JP5295744B2 - Method for producing theacinensin - Google Patents

Method for producing theacinensin Download PDF

Info

Publication number
JP5295744B2
JP5295744B2 JP2008315488A JP2008315488A JP5295744B2 JP 5295744 B2 JP5295744 B2 JP 5295744B2 JP 2008315488 A JP2008315488 A JP 2008315488A JP 2008315488 A JP2008315488 A JP 2008315488A JP 5295744 B2 JP5295744 B2 JP 5295744B2
Authority
JP
Japan
Prior art keywords
theacinensin
theasinensin
catalyst
reaction
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008315488A
Other languages
Japanese (ja)
Other versions
JP2010138103A (en
Inventor
健介 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Norin Co Ltd
Original Assignee
Mitsui Norin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Norin Co Ltd filed Critical Mitsui Norin Co Ltd
Priority to JP2008315488A priority Critical patent/JP5295744B2/en
Publication of JP2010138103A publication Critical patent/JP2010138103A/en
Application granted granted Critical
Publication of JP5295744B2 publication Critical patent/JP5295744B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing theasinensin, capable of obtaining the theasinensin more stably and in a higher yield than those of conventional methods, while being simple. <P>SOLUTION: This theasinensin is produced by oxidizing epigallocatechin and/or epigallocatechin gallate in the presence of a non-homogeneous catalyst, and then reducing the obtained oxidation product, in a higher yield than those of the conventional methods. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は簡便でありながら、従来の方法と比較して安定に、且つ高収率でテアシネンシンを製造する方法に関するものである。 The present invention relates to a method for producing theacinensin stably and in a high yield as compared with a conventional method, though it is simple.

世界中で飲用されている茶には多種多様な形があるが、紅茶や烏龍茶は茶(Camellia sinensis)の生葉を発酵して製造される。この発酵過程では生葉に含まれる酸化酵素(ポリフェノールオキシダーゼ及び/又はペルオキシダーゼ)の作用により、エピガロカテキン(EGC)、エピガロカテキンガレート(EGCg)、エピカテキン(EC)やエピカテキンガレート(ECg)に代表されるカテキンが酸化重合してテアフラビンやテアシネンシン等の重合ポリフェノールが生成する。4種のカテキンの構造を以下の化学式に示す。 There are a wide variety of teas that are drunk around the world, but black tea and oolong tea are produced by fermenting fresh leaves of Camellia sinensis . In this fermentation process, epigallocatechin (EGC), epigallocatechin gallate (EGCg), epicatechin (EC) and epicatechin gallate (ECg) are produced by the action of oxidase (polyphenol oxidase and / or peroxidase) contained in the raw leaves. Representative catechins undergo oxidative polymerization to produce polymerized polyphenols such as theaflavins and theasinensins. The structures of the four catechins are shown in the following chemical formula.

(式中、Rは水素原子又はガロイル基を示し、Rは水素原子又は水酸基を示す。) (In the formula, R 1 represents a hydrogen atom or a galloyl group, and R 2 represents a hydrogen atom or a hydroxyl group.)

テアシネンシンはカテキンがB環同士で結合した構造を有し、良く知られたテアシネンシンとしては次の5種類、テアシネンシンA及びそのアトロプ異性体であるテアシネンシンD並びにテアシネンシンB並びにテアシネンシンC及びそのアトロプ異性体であるテアシネンシンEが挙げられる。それらの構造を以下の化学式に示す。 Theacinensin has a structure in which catechins are bonded to each other at the B-rings. The well-known theacinensins are the following five types: theacinensin A and its atropisomers theasinensin D and theasinensin B and theasinensin C and its atropisomers. One theasinensin E is mentioned. Their structures are shown in the chemical formula below.

(式中、R及びRはそれぞれ独立して水素原子又はガロイル基を示す。) (In the formula, R 1 and R 2 each independently represent a hydrogen atom or a galloyl group.)

近年、このテアシネンシンはアポトーシス誘導作用(特許文献1)、リパーゼ阻害作用(特許文献2)、抗炎症作用(特許文献3)、血糖値上昇抑制作用(特許文献4)、マトリックスメタロプロテアーゼ阻害作用(特許文献5)等の機能を有することが報告されており、さらなる研究の展開が期待される。 In recent years, theacinensin has an apoptosis-inducing action (Patent Document 1), a lipase inhibitory action (Patent Document 2), an anti-inflammatory action (Patent Document 3), a blood glucose level increase inhibiting action (Patent Document 4), a matrix metalloprotease inhibitory action (Patent Document 4) It has been reported to have functions such as literature 5), and further research development is expected.

テアシネンシンはその構造に対応するカテキンを酵素的又は非酵素的に酸化重合して得ることができる。例えば、テアシネンシンAは2分子のEGCg、テアシネンシンBはEGCgとEGC、テアシネンシンCは2分子のEGCから生成する。 Theacinensin can be obtained by oxidative polymerization of catechin corresponding to the structure enzymatically or non-enzymatically. For example, theacinensin A is generated from two molecules of EGCg, theacinensin B is generated from EGCg and EGC, and theacinensin C is generated from two molecules of EGC.

具体的にはテアシネンシンの製造方法として次の様な方法が開示されている。酸化剤としてフェリシアン化カリウムを用いる方法(特許文献1、非特許文献1)、1,1−ジフェニル−2−ピクリルヒドラジル(DPPH)を用いてラジカル酸化する方法(非特許文献2)、アルカリ条件下で空気酸化する方法(非特許文献3)がある。また、ナシ果実ホモジネートを用いて酸化する方法(非特許文献4)も開示されている。ナシ果実ホモジネートをEGCgに作用させるとテアシネンシンAの前駆体であるデヒドロテアシネンシンAが生成し、デヒドロテアシネンシンAを分離後還元することでテアシネンシンAが得られたことが報告されている。その化学反応式を以下に示す。 Specifically, the following method is disclosed as a method for producing theacinensin. A method using potassium ferricyanide as an oxidizing agent (Patent Document 1, Non-Patent Document 1), a method of radical oxidation using 1,1-diphenyl-2-picrylhydrazyl (DPPH) (Non-Patent Document 2), alkaline conditions There is a method (Non-Patent Document 3) in which air oxidation is performed below. Moreover, the method (nonpatent literature 4) oxidized using a pear fruit homogenate is also disclosed. It has been reported that when pear fruit homogenate is allowed to act on EGCg, dehydroteasinensin A, which is a precursor of theacinensin A, is produced, and dehydrotheacinensin A is separated and then reduced to yield theacinensin A. The chemical reaction formula is shown below.

(式中、Rはガロイル基を示す。) (In the formula, R represents a galloyl group.)

特開2005−75790JP-A-2005-75790 WO2006/004114WO2006 / 004114 特開2007−119412JP2007-119414A 特開2007−231009JP2007-231009 特開2000−226329JP 2000-226329 A Fumio Hashimoto,Gen−Ichiro Nonaka,Itsuo Nishioka, Chem.Pharm.Bull., 36, 1676−1684 (1988)Fumio Hashimoto, Gen-Ichiro Nonaka, Ittsu Nishioka, Chem. Pharm. Bull. , 36, 1676-1684 (1988) Nanqun Zhu,Mingfu Wang,Guo−Jien Wei,Jen−Kun Lin,Chung S.Yang,Chi−Tang Ho, Food Chem., 73, 345−349 (2001)Nankun Zhu, Mingfu Wang, Guo-Jien Wei, Jen-Kun Lin, Chung S. Yang, Chi-Tang Ho, Food Chem. 73, 345-349 (2001) Tsutomu Hatano,Miwako Kusuda,Mami Hori,Sumiko Shiota,Tomofusa Tsuchiya,Takashi Yoshida, Planta Med., 69, 984−989 (2003)Tsutomu Hatano, Miwako Kusuda, Mami Hori, Sumiko Shiota, Tomofusa Tsuchiya, Takashi Yoshida, Plant Med. , 69, 984-989 (2003) Takashi Tanaka,Sayaka Watarumi,Yosuke Matsuo,Midori Kamei,Isao Kouno, Tetrahedron, 59, 7939−7947 (2003)Takashi Tanaka, Sayaka Watarumi, Yosuke Matsuo, Midori Kamei, Isao Kouno, Tetrahedron, 59, 7939-7947 (2003)

テアシネンシンの製造方法に関しては上記の様な方法が開示されている。しかし、これらの方法は少なくとも次の様な欠点を有する。 Regarding the method for producing theacinensin, the method as described above is disclosed. However, these methods have at least the following drawbacks.

例えば、特許文献1及び非特許文献1のフェリシアン化カリウムを用いる方法ではフェリシアン化カリウム溶液を少しずつ滴下するため、滴下する量や時間を厳密に制御しないと反応の制御は困難である。実際に特許文献1では10gのEGCgからテアシネンシンAを392mg、非特許文献1では10gのEGCgからテアシネンシンAを1.18g得ているが、テアシネンシンAの収率はそれぞれ3.9%及び11.8%であり、安定した収率でテアシネンシンを得ることは困難である。また、EGCとEGCgの混合物を酸化すると優先的にテアシネンシンBが生成すると考えられるが、この方法でEGCとEGCgの混合物を酸化してもテアシネンシンBの生成はテアシネンシンCの生成に優先せず、テアシネンシンBの収率は3.8%と低い。非特許文献2のDPPHを用いる方法では反応時間が2日間と長時間を要し、テアシネンシンの収率は7%以下と低い。非特許文献3のアルカリ条件下で空気酸化する方法での収率は低く4%以下である。非特許文献4のナシ果実ホモジネートを用いる方法ではホモジネートの調製に手間がかかる上、果実の種類、収穫時期の違いやホモジネートの調製の度に酵素活性が異なり、安定した収率でテアシネンシンを得ることが困難である。なお、EGCgからテアシネンシンAへの収率を計算すると約10%である。 For example, in the method using potassium ferricyanide of Patent Document 1 and Non-Patent Document 1, since the potassium ferricyanide solution is dropped little by little, it is difficult to control the reaction unless the dripping amount and time are strictly controlled. In fact, Patent Document 1 obtains 392 mg of theacinensin A from 10 g of EGCg, and Non-patent Document 1 obtains 1.18 g of theacinensin A from 10 g of EGCg, but the yields of theacinensin A are 3.9% and 11.8 respectively. It is difficult to obtain theacinensin in a stable yield. Further, it is considered that theacinensin B is preferentially produced when the mixture of EGC and EGCg is oxidized. However, even if the mixture of EGC and EGCg is oxidized by this method, the production of theasinensin B does not take precedence over the production of theasinensin C. The yield of B is as low as 3.8%. In the method using DPPH of Non-Patent Document 2, the reaction time is as long as 2 days, and the yield of theacinensin is as low as 7% or less. The yield in the method of air oxidation under alkaline conditions of Non-Patent Document 3 is low and 4% or less. In the method of using non-patent document 4 pear fruit homogenate, it takes time to prepare the homogenate, and the enzyme activity varies depending on the type of fruit, the difference in harvest time and the preparation of the homogenate, and theasinensin is obtained in a stable yield. Is difficult. The yield from EGCg to theacinensin A is calculated to be about 10%.

以上の様に、従来開示されているテアシネンシンの製造方法では簡便且つ安定的に高い収率でテアシネンシンを得ることができない。したがって、本発明の目的は上記の様な欠点を克服できるテアシネンシンの製造方法を提供することである。 As described above, the conventional methods for producing theacinensin cannot easily and stably yield theacinensin in a high yield. Accordingly, an object of the present invention is to provide a method for producing theacinensin that can overcome the above-mentioned drawbacks.

本発明者は上記目的を達成すべく鋭意検討を重ねた結果、意外にも不均一系触媒の存在下にEGC及び/又はEGCgを酸化し、次いで得られた酸化生成物を還元することで上記課題を解決し得ることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventor unexpectedly oxidizes EGC and / or EGCg in the presence of a heterogeneous catalyst, and then reduces the obtained oxidation product to reduce the oxidation product. The present inventors have found that the problems can be solved and have completed the present invention.

即ち請求項1記載の本発明は、不均一系白金族触媒の存在下にエピガロカテキン及び/又はエピガロカテキンガレートを酸化し、次いで得られた酸化生成物を還元する工程を含むテアシネンシンの製造方法を提供するものである。
That is, the present invention according to claim 1 is a method for producing theasinensin comprising a step of oxidizing epigallocatechin and / or epigallocatechin gallate in the presence of a heterogeneous platinum group catalyst and then reducing the obtained oxidation product. A method is provided.

請求項記載の本発明は、不均一系白金族触媒がパラジウム触媒及び/又は白金触媒である請求項記載のテアシネンシンの製造方法を提供するものである。
Claims the invention of claim 2 is to provide a Teashinenshin manufacturing method of claim 1 wherein heterogeneous platinum group catalyst is a palladium catalyst and / or platinum catalyst.

請求項記載の本発明は、テアシネンシンがテアシネンシンA、テアシネンシンB及びテ
アシネンシンCからなる群より選択された少なくとも1種である請求項1又は2に記載のテアシネンシンの製造方法を提供するものである。
The present invention according to claim 3 provides the method for producing theasinensin according to claim 1 or 2, wherein the theasinensin is at least one selected from the group consisting of theasinensin A, theasinensin B, and theasinensin C.

本発明におけるテアシネンシンとは、テアシネンシンA、テアシネンシンB、テアシネンシンC、テアシネンシンD、テアシネンシンEを代表とする一般式(I)の構造を有する化合物を示す。 The theasinensin in the present invention refers to a compound having a structure of the general formula (I) represented by theasinensin A, theasinensin B, theasinensin C, theasinensin D, and theainensin E.

(式中、R及びRはそれぞれ独立して水素原子又はガロイル基を示し、ビフェニル部分の立体配置はR配置、S配置のいずれであっても良い。) (In the formula, R 1 and R 2 each independently represent a hydrogen atom or a galloyl group, and the configuration of the biphenyl moiety may be either R configuration or S configuration.)

本発明におけるエピガロカテキン(EGC)及びエピガロカテキンガレート(EGCg)とは一般式(II)の構造を有する化合物を示す。 In the present invention, epigallocatechin (EGC) and epigallocatechin gallate (EGCg) are compounds having the structure of general formula (II).

(式中、Rは水素原子又はガロイル基を示す。) (In the formula, R represents a hydrogen atom or a galloyl group.)

本発明の方法では特別な装置を必要とせず、一般的な製造設備を利用して簡便でありながら、従来の方法と比較して安定に、且つ高収率でテアシネンシンを得ることができる。 The method of the present invention does not require a special apparatus and can easily obtain theacinensin with a high yield in a stable manner compared with the conventional method, while being simple using a general production facility.

以下において本発明を詳細に説明する。
本発明の方法で得られるテアシネンシンとはテアシネンシンA、テアシネンシンB、テアシネンシンC、テアシネンシンD、テアシネンシンEを代表とする一般式(I)の構造を有する化合物を示す。
The present invention is described in detail below.
Theasinensin obtained by the method of the present invention refers to a compound having the structure of the general formula (I) typified by theacinensin A, theasinensin B, theasinensin C, theasinensin D, and theasinensin E.

(式中、R及びRはそれぞれ独立して水素原子又はガロイル基を示し、ビフェニル部分の立体配置はR配置、S配置のどちらであっても良い。) (In the formula, R 1 and R 2 each independently represent a hydrogen atom or a galloyl group, and the configuration of the biphenyl moiety may be either R configuration or S configuration.)

本発明で使用する原料のカテキンは、一般式(II)の構造を有するエピガロカテキン(EGC)及び/又はエピガロカテキンガレート(EGCg)である。原料として用いるEGC及び/又はEGCgは高純度であるほど得られるテアシネンシンの量が多く、更に反応による副生成物の量が低下するため好ましい。 The raw material catechin used in the present invention is epigallocatechin (EGC) and / or epigallocatechin gallate (EGCg) having the structure of the general formula (II). EGC and / or EGCg used as a raw material is preferable because the amount of theacinensin obtained is higher as the purity is higher, and the amount of by-products due to the reaction is further reduced.

(式中、Rは水素原子又はガロイル基を示す。) (In the formula, R represents a hydrogen atom or a galloyl group.)

本発明で使用する不均一系触媒とは反応系からの除去が容易な不溶性固体触媒であり、その中でも不均一系白金族触媒を用いるのが好ましい。不均一系白金族触媒としてはパラジウム触媒、白金触媒、ロジウム触媒、イリジウム触媒、ルテニウム触媒、オスミウム触媒が挙げられ、特にパラジウム触媒や白金触媒が良い。それらの触媒が活性炭、アルミナやゼオライト等の反応に関与しない多孔質担体に担持されていても良い。又、乾燥品を用いても良いが、安全面を考慮すると水等で湿潤した含水品を用いることが好ましい。具体的にはパラジウム触媒としてはパラジウム/炭素、水酸化パラジウム/炭素、パラジウム/アルミナ、酸化パラジウム、パラジウムブラック等が挙げられ、白金触媒としては白金/炭素、白金/アルミナ、酸化白金、白金ブラック等が例示できる。 The heterogeneous catalyst used in the present invention is an insoluble solid catalyst that can be easily removed from the reaction system, and among them, a heterogeneous platinum group catalyst is preferably used. Examples of the heterogeneous platinum group catalyst include a palladium catalyst, a platinum catalyst, a rhodium catalyst, an iridium catalyst, a ruthenium catalyst, and an osmium catalyst, and a palladium catalyst and a platinum catalyst are particularly preferable. These catalysts may be supported on a porous carrier that does not participate in the reaction such as activated carbon, alumina or zeolite. Although a dry product may be used, it is preferable to use a water-containing product moistened with water or the like in consideration of safety. Specific examples of the palladium catalyst include palladium / carbon, palladium hydroxide / carbon, palladium / alumina, palladium oxide, and palladium black. Examples of the platinum catalyst include platinum / carbon, platinum / alumina, platinum oxide, and platinum black. Can be illustrated.

使用する不均一系触媒の量は他の条件(反応pH、反応温度、反応時間等)に合わせてテアシネンシンの生成量が高くなるよう適宜決定すれば良いが、カテキン1モルに対して金属元素量で0.001〜10モル当量が好ましく、より好ましくは0.01〜7.5モル当量、更に好ましくは0.05〜1.5モル当量である。触媒量が少なすぎると反応速度が低下して反応に長時間を要し、多すぎると触媒コストが増大する。 The amount of the heterogeneous catalyst to be used may be determined appropriately according to other conditions (reaction pH, reaction temperature, reaction time, etc.) so that the production amount of theacinensin is increased. Is preferably 0.001 to 10 molar equivalents, more preferably 0.01 to 7.5 molar equivalents, and still more preferably 0.05 to 1.5 molar equivalents. If the amount of the catalyst is too small, the reaction rate decreases and the reaction takes a long time. If the amount is too large, the catalyst cost increases.

本発明で用いる還元剤としては例えばトリス(2−カルボキシエチル)ホスフィン塩酸塩(TCEP・HCl)、ジチオスレイトール、ジチオエリスリチオール、2−メルカプトエタノール、2−メルカプトエタノールアミン塩酸塩、アスコルビン酸、アルコルビン酸ナトリウム、システイン塩酸塩、亜硫酸ナトリウム等が挙げられる。還元力の高いTCEP・HClやジチオスレイトールが好適であり、幅広いpH範囲で還元力を持つTCEP・HClが最適である。 Examples of the reducing agent used in the present invention include tris (2-carboxyethyl) phosphine hydrochloride (TCEP · HCl), dithiothreitol, dithioerythritol, 2-mercaptoethanol, 2-mercaptoethanolamine hydrochloride, ascorbic acid, Examples include sodium alcorbate, cysteine hydrochloride, sodium sulfite and the like. TCEP · HCl and dithiothreitol having high reducing power are suitable, and TCEP · HCl having reducing power in a wide pH range is most suitable.

使用する還元剤の量は特に限定されないが、原料のカテキン1モルに対して0.1〜10モル当量が好ましく、より好ましくは0.2〜5モル当量、更に好ましくは0.4〜2.5モル当量である。還元剤の量が少なすぎるとテアシネンシンの生成量が低下し、多すぎると還元剤のコストが増大する。 The amount of the reducing agent to be used is not particularly limited, but is preferably 0.1 to 10 molar equivalents, more preferably 0.2 to 5 molar equivalents, and still more preferably 0.4 to 2. mol. 5 molar equivalents. If the amount of the reducing agent is too small, the production amount of theacinensin decreases, and if it is too large, the cost of the reducing agent increases.

本発明の方法で使用する溶媒は水又は水を主成分とする溶媒であり、水単独若しくは有機溶媒を含まない緩衝液を使用した方がテアシネンシンの生成量が多くなり好ましい。水と有機溶媒を混合した溶媒を使用する場合、水は少なくとも50%以上存在することが好ましい。このような有機溶媒の例としてメタノール、エタノール、プロパノール、アセトニトリル等の水と任意に混和する有機溶媒を用いることができる。 The solvent used in the method of the present invention is water or a solvent containing water as a main component, and it is preferable to use water alone or a buffer solution that does not contain an organic solvent because the production amount of theacinensin increases. When a mixed solvent of water and an organic solvent is used, it is preferable that water is present at least 50% or more. As an example of such an organic solvent, an organic solvent arbitrarily mixed with water such as methanol, ethanol, propanol, and acetonitrile can be used.

使用する溶媒量は原料のカテキンを溶解できれば特に制限されないが、カテキン1重量部に対して25〜2800重量部、好ましくは50〜1400重量部、より好ましくは100〜700重量部である。 The amount of the solvent to be used is not particularly limited as long as the raw material catechin can be dissolved, but is 25 to 2800 parts by weight, preferably 50 to 1400 parts by weight, and more preferably 100 to 700 parts by weight with respect to 1 part by weight of catechin.

本発明で使用する溶媒のpHは特に限定されないが、好ましくはpH4以上、より好ましくはpH4〜8、更に好ましくはpH5〜7で反応を行う。pH4以上でテアシネンシンの生成量が多くなるが、pH7を超えると生成したテアシネンシンの安定性が低下する。 The pH of the solvent used in the present invention is not particularly limited, but the reaction is preferably performed at pH 4 or higher, more preferably pH 4-8, and still more preferably pH 5-7. When the pH is 4 or more, the amount of theacinensin produced increases. However, when the pH exceeds 7, the stability of theacinensin produced decreases.

酸化反応や還元反応の反応温度はテアシネンシンが得られるのであれば特に限定せずに適宜調節することができるが、例えば反応温度は0〜90℃、好ましくは10〜60℃、さらに好ましくは20〜40℃である。 The reaction temperature of the oxidation reaction or reduction reaction is not particularly limited as long as theacinensin can be obtained. For example, the reaction temperature is 0 to 90 ° C, preferably 10 to 60 ° C, more preferably 20 to 20 ° C. 40 ° C.

酸化反応の反応時間は特に限定されないが、望ましい反応時間は10分〜8時間、好ましくは30分〜6時間である。また、還元反応の反応時間も特に限定されないが、望ましい反応時間は1分〜16時間、好ましくは5分〜3時間、更に好ましくは10分〜1時間である。 The reaction time of the oxidation reaction is not particularly limited, but the desired reaction time is 10 minutes to 8 hours, preferably 30 minutes to 6 hours. The reaction time for the reduction reaction is not particularly limited, but the desired reaction time is 1 minute to 16 hours, preferably 5 minutes to 3 hours, and more preferably 10 minutes to 1 hour.

本発明の方法により生成したテアシネンシンを吸着樹脂等のカラムクロマトグラフィーにより精製すれば、より純度の高いテアシネンシンを得ることができる。 If theacinensin produced by the method of the present invention is purified by column chromatography such as an adsorption resin, theacinensin with higher purity can be obtained.

吸着樹脂としては吸着能力の高い合成吸着樹脂が好ましい。具体的には、合成吸着樹脂を充填したカラムに反応後の溶液を通液してテアシネンシンを樹脂に吸着させ、有機溶媒を用いて目的のテアシネンシンを樹脂より溶出してテアシネンシンの精製品を得る。通常この操作は合成吸着樹脂を充填したカラムを用いて行うが、カラムを用いずにバッチ式で行うこともできる。この際使用可能な合成吸着樹脂としては、スチレンジビニルベンゼン系、メタクリル系、スチレン系、修飾スチレン系、アクリル系、アミド系、デキストラン系、セルロース系、ポリビニル系等の樹脂が使用可能である。市販品では、例えばスチレンジビニルベンゼン系のダイアイオンHP−20、ダイアイオンHP−21(以上、三菱化学(株)製)、アンバーライトXAD−2、アンバーライトXAD−4(以上、ローム・アンド・ハース社製)、メタクリル系のダイアイオンHP−2MG(三菱化学(株)製)、スチレン系としてアンバーライトXAD−16(ローム・アンド・ハース社製)、修飾スチレン系としてセパビーズSP−207(三菱化学(株)製)、アクリル系のダイアイオンWK−20(三菱化学(株)製)、アミド系のXAD−11(ローム・アンド・ハース社製)、デキストラン系のセファデックスLH−20(ファルマシア社製)、セルロース系のインディオンDS−3(フェニックスケミカルズ社製)、ポリビニル系のトヨパールHW−40(東ソー(株)製)等を挙げることができる。また、他の吸着剤としてはシリカゲル系が使用可能であり、例えば市販品ではシリカゲル40、シリカゲル60(球状)(以上、関東化学(株)製)、シリカゲル中圧分取用(山善(株)製)等が挙げられ、オクタデシルシラン(ODS)等のアルキル基が化学結合したタイプとしてクロマトレックス(富士シリシア化学(株)製)、オクタデシル中圧分取用(山善(株)製)等を挙げることが出来るが、これに限定されない。 As the adsorption resin, a synthetic adsorption resin having a high adsorption ability is preferable. Specifically, the solution after reaction is passed through a column packed with a synthetic adsorption resin to adsorb theasinensin to the resin, and the desired theacinensin is eluted from the resin using an organic solvent to obtain a purified product of theacinensin. Usually, this operation is carried out using a column filled with a synthetic adsorption resin, but it can also be carried out batchwise without using a column. As the synthetic adsorption resin usable at this time, resins such as styrene divinylbenzene, methacrylic, styrene, modified styrene, acrylic, amide, dextran, cellulose, and polyvinyl can be used. Commercially available products include, for example, styrene divinylbenzene-based Diaion HP-20, Diaion HP-21 (above, manufactured by Mitsubishi Chemical Corporation), Amberlite XAD-2, Amberlite XAD-4 (above, Rohm and Manufactured by Haas Co., Ltd.), methacrylic Diaion HP-2MG (manufactured by Mitsubishi Chemical Corporation), Amberlite XAD-16 (manufactured by Rohm and Haas Co.) as styrene, and Sepabeads SP-207 (Mitsubishi) as modified styrene Chemical Co., Ltd.), acrylic Diaion WK-20 (Mitsubishi Chemical Co., Ltd.), amide XAD-11 (Rohm and Haas), dextran Sephadex LH-20 (Pharmacia) ), Cellulosic Indion DS-3 (Phoenix Chemicals), Polyvinyl Toyoper HW-40 (Tosoh Co., Ltd.), and the like. As other adsorbents, silica gels can be used. For example, commercially available products include silica gel 40, silica gel 60 (spherical) (manufactured by Kanto Chemical Co., Inc.), silica gel medium pressure fractionation (Yamazen Co., Ltd.) Chromatolex (manufactured by Fuji Silysia Chemical Co., Ltd.), octadecyl medium pressure fractionation (manufactured by Yamazen Co., Ltd.) and the like are examples of types in which alkyl groups such as octadecylsilane (ODS) are chemically bonded. It is possible, but it is not limited to this.

溶出に用いる溶媒としては水の他に例えば、メタノール、エタノール、プロパノール、アセトン、アセトニトリル等の水と任意に混和する有機溶媒を用いることができる。 As a solvent used for elution, an organic solvent arbitrarily mixed with water such as methanol, ethanol, propanol, acetone, acetonitrile, etc. can be used in addition to water.

樹脂と溶出溶媒の組み合わせとしては、上記のものを任意に組み合わせて使用することができる。この溶出液を通常の方法で乾固或いは結晶化し、目的のテアシネンシンを得ることができる。 As a combination of the resin and the elution solvent, any of the above can be used in combination. This eluate can be dried or crystallized by a conventional method to obtain the desired theacinensin.

以下に実施例を挙げて本発明を更に詳しく説明する。但し、本発明はこれらに限定されるものではない。なお、テアシネンシンの収率は次の式、収率(%)={(生成した、又は得られたテアシネンシンのモル数)/(原料のカテキンのモル数×0.5)}×100により算出した。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these. The yield of theacinensin was calculated by the following formula, yield (%) = {(number of moles of theacinensin produced or obtained) / (number of moles of raw material catechin × 0.5)} × 100. .

(反応pHの検討)
20mMのEGCg水溶液15mLとMcIlvaine緩衝液15mLを50mLコニカルビーカーに入れ、20%水酸化パラジウム/炭素(約50%水湿潤品、Aldrich製)150mgを添加後、空気雰囲気下室温で撹拌した。緩衝液のpHは3、4、5、6、7及び8で試験を行った。pH3〜6の試験では反応開始後10、20、40、60、90、120、150、180、240、300及び360分で、pH7及び8の試験では反応開始後10、20、40、60、90及び120分で反応液のサンプリングを行った。サンプリングした反応液500μLを水で10倍に希釈後、触媒をろ別した。ろ液500μLに3.5mMのTCEP・HCl水溶液250μLを加えて激しく振とうし、4重量%酢酸水溶液250μLを加えて更に振とうした。この溶液をHPLC分析用の試料とし、HPLCによりテアシネンシンAの生成量を測定した。HPLC条件は次の通りであり、定量にはテアシネンシンAの標準品(三井農林(株)製)を用いた。
(Examination of reaction pH)
15 mL of 20 mM EGCg aqueous solution and 15 mL of McIlvine buffer were placed in a 50 mL conical beaker, 150 mg of 20% palladium hydroxide / carbon (about 50% water wet product, manufactured by Aldrich) was added, and the mixture was stirred at room temperature in an air atmosphere. The buffer was tested at pH 3, 4, 5, 6, 7, and 8. In tests of pH 3-6, 10, 20, 40, 60, 90, 120, 150, 180, 240, 300 and 360 minutes after the start of reaction, and in tests of pH 7 and 8, 10, 20, 40, 60, The reaction solution was sampled at 90 and 120 minutes. After diluting 500 μL of the sampled reaction solution 10 times with water, the catalyst was filtered off. To 500 μL of the filtrate, 250 μL of 3.5 mM TCEP · HCl aqueous solution was added and shaken vigorously, and 250 μL of 4 wt% acetic acid aqueous solution was added and further shaken. This solution was used as a sample for HPLC analysis, and the production amount of theacinensin A was measured by HPLC. The HPLC conditions were as follows, and a standard product of theacinensin A (manufactured by Mitsui Norin Co., Ltd.) was used for quantification.

カラム:Mightysil RP18−GP(4.6mm I.D.×75mm,粒子径3μm,関東化学(株)製)、カラム温度:40℃、移動相:(A)水/リン酸/アセトニトリル=100/0.05/2.5,(B)水/リン酸/アセトニトリル/メタノール=100/0.05/2.5/50,(C)メタノール、グラジエントプログラム:A 100%で0〜1.5分まで保持、1.5〜12.5分でA/B/C=100/0/0〜0/100/0まで直線的にグラジエント溶出、12.5〜25分でA/B/C=0/100/0〜0/0/100まで直線的にグラジエント溶出、C 100%で25〜27分まで保持、27〜27.5分でA 100%に戻し、27.5〜35分までA 100%で平衡化、流速:1mL/min、検出波長:275nm、注入量:10μL。 Column: Mightysil RP18-GP (4.6 mm ID × 75 mm, particle size 3 μm, manufactured by Kanto Chemical Co., Inc.), column temperature: 40 ° C., mobile phase: (A) water / phosphoric acid / acetonitrile = 100 / 0.05 / 2.5, (B) water / phosphoric acid / acetonitrile / methanol = 100 / 0.05 / 2.5 / 50, (C) methanol, gradient program: 0 to 1.5 minutes at 100% A Until 1.5 to 12.5 minutes, A / B / C = 100/0/0 to 0/100/0 linear gradient elution, 12.5 to 25 minutes A / B / C = 0 Gradient elution linearly from 0/100/0 to 0/0/100, held at C 100% for 25-27 minutes, returned to A 100% at 27-27.5 minutes, A 100 up to 27.5-35 minutes % Equilibration, flow rate: 1 mL / min Detection wavelength: 275 nm, injection volume: 10 μL.

表1に各pHでのテアシネンシンAの生成量とテアシネンシンAの収率を示す。表の値はテアシネンシンAの生成量が最大となるときの反応時間の値を用いた。pH4以上で収率は20%を超える値を示した。 Table 1 shows the amount of theacinensin A produced and the yield of theacinensin A at each pH. The values in the table were the reaction time values when the production amount of theacinensin A was maximized. Above pH 4, the yield exceeded 20%.

(触媒の比較)
20mMのEGCg水溶液15mLとMcIlvaine緩衝液(pH5)15mLを50mLコニカルビーカーに入れた。この溶液に触媒を添加後、空気雰囲気下室温で240分間撹拌した。3種類の触媒を試験に用い、20%水酸化パラジウム/炭素(約50%水湿潤品、Aldrich製)は150mg、10%パラジウム/炭素(約50%水湿潤品、Aldrich製)は100mg、10%白金/炭素(Aldrich製)は90mg添加した。反応開始後10、30、60、90、120、150、180及び240分で反応液のサンプリングを行い、実施例1に記載の方法でテアシネンシンAの生成量を測定した。
(Catalyst comparison)
15 mL of 20 mM EGCg aqueous solution and 15 mL of McIlvine buffer (pH 5) were placed in a 50 mL conical beaker. After adding a catalyst to this solution, it stirred for 240 minutes at room temperature by air atmosphere. Three types of catalysts were used in the test, 20% palladium hydroxide / carbon (about 50% water wet product, manufactured by Aldrich) was 150 mg, 10% palladium / carbon (about 50% water wet product, manufactured by Aldrich) was 100 mg, 10 90 mg of% platinum / carbon (manufactured by Aldrich) was added. The reaction solution was sampled at 10, 30, 60, 90, 120, 150, 180 and 240 minutes after the start of the reaction, and the amount of theacinensin A produced was measured by the method described in Example 1.

表2にテアシネンシンAの生成量とテアシネンシンAの収率を示す。表の値はテアシネンシンAの生成量が最大となるときの反応時間の値を用いた。水酸化パラジウム/炭素を用いたときが最も高い収率を示したが、他の触媒の収率も約30%と大きな差は認められなかった。 Table 2 shows the production amount of theacinensin A and the yield of theacinensin A. The values in the table were the reaction time values when the production amount of theacinensin A was maximized. The highest yield was obtained when palladium hydroxide / carbon was used, but the yield of other catalysts was not as great as about 30%.

テアシネンシンA、テアシネンシンB及びテアシネンシンCを以下に示す方法で合成した。また、還元反応後の反応液を実施例1に記載のHPLC条件で分析し、各テアシネンシンの生成量を求めた。定量には各テアシネンシンの標準品(三井農林(株)製)を用いた。 Theasinensin A, theasinensin B and theasinensin C were synthesized by the following method. Further, the reaction solution after the reduction reaction was analyzed under the HPLC conditions described in Example 1 to determine the production amount of each theacinensin. For the determination, a standard product of each theacinensin (manufactured by Mitsui Norin Co., Ltd.) was used.

(製造例1:テアシネンシンAの合成)
EGCg 413mg(900μmol)を45mLの水に溶解した。50mLコニカルビーカー3つそれぞれにEGCg水溶液15mLとMcIlvaine緩衝液(pH5)15mLを加え、20%水酸化パラジウム/炭素(約50%水湿潤品,Aldrich製)150mgを添加後、空気雰囲気下室温で150分間撹拌した。触媒をろ別した後、ろ液にTCEP・HCl 287mg(1000μmol)を加え10分間撹拌した(生成量116μmol,収率25.7%)。この反応液を酢酸エチル50mLで4回抽出し、酢酸エチル層を硫酸ナトリウムで脱水した。硫酸ナトリウムをろ別後、ろ液をロータリーエバポレーターで濃縮乾固した。続いて、得られた酢酸エチル画分308mgをトヨパールHW−40Sカラムクロマトグラフィー(2.2cm I.D.×28cm,移動相:メタノール,流速5mL/min)に供した。得られた粗テアシネンシンA画分137mgを分取HPLCにて精製を行い、高純度(HPLC面積百分率98%以上)のテアシネンシンA 90mg(98.6μmol,収率21.9%)をオフホワイトの粉末として得た。
(Production Example 1: Synthesis of theacinensin A)
413 mg (900 μmol) of EGCg was dissolved in 45 mL of water. To each of three 50 mL conical beakers, add 15 mL of EGCg aqueous solution and 15 mL of McIlvine buffer (pH 5), add 150 mg of 20% palladium hydroxide / carbon (about 50% water-wet product, manufactured by Aldrich), and then add 150 mg at room temperature in an air atmosphere. Stir for minutes. After the catalyst was filtered off, 287 mg (1000 μmol) of TCEP · HCl was added to the filtrate and stirred for 10 minutes (production amount 116 μmol, yield 25.7%). This reaction solution was extracted four times with 50 mL of ethyl acetate, and the ethyl acetate layer was dehydrated with sodium sulfate. After sodium sulfate was filtered off, the filtrate was concentrated to dryness on a rotary evaporator. Subsequently, 308 mg of the obtained ethyl acetate fraction was subjected to Toyopearl HW-40S column chromatography (2.2 cm ID × 28 cm, mobile phase: methanol, flow rate 5 mL / min). 137 mg of the resulting crude theasinensin A fraction was purified by preparative HPLC, and 90 mg (98.6 μmol, yield 21.9%) of theasinensin A with high purity (HPLC area percentage of 98% or more) was turned off-white powder. Got as.

(製造例2:テアシネンシンBの合成)
EGC 92mg(300μmol)とEGCg 138mg(300μmol)を30mLの水に溶解した。50mLコニカルビーカー2つそれぞれにEGCとEGCgの水溶液15mLとMcIlvaine緩衝液(pH5)15mLを加え、20%水酸化パラジウム/炭素(約50%水湿潤品,Aldrich製)150mgを添加後、空気雰囲気下室温で150分間撹拌した。触媒をろ別した後、ろ液にTCEP・HCl 172mg(600μmol)を加え10分間撹拌した(生成量54.6μmol,収率18.2%)。反応液を直接ダイアイオンHP−20カラムクロマトグラフィー(2.0cm I.D.×13.5cm)に供し、水200mLで洗浄後、40%メタノール200mLで溶出した。40%メタノール画分182mgをトヨパールHW−40Sカラムクロマトグラフィー(2.2cm I.D.×28cm,移動相:メタノール,流速5mL/min)に供し、粗テアシネンシンB画分61mgを得た。得られた粗テアシネンシンB画分を分取HPLCにて精製し、高純度(HPLC面積百分率98%以上)のテアシネンシンB 35mg(45.2μmol,収率15.1%)をオフホワイトの粉末として得た。
(Production Example 2: Synthesis of theasinensin B)
92 mg (300 μmol) of EGC and 138 mg (300 μmol) of EGCg were dissolved in 30 mL of water. To each of two 50 mL conical beakers, add 15 mL of EGC and EGCg aqueous solution and 15 mL of McIlvine buffer (pH 5), add 150% of 20% palladium hydroxide / carbon (about 50% water-wet product, Aldrich), and then in an air atmosphere Stir at room temperature for 150 minutes. After the catalyst was filtered off, 172 mg (600 μmol) of TCEP · HCl was added to the filtrate and stirred for 10 minutes (production amount 54.6 μmol, yield 18.2%). The reaction solution was directly subjected to Diaion HP-20 column chromatography (2.0 cm ID × 13.5 cm), washed with 200 mL of water, and eluted with 200 mL of 40% methanol. 182 mg of 40% methanol fraction was subjected to Toyopearl HW-40S column chromatography (2.2 cm ID × 28 cm, mobile phase: methanol, flow rate 5 mL / min) to obtain 61 mg of crude theasinensin B fraction. The resulting crude theasinensin B fraction was purified by preparative HPLC to obtain 35 mg (45.2 μmol, 15.1% yield) of theasinensin B with high purity (HPLC area percentage of 98% or more) as an off-white powder. It was.

(製造例3:テアシネンシンCの合成)
EGC 184mg(600μmol)を30mLの水に溶解した。50mLコニカルビーカー2つそれぞれにEGC水溶液15mLとMcIlvaine緩衝液(pH5)15mLを加え、20%水酸化パラジウム/炭素(約50%水湿潤品,Aldrich製)150mgを添加後、空気雰囲気下室温で150分間撹拌した。触媒をろ別した後、ろ液にTCEP・HCl 258mg(900μmolを加え10分間撹拌した(生成量142μmol,収率47.4%)。反応液を直接ダイアイオンHP−20カラムクロマトグラフィー(2.0cm I.D.×13.5cm)に供し、水200mLで洗浄後、メタノール200mLで溶出した。得られたメタノール画分173mgを分取HPLCにて精製し、高純度(HPLC面積百分率98%以上)のテアシネンシンC 66mg(108μmol,収率36.1%)をオフホワイトの粉末として得た。
(Production Example 3: Synthesis of theasinensin C)
184 mg (600 μmol) of EGC was dissolved in 30 mL of water. To each of two 50 mL conical beakers, add 15 mL of EGC aqueous solution and 15 mL of McIlvine buffer (pH 5), add 150% of 20% palladium hydroxide / carbon (about 50% water wet product, manufactured by Aldrich), and then add 150 mg at room temperature in an air atmosphere Stir for minutes. After the catalyst was filtered off, 258 mg of TCEP · HCl (900 μmol was added to the filtrate and stirred for 10 minutes (production amount 142 μmol, yield 47.4%). The reaction solution was directly subjected to Diaion HP-20 column chromatography (2. 0 cm ID × 13.5 cm), washed with 200 mL of water, and eluted with 200 mL of methanol, and 173 mg of the obtained methanol fraction was purified by preparative HPLC to obtain a high purity (HPLC area percentage of 98% or more). 66 mg (108 μmol, yield 36.1%) of theasinensin C was obtained as an off-white powder.

本発明の方法では特別な装置を必要とせず、一般的な設備を利用して簡便でありながら、安定に、且つ高収率でテアシネンシンを製造することができる。 The method of the present invention does not require any special apparatus, and can easily produce theasinensin with high yield in a stable and simple manner using general equipment.

Claims (3)

不均一系白金族触媒の存在下にエピガロカテキン及び/又はエピガロカテキンガレートを酸化し、次いで得られた酸化生成物を還元する工程を含むテアシネンシンの製造方法。 A method for producing theacinensin, comprising oxidizing epigallocatechin and / or epigallocatechin gallate in the presence of a heterogeneous platinum group catalyst and then reducing the resulting oxidation product. 不均一系白金族触媒がパラジウム触媒及び/又は白金触媒である請求項記載のテアシネンシンの製造方法。 Method for producing Teashinenshin of claim 1 wherein heterogeneous platinum group catalyst is a palladium catalyst and / or platinum catalyst. テアシネンシンがテアシネンシンA、テアシネンシンB及びテアシネンシンCからなる群より選択された少なくとも1種である請求項1又は2に記載のテアシネンシンの製造方法。
The method for producing theasinensin according to claim 1 or 2, wherein theasinensin is at least one selected from the group consisting of theacinensin A, theasinensin B, and theasinensin C.
JP2008315488A 2008-12-11 2008-12-11 Method for producing theacinensin Expired - Fee Related JP5295744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008315488A JP5295744B2 (en) 2008-12-11 2008-12-11 Method for producing theacinensin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008315488A JP5295744B2 (en) 2008-12-11 2008-12-11 Method for producing theacinensin

Publications (2)

Publication Number Publication Date
JP2010138103A JP2010138103A (en) 2010-06-24
JP5295744B2 true JP5295744B2 (en) 2013-09-18

Family

ID=42348557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008315488A Expired - Fee Related JP5295744B2 (en) 2008-12-11 2008-12-11 Method for producing theacinensin

Country Status (1)

Country Link
JP (1) JP5295744B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5744507B2 (en) * 2010-12-24 2015-07-08 三井農林株式会社 α-Amylase inhibitor
EP3162437B1 (en) * 2014-06-27 2020-10-28 NBC Meshtec Inc. Method for synthesizing theaflavins
WO2019044672A1 (en) * 2017-08-28 2019-03-07 株式会社Nbcメッシュテック Polyphenol production method
CN109776475B (en) * 2019-02-26 2020-12-08 中国农业科学院茶叶研究所 Method for separating and purifying polyester catechin by macroporous adsorption resin under temperature and normal pressure
CN109879850B (en) * 2019-02-26 2021-01-05 中国农业科学院茶叶研究所 Method for preparing three polyester catechin monomers
CN111575255B (en) * 2020-05-14 2022-03-15 安徽农业大学 Oxidase, DNA molecule for coding oxidase and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207842B1 (en) * 1997-10-09 2001-03-27 Mars Incorporated Process for preparing procyanidin(4-6 or 4-8) oligomers and their derivatives
US6156912A (en) * 1999-04-09 2000-12-05 Mars, Incorporated 88, 66, and 68 catechin and epicatechin dimers and methods for their preparation
JP2005075790A (en) * 2003-09-02 2005-03-24 Fumio Hashimoto Apoptosis-inducing agent

Also Published As

Publication number Publication date
JP2010138103A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5295744B2 (en) Method for producing theacinensin
JP6724052B2 (en) Cannabinoid biosynthesis
Shii et al. Biomimetic one-pot preparation of a black tea polyphenol theasinensin A from epigallocatechin gallate by treatment with copper (II) chloride and ascorbic acid
Adelakun et al. Laccase-catalyzed dimerization of ferulic acid amplifies antioxidant activity
JPH01258669A (en) Production of isoflavon compound
WO2010076879A1 (en) Sulfated c-glycoside, method for isolating same and method for synthesizing same
JP4026723B2 (en) Method for producing epithea fragalins and method for producing beverages containing epithea fragalins
Wang et al. Synthesis and biological evaluation of novel neoflavonoid derivatives as potential antidiabetic agents
US7696363B2 (en) Preparation of flavonoid compounds
CN113429371B (en) Chemical synthesis method of delphinidin B9 gallate
JP5415814B2 (en) Enzymatic synthesis of theaflavin
CN110724121B (en) Bibenzyl derivative in dendrobium officinale leaf and preparation method and application thereof
JP2012077051A (en) Method for producing hesperidin composition
CN102863419B (en) Flavane 3-alcohol acetylate and its preparation method and application
JP3039864B1 (en) Tricaffeoyl aldaric acid, its production method and its use
KR20120092467A (en) Method for synthesizing derivatives of 6-o-cinnamyl-l-ascorbic acid using enzyme
JP2008074747A (en) Collagen production promoter
Maeda et al. Euscaphinin, a New Ellagitannin Dimer from Euscaphis japonica (T HUNB.) K ANITZ
JP4061877B2 (en) Method for producing antioxidant
CN114702414B (en) Phenylacryloyl acid ester derivatives containing n-butyl sulfonate structure and preparation method and application thereof
KR101002795B1 (en) Novel Retinyl Ascorbate Compounds and Preparation Method thereof
US20080249163A1 (en) Process For Producing Product Containing Proanthocyanidin in High Proportion
KR101467605B1 (en) Novel Daphnane Diterpenoid Compound and Composition for Skin Whitening Comprising the Same As Active Ingredient
JP2011219408A (en) Vasodilator
KR101598015B1 (en) Method for synthesizing derivatives of 6-O-cinnamoyl-sorbitol acid using enzyme

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5295744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees