JP5298957B2 - Permanent magnet motor - Google Patents

Permanent magnet motor Download PDF

Info

Publication number
JP5298957B2
JP5298957B2 JP2009048710A JP2009048710A JP5298957B2 JP 5298957 B2 JP5298957 B2 JP 5298957B2 JP 2009048710 A JP2009048710 A JP 2009048710A JP 2009048710 A JP2009048710 A JP 2009048710A JP 5298957 B2 JP5298957 B2 JP 5298957B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic pole
coil
coils
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009048710A
Other languages
Japanese (ja)
Other versions
JP2010206908A (en
Inventor
孝志 福重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009048710A priority Critical patent/JP5298957B2/en
Publication of JP2010206908A publication Critical patent/JP2010206908A/en
Application granted granted Critical
Publication of JP5298957B2 publication Critical patent/JP5298957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、永久磁石形電動機の改良に関する。   The present invention relates to an improvement in a permanent magnet type electric motor.

従来から、永久磁石形電動機には、ロータにその回転軸の軸回り方向に交互に極性が互いに異なるようにして永久磁石を埋設すると共に、そのロータの外周部に永久磁石を包囲するようにしてかご型導体を配置する構成のものが知られている(例えば、特許文献1参照。)。
この従来の永久磁石形電動機によれば、ロータの回転に伴って生じる磁束の変化を妨げる方向に、かご型導体に電流が流れるので、かご型導体よりも内側のロータの部分に生じる磁束変動が抑制され、その結果、永久磁石の渦電流損失、ロータの鉄損が低減される。
Conventionally, in permanent magnet motors, permanent magnets are embedded in the rotor so that the polarities are alternately different from each other in the direction around the axis of the rotation shaft, and the permanent magnets are surrounded by the outer periphery of the rotor. The thing of the structure which arrange | positions a cage-type conductor is known (for example, refer patent document 1).
According to this conventional permanent magnet type electric motor, current flows in the cage conductor in a direction that hinders the change in the magnetic flux generated with the rotation of the rotor. As a result, the eddy current loss of the permanent magnet and the iron loss of the rotor are reduced.

特公昭59−23179号公報Japanese Patent Publication No.59-23179

しかしながら、この種の永久磁石形電動機によれば、PWM制御による高周波成分の磁束がロータを通ることができないので、高周波成分による逆起電力が固定子コイルに発生せず、固定子コイルのインダクタンスが低くなり、その結果、固定子コイルに流れる電流が増大し続け、PWM制御による高調波の電流が大きくなって、かご型導体が設けられていない通常の永久磁石形電動機では、抑制されるはずのPWM制御による高周波成分の磁束に起因する高周波電流が大きくなるという問題がある。
本発明は、上記事情に鑑みて為されたもので、ロータに生じる磁束変動の抑制を図りつつインダクタンスの確保を図ることのできる永久磁石形電動機を提供することにある。
However, according to this type of permanent magnet type motor, since the magnetic flux of the high frequency component by the PWM control cannot pass through the rotor, the back electromotive force due to the high frequency component is not generated in the stator coil, and the inductance of the stator coil is increased. As a result, the current flowing in the stator coil continues to increase, the harmonic current generated by PWM control increases, and this should be suppressed in a normal permanent magnet motor without a cage conductor. There is a problem that the high frequency current resulting from the magnetic flux of the high frequency component by PWM control becomes large.
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a permanent magnet type electric motor capable of ensuring inductance while suppressing magnetic flux fluctuations generated in a rotor.

本発明は、永久磁石が埋設されたロータの各磁極部の回転方向前方側と回転方向後方側とにそれぞれ巻方向が逆向きのコイルを設け、各コイルを通過する鎖交磁束の変化を妨げる向きに生じる電流が互いに反対向きとなるように各コイルを直列的に結線したことを特徴とする。   According to the present invention, coils having opposite winding directions are provided on the front side and the rear side in the rotation direction of each magnetic pole portion of a rotor in which a permanent magnet is embedded, thereby preventing changes in interlinkage magnetic flux passing through the coils. The coils are connected in series so that currents generated in the directions are opposite to each other.

本発明によれば、ロータの回転方向前方側と回転方向後方側とに巻線の方向が逆向きとなるようにコイルを設けて各コイルを直列に接続したので、各コイルに生じる鎖交磁束は結果としてゼロとなり、固定子コイルが磁極部に正対したときのインダクタンスを確保することによって、PWM制御による高調波の電流の増大を抑制できる。   According to the present invention, since the coils are provided on the front side and the rear side in the rotational direction of the rotor so that the winding directions are opposite to each other and the coils are connected in series, the interlinkage magnetic flux generated in each coil. As a result, zero is obtained, and by ensuring the inductance when the stator coil faces the magnetic pole part, an increase in harmonic current due to PWM control can be suppressed.

図1は現在主流の従来の集中巻のかご型導体が設けられていない通常の永久磁石形電動機に生じる磁束変動の一例を示すグラフである。FIG. 1 is a graph showing an example of magnetic flux fluctuations that occur in a normal permanent magnet motor that is not provided with a conventional concentrated winding squirrel-cage conductor that is currently mainstream. 図2は本発明の実施例1に係わる永久磁石形電動機のロータの構成を示す外観図である。FIG. 2 is an external view showing the configuration of the rotor of the permanent magnet type electric motor according to Embodiment 1 of the present invention. 図3はD軸磁束の流れを示す説明図である。FIG. 3 is an explanatory view showing the flow of the D-axis magnetic flux. 図4はQ軸磁束の流れを示す説明図である。FIG. 4 is an explanatory diagram showing the flow of the Q-axis magnetic flux. 図5は磁極部のコイル種類毎のインダクタンスを比較して示すグラフである。FIG. 5 is a graph showing a comparison of the inductance for each coil type of the magnetic pole part. 図6は図5に示すインダクタンスに基づき算出した磁極部のコイル種類毎のPWM高調波電流の振幅を比較して示すグラフである。FIG. 6 is a graph showing a comparison of the amplitude of the PWM harmonic current for each coil type of the magnetic pole portion calculated based on the inductance shown in FIG. 図7は磁極部にコイルを配置していない通常の永久磁石電動機の場合の永久磁石の渦電流損失と、本発明の実施例に係わるコイルを磁極部に配置した場合の渦電流損失とを比較して示すグラフである。FIG. 7 compares the eddy current loss of a permanent magnet in the case of a normal permanent magnet motor in which no coil is arranged in the magnetic pole part, and the eddy current loss in the case where the coil according to the embodiment of the present invention is arranged in the magnetic pole part. It is a graph shown. 図8は板状永久磁石に対するコイルの配置位置関係を示す説明図である。FIG. 8 is an explanatory view showing the positional relationship of the coils with respect to the plate-like permanent magnet. 図9は板状永久磁石を回転方向中央で2分割して2個の板状分割磁石をV字形状に配設して、各磁極部に埋設する構成としたロータの部分拡大斜視図である。FIG. 9 is a partially enlarged perspective view of a rotor in which a plate-like permanent magnet is divided into two at the center in the rotational direction and two plate-like divided magnets are arranged in a V shape and embedded in each magnetic pole portion. . 図10は本発明に係わるロータの製作方法の一例を示す説明図である。FIG. 10 is an explanatory view showing an example of a method for manufacturing a rotor according to the present invention.

図2は本発明に係わる永久磁石形電動機の円柱体形状のロータ1の外観構成を示す斜視図である。このロータ1は円盤状の鋼板を回転軸方向に積層して形成されている。
このロータ1は、その中央部にコアヨーク部としてのロータコア部2を有し、その半径方向外周部に、その周回り方向にコアバックヨーク部としての複数の磁極部3を有する。磁極部3は、そのロータ1の周回り方向に等角度間隔に形成されている。互いに隣接する各磁極部3の間は回転軸方向に長く延びる空隙部4となっており、各磁極部3はその空隙部4によって磁極の境界が規定されている。
FIG. 2 is a perspective view showing an external configuration of the cylindrical rotor 1 of the permanent magnet type electric motor according to the present invention. The rotor 1 is formed by laminating disc-shaped steel plates in the rotation axis direction.
The rotor 1 has a rotor core portion 2 as a core yoke portion at the center thereof, and has a plurality of magnetic pole portions 3 as core back yoke portions in the circumferential direction at the radially outer peripheral portion thereof. The magnetic pole portions 3 are formed at equiangular intervals in the circumferential direction of the rotor 1. Between the magnetic pole parts 3 adjacent to each other, there are gaps 4 that extend long in the direction of the rotation axis, and the boundaries of the magnetic poles of the magnetic pole parts 3 are defined by the gaps 4.

この各磁極部3には、埋設穴が形成されており、板状永久磁石5がその埋設穴にそれぞれ埋設されている。この板状永久磁石5は、回転方向に互いに隣接する磁石の磁極N又は磁極Sが固定子(図示を略す)に対して互いに逆極性となるようにして配置されている。   Each magnetic pole portion 3 has a buried hole, and a plate-like permanent magnet 5 is buried in each buried hole. The plate-like permanent magnets 5 are arranged such that the magnetic poles N or S of magnets adjacent to each other in the rotational direction have opposite polarities with respect to the stator (not shown).

この磁極部3には、ロータ1の回転方向前方側と回転方向後方側とにそれぞれ巻方向が逆向きのコイル6、7がそれぞれ設けられている。各コイル6、7は図2に示すようにこれを通過する鎖交磁束Φの変化を妨げる向きに生じる起電力に基づく電流iが互いに反対向きとなるように直列的に結線されている。このコイル6とコイル7とはその交差箇所Qが、このコイル6とコイル7とを貫通する磁束に対して対称形を呈するようにロータ1の回転方向中央位置でかつロータ1の回転軸方向中央位置に位置している。   The magnetic pole portion 3 is provided with coils 6 and 7 whose winding directions are opposite to each other on the front side and the rear side in the rotational direction of the rotor 1. As shown in FIG. 2, the coils 6 and 7 are connected in series so that the currents i based on the electromotive force generated in the direction preventing the change of the linkage flux Φ passing through the coils 6 and 7 are opposite to each other. The crossing point Q of the coil 6 and the coil 7 is symmetrical with respect to the magnetic flux penetrating the coil 6 and the coil 7, and is located at the center position in the rotation direction of the rotor 1 and in the rotation axis direction center of the rotor 1. Located in position.

このロータ1について、固定子コイルによる鎖交磁束をロータ1の磁極部3に固定子の磁極部が正対したときのD磁束と、ロータ1の磁極間である空隙部4に固定子の磁極部が正対したときのQ磁束とについて見ると、図3に示すように、固定子コイルからのD軸磁束Φは磁極部3を正面から貫通し、固定子コイルからのQ軸磁束Φは、図4に示すように空隙部4から回転子コア部2を通って、隣接する空隙部4に向かって流れる磁束と、磁極部3の外周面部3aを通る磁束とになり、コイル6、7に対してほとんど鎖交することがない。   With respect to the rotor 1, the interlinkage magnetic flux generated by the stator coil is a D magnetic flux when the stator magnetic pole part is directly opposed to the magnetic pole part 3 of the rotor 1, and the stator magnetic pole is placed in the gap 4 between the magnetic poles of the rotor 1. As shown in FIG. 3, the D-axis magnetic flux Φ from the stator coil penetrates the magnetic pole part 3 from the front, and the Q-axis magnetic flux Φ from the stator coil is As shown in FIG. 4, the magnetic flux flows from the gap portion 4 through the rotor core portion 2 toward the adjacent gap portion 4 and the magnetic flux passing through the outer peripheral surface portion 3 a of the magnetic pole portion 3. There is almost no interlinkage.

コイル6、7は、ロータ1の回転方向前方側と回転方向後方側とでそれぞれ巻方向が逆向きとなっているので、図3に示すように、電流i1の流れる向きと電流i2の向きとは磁束の変化する方向に対して互いに逆向きであり、コイル6、7を貫通する鎖交磁束Φは「0」と等価である。従って、固定子コイルからの磁束はコイル6、7によって抑制されることはなく、ロータコア部2を通って隣接する磁極部3に向かうので、D軸インダクタンスが確保される。   Since the winding directions of the coils 6 and 7 are opposite in the rotation direction front side and the rotation direction rear side of the rotor 1, respectively, as shown in FIG. 3, the direction in which the current i1 flows and the direction in which the current i2 flows Are opposite to each other in the direction in which the magnetic flux changes, and the interlinkage magnetic flux Φ passing through the coils 6 and 7 is equivalent to “0”. Therefore, the magnetic flux from the stator coil is not suppressed by the coils 6 and 7 but goes to the adjacent magnetic pole portion 3 through the rotor core portion 2, so that a D-axis inductance is ensured.

一方、Q軸磁束Φは、図4に示すように、外周面部3aを主として通って各磁極部3の間の互いに隣接する空隙部4の一方から他方の空隙部4に向かってコイル6、7をほとんど貫通することなく流れるので、Q軸インダクタンスも確保される。なお、一部の固定子コイルからの磁束Φ’はコイル6、7を貫通するので、その分、固定子コイルからの磁束が抑制される。   On the other hand, as shown in FIG. 4, the Q-axis magnetic flux Φ mainly passes through the outer peripheral surface portion 3 a and passes from one of the adjacent gap portions 4 between the magnetic pole portions 3 toward the other gap portion 4. Q-axis inductance is also ensured. Since the magnetic flux Φ ′ from some stator coils penetrates the coils 6 and 7, the magnetic flux from the stator coils is suppressed accordingly.

図5は磁極部3のコイル種類毎のインダクタンスの一例を示すグラフである。その図5において、(a)は磁極部3にコイルを配置していない通常の集中巻の永久磁石形電動機の場合のD軸インダクタンスLDとQ軸インダクタンスLQとを示し、(b)は磁極部3に本発明の実施例に係わるコイル6、7を配置した永久磁石形電動機の場合のD軸インダクタンスLDとQ軸インダクタンスLQとを示し、(c)は磁極部3に単一ループのコイルを配置した永久磁石形電動機の場合のD軸インダクタンスLDとQ軸インダクタンスLQとを示し、(d)は磁極部3にかご型導体を配置した永久磁石形電動機の場合のD軸インダクタンスLDとQ軸インダクタンスLQとを示している。この図5から明らかなように、かご型導体を配置した永久磁石形電動機の場合のD軸インダクタンスLD、Q軸インダクタンスLQは、図5の(d)に示すように非常に小さいのに対して、本発明の実施例に係わるコイル6、7を磁極部3に配置した永久磁石形電動機の場合のD軸インダクタンスLD、Q軸インダクタンスLQは、図5(b)に示すように、図5(a)に示す磁極部3にコイルを配置していない通常の永久磁石形電動機の場合のD軸インダクタンスLDとQ軸インダクタンスLQと同等のインダクタンスが確保されている。また、本発明の実施例に係わるコイル6、7を磁極部3に配置した永久磁石形電動機の場合のD軸インダクタンスLDは、図5(c)に示す磁極部3に単一のループコイルを配置した永久磁石形電動機の場合のD軸インダクタンスLDと較べてD軸インダクタンスLDがはるかに改善されている。なお、この図5で、(mH)はインダクタンスの単位を示している。 FIG. 5 is a graph showing an example of the inductance for each coil type of the magnetic pole part 3. In FIG. 5, (a) shows a D-axis inductance L D and a Q-axis inductance L Q in the case of a normal concentrated winding permanent magnet type electric motor in which no coil is arranged in the magnetic pole part 3, and (b) shows The D-axis inductance L D and the Q-axis inductance L Q in the case of the permanent magnet type motor in which the coils 6 and 7 according to the embodiment of the present invention are arranged in the magnetic pole part 3 are shown. A D-axis inductance L D and a Q-axis inductance L Q in the case of a permanent magnet type motor in which a coil of a loop is arranged are shown. An axis inductance L D and a Q axis inductance L Q are shown. As apparent from FIG. 5, the D-axis inductance L D and the Q-axis inductance L Q in the case of the permanent magnet type motor with the cage-type conductor arranged are very small as shown in FIG. On the other hand, the D-axis inductance L D and the Q-axis inductance L Q in the case of the permanent magnet type motor in which the coils 6 and 7 according to the embodiment of the present invention are arranged in the magnetic pole portion 3 are as shown in FIG. In addition, an inductance equivalent to the D-axis inductance L D and the Q-axis inductance L Q in the case of a normal permanent magnet type motor in which no coil is arranged in the magnetic pole portion 3 shown in FIG. Further, the D-axis inductance L D in the case of the permanent magnet type motor in which the coils 6 and 7 according to the embodiment of the present invention are arranged in the magnetic pole part 3 is a single loop coil in the magnetic pole part 3 shown in FIG. D-axis inductance L D compared with D-axis inductance L D in the case of permanent magnet type electric motor arranged it is much improved. In FIG. 5, (mH) represents a unit of inductance.

図6は図5に示すインダクタンスに基づき算出した磁極部3のコイル種類毎のPWM高調波電流(リップル電流)の振幅を比較して示している。この図6には、固定子コイルに直流電圧Vdc=300Vを加え、周波数fc=10KHzに設定した時のPWM高調波電流の最大振幅がD軸磁束と、Q軸磁束とに分けて別々に示されている。   FIG. 6 shows a comparison of the amplitude of the PWM harmonic current (ripple current) for each coil type of the magnetic pole portion 3 calculated based on the inductance shown in FIG. In FIG. 6, the maximum amplitude of the PWM harmonic current when the DC voltage Vdc = 300 V is applied to the stator coil and the frequency fc = 10 KHz is set separately for the D-axis magnetic flux and the Q-axis magnetic flux. Has been.

その図6において、(a)は磁極部3にコイルを配置していない通常の集中巻永久磁石電動機の場合のPWM高調波電流の振幅、(b)は磁極部3に本発明の実施例に係わるコイル6、7を配置した永久磁石形電動機の場合のPWM高調波電流の振幅、(c)は磁極部3に単一ループのコイルを配置した永久磁石形電動機の場合のPWM高調波電流の振幅、(d)は磁極部3にかご型導体を配置した永久磁石形電動機の場合のPWM高調波電流の振幅を示している。   In FIG. 6, (a) shows the amplitude of the PWM harmonic current in the case of a normal concentrated winding permanent magnet motor in which no coil is arranged in the magnetic pole part 3, and (b) shows the magnetic pole part 3 in the embodiment of the present invention. The amplitude of the PWM harmonic current in the case of the permanent magnet type motor in which the coils 6 and 7 are arranged, and (c) is the PWM harmonic current in the case of the permanent magnet type motor in which a single loop coil is arranged in the magnetic pole part 3. Amplitude, (d) shows the amplitude of the PWM harmonic current in the case of a permanent magnet type motor in which a squirrel-cage conductor is arranged in the magnetic pole part 3.

この図6から明らかなように、本発明の実施例に係わるコイル6、7を磁極部3に配置した場合のPWM高調波電流の振幅は、D軸磁束については、図6(b)に示すように、図6(c)に示す磁極部3に単一ループのコイルを配置した場合のPWM高調波電流の振幅、図6(d)に示す磁極部3にかご型導体を配置した場合のPWM高調波電流の振幅に対して、70%程度低減されており、PWM高調波電流の増大が抑制されている。この本発明の実施例に係わるコイル6、7を磁極部3に配置した場合のPWM高調波電流の振幅は、図6(a)に示す磁極部3にコイルを配置していない通常の集中巻永久磁石形電動機の場合のPWM高調波電流の振幅とほぼ同等である。   As is apparent from FIG. 6, the amplitude of the PWM harmonic current when the coils 6 and 7 according to the embodiment of the present invention are arranged in the magnetic pole part 3 is shown in FIG. 6B for the D-axis magnetic flux. As described above, the amplitude of the PWM harmonic current when a single-loop coil is arranged in the magnetic pole part 3 shown in FIG. 6C, and the case where a cage conductor is arranged in the magnetic pole part 3 shown in FIG. The amplitude of the PWM harmonic current is reduced by about 70%, and the increase of the PWM harmonic current is suppressed. The amplitude of the PWM harmonic current in the case where the coils 6 and 7 according to the embodiment of the present invention are arranged in the magnetic pole part 3 is the same as that of the normal concentrated winding in which no coil is arranged in the magnetic pole part 3 shown in FIG. This is almost the same as the amplitude of the PWM harmonic current in the case of a permanent magnet motor.

図7は磁極部3にコイルを配置していない通常の永久磁石電動機の場合の永久磁石の渦電流損失と、本発明の実施例に係わるコイル6、7を磁極部3に配置した場合の渦電流損失とを比較して示している。
その図7において、横軸は電流進角β(deg)、縦軸は渦電流損失(W)であり、符号(a)は磁極部3にコイルを配置していない通常の電動機の場合の永久磁石の渦電流損失カーブを示し、符号(b)は本発明の実施例に係わるコイル6、7を磁極部3に配置した場合の渦電流損失カーブを示している。なお、この渦電流損失カーブは、ロータの回転数が4000(rpm)、定格電流が283Armsの条件で測定した時に得られた値である。
FIG. 7 shows the eddy current loss of a permanent magnet in the case of an ordinary permanent magnet motor in which no coil is arranged in the magnetic pole part 3, and the eddy when the coils 6 and 7 according to the embodiment of the present invention are arranged in the magnetic pole part 3. The current loss is shown in comparison.
In FIG. 7, the horizontal axis is the current advance angle β (deg), the vertical axis is the eddy current loss (W), and the symbol (a) is the permanent in the case of a normal electric motor in which no coil is arranged in the magnetic pole part 3. An eddy current loss curve of the magnet is shown, and symbol (b) shows an eddy current loss curve when the coils 6 and 7 according to the embodiment of the present invention are arranged in the magnetic pole part 3. This eddy current loss curve is a value obtained when measurement was performed under the conditions where the rotor rotation speed was 4000 (rpm) and the rated current was 283 Arms.

この図7から明らかなように、本発明の実施例に係わるコイル6、7を磁極部3に配置した場合の永久磁石の渦電流損失は、図7の(b)に示すように、図7の(a)に示す磁極部3にコイルを配置していない通常の集中巻永久磁石電動機の場合の永久磁石の渦電流損失に対して、電流進角βに対するばらつきはあるものの約12%ないし約22%程度の低減効果が得られている。   As is apparent from FIG. 7, the eddy current loss of the permanent magnet when the coils 6 and 7 according to the embodiment of the present invention are arranged in the magnetic pole portion 3 is as shown in FIG. In contrast to the eddy current loss of the permanent magnet in the case of the ordinary concentrated winding permanent magnet motor in which the coil is not disposed in the magnetic pole portion 3 shown in (a) of FIG. A reduction effect of about 22% is obtained.

すなわち、本発明の実施例によれば、ロータの回転方向前方側と回転方向後方側とに巻線の方向が逆向きとなるようにコイル6、7を設けて、鎖交磁束の変化に基づき一方の各コイル6(7)に生じた電流が、鎖交磁束の変化に基づき他方のコイル7(6)に生じた電流に対して反対向きに流れるように直列に各コイル6、7を接続したので、逆位相の磁束変動を抑制でき、従って、板状永久磁石5に生じる渦電流損失、ロータ1の鉄損を低減できる。
つまり、現在主流の集中巻のかご型導体が設けられていない通常の永久磁石形電動機では、図1に示すように、同一の磁極部に着目すると、ロータの回転方向前方部と回転方向後方部とにおいて逆位相の磁束変動が生じている。従って、ロータの回転方向前方部と回転方向後方部とにそれぞれコイルを配置し、かつ、各コイルに流れる電流の方向が反対方向となるように各コイルを直列に結線すると、各コイルには磁束変動を妨げる方向の電流が逆方向にそれぞれ流れることになり、逆位相の磁束変動を抑制でき、永久磁石に生じる渦電流損失、ロータの低減を図ることができる。
また、回転方向前方側に配置のコイルと回転方向後方側に配置のコイルとで流れる電流が反対向きになるので、各コイルに生じる鎖交磁束は結果としてゼロとなり、従って、固定子コイルが磁極部に正対したときのD軸インダクタンスが確保され、PWM制御による高調波の電流の増大を抑制できる。
That is, according to the embodiment of the present invention, the coils 6 and 7 are provided on the front side and the rear side in the rotational direction of the rotor so that the directions of the windings are opposite to each other. The coils 6 and 7 are connected in series so that the current generated in one of the coils 6 (7) flows in the opposite direction to the current generated in the other coil 7 (6) based on the change in the linkage flux. Therefore, magnetic flux fluctuations in the opposite phase can be suppressed, and accordingly, eddy current loss generated in the plate-like permanent magnet 5 and iron loss of the rotor 1 can be reduced.
In other words, in a normal permanent magnet type electric motor that is not provided with a current mainstream concentrated winding squirrel-cage conductor, as shown in FIG. In this case, magnetic flux fluctuations in opposite phases occur. Therefore, if coils are arranged at the front part and the rear part in the rotational direction of the rotor and the coils are connected in series so that the direction of the current flowing through the coils is opposite, the magnetic flux Currents in directions that prevent fluctuations flow in the opposite directions, respectively, and magnetic flux fluctuations in the opposite phase can be suppressed, and loss of eddy currents generated in the permanent magnets and the rotor can be reduced.
Further, since the currents flowing in the coil arranged on the front side in the rotation direction and the coil arranged on the rear side in the rotation direction are opposite to each other, the interlinkage magnetic flux generated in each coil becomes zero as a result. The D-axis inductance when facing the part is ensured, and an increase in harmonic current due to PWM control can be suppressed.

更に、各コイル6、7よりも半径方向外側に磁極部3の外周面を設けたので、Q軸インダクタンスを確保でき、このQ軸インダクタンスの確保により、集中巻固定子の各コイルの正面に一の磁極部3とこの一の磁極部3に隣接する磁極部3の中間位置(Q軸)である空隙4が正対した場合のPWM高調波電流も抑制できる。   Further, since the outer peripheral surface of the magnetic pole portion 3 is provided radially outward from the coils 6 and 7, the Q-axis inductance can be ensured, and by securing this Q-axis inductance, the coil is placed in front of each coil of the concentrated winding stator. The PWM harmonic current in the case where the gap 4 which is the intermediate position (Q axis) between the magnetic pole portion 3 and the magnetic pole portion 3 adjacent to the one magnetic pole portion 3 faces each other can also be suppressed.

(実施例2)
図8は板状永久磁石5に対するコイル6、7の配置位置関係を示す説明図である。図8(a)は板状永久磁石5の半径方向外側の磁極面よりも外側でかつ板状永久磁石5に隣接して又はその近傍にコイル6、7を配置したものである。このコイル6、7は単一巻でも複数巻であっても良い。図8(b)は板状永久磁石5の半径方向内側の磁極面よりも内側でかつ板状永久磁石5に隣接して又はその近傍にコイル6、7を配置したものである。図8(c)は板状永久磁石5を回転方向中央で2分割して、板状分割磁石5aと板状分割磁石5bとから構成し、板状分割磁石5aの外周面にコイル6を巻回して板状分割磁石5aとコイル6とを一体化すると共に、板状分割磁石5bの周面にコイル7を巻回して板状分割磁石5bとコイル7とを一体化して磁極部3に埋設する構成としたものである。
なお、板状永久磁石の外周面にコイル6、7を巻回して、一体化を図る構成とすると、コイル6、7と板状永久磁石とをコンパクトにまとめることができ、スペース効率を確保できる。
(Example 2)
FIG. 8 is an explanatory diagram showing an arrangement positional relationship of the coils 6 and 7 with respect to the plate-like permanent magnet 5. FIG. 8A shows the coils 6 and 7 disposed outside the magnetic pole face on the radially outer side of the plate-like permanent magnet 5 and adjacent to or near the plate-like permanent magnet 5. The coils 6 and 7 may be a single turn or a plurality of turns. FIG. 8B shows the coils 6 and 7 arranged on the inner side of the magnetic pole surface on the inner side in the radial direction of the plate-like permanent magnet 5 and adjacent to or near the plate-like permanent magnet 5. In FIG. 8C, the plate-shaped permanent magnet 5 is divided into two at the center in the rotation direction, and is composed of a plate-shaped divided magnet 5a and a plate-shaped divided magnet 5b. A coil 6 is wound around the outer peripheral surface of the plate-shaped divided magnet 5a. Turn to integrate the plate-like divided magnet 5a and the coil 6 and wind the coil 7 around the peripheral surface of the plate-like divided magnet 5b to integrate the plate-like divided magnet 5b and the coil 7 and embed them in the magnetic pole part 3. It is set as the structure to do.
If the coils 6 and 7 are wound around the outer peripheral surface of the plate-shaped permanent magnet to achieve integration, the coils 6 and 7 and the plate-shaped permanent magnet can be combined in a compact manner, and space efficiency can be ensured. .

コイル6、7の端末6a、7aは、このコイル6、7を通過する鎖交磁束の変化を妨げる向きに生じる起電力に基づく電流i1、i2が互いに反対向きとなるように直列的に結線されている。その端末6a、7aの結線位置は、各磁極部3について回転方向中央位置でかつ回転軸方向一側の端部とされている。結線部が各磁極部3について回転方向中央位置でかつ回転軸方向一側の端部に設けられているので、コイル6、コイル7を対称に配置することができ、かつ、鎖交磁束の乱れを実質的に回避することができる。また、端末6a、7aの結線部又は交差箇所がロータ1の回転軸の軸端部側に設けられているので、結線部又は交差点が埋設穴への板状永久磁石5の埋設の際の邪魔とならず、スペース効率の向上を図ることができる。
なお、板状分割磁石5a、5bの構成を採用する場合、強度を確保するため、板状分割磁石間にロータコア部2のブリッジ部を設けても良い。
The terminals 6a and 7a of the coils 6 and 7 are connected in series so that the currents i1 and i2 based on the electromotive force generated in the direction that prevents the change of the interlinkage magnetic flux passing through the coils 6 and 7 are opposite to each other. ing. The connection positions of the terminals 6a and 7a are the center position in the rotation direction and the end portion on one side in the rotation axis direction for each magnetic pole portion 3. Since the connecting portion is provided at the center in the rotational direction for each magnetic pole portion 3 and at the end on one side in the rotational axis direction, the coils 6 and 7 can be arranged symmetrically, and the flux linkage is disturbed. Can be substantially avoided. Moreover, since the connection part or intersection of terminal 6a, 7a is provided in the axial end part side of the rotating shaft of the rotor 1, a connection part or intersection is the obstruction at the time of embedding the plate-shaped permanent magnet 5 to an embedding hole. However, the space efficiency can be improved.
In addition, when employ | adopting the structure of the plate-shaped division | segmentation magnets 5a and 5b, in order to ensure intensity | strength, you may provide the bridge | bridging part of the rotor core part 2 between plate-like division | segmentation magnets.

(実施例3)
図9は板状永久磁石5を回転方向中央で2分割して板状分割磁石5aと板状分割磁石5bとから構成し、板状分割磁石5aと板状分割磁石5bとをV字形状に配設して、各磁極部3に埋設する構成としたものである。コイル6とコイル7とは、半径方向内側の磁極面よりも外側でかつ板状分割磁石5a、5bに隣接して又はその近傍にコイル6、7を配置したものである。
この実施例では、コイル6とコイル7とを、半径方向内側の磁極面よりも外側でかつ分割磁石5a、5bに隣接して又はその近傍に配置する構成としているが、コイル6とコイル7とを、半径方向内側の磁極面よりも内側でかつ分割磁石5a、5bに隣接して又はその近傍に配置する構成、板状分割磁石5aの周面にコイル6を巻回して板状分割磁石5aとコイル6とを一体化すると共に、板状分割磁石5bの周面にコイル7を巻回して板状分割磁石5bとコイル7とを一体化して磁極部3に埋設する構成を採用することもできる。
(Example 3)
FIG. 9 shows that the plate-like permanent magnet 5 is divided into two at the center in the rotational direction, and is composed of a plate-like divided magnet 5a and a plate-like divided magnet 5b, and the plate-like divided magnet 5a and the plate-like divided magnet 5b are V-shaped. It is arranged to be embedded in each magnetic pole part 3. The coils 6 and 7 are coils 6 and 7 disposed outside the radially inner magnetic pole surface and adjacent to or in the vicinity of the plate-like divided magnets 5a and 5b.
In this embodiment, the coil 6 and the coil 7 are arranged outside the radially inner magnetic pole surface and adjacent to or in the vicinity of the divided magnets 5a and 5b. Is arranged on the inner side of the magnetic pole surface on the inner side in the radial direction and adjacent to or in the vicinity of the divided magnets 5a and 5b, and the coil 6 is wound around the peripheral surface of the plate-shaped divided magnet 5a to form the plate-shaped divided magnet 5a. And the coil 6 may be integrated, and the coil 7 may be wound around the peripheral surface of the plate-shaped divided magnet 5b so that the plate-shaped divided magnet 5b and the coil 7 are integrated and embedded in the magnetic pole portion 3. it can.

(実施例4)
図10は本発明の実施例に係わる板状永久磁石5へのコイルの組み付け方法の一例を示す説明図である。この図10は板状分割磁石5a、5bへのコイルの組み付け方法を示している。
まず、板状分割磁石5a(5b)と空芯コイル6a’(7a’)とを(a)に示すように準備する。ついで、板状分割磁石5a(5b)の外周面が(b)に示すように空芯コイル6a’(7a’)に包囲されるようにして、板状分割磁石5a(5b)を空芯コイル6a’(7a’)に嵌合する。
次に、空芯コイル6a’(7a’)の端末6a”(7a”)が露呈するようにして、板状分割磁石5a(5b)と空芯コイル6a’(7a’)とを(c)に示すように樹脂8により封止して、樹脂封止板状分割磁石9を形成する。これらの樹脂封止板状分割磁石9を2個準備して、(d)に示すように同一の磁極が半径方向外側又は内側を向くようにして、樹脂封止板状分割磁石9を磁極部3に埋設し、鎖交磁束に基づく電流i1、i2の流れる方向が逆方向となるように端末6a”、7a”を結線する。
Example 4
FIG. 10 is an explanatory view showing an example of a method for assembling a coil to the plate-like permanent magnet 5 according to the embodiment of the present invention. FIG. 10 shows a method of assembling the coils to the plate-like divided magnets 5a and 5b.
First, the plate-shaped divided magnet 5a (5b) and the air-core coil 6a ′ (7a ′) are prepared as shown in FIG. Then, the plate-shaped divided magnet 5a (5b) is surrounded by the air-core coil 6a '(7a') as shown in (b) so that the plate-shaped divided magnet 5a (5b) is surrounded by the air-core coil. 6a '(7a').
Next, the plate-like split magnet 5a (5b) and the air-core coil 6a ′ (7a ′) are exposed to the terminal 6a ″ (7a ″) of the air-core coil 6a ′ (7a ′) (c). The resin-sealed plate-shaped divided magnet 9 is formed by sealing with the resin 8 as shown in FIG. Two of these resin-encapsulated plate-like divided magnets 9 are prepared, and the resin-encapsulated plate-like divided magnet 9 is made to have a magnetic pole portion so that the same magnetic pole faces radially outward or inward as shown in FIG. The terminals 6a "and 7a" are connected so that the currents i1 and i2 based on the interlinkage magnetic flux flow in opposite directions.

この実施例によれば、永久磁石とコイルとが樹脂封止されかつ一体化されているので、ロータ1の絶縁性、強度、組み立て性が向上する。また、樹脂封止板状分割磁石9を各磁極部3に形成された埋設穴に設置する構成としたので、寸法精度を確保しやすくなり、ロータ1内での樹脂封止板状分割磁石9のガタツキの防止も容易となる。   According to this embodiment, since the permanent magnet and the coil are resin-sealed and integrated, the insulation, strength, and assembly of the rotor 1 are improved. In addition, since the resin-sealed plate-shaped divided magnet 9 is installed in the embedded hole formed in each magnetic pole portion 3, it becomes easy to ensure dimensional accuracy, and the resin-sealed plate-shaped divided magnet 9 in the rotor 1. It is also easy to prevent rattling.

1…ロータ
2…ロータコア部
3…磁極部
4…空隙部
5…板状永久磁石
6、7…コイル
DESCRIPTION OF SYMBOLS 1 ... Rotor 2 ... Rotor core part 3 ... Magnetic pole part 4 ... Air gap part 5 ... Plate-shaped permanent magnet 6, 7 ... Coil

Claims (5)

回転方向に形成された磁極部に永久磁石が埋設されたロータを有する永久磁石形電動機において、
前記ロータの各磁極部に前記ロータの回転方向前方側と回転方向後方側とにそれぞれ巻方向が逆向きのコイルが設けられ、該各コイルは、鎖交磁束の変化に基づき一方のコイルに生じた電流が、鎖交磁束の変化に基づき他方のコイルに生じた電流に対して反対向きに流れるように直列的に結線されていることを特徴とする永久磁石形電動機。
In a permanent magnet type electric motor having a rotor in which a permanent magnet is embedded in a magnetic pole portion formed in a rotation direction,
Each magnetic pole portion of the rotor is provided with coils whose winding directions are opposite to each other on the front side in the rotation direction and the rear side in the rotation direction of the rotor, and the coils are generated in one coil based on the change of the interlinkage magnetic flux. The permanent magnet type motor is characterized in that the current is connected in series so as to flow in the opposite direction to the current generated in the other coil based on the change of the linkage flux.
前記各コイルよりも半径方向外側に磁極部の外周面が存在することを特徴とする請求項1に記載の永久磁石形電動機。   2. The permanent magnet motor according to claim 1, wherein an outer peripheral surface of the magnetic pole portion is present radially outward from each of the coils. 前記各コイルの交差箇所又は結線部が前記ロータ軸端部側に位置していることを特徴とする請求項1に記載の永久磁石形電動機。   The permanent magnet type electric motor according to claim 1, wherein an intersection portion or a connection portion of each coil is located on the rotor shaft end side. 前記磁極部に埋設された永久磁石が回転方向前方側と回転方向後方側の板状分割磁極とから構成され、各板状分割磁極を包囲するようにしてその板状分割磁極の外周面に前記コイルがそれぞれ巻回されていることを特徴とする請求項1に記載の永久磁石形電動機。   The permanent magnet embedded in the magnetic pole portion is composed of a plate-shaped divided magnetic pole on the front side in the rotation direction and a rear side in the rotation direction, and surrounds each plate-shaped divided magnetic pole on the outer peripheral surface of the plate-shaped divided magnetic pole. The permanent magnet type electric motor according to claim 1, wherein each of the coils is wound. 前記各コイルが巻回された分割磁石が樹脂を用いて封止されていることを特徴とする請求項4に記載の永久磁石形電動機。   The permanent magnet motor according to claim 4, wherein the divided magnet around which each coil is wound is sealed with resin.
JP2009048710A 2009-03-03 2009-03-03 Permanent magnet motor Active JP5298957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009048710A JP5298957B2 (en) 2009-03-03 2009-03-03 Permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009048710A JP5298957B2 (en) 2009-03-03 2009-03-03 Permanent magnet motor

Publications (2)

Publication Number Publication Date
JP2010206908A JP2010206908A (en) 2010-09-16
JP5298957B2 true JP5298957B2 (en) 2013-09-25

Family

ID=42967830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048710A Active JP5298957B2 (en) 2009-03-03 2009-03-03 Permanent magnet motor

Country Status (1)

Country Link
JP (1) JP5298957B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105680657A (en) * 2014-12-03 2016-06-15 通用电气公司 Sensorless electric machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62159163U (en) * 1986-03-31 1987-10-09
JP2002238194A (en) * 2001-02-14 2002-08-23 Toyo Electric Mfg Co Ltd Structure of rotor of permanent-magnet motor
JP2005117858A (en) * 2003-10-10 2005-04-28 Toyota Motor Corp Motor
JP2008125242A (en) * 2006-11-13 2008-05-29 Meidensha Corp Permanent magnet type synchronous electric motor

Also Published As

Publication number Publication date
JP2010206908A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP5742804B2 (en) Rotating electric machine rotor and rotating electric machine
JP5159153B2 (en) Rotating electric machine rotor and rotating electric machine
KR100989378B1 (en) Permanent magnet type rotary electric machine and permanent magnet type rotary electric device
US9906107B2 (en) Magnet-free rotating electric machine
US8390165B2 (en) Synchronous motor drive system
JP5542849B2 (en) Switched reluctance motor
CN112186921A (en) Rotor for asynchronous starting permanent magnet motor and asynchronous starting permanent magnet motor
JP6048191B2 (en) Multi-gap rotating electric machine
US20130214623A1 (en) Switched reluctance motor
JP2010246197A (en) Magnetic pole core and dc motor using the same
US20150222150A1 (en) Electric motor
WO2004114501A1 (en) Three-phase synchronous reluctance motor
US20120306298A1 (en) Switched reluctance motor
JP4569839B2 (en) AC motor
JP2018061379A (en) Dynamo-electric machine
JP6376409B2 (en) AC excitation synchronous rotating electric machine
JP5298957B2 (en) Permanent magnet motor
JP2018148632A (en) Rotary electric machine
JP5884463B2 (en) Rotating electric machine
JP2012019605A (en) Permanent magnet rotating electrical machine
JP6536421B2 (en) Electric rotating machine
JP6451990B2 (en) Rotating electric machine
JP2013055833A (en) Rotary electric machine
JP5884464B2 (en) Rotating electric machine
JP2011151914A (en) Stator for brushless motors and brushless motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Ref document number: 5298957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150