JP5299346B2 - Cold-rolled steel sheet excellent in deep drawability and method for producing alloyed hot-dip galvanized steel sheet - Google Patents

Cold-rolled steel sheet excellent in deep drawability and method for producing alloyed hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP5299346B2
JP5299346B2 JP2010094238A JP2010094238A JP5299346B2 JP 5299346 B2 JP5299346 B2 JP 5299346B2 JP 2010094238 A JP2010094238 A JP 2010094238A JP 2010094238 A JP2010094238 A JP 2010094238A JP 5299346 B2 JP5299346 B2 JP 5299346B2
Authority
JP
Japan
Prior art keywords
steel sheet
rolling
stand
hot
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010094238A
Other languages
Japanese (ja)
Other versions
JP2011225905A (en
Inventor
聡 赤松
隆公 村井
正義 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010094238A priority Critical patent/JP5299346B2/en
Publication of JP2011225905A publication Critical patent/JP2011225905A/en
Application granted granted Critical
Publication of JP5299346B2 publication Critical patent/JP5299346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cooling a hot rolled steel sheet for sufficiently achieving crystal grain refining of the hot rolled steel sheet through the whole thickness and obtaining the deep drawability of an end product, in producing a cold rolled steel sheet and a galvannealed steel sheet for deep drawing. <P>SOLUTION: In producing the cold rolled steel sheet or the galvannealed steel sheet by hot rolling, cold rolling, and continuous annealing of a slab, finish rolling is completed in a stand which is located before the final stand by two stages or one stage in a hot rolling stand train in which hot rolling is continuously performed, and the steel sheet is cooled after the finish rolling before the final stand in a condition where finishing temperature (T) and cooling start time (t) satisfy the following formula: 40/(log[t(second)]+2)-20&le;T-Ar3(&deg;C)&le;60/(log[t(second)]+2). <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、深絞り性に優れた極低炭素冷延鋼板及び合金化溶融亜鉛めっき鋼板を製造する際の、特に熱延工程での冷却方法に関するものである。本発明が係わる冷延鋼板及び合金化溶融亜鉛めっき鋼板は、自動車、家庭電気製品、建物などに使用されるものである。   The present invention relates to a cooling method, particularly in a hot rolling process, when producing an ultra-low carbon cold-rolled steel sheet and an galvannealed steel sheet excellent in deep drawability. The cold-rolled steel sheet and the galvannealed steel sheet according to the present invention are used for automobiles, household electrical appliances, buildings and the like.

深絞り性に優れた極低炭素冷延鋼板の製造方法として、その素材となる熱延鋼板の金属組織や状態は重要であることから、様々な技術が検討されてきた。特に熱延組織の細粒化は続く冷間圧延及び連続焼鈍時の集合組織形成に多大な影響を及ぼし、優れた深絞り性を得るために非常に有用なことから、成分及び熱延条件に関する膨大な研究が行われ、多くが実際の製造技術として用いられている。ところでこのような技術の一つに仕上げ圧延後に短時間で冷却することで細粒化を達成する技術がある。しかしながら通常仕上げ最終スタンド直後には種々の計器類が配備されているため、短時間での冷却は困難であった。   As a manufacturing method of an ultra-low carbon cold-rolled steel sheet excellent in deep drawability, various techniques have been studied since the metal structure and state of the hot-rolled steel sheet as the material are important. In particular, the refinement of the hot-rolled structure has a great influence on the texture formation during the subsequent cold rolling and continuous annealing, and is very useful for obtaining excellent deep drawability. Enormous research has been conducted, and many are used as actual manufacturing techniques. By the way, as one of such techniques, there is a technique for achieving fine graining by cooling in a short time after finish rolling. However, since various instruments are provided immediately after the final finishing stand, cooling in a short time is difficult.

しかし近年、例えば特許文献1のような仕上げスタンド間で冷却する技術により短時間での冷却が可能となってきた。そして特許文献2のようなスタンド間での冷却能力を勘案して複数のスタンド間で冷却する技術も開示されている。またこのような短時間冷却による極低炭素鋼板の材質向上については、特許文献3のように仕上げ温度や冷却開始時間などを規定した技術が開示されている。しかしながらこれらの温度や時間についての関連性などは十分検討されているとは言い難く、特に冷却開始時間について下限を規定したものはなかった。   However, in recent years, for example, a technique for cooling between finishing stands such as Patent Document 1 has enabled cooling in a short time. And the technique of cooling between several stands in consideration of the cooling capability between stands like patent document 2 is also disclosed. Moreover, about the material improvement of the ultra-low carbon steel plate by such a short time cooling, the technique which prescribed | regulated finishing temperature, cooling start time, etc. like patent document 3 is disclosed. However, it cannot be said that the relevance with respect to these temperatures and times has been sufficiently studied, and there is no one that specifically defines the lower limit for the cooling start time.

特許第3705233号Japanese Patent No. 3705233 特開2009−241115号JP 2009-241115 A 特開2009−114473号JP 2009-114473 A

従来、仕上げ圧延後の冷却開始時間は、一般に圧延後のオーステナイト組織が粗大化するのを防止するため、出来るだけ短くすることに注意が払われてきた。またこの粗大化は仕上げ温度が高いほど起こりやすいことからAr3以上で且つ板幅方向の温度変動などを勘案し、Ar3〜Ar3+数十℃の温度範囲に規定されてきた。しかしながら本来、組織の粗大化は温度と時間が密接に関る現象であり、両者の間には何らかの関連性があってしかるべきである。さらに仕上げ圧延時には僅か板厚が3〜4mm程度の薄鋼板であっても圧延ロールの接触による抜熱で板厚方向に急激な温度勾配が生じており、圧延後に板内部からの復熱で温度が均一化する以前に冷却を開始すると、この温度勾配に従って板厚方向に組織が変化し、このことが最終的な冷延鋼板における材質向上を阻害する可能性が、実際にスタンド間冷却を実施する中で確認された。   Conventionally, attention has been paid to shorten the cooling start time after finish rolling as much as possible in order to prevent coarsening of the austenite structure after rolling. Further, since this coarsening is more likely to occur as the finishing temperature is higher, it has been defined in a temperature range of Ar3 to Ar3 + several tens of degrees Celsius considering Ar3 or more and temperature variation in the plate width direction. However, the coarsening of the structure is a phenomenon in which temperature and time are closely related, and there should be some relationship between the two. Furthermore, even in the case of finish rolling, even a thin steel plate with a thickness of about 3 to 4 mm has a rapid temperature gradient in the thickness direction due to heat removal due to contact with the rolling roll, and the temperature is recovered by reheating from the inside of the plate after rolling. If cooling is started before the material becomes uniform, the structure changes in the thickness direction according to this temperature gradient, which may hinder material improvement in the final cold-rolled steel sheet. It was confirmed while doing.

本発明は、深絞り性に優れた冷延鋼板及び合金化溶融亜鉛めっき鋼板を製造する際に、熱延鋼板を細粒化するために仕上げ圧延後に短時間で冷却する場合の、仕上げ温度と冷却開始時間の適正な条件及び関連性を決めた深絞り性に優れた冷延鋼板及び合金化溶融亜鉛めっき鋼板の製造方法を提供することを目的とするものである。   The present invention, when producing a cold-rolled steel sheet and an alloyed hot-dip galvanized steel sheet excellent in deep drawability, the finishing temperature in the case of cooling in a short time after finish rolling in order to refine the hot-rolled steel sheet It is an object of the present invention to provide a method for producing a cold-rolled steel sheet and an alloyed hot-dip galvanized steel sheet that are excellent in deep drawability and have determined appropriate conditions and relations for the cooling start time.

