JP5295537B2 - Manufacturing method of Ni-WB sputtering target material for manufacturing intermediate layer film in perpendicular magnetic recording medium - Google Patents

Manufacturing method of Ni-WB sputtering target material for manufacturing intermediate layer film in perpendicular magnetic recording medium Download PDF

Info

Publication number
JP5295537B2
JP5295537B2 JP2007247182A JP2007247182A JP5295537B2 JP 5295537 B2 JP5295537 B2 JP 5295537B2 JP 2007247182 A JP2007247182 A JP 2007247182A JP 2007247182 A JP2007247182 A JP 2007247182A JP 5295537 B2 JP5295537 B2 JP 5295537B2
Authority
JP
Japan
Prior art keywords
sputtering target
magnetic recording
target material
intermediate layer
perpendicular magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007247182A
Other languages
Japanese (ja)
Other versions
JP2009079236A (en
Inventor
俊之 澤田
敦 岸田
彰彦 柳谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2007247182A priority Critical patent/JP5295537B2/en
Priority to PCT/JP2008/067119 priority patent/WO2009041398A1/en
Priority to TW097136872A priority patent/TW200932935A/en
Publication of JP2009079236A publication Critical patent/JP2009079236A/en
Application granted granted Critical
Publication of JP5295537B2 publication Critical patent/JP5295537B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7371Non-magnetic single underlayer comprising nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Abstract

Disclosed is an alloy for an Ni-W-B intermediate layer film which enables to obtain extremely good recording characteristics due to miniaturization of crystal grains when used as an intermediate layer of a perpendicular magnetic recording medium. Also disclosed is a sputtering target member for producing a thin film. This sputtering target member is composed of, in at%, 1-20% of W, 0.1-10% of B and the balance of Ni and unavoidable impurities. This sputtering target member can be produced by solidifying and molding a raw material powder, which is prepared by gas atomization and composed of, in at%, 1-20% of W, 0.1-10% of B and the balance of Ni and unavoidable impurities.

Description

本発明は、垂直磁気記録媒体における中間層膜として用いるNi−W−B系スパッタリングターゲット材の製造方法に関するものである。 The present invention relates to the production how the Ni-W-B-based sputtering target material used as the intermediate layer film in a perpendicular magnetic recording medium.

近年、磁気記録技術の進歩は著しく、ドライブの大容量化のために、磁気記録媒体の高記録密度化が進められている。しかしながら、現在広く世の中で使用されている面内磁気記録方式の磁気記録媒体では、高記録密度化を実現しようとすると、記録ビットが微細化し、記録ビットで記録できないほどの高保磁力が要求される。そこで、これらの問題を解決し、記録密度を向上させる手段として、垂直磁気記録方式が検討されている。   In recent years, the progress of magnetic recording technology has been remarkable, and the recording density of magnetic recording media has been increased to increase the capacity of drives. However, in the magnetic recording medium of the in-plane magnetic recording system that is currently widely used in the world, when trying to achieve a high recording density, the recording bit becomes finer, and a high coercive force that cannot be recorded by the recording bit is required. . Therefore, as a means for solving these problems and improving the recording density, a perpendicular magnetic recording method has been studied.

この垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜中の媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、高記録密度に適した方法である。そして、この垂直磁気記録方式においては、記録感度を高めた磁気記録膜層と軟磁性膜層および中間層を有する多層記録媒体が開発されている。この磁気記録膜層には一般的にCoCrPt−SiO2 系合金、軟磁性膜層にはCo−Zr−Nb系合金などが用いられている。なお、ここで言う中間層とは、一般に磁気記録膜層の結晶粒の微細化や結晶方位に異方性を持たせることを目的に設けられる非磁性層のことを言う。 This perpendicular magnetic recording system is formed so that the easy axis of magnetization is oriented perpendicularly to the medium surface in the magnetic film of the perpendicular magnetic recording medium, and is a method suitable for high recording density. In this perpendicular magnetic recording system, a multilayer recording medium having a magnetic recording film layer, a soft magnetic film layer, and an intermediate layer with improved recording sensitivity has been developed. A CoCrPt—SiO 2 alloy is generally used for the magnetic recording film layer, and a Co—Zr—Nb alloy or the like is used for the soft magnetic film layer. The term “intermediate layer” as used herein refers to a nonmagnetic layer that is generally provided for the purpose of making crystal grains finer and providing anisotropy in crystal orientation of a magnetic recording film layer.

中間層には各種Ni系合金や、Ta系合金、Pd系合金、Ru系合金などが提案されており、近年ではNi−W系合金も用いられるようになってきている。これらの中間層は、磁気記録膜層の構造を制御することが役割の1つであり、そのためには、中間層の結晶粒の微細化が重要とされている。例えば富士時報、Vol.77,No.2,2004,第121頁(非特許文献1)に開示されているように、「垂直磁気記録膜の構造制御」と題して、媒体特性は下地層の結晶粒径や表面形状の影響を強く受ける。その下地層にRuを用いたCoPtCr−SiO2 媒体において、Ruの結晶粒径や表面構造を制御することにより磁性結晶粒の粒径や磁気的な分離構造を制御した例が開示されている。また、Ni−W系合金においては薄膜の格子定数が3.53〜3.61オングストローム(×10-10 m)程度の範囲において良好であると考えられる。
富士時報、Vol.77,No.2,2004,第121頁
Various Ni-based alloys, Ta-based alloys, Pd-based alloys, Ru-based alloys, and the like have been proposed for the intermediate layer, and in recent years, Ni-W-based alloys have also been used. One of the roles of these intermediate layers is to control the structure of the magnetic recording film layer. To that end, it is important to make the crystal grains of the intermediate layer finer. For example, Fuji Times, Vol. 77, no. 2, 2004, page 121 (Non-Patent Document 1) entitled “Structure Control of Perpendicular Magnetic Recording Film”, medium characteristics strongly influence the crystal grain size and surface shape of the underlayer. receive. In the CoPtCr—SiO 2 medium using Ru as the underlayer, an example is disclosed in which the grain size and magnetic separation structure of the magnetic crystal grains are controlled by controlling the Ru grain size and surface structure. In addition, it is considered that the Ni-W alloy is good when the lattice constant of the thin film is in the range of about 3.53 to 3.61 angstrom (× 10 −10 m).
Fuji Times, Vol. 77, no. 2, 2004, p. 121

しかしながら、Ni−W系薄膜中間層として用い垂直磁気記録媒体を作製すると良好な記録特性が得られるが、更に高い記録密度を実現するためには、Ni−W系中間層の結晶粒微細化が必要となる。しかし、Ni−W系薄膜の結晶粒微細化に寄与する添加元素などの公知の知見は全くない。   However, when a perpendicular magnetic recording medium is manufactured as a Ni—W-based thin film intermediate layer, good recording characteristics can be obtained. However, in order to achieve a higher recording density, the Ni—W-based intermediate layer must be made finer. Necessary. However, there is no known knowledge of additive elements that contribute to the refinement of crystal grains in Ni—W thin films.

上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、Ni−WにBを添加することで、薄膜の結晶粒を劇的に微細化できることを見出し、発明に至ったものである。その発明の要旨とするところは、
(1)at%で、W:1〜20%,B:0.1〜10%を含み、残部Niおよび不可避的不純物からなるスパッタリングターゲット材をガスアトマイズ法により作製した原料粉末を900〜1150℃の温度で固化成形したことを特徴とする垂直磁気記録媒体における中間層膜製造用Ni−W−B系スパッタリングターゲット材の製造方法。
As a result of diligent development, the inventors have found that the addition of B to Ni-W can dramatically reduce the crystal grains of the thin film, leading to the invention. It is a thing. The gist of the invention is that
(1) At 1%, W: 1 to 20%, B: 0.1 to 10%, a raw material powder made of a sputtering target material made of the balance Ni and unavoidable impurities by the gas atomization method is 900 to 1150 ° C. A method for producing a Ni-WB sputtering target material for producing an intermediate layer film in a perpendicular magnetic recording medium, wherein the material is solidified at a temperature .

以上述べたように、本発明によるNi−W系薄膜の結晶粒径微細化に寄与する添加元素であるBを添加したNi−W−B系薄膜を中間層として用い垂直磁気記録媒体を作製すると極めて良好な記録特性が得られるNi−W−B系中間層膜用合金および薄膜製造用スパッタリングターゲット材を提供する。   As described above, when a perpendicular magnetic recording medium is manufactured using a Ni—W—B thin film added with B, which is an additive element that contributes to refinement of the crystal grain size of the Ni—W thin film according to the present invention, as an intermediate layer. Provided are an alloy for Ni—WB system interlayer film and a sputtering target material for producing a thin film, which can obtain extremely good recording characteristics.

以下、本発明について詳細に説明する。
本発明に係る成分組成として、at%で、W:1〜20%に限定した理由は、1%未満ではスパッタ薄膜の格子定数が3.53オングストローム(×10-10 m)未満となり、また、20%を超えると格子定数が3.61オングストローム(×10-10 m)を超えることから、その範囲を1〜20%とした。好ましくは5〜15%とする。
Hereinafter, the present invention will be described in detail.
The reason why the component composition according to the present invention is limited to at% and W: 1 to 20% is that if less than 1%, the lattice constant of the sputtered thin film is less than 3.53 angstroms (× 10 −10 m), If it exceeds 20%, the lattice constant exceeds 3.61 angstroms (× 10 −10 m), so the range was made 1 to 20%. Preferably it is 5 to 15%.

また、B:0.1〜10.0at%に限定した理由は、0.1%未満ではスパッタ薄膜の結晶粒微細化の効果がなく、10.0%を超えると結晶粒微細化の効果が飽和し、磁気記録膜層の構造制御に悪影響を及ぼすと考えられるNi系硼化物を多量に生成してしまうことから、その範囲を0.1〜10.0%とした。好ましくは0.3〜5%とする。   The reason for limiting to B: 0.1 to 10.0 at% is that if it is less than 0.1%, there is no effect of crystal grain refinement of the sputtered thin film, and if it exceeds 10.0%, the effect of crystal grain refinement is obtained. Since a large amount of Ni-based boride which is considered to be saturated and adversely affect the structure control of the magnetic recording film layer is generated, the range is set to 0.1 to 10.0%. Preferably it is 0.3 to 5%.

原料粉末としてガスアトマイズ粉末が好ましい理由としては、Bは鋳造法のような冷却速度の小さい溶製法ではNiに全く固溶せず、粗大な硼化物を晶出してしまう。この粗大硼化物がスパッタリングターゲット材中に存在すると、スパッタは異常放電を起こして、パーティクルを多く発生するなど不具合を生じる。これに対し、原料粉末をガスアトマイズ法により作製すると、急冷凝固されているため粗大な硼化物が晶出せず、これを用いて固化成形したスパッタリングターゲット材は、パーティクルの発生が少ない。   The reason why the gas atomized powder is preferable as the raw material powder is that B is not dissolved in Ni at all by a melting method having a low cooling rate such as a casting method, and a coarse boride is crystallized. If this coarse boride is present in the sputtering target material, the sputtering causes abnormal discharge, resulting in problems such as generation of many particles. On the other hand, when the raw material powder is produced by the gas atomization method, a coarse boride does not crystallize because it is rapidly cooled and solidified, and the sputtering target material solidified and formed using this does not generate particles.

また、固化成形温度として900〜1150℃が好ましいとした理由は、900℃未満での固化成形では、スパッタリングターゲット材の相対密度が低くなってしまい、1150℃以下で成形することにより、ビレットの膨張が抑制できることが確認できたが、しかし、1150℃を超えた温度で固化成形すると、加熱時にビレットが膨張し、安定した製造が困難であることから、その範囲を900〜1150℃とした。   The reason why 900 to 1150 ° C. is preferable as the solidification molding temperature is that the relative density of the sputtering target material becomes low in the solidification molding at less than 900 ° C., and the billet expands by molding at 1150 ° C. or less. However, when solidification molding was performed at a temperature exceeding 1150 ° C., the billet expanded during heating and stable production was difficult, so the range was set to 900 to 1150 ° C.

以下、本発明について実施例によって具体的に説明する。
表1に示すNi−W−B系合金粉末をガスアトマイズにより作製し、これを原料粉末とし、SC缶に脱気封入した粉末充填ビレットを、850〜1200℃でHIP法およびアップセット法にて固化成形し、機械加工によりNi−W−B系合金のスパッタリングターゲット材を作製した。また、比較として鋳造法によりNi−W−B系合金のスパッタリングターゲット材を作製した。各工程の詳細は以下の通りである。
Hereinafter, the present invention will be specifically described with reference to examples.
The Ni-W-B alloy powder shown in Table 1 was produced by gas atomization, and this was used as the raw material powder, and the powder-filled billet deaerated and sealed in the SC can was solidified at 850 to 1200 ° C. by the HIP method and the upset method. It shape | molded and produced the sputtering target material of the Ni-WB system alloy by machining. For comparison, a sputtering target material of a Ni—WB alloy was produced by a casting method. Details of each step are as follows.

先ず、溶解母材25kgをアルミナ坩堝にてアルゴン中で誘導溶解し、坩堝底部の直径5mm出湯ノズルより、1700℃にて出湯し、噴霧圧0.7MPaのArガスアトマイズにて粉末を製造した。作製したNi−W合金粉末を、外径205mm、内径190mm、長さ300mmのSC缶に脱気封入した。脱気時の真空到達度は約1.3×10-2Pa(約1×10-4Torr)とした。 First, 25 kg of a molten base material was induction-melted in an argon crucible in argon, discharged from a hot water nozzle having a diameter of 5 mm at the bottom of the crucible at 1700 ° C., and powder was produced by Ar gas atomization with a spray pressure of 0.7 MPa. The produced Ni—W alloy powder was deaerated and sealed in an SC can having an outer diameter of 205 mm, an inner diameter of 190 mm, and a length of 300 mm. The degree of vacuum at the time of deaeration was about 1.3 × 10 −2 Pa (about 1 × 10 −4 Torr).

上記の粉末充填ビレットを、850〜1200℃、147MPaにてHIP(熱間静水圧プレス)成形した。また、アップセットの場合は、上記の粉末充填ビレットを、1000〜1100℃に加熱した後、直径215mmの拘束型コンテナ内に挿入し、500MPaの圧力で成形した。上記の方法で作製した固化成形体を、ワイヤカット、旋盤加工、平面研磨により、直径76.2mm、厚さ3mmに加工し、銅製のバッキングプレートをろう付けしスパッタリングターゲット材とした。   The above powder-filled billet was HIP (hot isostatic press) molded at 850 to 1200 ° C. and 147 MPa. Moreover, in the case of upset, after heating said powder filling billet to 1000-1100 degreeC, it inserted in the restraint type | mold container of diameter 215mm, and shape | molded with the pressure of 500 MPa. The solidified molded body produced by the above method was processed into a diameter of 76.2 mm and a thickness of 3 mm by wire cutting, lathe processing, and planar polishing, and a copper backing plate was brazed to obtain a sputtering target material.

一方、鋳造法としては、100kgの溶解母材を真空溶解し、直径200mmの耐火物へ鋳造し、直径200mm、長さ100mmに旋盤にて削り出し、1100℃にて高さ50mmまで熱間鍛造した。その後のスパッタリングターゲット材の作製方法は、上記のHIP、アップセット材と同様の方法で行った。   On the other hand, as a casting method, 100 kg of melted base material is vacuum-melted, cast into a refractory having a diameter of 200 mm, and then machined to a diameter of 200 mm and a length of 100 mm with a lathe and hot forged up to a height of 50 mm at 1100 ° C. did. The subsequent sputtering target material was produced by the same method as the above HIP and upset material.

表1に示す評価項目である、固化成形時のビレットの膨張については、HIP材では、HIP後のビレットの外観にて評価した。また、アップセット材についてはビレット加熱時の外観にて評価した。その結果、膨張なし:○、膨張あり:×で評価した。
また、スパッタリングターゲット材の相対密度は、上記方法で作製した直径76.2mm、厚さ3mmの円盤より、体積重量法にて密度を測定し、組成から算出される計算密度との比を相対密度とした。
With respect to the expansion of the billet at the time of solidification molding, which is an evaluation item shown in Table 1, the HIP material was evaluated by the appearance of the billet after HIP. Moreover, about the upset material, it evaluated by the external appearance at the time of billet heating. As a result, the evaluation was made with no expansion: ○ and with expansion: x.
The relative density of the sputtering target material is measured by the volume-weight method from a disk having a diameter of 76.2 mm and a thickness of 3 mm produced by the above method, and the ratio with the calculated density calculated from the composition is the relative density. It was.

スパッタ膜のパーティクル数は、作製したスパッタリングターゲット材を、直径376.2mmのSi基板にスパッタした。スパッタ条件は、Ar圧:0.5Pa、DC電力:500W、成膜厚さ:500nmとした。この時発生したパーティクルの数を測定した。なお、表1中のパーティクル数は、No.1の試料を100とした相対値で表した。   As for the number of particles of the sputtered film, the produced sputtering target material was sputtered onto a Si substrate having a diameter of 376.2 mm. The sputtering conditions were Ar pressure: 0.5 Pa, DC power: 500 W, and film thickness: 500 nm. The number of particles generated at this time was measured. The number of particles in Table 1 is No. 1 sample was expressed as a relative value.

また、スパッタ膜の格子定数およびNi系硼化物は、上記のスパッタ膜をX線回折し、その回折ピークより格子定数を算出した。また、Ni系硼化物の生成についても確認した。Ni系硼化物なし:○、少量生成:△、多量生成:×とした。さらに、スパッタ膜の結晶粒径は、上記のスパッタ膜の断面をTEM観察し、画像解析により相当面積円の径を結晶粒径とした。なお、表1中の結晶粒径はNo.1の結晶粒径を100とした相対値で表しており数値の小さい方が結晶粒径が微細である。   Further, the lattice constant of the sputtered film and the Ni boride were obtained by X-ray diffracting the sputtered film and calculating the lattice constant from the diffraction peak. In addition, the formation of Ni-based borides was also confirmed. No Ni-based boride: ◯, small amount produced: Δ, large amount produced: x. Furthermore, the crystal grain size of the sputtered film was obtained by observing the cross section of the sputtered film with a TEM and by analyzing the image, the diameter of the equivalent area circle was determined as the crystal grain size. The crystal grain size in Table 1 is No. The crystal grain size of 1 is expressed as a relative value with respect to 100, and the smaller the numerical value, the finer the crystal grain size.

Figure 0005295537
表1に示すように、No.1〜9は本発明例であり、No.10〜17は比較例である。
Figure 0005295537
As shown in Table 1, no. 1 to 9 are examples of the present invention. 10 to 17 are comparative examples.

比較例No.10は合金成分としてWが含有しないために、格子定数が小さい。比較例No.11は合金成分としてWの含有が高いために、格子定数が大きい。比較例No.12は合金成分としてBが含有しないために、相対密度が大きく、結晶粒径が大きい。比較例No.13は合金成分としてBの含有が低いために、相対密度が大きく、結晶粒径が大きい。比較例No.14は合金成分としてBの含有が高いために、パーティクル数が大きく、かつNi系硼化物が多量生成した。   Comparative Example No. Since 10 does not contain W as an alloy component, the lattice constant is small. Comparative Example No. No. 11 has a high lattice constant because of its high W content as an alloy component. Comparative Example No. No. 12 does not contain B as an alloy component, so the relative density is large and the crystal grain size is large. Comparative Example No. No. 13 has a low relative density and a large crystal grain size due to the low content of B as an alloy component. Comparative Example No. No. 14 had a high content of B as an alloy component, so the number of particles was large and a large amount of Ni-based boride was generated.

比較例No.15は鋳造法のために、パーティクル数が大きい。比較例No.16は固化成形温度が低いために、パーティクル数が大きい。比較例No.17は固化成形温度が高いために、HIP後のビレットが膨張しており、スパッタリングターゲット材への加工が困難であった。これに対し、本発明例であるNo.1〜9はいずれも本発明の条件を満たしていることから、薄膜製造用スパッタリングターゲット材としての特性に優れていることが分かる。   Comparative Example No. 15 has a large number of particles because of the casting method. Comparative Example No. No. 16 has a large number of particles because the solidification molding temperature is low. Comparative Example No. Since No. 17 had a high solidification molding temperature, the billet after HIP was expanded, and it was difficult to process the sputtering target material. On the other hand, No. which is an example of the present invention. Since 1-9 satisfy | fill the conditions of this invention, it turns out that it is excellent in the characteristic as a sputtering target material for thin film manufacture.

以上のように、垂直磁気記録媒体における中間層膜として用いるNi−W−B系中間用スパッタリングターゲット材において、Ni−W系合金にBを添加することで、薄膜の結晶粒を劇的に微細化することが可能となり、ビレットの膨張もなく、安定して高密度なNi−W−B系中間層膜用合金および薄膜製造用スパッタリングターゲット材が提供することを可能とした。


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, in the Ni—W—B-based intermediate sputtering target material used as the intermediate layer film in the perpendicular magnetic recording medium, by adding B to the Ni—W-based alloy, the crystal grains of the thin film are dramatically reduced. This makes it possible to provide a stable and high-density Ni—W—B-based interlayer film alloy and a sputtering target material for manufacturing a thin film without the expansion of billets.


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (1)

at%で、W:1〜20%,B:0.1〜10%を含み、残部Niおよび不可避的不純物からなるスパッタリングターゲット材をガスアトマイズ法により作製した原料粉末を900〜1150℃の温度で固化成形したことを特徴とする垂直磁気記録媒体における中間層膜製造用Ni−W−B系スパッタリングターゲット材の製造方法。 The raw material powder which produced the sputtering target material which consists of remainder Ni and an unavoidable impurity by gas atomizing method is solidified at the temperature of 900-1150 degreeC including W: 1-20% and B: 0.1-10% by at%. A method for producing a Ni-WB sputtering target material for producing an intermediate layer film in a perpendicular magnetic recording medium, wherein the perpendicular magnetic recording medium is molded.
JP2007247182A 2007-09-25 2007-09-25 Manufacturing method of Ni-WB sputtering target material for manufacturing intermediate layer film in perpendicular magnetic recording medium Expired - Fee Related JP5295537B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007247182A JP5295537B2 (en) 2007-09-25 2007-09-25 Manufacturing method of Ni-WB sputtering target material for manufacturing intermediate layer film in perpendicular magnetic recording medium
PCT/JP2008/067119 WO2009041398A1 (en) 2007-09-25 2008-09-22 Ni-w-b sputtering target member for producing intermediate layer film of perpendicular magnetic recording medium, and thin film produced by using the same
TW097136872A TW200932935A (en) 2007-09-25 2008-09-25 Ni-W-B-based sputtering target material for producing intermediate layer film in vertical magnetic recording medium, and thin film produced using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007247182A JP5295537B2 (en) 2007-09-25 2007-09-25 Manufacturing method of Ni-WB sputtering target material for manufacturing intermediate layer film in perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2009079236A JP2009079236A (en) 2009-04-16
JP5295537B2 true JP5295537B2 (en) 2013-09-18

Family

ID=40511283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007247182A Expired - Fee Related JP5295537B2 (en) 2007-09-25 2007-09-25 Manufacturing method of Ni-WB sputtering target material for manufacturing intermediate layer film in perpendicular magnetic recording medium

Country Status (3)

Country Link
JP (1) JP5295537B2 (en)
TW (1) TW200932935A (en)
WO (1) WO2009041398A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105594B2 (en) * 2007-10-15 2012-12-26 ダブリュディ・メディア・シンガポール・プライベートリミテッド Perpendicular magnetic recording medium
JP5305137B2 (en) * 2007-12-05 2013-10-02 日立金属株式会社 Ni-W sintered target material for forming Ni alloy intermediate layer of perpendicular magnetic recording medium
JP2011076683A (en) * 2009-09-30 2011-04-14 Wd Media Singapore Pte Ltd Perpendicular magnetic recording medium
CN112404443A (en) * 2020-11-25 2021-02-26 河南东微电子材料有限公司 Preparation method of chromium-tantalum-boron alloy powder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229521A (en) * 1986-03-28 1987-10-08 Mitsubishi Electric Corp Magnetic recording medium
JP2000169923A (en) * 1998-12-04 2000-06-20 Sumitomo Metal Mining Co Ltd Tungsten-nickel target material, electrode material, and packaging component
JP3539355B2 (en) * 2000-06-01 2004-07-07 住友金属鉱山株式会社 Ni-W based sputtering target for black matrix
JP4421170B2 (en) * 2002-04-11 2010-02-24 日鉱金属株式会社 Circuit board having a barrier layer made of Ni-Sn alloy
JP2006092721A (en) * 2004-08-26 2006-04-06 Showa Denko Kk Substrate for perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording medium
JP2006265656A (en) * 2005-03-24 2006-10-05 Hitachi Metals Ltd Fe-Ni-Co ALLOY TARGET MATERIAL FOR FORMING SOFT MAGNETIC ALLOY FILM AND ITS MANUFACTURING METHOD
JP4470881B2 (en) * 2005-12-27 2010-06-02 昭和電工株式会社 Magnetic recording medium and magnetic recording / reproducing apparatus

Also Published As

Publication number Publication date
WO2009041398A1 (en) 2009-04-02
TW200932935A (en) 2009-08-01
JP2009079236A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
US8430978B2 (en) Sputtering target and method for production thereof
JP5253781B2 (en) Alloy target material for soft magnetic film layer in perpendicular magnetic recording media
US10325762B2 (en) Sputtering target for forming magnetic recording film and process for producing same
JPWO2006051737A1 (en) Sputtering target for producing metallic glass film and method for producing the same
TWI227746B (en) Manganese alloy sputtering target and manufacturing method thereof
WO2009133921A1 (en) Sputtering target material for producing intermediate layer film of perpendicular magnetic recording medium and thin film produced by using the same
TWI621718B (en) Fe-Co alloy sputtering target material and soft magnetic film layer and perpendicular magnetic recording medium using same
JP5295537B2 (en) Manufacturing method of Ni-WB sputtering target material for manufacturing intermediate layer film in perpendicular magnetic recording medium
JP2009191359A (en) Fe-Co-Zr BASED ALLOY TARGET MATERIAL
JP5384969B2 (en) Sputtering target material and thin film produced using the same
JP5403418B2 (en) Method for producing Co-Fe-Ni alloy sputtering target material
WO2012023475A1 (en) CrTi-BASED ALLOY AND SPUTTERING TARGET MATERIAL, PERPENDICULAR MAGNETIC RECORDING MEDIUM, AND PROCESSES FOR PRODUCING SAME
JP5377901B2 (en) Sputtering target material for manufacturing Ni-W- (Si, B) -based interlayer film in perpendicular magnetic recording medium
JP3525439B2 (en) Target member and method of manufacturing the same
JP2009203537A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME
TWI727322B (en) Sputtering target and magnetic film
JP5384849B2 (en) Sputtering target material for manufacturing Ni-WP-, Zr-based intermediate layer film in perpendicular magnetic recording medium and thin film manufactured using the same
JP7157573B2 (en) Ni-based alloy for seed layer of magnetic recording media
JP2009079235A (en) Cr-Mn-B-BASED SPUTTERING TARGET MATERIAL FOR PRODUCING SUBSTRATE FILM IN MAGNETIC RECORDING MEDIUM, AND THIN FILM PRODUCED USING THE SAME
TW202009308A (en) Sputtering target, granular film, and perpendicular magnetic recording medium
JP5650169B2 (en) Alloy target material for soft magnetic film layer in perpendicular magnetic recording media
JP6876115B2 (en) Co-Pt-Re based sputtering target, its manufacturing method and magnetic recording layer
JP2011181140A (en) Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR MAGNETIC RECORDING MEDIUM
TW202015039A (en) Co-BASED ALLOY FOR USE IN SOFT MAGNETIC LAYER OF MAGNETIC RECORDING MEDIUM
JP2020135907A (en) Spattering target for forming soft magnetic layer of perpendicular magnetic recording medium, and perpendicular magnetic recording medium, and soft magnetic layer thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5295537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees