the present invention can be applied to lipoproteins and expected to be effective for diagnosis of diseases using sugar chains in lipoproteins as an index.

〈実施例5〉
本実施例では、固定化する物質を糖タンパク質、泳動する生体成分をレクチンとして、SMME膜上での親和性電気泳動を検討した。
(試料)
固定化する糖タンパク質にはハプトグロビンを用い、泳動するレクチンにはFITCにより蛍光標識したニホンニワトコレクチン(SSA)とイヌエンジュレクチン(MAM)を用いた。
(支持体の作成)
実施例1と同様の手順により作成し、ハプトグロビンは0.1mg/mlの濃度で固定化した。
(電気泳動)
実施例1と同様の手順により実施した。
(検出)
蛍光スキャナーにより検出した。
<Example 5>
In this example, affinity electrophoresis on an SMME membrane was examined using a glycoprotein as a substance to be immobilized and a lectin as a biological component to be migrated.
(sample)
Haptoglobin was used as the glycoprotein to be immobilized, and Japanese chick collectin (SSA) and dog endurectin (MAM) fluorescently labeled with FITC were used as the lectin to be migrated.
(Create support)
Prepared by the same procedure as in Example 1, and haptoglobin was immobilized at a concentration of 0.1 mg / ml.
(Electrophoresis)
The same procedure as in Example 1 was performed.
(detection)
Detection was by a fluorescence scanner.

(泳動結果)
ハプトグロビンを固定化した支持体によりレクチンを泳動した結果を図5に示す。左の図はハプトグロビンを固定化しない場合、右の図は固定化した場合の結果をそれぞれ示している。ハプトグロビンを固定化しない場合は、相互作用しないため各レクチンは図の位置に泳動される。一方、ハプトグロビンを固定化した場合、α2−6結合したシアル酸を認識するニホンニワトコレクチン(SSA)は、α2−6結合したシアル酸がほとんどであるハプトグロビン中の糖鎖との相互作用により泳動が図のように遅れた(右図、左レーン)。α2−3結合したシアル酸を認識するイヌエンジュレクチン(MAM)を泳動した場合は、顕著な泳動の遅れは観察されない(右図、右レーン)。
以上の結果から、本発明は、糖タンパク質を固定化し、それらに親和性を持つタンパク質を検出する場合においても応用可能であることが分かった。
(Electrophoresis result)
FIG. 5 shows the result of electrophoresis of lectin on a support on which haptoglobin is immobilized. The left figure shows the results when haptoglobin is not immobilized, and the right figure shows the results when immobilized. When haptoglobin is not immobilized, each lectin migrates to the position shown in the figure because it does not interact. On the other hand, when haptoglobin is immobilized, Japanese chick collectin (SSA) that recognizes α2-6-linked sialic acid migrates due to interaction with sugar chains in haptoglobin, which is mostly α2-6-linked sialic acid. Delayed as shown (right, left lane). When canine endlectin (MAM) that recognizes α2-3 linked sialic acid was run, no significant migration delay was observed (right diagram, right lane).
From the above results, it was found that the present invention can be applied even when glycoproteins are immobilized and proteins having affinity to them are detected.

〈実施例6〉
本実施例では、固定化する物質を糖脂質、泳動する生体成分をレクチンとして、SMME膜上での親和性電気泳動を検討した。
(試料)
固定化する糖脂質にはアシアロガングリオシドGM1とモノシアロガングリオシドGM2を用い、泳動するレクチンにはFITCにより蛍光標識したイヌエンジュレクチン(MAM)とピーナッツレクチン(PNA)を用いた。
(支持体の作成)
各糖脂質のクロロホルム/メタノール(1:1)溶液を0.5mg/mlの濃度で調製し、300μlをPVDF膜に染み込ませた後、一度PVDF膜を乾燥させることで糖脂質を固定化した。該膜を少量の50%メタノールに浸し、その後すぐに0.25%のポリビニルアルコールを含む0.06Mバルビタールナトリウム緩衝液(pH8.6)に30分間浸し、親水化した。試料をスポットする直前に、前記緩衝液から膜を取りだし、膜に付着した過剰の溶液をろ紙でかるく拭き取った後、使用した。
(電気泳動)
実施例1と同様の泳動槽を使用した。通電条件は、膜の幅1cmあたり0.5mAとし、泳動時間は1時間とした。
(検出)
蛍光スキャナーにより検出した。
<Example 6>
In this example, affinity electrophoresis on an SMME membrane was examined using a substance to be immobilized as a glycolipid and a biological component to be migrated as a lectin.
(sample)
Asialoganglioside GM1 and monosialoganglioside GM2 were used as the glycolipid to be immobilized, and canine endlectin (MAM) and peanut lectin (PNA) fluorescently labeled with FITC were used as the lectin to be migrated.
(Create support)
A chloroform / methanol (1: 1) solution of each glycolipid was prepared at a concentration of 0.5 mg / ml, 300 μl was impregnated into the PVDF membrane, and then the PVDF membrane was dried to immobilize the glycolipid. The membrane was soaked in a small amount of 50% methanol, and immediately thereafter soaked in 0.06M barbital sodium buffer (pH 8.6) containing 0.25% polyvinyl alcohol for 30 minutes to make it hydrophilic. Immediately before spotting the sample, the membrane was taken out from the buffer solution, and the excess solution adhering to the membrane was wiped off with filter paper and used.
(Electrophoresis)
The same electrophoresis tank as in Example 1 was used. The energization conditions were 0.5 mA per 1 cm film width, and the migration time was 1 hour.
(detection)
Detection was by a fluorescence scanner.