本発明者らは、上記の目標を達成するために、鋭意、研究を遂行し、以下に述べるような、従来にはない知見を得た。   The inventors of the present invention diligently conducted research to achieve the above-described goal, and obtained the following unprecedented knowledge as described below.

すなわち、仕上げ温度と冷却開始時間の種々組み合わせを調査し、冷延鋼板の材質に好ましい熱延鋼板の金属組織、即ち、板厚方向に均一細粒な組織が得られる条件として、両者の関連性を見出したものである。   That is, by investigating various combinations of finishing temperature and cooling start time, as a condition for obtaining a metal structure of a hot-rolled steel sheet that is preferable for the material of the cold-rolled steel sheet, that is, a uniform fine grain structure in the thickness direction, the relationship between the two Is found.

本発明は、このような思想と新知見に基づいて構築されたものであり、その要旨とするところは以下のとおりである。   The present invention has been constructed on the basis of such ideas and new findings, and the gist thereof is as follows.

(1) 質量%で、
C :0.0010〜0.0025%、
Si:0.01〜0.1%、
Mn:0.05〜0.15%、
P :0.001〜0.015%、
S :0.001〜0.01%、
Al:0.005〜0.05%、
N :0.001〜0.003%
を含み、Ti及びNbの1種以上をTi:0.01〜0.05%、Nb:0.005〜0.02%の範囲で含み、残部Feおよび不可避的不純物からなる組成のスラブを加熱、熱間圧延、冷間圧延、連続焼鈍を行って冷延鋼板を製造するに際し、熱間圧延が連続して実施される熱延スタンド列における最終スタンドより2段あるいは1段前のスタンドにおいて仕上げ圧延を終了し、その後最終スタンドまでの間に冷却する際に、仕上げ温度(T)と冷却開始時間(t)が下記(1)式を満足する条件で冷却を開始し、最終スタンドにおける出側温度を(Ar3変態点−30℃)以下とし、650〜750℃で巻取ることを特徴とする、深絞り性に優れた冷延鋼板の製造方法。
40/(log[t(秒)]+2)−20≦T−Ar3(℃)≦60/(log[t(秒)]+2) ・ ・ ・(1)
但し、0.1≦t(秒)≦0.7
(1) In mass%,
C: 0.0010 to 0.0025%,
Si: 0.01 to 0.1%,
Mn: 0.05 to 0.15%,
P: 0.001 to 0.015%,
S: 0.001 to 0.01%,
Al: 0.005 to 0.05%,
N: 0.001 to 0.003%
A slab having a composition comprising at least one of Ti and Nb in a range of Ti: 0.01 to 0.05% and Nb: 0.005 to 0.02%, the balance being Fe and inevitable impurities When producing a cold-rolled steel sheet by performing hot rolling, cold rolling, and continuous annealing, finishing is performed at a stand that is two or one stage prior to the last stand in the hot rolling stand row where hot rolling is continuously performed. When cooling between the end of rolling and the final stand, cooling is started under the condition that the finishing temperature (T) and the cooling start time (t) satisfy the following formula (1), and the exit side at the final stand The manufacturing method of the cold-rolled steel plate excellent in deep drawability characterized by winding temperature at 650-750 degreeC below temperature (Ar3 transformation point-30 degreeC).
40 / (log [t (seconds)] + 2) -20 ≦ T-Ar3 (° C.) ≦ 60 / (log [t (seconds)] + 2) (1)
However, 0.1 ≦ t (seconds) ≦ 0.7

(2) さらに、前記スラブが質量%で、B:0.0002〜0.0010%を含有することを特徴とする、上記(1)項の深絞り性に優れた冷延鋼板の製造方法。   (2) Furthermore, the manufacturing method of the cold-rolled steel plate excellent in the deep drawability of the said (1) term | claim characterized by the said slab containing mass% and B: 0.0002-0.0010%.

(3) 前記熱延鋼板の金属組織において全厚で均一に細粒、若しくは表層部に粗粒域が存在する場合でも、粗粒域が板厚比として表裏合計で20%以下であることを特徴とする、上記(1)または(2)項の深絞り性に優れた冷延鋼板の製造方法。   (3) Even if the metal structure of the hot-rolled steel sheet has a fine grain uniformly in the total thickness or a coarse grain region exists in the surface layer part, the coarse grain region is 20% or less in total in the front and back as the plate thickness ratio. The manufacturing method of the cold-rolled steel plate excellent in the deep drawability of the said (1) or (2) term characterized by the above-mentioned.

(4) 質量%で、
C :0.0010〜0.0025%、
Si:0.01〜0.1%、
Mn:0.05〜0.15%、
P :0.001〜0.015%、
S :0.001〜0.01%、
Al:0.005〜0.05%、
N :0.001〜0.003%
を含み、Ti及びNbの1種以上をTi:0.01〜0.05%、Nb:0.005〜0.02%の範囲で含み、残部Feおよび不可避的不純物からなる組成のスラブを加熱、熱間圧延、冷間圧延、連続焼鈍、溶融亜鉛めっき、合金化熱処理、を行って合金化溶融亜鉛めっき鋼板を製造するに際し、熱間圧延が連続して実施される熱延スタンド列における最終スタンドより2段あるいは1段前のスタンドにおいて仕上げ圧延を終了し、その後最終スタンドまでの間に冷却する際に、仕上げ温度(T)と冷却開始時間(t)が下記(1)式を満足する条件で冷却を開始し、最終スタンドにおける出側温度を(Ar3変態点−30℃)以下とし、650〜750℃で巻取ることを特徴とする、深絞り性に優れた合金化溶融亜鉛めっき鋼板の製造方法。
40/(log[t(秒)]+2)−20≦T−Ar3(℃)≦60/(log[t(秒
)]+2) ・ ・ ・(1)
但し、0.1≦t(秒)≦0.7
(4) By mass%
C: 0.0010 to 0.0025%,
Si: 0.01 to 0.1%,
Mn: 0.05 to 0.15%,
P: 0.001 to 0.015%,
S: 0.001 to 0.01%,
Al: 0.005 to 0.05%,
N: 0.001 to 0.003%
A slab having a composition comprising at least one of Ti and Nb in a range of Ti: 0.01 to 0.05% and Nb: 0.005 to 0.02%, the balance being Fe and inevitable impurities , Hot rolling, cold rolling, continuous annealing, hot dip galvanizing, alloying heat treatment, to produce an alloyed hot dip galvanized steel sheet, the last in a hot rolling stand row in which hot rolling is continuously performed When finishing rolling is completed at the stand two or one stage before the stand and then cooled to the final stand, the finishing temperature (T) and the cooling start time (t) satisfy the following formula (1). The alloyed hot-dip galvanized steel sheet excellent in deep drawability, characterized in that cooling is started under conditions, the outlet temperature in the final stand is (Ar3 transformation point −30 ° C.) or less, and winding is performed at 650 to 750 ° C. How to make .
40 / (log [t (seconds)] + 2) -20 ≦ T-Ar3 (° C.) ≦ 60 / (log [t (seconds)] + 2) (1)
However, 0.1 ≦ t (seconds) ≦ 0.7

(5) さらに、前記スラブが質量%で、B:0.0002〜0.0010%を含有することを特徴とする、上記(4)項の深絞り性に優れた合金化溶融亜鉛めっき鋼板の製造方法。   (5) Further, the slab is mass% and contains B: 0.0002 to 0.0010%. Production method.

(6) 前記熱延鋼板の金属組織において全厚で均一に細粒、若しくは表層部に粗粒域が存在する場合でも、粗粒域が板厚比として表裏合計で20%以下であることを特徴とする、上記(4)または(5)項の深絞り性に優れた合金化溶融亜鉛めっき鋼板の製造方法。   (6) Even if the metal structure of the hot-rolled steel sheet has a fine grain uniformly in the total thickness, or a coarse grain region exists in the surface layer part, the coarse grain region is 20% or less in total in the front and back as the plate thickness ratio. The manufacturing method of the galvannealed steel plate excellent in the deep drawability of the said (4) or (5) term characterized by the above-mentioned.

以上詳述したように、本発明により、スタンド間冷却技術を用いて熱延板を細粒化し、冷延焼鈍後の冷延鋼板や合金化溶融亜鉛めっき鋼板の深絞り性を高める際の、適切な仕上げ圧延温度や冷却開始時間が選定できる。このような熱延条件による熱延組織の細粒化は、例えば合金元素の添加やその量の増加によって細粒化を達成する場合に生じる、冷延焼鈍時の再結晶遅延に起因する焼鈍温度の高温化や焼鈍速度の低下などの弊害がないことから、優れた深絞り性を製造する技術としてだけでなく、焼鈍時の生産効率を高めるなどの生産性の向上や、合金元素の削減にも繋がるものであることから、本発明は工業的に価値の高い発明であると言える。   As detailed above, according to the present invention, the hot-rolled sheet is refined using the inter-stand cooling technique, and when deep-drawing of the cold-rolled steel sheet and the galvannealed steel sheet after cold-rolling annealing is improved, Appropriate finish rolling temperature and cooling start time can be selected. The refinement of the hot-rolled structure under such hot-rolling conditions is caused by, for example, the annealing temperature caused by the recrystallization delay during cold-rolling annealing, which occurs when the refinement is achieved by adding alloy elements or increasing the amount thereof. Since there are no harmful effects such as high temperature of steel and a decrease in annealing speed, not only as a technology to produce excellent deep drawability, but also to improve productivity such as increasing production efficiency during annealing and to reduce alloying elements Therefore, it can be said that the present invention is an industrially valuable invention.

仕上げ圧延温度と冷却開始時間によって得られる熱延板の組織を表す図である。It is a figure showing the structure | tissue of the hot rolled sheet obtained by finish rolling temperature and cooling start time. 熱延板の金属組織の例を表す顕微鏡写真である。It is a microscope picture showing the example of the metal structure of a hot rolled sheet.

まず、本発明を完成させるに至った実験について説明する。   First, the experiment that led to the completion of the present invention will be described.

本発明者らは、質量%で、0.0019C−0.05Si−0.09Mn−0.038Tiの成分を有する250mm厚みのスラブを使用し、このスラブを1200℃に再加熱後、熱間圧延が連続して実施される熱延スタンド列において最終スタンドより2段あるいは1段前のスタンドにおいてAr3温度以上(Ar3:895℃)で3.5mm厚みとなるよう仕上げ圧延を終了した後、スタンド間に設置した冷却装置にて最終スタンド出側温度として855℃まで冷却し、その後通常の冷却ゾーンでの冷却を経て700℃で巻取る一連の熱間圧延を行った。そしてこの際の仕上げ圧延の入り側温度や鋼板の通板速度、更にはスタンド間の冷却装置の位置を変えて、仕上げ温度(T)と冷却開始時間(t)を変化させ、これにより得られた熱延鋼板の金属組織を調査した。その結果を図1に示す。   The present inventors used a 250 mm-thick slab having a component of 0.0019C-0.05Si-0.09Mn-0.038Ti by mass%, and after reheating this slab to 1200 ° C., hot rolling After finishing rolling in the hot-rolled stand row, in which the thickness is 3.5 mm or more at the Ar3 temperature or higher (Ar3: 895 ° C.) in the stand that is two or one stage before the final stand, A series of hot rolling was performed by cooling to 855 ° C. as the final stand exit side temperature using a cooling device installed in the above, and then winding at 700 ° C. after cooling in a normal cooling zone. In this case, the finishing temperature (T) and the cooling start time (t) are changed by changing the entry side temperature of the finish rolling, the sheet passing speed of the steel sheet, and the position of the cooling device between the stands. The metal structure of hot rolled steel sheet was investigated. The result is shown in FIG.

図1中で、◎印はASTMによる粒度番号で7.5番以上の細粒の組織が全厚に渡り形成されていた条件であり、△印は7.0以下の粗粒が全厚に渡り形成されていた条件である。そして○印及び×印は板厚内部では7.5番以上の細粒だが表層部に7.0以下の粗粒の領域が形成されていた条件である。但しここで、○印が粗粒領域が板厚比として表裏合計で20%以下であるのに対し、×印は20%超であった。図1によれば、上記4条件の領域は仕上げ温度と冷却開始時間によって規定されることは明確である。   In FIG. 1, the symbol ◎ is the condition that a fine grain structure with a grain size number of 7.5 or more is formed over the entire thickness according to ASTM, and the symbol Δ is a coarse grain less than 7.0 in the total thickness This is the condition that was formed. The mark “◯” and the mark “X” are the conditions under which a fine grain region of 7.5 or more inside the plate thickness but a coarse grain region of 7.0 or less was formed in the surface layer portion. However, here, the circles indicate that the coarse-grained area is 20% or less in total in terms of the plate thickness ratio, whereas the X marks exceed 20%. According to FIG. 1, it is clear that the region of the four conditions is defined by the finishing temperature and the cooling start time.

ここで○印や×印の表層部に粗粒領域を有する組織は、従来のスタンド間冷却に代表される仕上げ熱延直後に冷却する技術において、特段明示されたものは見当たらないが、これはこのような組織の形成される条件が仕上げ圧延後の極めて短時間領域に限られるためと考えられる。即ち、本実験は実機の連続熱延を用いたため、板の通板速度が600mpm以上と早く、更に冷却装置を実際に仕上げ圧延するスタンドから1m以内に近接させたことで、このような短時間での冷却開始時間が得られ、これにより特異な組織の存在が明らかになったと考えられる。   Here, the structure having a coarse-grained region in the surface layer portion of the circle mark or the x mark is not clearly identified in the technology for cooling immediately after finishing hot rolling represented by conventional inter-stand cooling, but this It is considered that the conditions for forming such a structure are limited to a very short time region after finish rolling. In other words, because this experiment used continuous hot rolling of the actual machine, the plate passing speed was as fast as 600 mpm or more, and the cooling device was brought closer to the stand for actually finishing and rolling within 1 m. It is considered that the cooling start time was obtained and the existence of a specific tissue was clarified.

なお、上記の4条件の代表的な金属組織を図2に示したが、特に表層部が粗粒となっている組織は細粒部と粗粒部が板厚のあるところで明確に分かれていることが特徴である。そしてこの粗粒領域が板厚比として表裏合計で20%超存在すると、例え板厚内部が7.5番以上の細粒であっても、その後に冷間圧延し連続焼鈍した冷延鋼板の特性、特に深絞り性の向上が見られなかった。即ち、本発明により明らかにされた特異な混合組織、更にはその板厚比率は、スタンド間冷却を含む仕上げ圧延後に短時間で冷却を開始して熱延鋼板を細粒化し、これにより冷延焼鈍後の材質、特に深絞り性の向上を図る上で考慮すべき組織であることが明らかとなった。   In addition, although the typical metal structure of said 4 conditions was shown in FIG. 2, especially the structure | tissue in which the surface layer part is a coarse grain is separated clearly in the place where a fine grain part and a coarse grain part have plate thickness. It is a feature. And if this coarse-grained region is present in a total thickness of more than 20% as a sheet thickness ratio, even if the inside of the sheet thickness is 7.5 or more fine grains, There was no improvement in characteristics, particularly deep drawability. That is, the unique mixed structure clarified by the present invention, as well as the thickness ratio, is that cooling is started in a short time after finish rolling including inter-stand cooling, and the hot-rolled steel sheet is finely granulated. It became clear that the structure should be considered for improving the material after annealing, especially deep drawability.

次に、本発明において鋼組成を限定する理由についてさらに説明する。ここで、組成についての%は質量%を意味する。   Next, the reason for limiting the steel composition in the present invention will be further described. Here,% regarding the composition means mass%.

Cは製品の加工性を決定する極めて重要な元素であり、熱延鋼板で固溶Cが少ないほどその後の冷間圧延と連続焼鈍で形成される集合組織が深絞り性にとって好ましくなることはよく知られている。従って少ないほうが好ましいが、0.0010%より下げる場合には製鋼段階での負荷が高くなるばかりか、熱延板組織が水冷時の板厚方向の温度勾配に沿って粗大柱状晶化し易く、本発明のようなスタンド間冷却をもってしても細粒組織を得ることが困難となり、その結果、深絞り性が劣化する。一方、0.0025%を超えると、後述するTiあるいはNb添加量が多くなり、連続焼鈍時の再結晶温度の上昇を招き、深絞り性を劣化させる原因となるため、これを上限とする。   C is an extremely important element that determines the workability of the product, and it is better that the texture formed by subsequent cold rolling and continuous annealing becomes more favorable for deep drawability as the amount of solid solution C in the hot rolled steel sheet decreases. Are known. Accordingly, it is preferable to reduce the amount to less than 0.0010%, but not only the load at the steel making stage is increased, but the hot-rolled sheet structure tends to be coarse columnar crystallization along the temperature gradient in the thickness direction during water cooling. Even with inter-stand cooling as in the invention, it becomes difficult to obtain a fine grain structure, and as a result, deep drawability deteriorates. On the other hand, if it exceeds 0.0025%, the amount of Ti or Nb added later will increase, leading to an increase in the recrystallization temperature during continuous annealing and degrading deep drawability, so this is the upper limit.

Siは優れた深絞り性を付与するためには添加されない方が好ましく、0.1%を上限とする。一方、過度に低下させることは製鋼段階での負荷が高くなるため、0.01%を下限とする。   Si is preferably not added to give excellent deep drawability, and the upper limit is 0.1%. On the other hand, excessively lowering increases the load in the steelmaking stage, so 0.01% is made the lower limit.

Mnも優れた深絞り性を付与するためには添加されない方が好ましいことから、0.15%を上限とする。しかし0.05%未満になるとSの固定が不十分となり、熱間圧延での割れ発生の原因となることから、これを下限とする。   Since Mn is preferably not added in order to give excellent deep drawability, the upper limit is made 0.15%. However, if it is less than 0.05%, the fixing of S becomes insufficient and causes cracking in hot rolling, so this is the lower limit.

Pもより優れた深絞り性を付与するためには添加されない方が好ましいため、0.015%を上限とする。一方、0.001%よりも低くすることは脱Pコストを極端に高めるため好ましくないことから、これを下限とする。   P is also preferably not added in order to give better deep drawability, so 0.015% is made the upper limit. On the other hand, since lower than 0.001% is not preferable because the removal P cost is extremely increased, this is the lower limit.

Sは0.01%超では、熱間割れの原因となったり、加工性を劣化させるので0.01%を上限とする。しかし0.001%未満とする場合には、脱硫コストを極端に高めるため好ましくないことから、これを下限とする。   If S exceeds 0.01%, it causes hot cracking and deteriorates workability, so 0.01% is made the upper limit. However, if less than 0.001%, the desulfurization cost is extremely increased, which is not preferable.

Alは脱酸調製およびTiを添加しない場合にはNの固定に使用するが、0.005%未満ではその効果が不十分である。一方、Al量が0.05%超になるとコストアップを招いたり、表面性状の劣化を招くのでその上限を0.05%とする。   Al is used for deoxidation preparation and fixation of N when Ti is not added, but if it is less than 0.005%, its effect is insufficient. On the other hand, if the Al content exceeds 0.05%, the cost is increased or the surface properties are deteriorated, so the upper limit is made 0.05%.

Nも深絞り性を付与する鋼においては少ないほうが良いため、0.003%を上限とする。一方、極端に下げることはコストアップとなり好ましくないため、0.001%を下限とする。   N should be less in steels that provide deep drawability, so 0.003% is the upper limit. On the other hand, since it is not preferable to lower the cost extremely, 0.001% is made the lower limit.

Tiは深絞り性を確保するために重要な元素の一つである。即ち、固溶C及びNを固定するために添加されるものである。そのため0.01%を下限とする。一方、0.05%を越えて添加されると析出する炭窒化物が多くなると共に固溶Ti量も増えるため、再結晶温度が高くなることから、これを上限とする。   Ti is one of the important elements for ensuring deep drawability. That is, it is added to fix the solute C and N. Therefore, 0.01% is made the lower limit. On the other hand, if added over 0.05%, the amount of precipitated carbonitride increases and the amount of solid solution Ti increases, so the recrystallization temperature increases, so this is the upper limit.

NbもTiと同様に深絞り性を確保するための重要な元素であるので、Ti、Nbの1種以上を添加すればよい。即ち、Nbは固溶C及びNを固定するために添加されるものである。そのためNbは0.005%を下限とする。一方、過度な添加はTi以上に再結晶温度の上昇を招く。このことから上限を0.02%とする。   Nb is also an important element for securing deep drawability like Ti, so one or more of Ti and Nb may be added. That is, Nb is added to fix solute C and N. Therefore, Nb has a lower limit of 0.005%. On the other hand, excessive addition causes an increase in recrystallization temperature over Ti. Therefore, the upper limit is made 0.02%.

Bは2次加工脆化の防止に有効であるため添加するのが好ましい。その際、0.0002%未満では十分な効果が得られない。一方、0.0010%を越えるとその効果が飽和するばかりか、TiやNbと同様に再結晶温度の上昇を招くことから、これを上限とする。   B is preferably added because it is effective in preventing secondary work embrittlement. At that time, if it is less than 0.0002%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.0010%, not only the effect is saturated but also the recrystallization temperature is increased in the same manner as Ti and Nb.

これらを主成分とする鋼にCu、Sn、Zn、Mo、W、Cr、Niを合計で1%以下含有しても構わない。   You may contain 1% or less of Cu, Sn, Zn, Mo, W, Cr, and Ni in the steel which has these as a main component in total.

次に、製造条件の限定理由について述べる。   Next, the reasons for limiting the manufacturing conditions will be described.

熱間圧延に供するスラブは特に限定するものではない。すなわち、連続鋳造スラブや薄スラブキャスターなどで製造したものであればよい。また、鋳造後に直ちに熱間圧延を行う連続鋳造−直接圧延(CC−DR)のようなプロセスにも適合する。   The slab used for hot rolling is not particularly limited. That is, what was manufactured with the continuous casting slab, the thin slab caster, etc. should just be used. It is also compatible with processes such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting.

本発明において最も重要な熱間圧延条件は、スラブを再加熱後、粗圧延により30〜60mm厚みまで減厚し、この後に連続して実施される熱延スタンド列において更に仕上げ圧延により2〜5mmまで圧延し、その後鋼板を冷却しコイル状に巻き取る一連の工程において、最終スタンドより2段あるいは1段前のスタンドで圧延を完了させ、その後、最終スタンド出側までの間に冷却を施す。そしてこの際の仕上げ圧延温度(T)と冷却開始時間(t)を先の実験に基づき次式を満足する条件とする。
T−Ar3(℃)≧40/(log[t(秒)]+2)−20 ・ ・ ・(2)
T−Ar3(℃)≦60/(log[t(秒)]+2) ・ ・ ・(3)
ここで上記(2)式は図1で×と○の境界、即ち、熱延鋼板の金属組織において表層部に存在する粗粒領域が板厚比として表裏合計で20%以下となる条件であり、上記(3)式は図1で◎と△の境界、即ち、全厚に渡り結晶粒度で7.5番以上の細粒となる条件である。よって、上記(2)式と(3)式を組み合わせた下記(1)式は図1で◎と○の領域を規定する条件を表す。
40/(log[t(秒)]+2)−20≦T−Ar3(℃)≦60/(log[t(秒)]+2) ・ ・ ・(1)
In the present invention, the most important hot rolling condition is that the slab is reheated and then reduced to a thickness of 30 to 60 mm by rough rolling. In a series of steps in which the steel sheet is cooled and wound in a coil shape, the rolling is completed at a stand that is two or one stage before the final stand, and then cooled until the final stand exit side. In this case, the finish rolling temperature (T) and the cooling start time (t) are set to satisfy the following expression based on the previous experiment.
T-Ar3 (° C.) ≧ 40 / (log [t (seconds)] + 2) −20 (2)
T-Ar3 (° C.) ≦ 60 / (log [t (seconds)] + 2) (3)
Here, the above formula (2) is the condition that the boundary between x and ◯ in FIG. 1, that is, the coarse grain region existing in the surface layer portion in the metal structure of the hot-rolled steel sheet is 20% or less in total as the sheet thickness ratio. The above equation (3) is the condition that the boundary between ◎ and Δ in FIG. 1, that is, the condition that the crystal grain size is as fine as 7.5 or more over the entire thickness. Therefore, the following formula (1), which combines the above formulas (2) and (3), represents the conditions for defining the areas of ◎ and ◯ in FIG.
40 / (log [t (seconds)] + 2) -20 ≦ T-Ar3 (° C.) ≦ 60 / (log [t (seconds)] + 2) (1)

なお、スタンド間冷却後の最終スタンド出側温度は(Ar3−30)℃以下とするが、これはこの温度が高いと、熱延ラインに通常設置されている冷却帯(ランアウトテーブル)でのこの後の冷却に至るまでの空走域の通過中に、得られた細粒組織が粗大化するためである。なおスタンド間冷却での冷速は特に規定しないが、圧延後の冷却開始から最終スタンド出側までの通過時間は、通常の熱延スタンド列のスタンド間隔が5m程度であれば、最終スタンドより2段前のスタンドで圧延を終了させて直ちに冷却を開始する場合でも、鋼板の通板速度が600mpm以上なら1s以下であることから、平均冷速で50℃/s以上は必要である。但し、実際には2段前のスタンドで圧延終了した場合、1段前のスタンド通過部分等、スタンド間であっても冷却できない領域があることなどから、スタンド間での冷却帯内の冷速は更に大きくする必要がある。例えばこの冷却帯内の冷速を150℃/s以上とすれば、本発明の温度変化を安定的に達成することが可能である。   The final stand outlet temperature after inter-stand cooling is (Ar3-30) ° C. or less. If this temperature is high, this is the temperature in the cooling zone (runout table) usually installed in the hot rolling line. This is because the fine-grained structure is coarsened during the passage through the free running zone until the subsequent cooling. The cooling speed in the inter-stand cooling is not particularly specified, but the passing time from the cooling start after rolling to the final stand exit side is 2 times longer than the final stand if the stand interval of the normal hot rolling stand row is about 5 m. Even when the rolling is finished at the stand before the stage and the cooling is started immediately, if the plate passing speed of the steel plate is 600 mpm or more, it is 1 s or less, so that the average cold speed is 50 ° C./s or more. However, in fact, when rolling is completed at the stand before the second stage, there is a region that cannot be cooled even between the stands, such as the part passing the stand one stage before, so the cooling speed in the cooling zone between the stands Needs to be larger. For example, if the cooling rate in the cooling zone is set to 150 ° C./s or more, the temperature change of the present invention can be stably achieved.

なお、その他の圧延条件は特に限定しないが、仕上げ最終圧延の圧下率は形状や通板安定性から上限を30%以内とすることが好ましい。   In addition, although other rolling conditions are not specifically limited, it is preferable that the upper limit of the rolling reduction of finishing final rolling shall be 30% or less from a shape and plate | board stability.

一連の仕上げスタンド列において仕上げ圧延、及びスタンド間冷却を経て最終スタンドを通過した熱延鋼板は、鋼板温度がまだ十分に高いため、通常の冷却帯(ランアウトテーブル)にて更に冷却され、最終的にはコイル状に巻き取られるが、本発明ではこの巻取り温度を650〜750℃とする。これは650℃未満では固溶CやNが残存するため深絞り性が劣化するためであり、一方、750℃を超えると組織が巻き取り中に粗大化して、細粒化効果が失われるためである。   The hot-rolled steel sheet that passed through the final stand after finishing rolling and cooling between the stands in a series of finishing stand rows is still sufficiently high in the normal cooling zone (runout table) because the steel sheet temperature is still sufficiently high. In the present invention, the winding temperature is set to 650 to 750 ° C. This is because when the temperature is lower than 650 ° C., solid-drawn C and N remain, so that the deep drawability is deteriorated. On the other hand, when the temperature exceeds 750 ° C., the structure becomes coarse during winding and the effect of refining is lost. It is.

次に、熱間圧延に続く、以降の製造条件について述べる。冷間圧延は、通常の条件でよく、焼鈍後の深絞り性を確保する目的からその圧延率は、60%以上とする。圧下率を95%超とすると加工性が劣化してしまうのでこれを上限とする。   Next, subsequent manufacturing conditions following hot rolling will be described. Cold rolling may be performed under normal conditions, and the rolling rate is set to 60% or more for the purpose of ensuring deep drawability after annealing. If the rolling reduction exceeds 95%, workability deteriorates, so this is the upper limit.

連続焼鈍ラインの焼鈍温度も通常の条件でよく、650℃以上Ac3変態点以下とする。焼鈍温度が650℃未満では、再結晶が完了せず、加工性が劣悪となる。一方、焼鈍温度がAc3変態点超では、変態によって加工性の低下を招く。なお合金化溶融亜鉛めっき鋼板を製造する場合、上記焼鈍工程を含むゼンジミア法だけでなく、焼鈍板にNiをプレNiめっきして製造する方法でも何ら差異はない。   The annealing temperature of the continuous annealing line may be a normal condition, and is 650 ° C. or more and Ac3 transformation point or less. When the annealing temperature is less than 650 ° C., recrystallization is not completed, and the workability is deteriorated. On the other hand, when the annealing temperature exceeds the Ac3 transformation point, the workability is lowered due to the transformation. When producing an alloyed hot-dip galvanized steel sheet, there is no difference not only in the Sendzimir method including the annealing step but also in the method of producing Ni by pre-Ni plating on the annealed plate.

また、焼鈍後あるいはめっき後の調質圧延も通常の条件でよく、表面及び形状の調整から1%を上限として実施される。   Further, temper rolling after annealing or after plating may be performed under normal conditions, and is performed with the upper limit of 1% from the adjustment of the surface and shape.

以上のような熱延の後の各工程、即ち、冷延鋼板製造工程であれば、酸洗-冷延-焼鈍-調質圧延、合金化融亜鉛めっき鋼板製造工程であれば、酸洗-冷延-焼鈍-亜鉛めっき-合金化処理-調質圧延、は各々独立した工程であってもかまわないし、部分的に連続している工程でもかまわない。生産効率から考えれば、全て連続化していることが理想である。   Each process after hot rolling as described above, that is, cold-rolled steel sheet manufacturing process, pickling-cold rolling-annealing-temper rolling, galvannealed steel sheet manufacturing process, pickling- Cold rolling, annealing, galvanizing, alloying treatment, and temper rolling may be independent processes or may be partially continuous processes. From the viewpoint of production efficiency, it is ideal that everything is continuous.

次に本発明を実施例にて説明する。   Next, the present invention will be described with reference to examples.

<実施例1>
表1に示す本発明の鋼を溶製し、スラブ加熱温度1200℃とし熱間圧延を行い、仕上げスタンド列の最終スタンドから2つ前のスタンドにて仕上げ温度940℃で4.0mm厚の鋼帯となるよう仕上げ圧延を終了し、その後スタンド間の冷却設備を用いて冷却開始時間が(1)式を満足する0.1sで冷却を開始し、最終スタンド出側温度を855℃となるように冷却し、その後通常の冷却帯(ランアウトテーブル)で更に冷却して巻取温度750℃で巻き取った。これを酸洗後、冷間圧延を施し0.7mm厚の冷延板とした。次いでこれを、連続焼鈍ラインにて加熱温度750℃で焼鈍後、0.4%の調質圧延率で調質圧延を施し、冷延鋼板を得た。
<Example 1>
The steel of the present invention shown in Table 1 is melted and hot-rolled at a slab heating temperature of 1200 ° C., and is 4.0 mm thick at a finishing temperature of 940 ° C. at the last two stands from the last stand in the finishing stand row. Finish rolling so as to form a belt, and then start cooling at a cooling start time of 0.1 s that satisfies the formula (1) using the cooling equipment between the stands, so that the final stand outlet temperature becomes 855 ° C. Then, it was further cooled in a normal cooling zone (runout table) and wound at a winding temperature of 750 ° C. This was pickled and then cold rolled to form a 0.7 mm thick cold rolled sheet. Next, after annealing this at a heating temperature of 750 ° C. in a continuous annealing line, temper rolling was performed at a temper rolling rate of 0.4% to obtain a cold-rolled steel sheet.

結果を表2に示す。ここで熱延板結晶粒径は、中間製品である熱延鋼板よりミクロ組織観察用のサンプルを採取し、断面組織から測定したASTM結晶粒度番号である。また材質特性の欄は冷延鋼板の引張特性であり、特に深絞り性の指標として平均r値及びΔr値を調査した。ここで平均r値とΔr値は圧延方向に対して平行なL方向、直角方向のC方向、そして45°方向のX方向の均一伸び領域での各r値(r−L、r−C、r−X)から次式の(4)(5)式を用いて算出した。
平均r値={(r−L)+(r−C)+2x(r−X)}/4 ・ ・ ・(4)
Δr値={(r−L)+(r−C)―2x(r−X)}/2 ・・・(5)
表2によれば、本発明条件の鋼A〜G熱延板の結晶粒度は7.5以上と細粒であり、且つ全厚で均一(粗粒領域の板厚比率が0%)若しくは粗粒領域の板厚比率が20%以下であることから、冷延鋼板の平均r値は2.0以上と高く、Δr値は0.6以下と低く、深絞り性に優れた冷延鋼板が得られている。これに対し、C量が低く本発明外の鋼Hは結晶粒度が6.9と粗粒であり、平均r値が低い。また量が高い鋼、C量とTi量が高い鋼、Nb量が高い鋼は熱延板の結晶粒度は7.5番以上と細粒ではあるが、焼鈍時の再結晶やその後の粒成長が十分に進まなかった結果、伸びや平均r値が低く、更にΔr値は高くなっており、深絞り性が劣っていた。
The results are shown in Table 2. Here, the hot rolled sheet crystal grain size is an ASTM grain size number measured from a cross-sectional structure obtained by taking a sample for microstructural observation from a hot rolled steel sheet as an intermediate product. The column of material properties is the tensile properties of the cold-rolled steel sheet, and the average r value and Δr value were investigated as an index of deep drawability. Here, the average r value and Δr value are the respective r values (r−L, r−C, R in the L direction parallel to the rolling direction, the C direction in the perpendicular direction, and the uniform elongation region in the X direction in the 45 ° direction. r−X) was calculated using the following equations (4) and (5).
Average r value = {(r−L) + (r−C) + 2 × (r−X)} / 4 (4)
Δr value = {(r−L) + (r−C) −2x (r−X)} / 2 (5)
According to Table 2, the steel A to G hot rolled sheets of the conditions of the present invention have a fine grain size of 7.5 or more, and are uniform throughout (the thickness ratio of the coarse grain region is 0%) or coarse. Since the plate thickness ratio of the grain region is 20% or less, the average r value of the cold rolled steel sheet is as high as 2.0 or more, the Δr value is as low as 0.6 or less, and a cold rolled steel sheet excellent in deep drawability is obtained. Has been obtained. On the other hand, the amount of C is low and the steel H outside the present invention has a grain size of 6.9 and is coarse, and the average r value is low. The amount B is high steel K, C content and the Ti content is high steel I, Nb amount is high steel J is the grain size of the hot-rolled sheet is at 7.5 number higher and fine, Ya recrystallization during annealing As a result of subsequent insufficient grain growth, the elongation and average r value were low, the Δr value was high, and the deep drawability was poor.

<実施例2>
表1の鋼A(Ar3:905℃)と鋼B(Ar3:900℃)のスラブを用いてスラブ加熱温度1200℃で熱間圧延を行い、仕上げスタンド列の最終スタンドから2つ前のスタンドにて表3に示す種々の仕上げ温度で3.5mm厚の鋼帯となるよう仕上げ圧延を終了し、その後スタンド間の冷却設備を用いて種々の冷却開始時間で冷却を開始し、種々の最終スタンド出側温度まで冷却し、その後通常の冷却帯(ランアウトテーブル)で更に冷却して種々の巻取温度で巻き取った。これを酸洗後、冷間圧延を施し0.65mm厚の冷延板とした。次いでこれを、連続焼鈍ラインにて加熱温度770℃で焼鈍後、0.4%の調質圧延率で調質圧延を施し、冷延鋼板を得た。さらに鋼Bについてはこの冷延鋼板を素材としてNiプレめっき後、昇温し亜鉛浴に浸漬し、これをワイピングした後に、530℃で12秒の合金化処理後、再度、0.4%の調質圧延率で調質圧延を施し、合金化溶融亜鉛めっき鋼板を得た。
<Example 2>
Using the slabs of steel A (Ar3: 905 ° C) and steel B (Ar3: 900 ° C) in Table 1, hot rolling is performed at a slab heating temperature of 1200 ° C, and the two stands before the last stand in the finishing stand row The finish rolling was finished so as to obtain a steel strip of 3.5 mm thickness at various finishing temperatures shown in Table 3, and then cooling was started at various cooling start times using cooling equipment between the stands. The product was cooled to the outlet temperature, then further cooled in a normal cooling zone (runout table) and wound at various winding temperatures. This was pickled and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.65 mm. Subsequently, this was annealed at a heating temperature of 770 ° C. in a continuous annealing line, and then subjected to temper rolling at a temper rolling rate of 0.4% to obtain a cold-rolled steel sheet. Further, for steel B, this cold-rolled steel sheet was used as a raw material, Ni was pre-plated, heated, immersed in a zinc bath, wiped, and then alloyed at 530 ° C. for 12 seconds, and again 0.4% Temper rolling was performed at a temper rolling ratio to obtain an alloyed hot-dip galvanized steel sheet.

結果を表4に示す。本発明条件A1、A4及びB2、B3の熱延板は粒度番号で7.5番以上の細粒であり、また表層部に存在する粗粒域が板厚比で表裏各10%以下となっており、得られた鋼Aの冷延鋼板、及び鋼Bの合金化溶融亜鉛めっき鋼板共に、高い平均r値と低いΔr値を示している。これに対し、図1の×の条件であるA5やB5は熱延板の板厚内部の結晶粒度は7.5番以上と細粒ではあるが、表層部に存在する粗粒域が板厚比で表裏共各20%超存在し、最終的な材質である平均r値はそれほど高くなく、Δr値は高かった。一方、図1の△の条件であるA6やB6は熱延板の結晶粒度が全厚で7.0番以下と粗粒であり、やはり最終的な材質の平均r値は高くなく、Δr値は高かった。
The results are shown in Table 4. The hot rolled sheets of the present invention conditions A1, A4 and B2, B3 are fine grains having a grain size number of 7.5 or more, and the coarse grain region existing in the surface layer portion is 10% or less on the front and back sides in terms of the plate thickness ratio. Both the obtained cold rolled steel sheet of steel A and the galvannealed steel sheet of steel B show a high average r value and a low Δr value. On the other hand, A5 and B5, which are the conditions of x in FIG. 1, are fine grains with a grain size of 7.5 or more inside the thickness of the hot-rolled sheet, but the coarse grain region existing in the surface layer portion is the plate thickness. The ratio of the front and back surfaces was over 20%, and the average r value as the final material was not so high, and the Δr value was high. On the other hand, A6 and B6, which are the conditions of Δ in FIG. 1, are coarse grains with a total grain thickness of 7.0 or less in the total thickness, and the average r value of the final material is still not high, and the Δr value Was expensive.

Claims (6)

質量%で、
C :0.0010〜0.0025%、
Si:0.01〜0.1%、
Mn:0.05〜0.15%、
P :0.001〜0.015%、
S :0.001〜0.01%、
Al:0.005〜0.05%、
N :0.001〜0.003%
を含み、Ti及びNbの1種以上をTi:0.01〜0.05%、Nb:0.005〜0.02%の範囲で含み、残部Feおよび不可避的不純物からなる組成のスラブを加熱、熱間圧延、冷間圧延、連続焼鈍を行って冷延鋼板を製造するに際し、熱間圧延が連続して実施される熱延スタンド列における最終スタンドより2段あるいは1段前のスタンドにおいて仕上げ圧延を終了し、その後最終スタンドまでの間に冷却する際に、仕上げ温度(T)と冷却開始時間(t)が下記(1)式を満足する条件で冷却を開始し、最終スタンドにおける出側温度を(Ar3変態点−30℃)以下とし、650〜750℃で巻取ることを特徴とする、深絞り性に優れた冷延鋼板の製造方法。
40/(log[t(秒)]+2)−20≦T−Ar3(℃)≦60/(log[t(秒)]+2) ・ ・ ・(1)
但し、0.1≦t(秒)≦0.7
% By mass
C: 0.0010 to 0.0025%,
Si: 0.01 to 0.1%,
Mn: 0.05 to 0.15%,
P: 0.001 to 0.015%,
S: 0.001 to 0.01%,
Al: 0.005 to 0.05%,
N: 0.001 to 0.003%
A slab having a composition comprising at least one of Ti and Nb in a range of Ti: 0.01 to 0.05% and Nb: 0.005 to 0.02%, the balance being Fe and inevitable impurities When producing a cold-rolled steel sheet by performing hot rolling, cold rolling, and continuous annealing, finishing is performed at a stand that is two or one stage prior to the last stand in the hot rolling stand row where hot rolling is continuously performed. When cooling between the end of rolling and the final stand, cooling is started under the condition that the finishing temperature (T) and the cooling start time (t) satisfy the following formula (1), and the exit side at the final stand The manufacturing method of the cold-rolled steel plate excellent in deep drawability characterized by winding temperature at 650-750 degreeC below temperature (Ar3 transformation point-30 degreeC).
40 / (log [t (seconds)] + 2) -20 ≦ T-Ar3 (° C.) ≦ 60 / (log [t (seconds)] + 2) (1)
However, 0.1 ≦ t (seconds) ≦ 0.7
さらに、前記スラブが質量%で、
B:0.0002〜0.0010%
を含有することを特徴とする、請求項1に記載の深絞り性に優れた冷延鋼板の製造方法。
Furthermore, the slab is mass%,
B: 0.0002 to 0.0010%
The manufacturing method of the cold-rolled steel plate excellent in the deep drawability of Claim 1 characterized by the above-mentioned.
前記熱延鋼板の金属組織において全厚で均一に細粒、若しくは表層部に粗粒域が存在する場合でも、粗粒域が板厚比として表裏合計で20%以下であることを特徴とする、請求項1または2に記載の深絞り性に優れた冷延鋼板の製造方法。   Even in the case where there is a coarse grain region in the entire thickness of the metal structure of the hot-rolled steel sheet, or a coarse grain region in the surface layer part, the coarse grain region is 20% or less in total in the front and back sides as a sheet thickness ratio. The manufacturing method of the cold-rolled steel plate excellent in the deep drawability of Claim 1 or 2. 質量%で、
C :0.0010〜0.0025%、
Si:0.01〜0.1%、
Mn:0.05〜0.15%、
P :0.001〜0.015%、
S :0.001〜0.01%、
Al:0.005〜0.05%、
N :0.001〜0.003%
を含み、Ti及びNbの1種以上をTi:0.01〜0.05%、Nb:0.005〜0.02%の範囲で含み、残部Feおよび不可避的不純物からなる組成のスラブを加熱、熱間圧延、冷間圧延、連続焼鈍、溶融亜鉛めっき、合金化熱処理、を行って合金化溶融亜鉛めっき鋼板を製造するに際し、熱間圧延が連続して実施される熱延スタンド列における最終スタンドより2段あるいは1段前のスタンドにおいて仕上げ圧延を終了し、その後最終スタンドまでの間に冷却する際に、仕上げ温度(T)と冷却開始時間(t)が下記(1)式を満足する条件で冷却を開始し、最終スタンドにおける出側温度を(Ar3変態点−30℃)以下とし、650〜750℃で巻取ることを特徴とする、深絞り性に優れた合金化溶融亜鉛めっき鋼板の製造方法。
40/(log[t(秒)]+2)−20≦T−Ar3(℃)≦60/(log[t(秒)]+2) ・ ・ ・(1)
但し、0.1≦t(秒)≦0.7
% By mass
C: 0.0010 to 0.0025%,
Si: 0.01 to 0.1%,
Mn: 0.05 to 0.15%,
P: 0.001 to 0.015%,
S: 0.001 to 0.01%,
Al: 0.005 to 0.05%,
N: 0.001 to 0.003%
A slab having a composition comprising at least one of Ti and Nb in a range of Ti: 0.01 to 0.05% and Nb: 0.005 to 0.02%, the balance being Fe and inevitable impurities , Hot rolling, cold rolling, continuous annealing, hot dip galvanizing, alloying heat treatment, to produce an alloyed hot dip galvanized steel sheet, the last in a hot rolling stand row in which hot rolling is continuously performed When finishing rolling is completed at the stand two or one stage before the stand and then cooled to the final stand, the finishing temperature (T) and the cooling start time (t) satisfy the following formula (1). The alloyed hot-dip galvanized steel sheet excellent in deep drawability, characterized in that cooling is started under conditions, the outlet temperature in the final stand is (Ar3 transformation point −30 ° C.) or less, and winding is performed at 650 to 750 ° C. How to make .
40 / (log [t (seconds)] + 2) -20 ≦ T-Ar3 (° C.) ≦ 60 / (log [t (seconds)] + 2) (1)
However, 0.1 ≦ t (seconds) ≦ 0.7
さらに、前記スラブが質量%で、
B:0.0002〜0.0010%
を含有することを特徴とする、請求項4に記載の深絞り性に優れた合金化溶融亜鉛めっき鋼板の製造方法。
Furthermore, the slab is mass%,
B: 0.0002 to 0.0010%
The manufacturing method of the galvannealed steel plate excellent in the deep drawability of Claim 4 characterized by the above-mentioned.
前記熱延鋼板の金属組織において全厚で均一に細粒、若しくは表層部に粗粒域が存在する場合でも、粗粒域が板厚比として表裏合計で20%以下であることを特徴とする、請求項4または5に記載の深絞り性に優れた合金化溶融亜鉛めっき鋼板の製造方法。   Even in the case where there is a coarse grain region in the entire thickness of the metal structure of the hot-rolled steel sheet, or a coarse grain region in the surface layer part, the coarse grain region is 20% or less in total in the front and back sides as a sheet thickness ratio. The manufacturing method of the galvannealed steel plate excellent in the deep drawability of Claim 4 or 5.
JP2010094238A 2010-04-15 2010-04-15 Cold-rolled steel sheet excellent in deep drawability and method for producing alloyed hot-dip galvanized steel sheet Active JP5299346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094238A JP5299346B2 (en) 2010-04-15 2010-04-15 Cold-rolled steel sheet excellent in deep drawability and method for producing alloyed hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094238A JP5299346B2 (en) 2010-04-15 2010-04-15 Cold-rolled steel sheet excellent in deep drawability and method for producing alloyed hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2011225905A JP2011225905A (en) 2011-11-10
JP5299346B2 true JP5299346B2 (en) 2013-09-25

Family

ID=45041623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094238A Active JP5299346B2 (en) 2010-04-15 2010-04-15 Cold-rolled steel sheet excellent in deep drawability and method for producing alloyed hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5299346B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110117758A (en) * 2019-05-31 2019-08-13 张家港扬子江冷轧板有限公司 Meter case part of low-temperature impact-resistant and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107190205A (en) * 2017-06-29 2017-09-22 唐山钢铁集团有限责任公司 A kind of grain coarsening, the cold-rolling galvanization steel band of high-elongation and its production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3705233B2 (en) * 2002-04-09 2005-10-12 住友金属工業株式会社 Manufacturing method of hot-rolled steel sheet
JP4507867B2 (en) * 2004-12-08 2010-07-21 住友金属工業株式会社 Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP4901693B2 (en) * 2007-11-01 2012-03-21 新日本製鐵株式会社 Manufacturing method of cold-rolled steel sheet with excellent deep drawability with extremely small material variation
JP4907587B2 (en) * 2008-03-31 2012-03-28 新日本製鐵株式会社 Steel plate cooling equipment and steel plate cooling method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110117758A (en) * 2019-05-31 2019-08-13 张家港扬子江冷轧板有限公司 Meter case part of low-temperature impact-resistant and preparation method thereof
CN110117758B (en) * 2019-05-31 2021-05-04 张家港扬子江冷轧板有限公司 Low-temperature impact resistant instrument shell part and preparation method thereof

Also Published As

Publication number Publication date
JP2011225905A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP6443592B1 (en) High strength steel sheet
JP5578289B2 (en) Cold-rolled steel sheet, method for producing the same, and hot stamping molded body
US9617614B2 (en) Method for manufacturing high strength steel sheet having excellent formability
JP5857909B2 (en) Steel sheet and manufacturing method thereof
JP5304966B1 (en) Alloy hot-dip galvanized steel sheet
JP6458834B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
WO2016021194A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
EP2881481A1 (en) High-strength hot-dip galvanized steel sheet having excellent moldability and shape fixability, and method for manufacturing same
WO2016021193A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
WO2010119971A1 (en) Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same
JP5846445B2 (en) Cold rolled steel sheet and method for producing the same
JP5532088B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof
JPWO2012026419A1 (en) Cold rolled steel sheet and method for producing the same
WO2011118421A1 (en) Method for producing high-strength steel plate having superior deep drawing characteristics
US10961601B2 (en) Steel sheet and plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, method for producing steel sheet, and method for producing plated steel sheet
CN110832095B (en) Hot-rolled steel sheet and method for producing same
JP2014031538A (en) Hot-rolled steel sheet and method for producing the same
CN108603265B (en) High-strength steel sheet for warm working and method for producing same
JP2009235532A (en) High strength steel sheet having excellent deep drawability, and method for producing the same
WO2016157257A1 (en) High-strength steel sheet and production method therefor
JP2008174825A (en) High strength steel sheet, and method for manufacturing high strength plated steel sheet
JP4901693B2 (en) Manufacturing method of cold-rolled steel sheet with excellent deep drawability with extremely small material variation
JP5299346B2 (en) Cold-rolled steel sheet excellent in deep drawability and method for producing alloyed hot-dip galvanized steel sheet
JP6210179B2 (en) High strength steel plate and manufacturing method thereof
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R151 Written notification of patent or utility model registration

Ref document number: 5299346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350