(泳動結果)
糖脂質を固定化した支持体を用いてレクチンを泳動した結果を図6に示す。左の図は糖脂質を固定化しない場合、中央の図はアシアロガングリオシドGM1を固定化した場合、右の図はモノシアロガングリオシドGM2を固定化した場合の結果をそれぞれ示している。糖脂質を固定化しない場合では、相互作用は生じないため、各レクチンは図の位置に泳動される。一方、アシアロガングリオシドGM1を固定化した場合では、糖鎖中のN-アセチルガラクトサミンにβ1−3結合したガラクトース(Galβ1−3GalNAc)構造を認識するPNAは相互作用により泳動が遅れる(中央図、右レーン)。MAMはアシアロガングリオシドGM1中の糖鎖には結合しないため、泳動位置は変化しない(中央図、左レーン)。モノシアロガングリオシドGM2を固定化した場合、糖鎖中にGalβ1−3GalNAc構造がないため、PNAの顕著な泳動の遅れは観察されない(右図、右レーン)。MAMはモノシアロガングリオシドGM2中のシアル酸には結合しないことが報告されている。従って、図のようにMAMの泳動位置は変化しない(右図、左レーン)。
以上の結果から、本発明は、糖脂質を支持体に固定化し、それらに親和性を持つタンパク質を検出する場合においても応用可能であることが分かった。
(Electrophoresis result)
FIG. 6 shows the results of electrophoresis of lectins using a support on which glycolipids are immobilized. The left figure shows the results when glycolipids are not immobilized, the middle figure shows the results when asialoganglioside GM1 is immobilized, and the right figure shows the results when monosialoganglioside GM2 is immobilized. When the glycolipid is not immobilized, no interaction occurs, so that each lectin migrates to the position shown in the figure. On the other hand, when asialoganglioside GM1 is immobilized, PNA recognizing a galactose (Galβ1-3GalNAc) structure in which β1-3 is bonded to N-acetylgalactosamine in the sugar chain is delayed by the interaction (center diagram, right lane) ). Since MAM does not bind to the sugar chain in asialoganglioside GM1, the migration position does not change (center diagram, left lane). When monosialoganglioside GM2 is immobilized, since there is no Galβ1-3GalNAc structure in the sugar chain, no significant delay in migration of PNA is observed (right figure, right lane). It has been reported that MAM does not bind to sialic acid in monosialoganglioside GM2. Therefore, the MAM migration position does not change as shown (right diagram, left lane).
From the above results, it was found that the present invention can be applied even when glycolipids are immobilized on a support and proteins having affinity for them are detected.

Claims (9)

試料中に含まれる生体成分と親和性を持つ物質を固定化した疎水性ポリマー膜上に親水性ポリマー層を有することを特徴とする電気泳動用支持体。   A support for electrophoresis, comprising a hydrophilic polymer layer on a hydrophobic polymer film on which a substance having an affinity for a biological component contained in a sample is immobilized. 前記生体成分、及び生体成分と親和性を持つ物質が、何れもタンパク質であることを特徴とする請求項1に記載の電気泳動用支持体。   The support for electrophoresis according to claim 1, wherein the biological component and the substance having affinity for the biological component are both proteins. 前記生体成分が糖タンパク質であり、前記生体成分と親和性を持つ物質がレクチンであることを特徴とする請求項1に記載の電気泳動用支持体。   2. The electrophoresis support according to claim 1, wherein the biological component is a glycoprotein, and the substance having an affinity for the biological component is a lectin. 前記生体成分がリポタンパク質であり、前記生体成分と親和性を持つ物質がレクチンであることを特徴とする請求項1に記載の電気泳動用支持体。   The support for electrophoresis according to claim 1, wherein the biological component is lipoprotein, and the substance having affinity for the biological component is lectin. 前記生体成分がレクチンであり、前記生体成分と親和性を持つ物質が糖タンパク質であることを特徴とする請求項1に記載の電気泳動用支持体。   The support for electrophoresis according to claim 1, wherein the biological component is a lectin, and the substance having an affinity for the biological component is a glycoprotein. 前記生体成分がレクチンであり、前記生体成分と親和性を持つ物質が糖脂質であることを特徴とする請求項1に記載の電気泳動用支持体。   The support for electrophoresis according to claim 1, wherein the biological component is a lectin, and the substance having an affinity for the biological component is a glycolipid. 前記生体成分及び前記生体成分と親和性を持つ物質のいずれか一方が抗体であり、他方が抗原であることを特徴とする請求項1に記載の電気泳動用支持体。   The support for electrophoresis according to claim 1, wherein one of the biological component and the substance having affinity for the biological component is an antibody, and the other is an antigen. 請求項1〜7のいずれか1項に記載の電気泳動用支持体を用い、固定化した物質の生体成分との親和性を利用して試料中に含まれる特定の生体成分を分離検出することを特徴とする分離分析方法。   Separating and detecting a specific biological component contained in a sample by using the support for electrophoresis according to any one of claims 1 to 7 and utilizing the affinity of the immobilized substance with the biological component. Separation analysis method characterized by 請求項1〜7のいずれか1項に記載の電気泳動用支持体を備えることを特徴とする、生体成分の分離分析用キット。   A biological component separation / analysis kit comprising the electrophoresis support according to any one of claims 1 to 7.
JP2010161131A 2009-07-17 2010-07-16 Electrophoretic support and method for separating and analyzing biological components using the same. Expired - Fee Related JP5299977B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/062039 WO2011007857A1 (en) 2009-07-17 2010-07-16 Support for electrophoresis and method for separating and analyzing component of living organism using same
JP2010161131A JP5299977B2 (en) 2009-07-17 2010-07-16 Electrophoretic support and method for separating and analyzing biological components using the same.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009168622 2009-07-17
JP2009168622 2009-07-17
JP2010161131A JP5299977B2 (en) 2009-07-17 2010-07-16 Electrophoretic support and method for separating and analyzing biological components using the same.

Publications (2)

Publication Number Publication Date
JP2011039043A JP2011039043A (en) 2011-02-24
JP5299977B2 true JP5299977B2 (en) 2013-09-25

Family

ID=43449467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010161131A Expired - Fee Related JP5299977B2 (en) 2009-07-17 2010-07-16 Electrophoretic support and method for separating and analyzing biological components using the same.

Country Status (2)

Country Link
JP (1) JP5299977B2 (en)
WO (1) WO2011007857A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6829357B2 (en) * 2017-03-17 2021-02-10 住友ベークライト株式会社 Antibody sugar chain detection method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298764A (en) * 1986-06-19 1987-12-25 Agency Of Ind Science & Technol Immunoassay apparatus
JPH02163650A (en) * 1988-12-16 1990-06-22 Fuji Photo Film Co Ltd Production of film thickness gradient electrophoresis medium film
JP4074713B2 (en) * 1998-07-29 2008-04-09 財団法人川村理化学研究所 Liquid feeding device and manufacturing method thereof

Also Published As

Publication number Publication date
WO2011007857A1 (en) 2011-01-20
JP2011039043A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
Kurien et al. Protein blotting: a review
Dolník et al. Capillary electrophoresis of proteins 1999–2001
US7326326B2 (en) System and methods for electrophoretic separation of proteins on protein binding membranes
US3930973A (en) Electrophoretic process
JP3655283B2 (en) Biosensor and blood component analysis method
CZ294954B6 (en) Chromatography assay device for detecting presence of analyte in blood sample
WO2009149615A1 (en) A method of quickly determining human abo/rh/mn blood type and a test kit thereof
WO2005047882A2 (en) Multi-dimensional electrophoresis apparatus
JPH09500443A (en) Differential separation assay method and test kit
JP5152862B2 (en) Electrophoretic medium having hydrophobic polymer membrane and electrophoretic separation method using the same
US20030032017A1 (en) Quantification of low molecular weight and low abundance proteins using high resolution two-dimensional electrophoresis and mass spectrometry
US5019231A (en) Electro-blotting of electrophoretically resolved fluroescent-labeled saccharides and detection of active structures with protein probes
JP5299977B2 (en) Electrophoretic support and method for separating and analyzing biological components using the same.
EP3726219A1 (en) Method for diagnosing tuberculosis
WO2006062222A1 (en) Method of separating protein, method of staining protein and liquid protein-staining agent and protein-staining kit to be used in these methods
CN115184620B (en) Quantum dot fluorescence detection test strip and kit for PLA2R antibody and application of quantum dot fluorescence detection test strip and kit
US20210048410A1 (en) Tissue Projection Electrophoretic Separation of Protein
US20080026408A1 (en) Isolation of analytes
Larsson et al. Glass slide models for immunocytochemistry and in situ hybridization
JP2007248131A (en) Separating method of lipoprotein using cellulose acetate film
Allen Applications of polyacrylamide gel electrophoresis and polyacrylamide gel isoelectric focusing in clinical chemistry
Ramesh Kumar et al. Sukumaran (2014) Anti-Human IgG-horseradish peroxidase conjugate preparation and its use in ELISA and western blotting Experiments
WO1994013829A1 (en) Isoelectric focusing differential separation assay
JP5334134B2 (en) Electrophoretic separation / detection method of biopolymer, and support for electrophoresis used in the method
Westermeier Protein elution and blotting techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5299977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees