JP5295403B2 - Marine exhaust gas denitration reactor and exhaust gas denitration equipment - Google Patents

Marine exhaust gas denitration reactor and exhaust gas denitration equipment Download PDF

Info

Publication number
JP5295403B2
JP5295403B2 JP2012046008A JP2012046008A JP5295403B2 JP 5295403 B2 JP5295403 B2 JP 5295403B2 JP 2012046008 A JP2012046008 A JP 2012046008A JP 2012046008 A JP2012046008 A JP 2012046008A JP 5295403 B2 JP5295403 B2 JP 5295403B2
Authority
JP
Japan
Prior art keywords
exhaust gas
partition plate
denitration
container
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012046008A
Other languages
Japanese (ja)
Other versions
JP2013181467A (en
Inventor
博仲 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2012046008A priority Critical patent/JP5295403B2/en
Priority to KR1020147019263A priority patent/KR101590333B1/en
Priority to PCT/JP2013/053186 priority patent/WO2013129089A1/en
Priority to CN201380007359.5A priority patent/CN104081014B/en
Publication of JP2013181467A publication Critical patent/JP2013181467A/en
Application granted granted Critical
Publication of JP5295403B2 publication Critical patent/JP5295403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J99/00Subject matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/004Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 specially adapted for marine propulsion, i.e. for receiving simultaneously engine exhaust gases and engine cooling water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/087Other arrangements or adaptations of exhaust conduits having valves upstream of silencing apparatus for by-passing at least part of exhaust directly to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1805Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body
    • F01N13/1811Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body with means permitting relative movement, e.g. compensation of thermal expansion or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ocean & Marine Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、船舶に搭載されたディーゼルエンジンから排出される排ガス中に尿素水やアンモニア水を吹き込む蒸発室と、排ガスと接触させて窒素酸化物を除去する触媒ユニットを有する反応室とを具備した船舶用排ガス脱硝反応容器および船舶用排ガス脱硝設備に関する。   The present invention includes an evaporation chamber for blowing urea water or ammonia water into exhaust gas discharged from a diesel engine mounted on a ship, and a reaction chamber having a catalyst unit for removing nitrogen oxides in contact with the exhaust gas. The present invention relates to a marine exhaust gas denitration reaction vessel and a marine exhaust gas denitration facility.

内燃機関から排出される排ガス中の窒素酸化物(以下、NOxという)を除去するために接触還元(SCR)による脱硝装置では、還元剤として、尿素水を使用するものが特許文献1などに提案されている。   In a denitration apparatus using catalytic reduction (SCR) for removing nitrogen oxides (hereinafter referred to as NOx) in exhaust gas discharged from an internal combustion engine, an apparatus using urea water as a reducing agent is proposed in Patent Document 1 and the like. Has been.

船舶では、大型のディーゼルエンジンを搭載するが、排ガス処理のための容積が限られることから空間の有効利用のために、脱硝用還元剤として尿素水やアンモニア水を吹き込む蒸発室と、NOx除去用の脱硝触媒を担持した触媒エレメントを配置した反応室とを、1つの反応容器に設置した脱硝反応器が考えられる。   The ship is equipped with a large diesel engine, but because of the limited volume for exhaust gas treatment, an evaporation chamber that blows urea water or ammonia water as a reducing agent for denitration, and NOx removal for effective use of space A denitration reactor in which a reaction chamber in which a catalyst element carrying a denitration catalyst is placed in one reaction vessel is conceivable.

特開2011−144765号JP2011-144765A

ところで、ディーゼルエンジンから排出される排ガス中の窒素酸化物を、現行の規定から大幅に削減する規定を、一部の海域で実施する動きとなっている。こうしたNOx規制海域と、NOx非規制海域とを航行する場合、NOx非規制海域では、排ガスを反応室に導入する必要がない。このため、蒸発室と反応室とを一つの反応容器に設置した場合、蒸発室と反応室の温度差による熱膨張差から発生する熱歪みにより、反応容器の構成部材が損傷される恐れがあった。   By the way, there is a movement to implement regulations in some sea areas that significantly reduce nitrogen oxides in exhaust gas discharged from diesel engines from the current regulations. When navigating between such NOx-regulated sea areas and NOx-unregulated sea areas, it is not necessary to introduce exhaust gas into the reaction chamber in the NOx-unregulated sea areas. For this reason, when the evaporation chamber and the reaction chamber are installed in one reaction vessel, there is a risk that the components of the reaction vessel may be damaged due to thermal distortion caused by the difference in thermal expansion due to the temperature difference between the evaporation chamber and the reaction chamber. It was.

本発明は上記問題点を解決して、脱硝反応器内に設けた蒸発室と反応室における温度差による熱膨張差を効果的に吸収して、熱歪みによる損傷を防止できる船舶用排ガス脱硝反応容器および船舶用排ガス脱硝設備を提供することを目的とする。   The present invention solves the above-mentioned problems and effectively absorbs the thermal expansion difference due to the temperature difference between the evaporation chamber and the reaction chamber provided in the denitration reactor, thereby preventing damage due to thermal distortion. It aims at providing the exhaust gas denitration equipment for containers and ships.

請求項1記載の発明は、
筒状に形成された反応容器内に、排ガス中に尿素水またはアンモニア水を吹き込む蒸発室と、尿素水またはアンモニア水が吹き込まれた排ガスを接触させる触媒ユニットを設置した反応室とを設けた船舶用排ガス脱硝反応容器であって、
容器本体内に、容器軸心方向に沿う隔壁により区画された蒸発室と反応室とを設けるとともに、前記蒸発器に未処理ガス出口を設け、
前記隔壁を、容器軸心および容器の横断面に沿う方向に伸縮して蒸発室と反応室の構成部材の熱膨張差を吸収できる熱膨張吸収構造とし、
当該熱膨張吸収構造は、
容器本体の胴殻体内面で容器軸心方向に沿う隔壁基材に、蒸発室側に取り付けられた主仕切り板と、反応室側に取り付けられて前記主仕切り板との間に一定隙間をあけて配置されたかつ触媒ユニットが取り付けられた副仕切り板と、からなる二重壁構造とするとともに、隔壁基材とこれら主仕切り板および副仕切り板との間に、容器軸心方向に所定範囲で移動自在な軸心方向スライド機構を具備し、
さらに、副仕切り板の排ガス流送方向の前後端部で、副仕切り板と主仕切り板との間に、副仕切り板および主仕切り板の容器軸心方向および容器の横断面に沿う方向の熱膨張による変位に追従可能な可動シール部を設けたものである。
The invention described in claim 1
A vessel provided with a reaction chamber provided with an evaporation chamber for blowing urea water or ammonia water into exhaust gas and a catalyst unit for contacting the exhaust gas into which urea water or ammonia water is blown, in a cylindrical reaction vessel An exhaust gas denitration reaction vessel,
In the container body, provided with an evaporation chamber and a reaction chamber partitioned by a partition along the container axial direction, and provided with an untreated gas outlet in the evaporator,
The partition wall is a thermal expansion absorption structure capable of absorbing the difference in thermal expansion between the constituent members of the evaporation chamber and the reaction chamber by expanding and contracting in the direction along the container axis and the cross section of the container,
The thermal expansion absorption structure is
A constant gap is formed between the main partition plate attached to the evaporation chamber side and the main partition plate attached to the reaction chamber side on the partition wall base material along the container axial direction on the inner surface of the shell of the container body. And a sub-partition plate to which the catalyst unit is attached, and a double wall structure, and a predetermined range in the container axial direction between the partition base material and the main partition plate and the sub-partition plate. It is equipped with an axial direction slide mechanism that is freely movable at
Further, at the front and rear end portions of the sub partition plate in the exhaust gas flow direction, heat between the sub partition plate and the main partition plate in the container axial direction of the sub partition plate and the main partition plate and in the direction along the cross section of the container. A movable seal portion capable of following displacement due to expansion is provided.

請求項2記載の発明は、請求項1記載の構成において、
軸心方向スライド機構は、主仕切り板および副仕切り板と、隔壁基材の一方に容器軸方向に形成されたガイド部と、他方に形成されて前記ガイド部にスライド自在に係合される被ガイド部材とを具備したものである。
The invention according to claim 2 is the configuration according to claim 1,
The axial direction slide mechanism includes a main partition plate and a sub-partition plate, a guide portion formed on one side of the partition base material in the container axial direction, and a cover formed on the other and slidably engaged with the guide portion. And a guide member.

請求項3記載の発明は、請求項1または2記載の構成において、
可動シール部は、固定端が主仕切り板および副仕切り板の端部の一方に取り付けられて、遊端側が他方に摺接される弾性シール板を設けたものである。
The invention according to claim 3 is the configuration according to claim 1 or 2,
The movable seal portion is provided with an elastic seal plate whose fixed end is attached to one of the end portions of the main partition plate and the sub partition plate and whose free end side is in sliding contact with the other.

請求項4記載の発明は、
請求項1乃至3のいずれかに記載の船舶用排ガス脱硝反応容器と、
反応室から脱硝ガス排出管を介して排ガスを給気口に供給する排ガス過給機と、
当該排ガス過給機の給気口と前記蒸発室の未処理ガス出口とを接続するバイパス管と、
当該バイパス管を開閉可能な排ガス切換弁と、
少なくとも前記脱硝ガス排出管に介在されて脱硝ガス排出管を開閉可能な排ガス開閉弁と、を具備し、
蒸発室を、複数のディーゼルエンジンから排出される排ガスを合流して前記排ガス過給機に排ガスを給気するマニホールドに兼用したものである。
The invention according to claim 4
A marine exhaust gas denitration reaction vessel according to any one of claims 1 to 3,
An exhaust gas supercharger that supplies exhaust gas from the reaction chamber to the intake port via a denitration gas discharge pipe;
A bypass pipe connecting the air supply port of the exhaust gas supercharger and the untreated gas outlet of the evaporation chamber;
An exhaust gas switching valve capable of opening and closing the bypass pipe;
An exhaust gas on-off valve capable of opening and closing the denitration gas discharge pipe interposed at least in the denitration gas discharge pipe,
The evaporating chamber is also used as a manifold for joining exhaust gases discharged from a plurality of diesel engines and supplying the exhaust gas to the exhaust gas supercharger.

請求項1記載の発明によれば、反応容器内に、隔壁により区画された蒸発室と反応室とを一体に設け、隔壁に設けた熱膨張吸収構造に、主仕切り板と副仕切り板とを一定の隙間を開けて配置した二重壁構造を設けて、容器の横断面に沿う方向の伸縮を吸収し、隔壁基材と主仕切り板および副仕切り板の取り付け部に、軸心方向スライド機構を設けて、容器軸方向の伸縮を吸収することができる。したがって、蒸発室の排ガスを未処理排ガス出口から排出し、反応室に排ガスを導入しない非脱硝処理時に、蒸発室が高温で反応室が低温の状態となることがあっても、隔壁の熱膨張吸収構造により伸縮を効果的に吸収することができ、反応容器に熱歪みによる損傷が生じるのを未然に防止することができる。   According to the first aspect of the present invention, the reaction chamber is integrally provided with the evaporation chamber and the reaction chamber partitioned by the partition, and the main partition plate and the sub partition plate are provided in the thermal expansion absorption structure provided in the partition. A double wall structure with a certain gap is provided to absorb expansion and contraction in the direction along the transverse cross section of the container, and an axial direction sliding mechanism is attached to the partition base, the main partition plate and the sub partition plate. Can be provided to absorb expansion and contraction in the container axial direction. Therefore, when the exhaust gas in the evaporation chamber is discharged from the untreated exhaust gas outlet and the exhaust gas is not introduced into the reaction chamber, the thermal expansion of the partition wall even if the evaporation chamber is hot and the reaction chamber is cold Expansion and contraction can be effectively absorbed by the absorption structure, and damage to the reaction vessel due to thermal distortion can be prevented in advance.

請求項2記載の発明によれば、軸心方向スライド機構を、ガイド部とこのガイド部にスライド自在に係合される被ガイド部で構成することにより、主仕切り板と副仕切り板の熱膨張差による軸心方向の伸縮を効果的に吸収することができる。   According to the second aspect of the present invention, the axial direction sliding mechanism is constituted by the guide portion and the guided portion that is slidably engaged with the guide portion, so that the thermal expansion of the main partition plate and the sub partition plate is achieved. The expansion and contraction in the axial direction due to the difference can be effectively absorbed.

請求項3記載の発明によれば、副仕切り板の前後端部で副仕切り板と主仕切り板との間に弾性シール板を設けたので、副仕切り板および主仕切り板における容器軸心方向および容器の横断面に沿う方向の熱膨張による変位に対応して、弾性シール板が変形して追従させることができ、主仕切り板と副仕切り板の隙間を確実にシールすることができて、排ガスの吹き抜けを確実に防止することができる。   According to the invention of claim 3, since the elastic seal plate is provided between the sub partition plate and the main partition plate at the front and rear end portions of the sub partition plate, the container axial direction of the sub partition plate and the main partition plate and Corresponding to displacement due to thermal expansion in the direction along the cross section of the container, the elastic seal plate can be deformed and followed, and the gap between the main partition plate and the sub partition plate can be reliably sealed, and the exhaust gas Can be surely prevented.

請求項4記載の発明によれば、NOx非規制海域などで排ガスを脱硝処理しない時に、排ガス切換弁を開放してバイパス管を連通し、ガス遮断弁を閉鎖して連通部や脱硝ガス排出管を遮断し、複数のディーゼルエンジンから排出されて蒸発室で合流された排ガスを、蒸発室の未処理排ガス口からバイパス管を介して排ガス過給機に導入することができる。この場合、排ガスが導入される蒸発室と、排ガスが導入されない反応室との間に温度差が生じ、隔壁の主仕切り板と副仕切り板とに熱膨張による伸縮差が発生しても、隔壁の熱膨張吸収構造の一部である二重壁構造により、隔壁の容器の横断面に沿う方向の伸縮差を吸収することができ、また隔壁の熱膨張吸収構造の残部である軸心方向スライド機構により容器軸方向の伸縮差を吸収することができる。したがって、蒸発室と反応室との温度差による熱歪みを効果的に吸収できて、反応容器の構成部材が熱歪みにより損傷されるのを未然に防止することができる。   According to the fourth aspect of the present invention, when the exhaust gas is not denitrated in the NOx non-regulated sea area or the like, the exhaust gas switching valve is opened to connect the bypass pipe, and the gas cutoff valve is closed to connect the communication section or the denitration gas exhaust pipe. The exhaust gas discharged from a plurality of diesel engines and joined in the evaporation chamber can be introduced into the exhaust gas supercharger from the untreated exhaust port of the evaporation chamber through the bypass pipe. In this case, even if a temperature difference occurs between the evaporation chamber into which the exhaust gas is introduced and the reaction chamber into which the exhaust gas is not introduced, and expansion and contraction due to thermal expansion occurs between the main partition plate and the sub partition plate of the partition wall, The double wall structure, which is a part of the thermal expansion absorption structure, can absorb the expansion and contraction difference in the direction along the cross section of the partition wall container, and the axial slide that is the remainder of the thermal expansion absorption structure of the partition wall The mechanism can absorb the difference in expansion and contraction in the container axial direction. Therefore, it is possible to effectively absorb the thermal strain due to the temperature difference between the evaporation chamber and the reaction chamber, and to prevent the constituent members of the reaction vessel from being damaged by the thermal strain.

本発明に係る船舶用排ガス脱硝設備の実施例を示し、脱硝時を説明する構成図である。It is a block diagram which shows the Example of the exhaust gas denitration equipment for ships which concerns on this invention, and demonstrates the time of denitration. 非脱硝時の船舶用排ガス脱硝設備を説明する構成図である。It is a block diagram explaining the exhaust gas denitration equipment for ships at the time of non-denitration. 船舶用排ガス脱硝反応容器を示す横断面図である。It is a cross-sectional view showing a marine exhaust gas denitration reaction vessel. 排ガス脱硝反応容器の部分縦断面図である。It is a partial longitudinal cross-sectional view of an exhaust gas denitration reaction vessel. 脱硝ユニットの斜視図である。It is a perspective view of a denitration unit. 軸心方向スライド機構を示す斜視図である。It is a perspective view which shows an axial center direction slide mechanism. (a)〜(c)は、それぞれ軸心方向スライド機構の他の実施例を示す斜視図である。(A)-(c) is a perspective view which shows the other Example of an axial center direction sliding mechanism, respectively. 可動シール部を示す縦断面図である。It is a longitudinal cross-sectional view which shows a movable seal part. 可動シール部の他の実施例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other Example of a movable seal part. ユニット集合体の外周支持具を示す側面図である。It is a side view which shows the outer periphery support tool of a unit aggregate. (a)および(b)は、ユニット集合体の保持具を示し、(a)は押さえ具、(b)は固定具を示す。(A) And (b) shows the holder of a unit assembly, (a) shows a pressing tool, (b) shows a fixing tool. 固定具を示す部分斜視図である。It is a fragmentary perspective view which shows a fixing tool. 排ガス脱硝反応容器の他の実施例を示す横断面図である。It is a cross-sectional view showing another embodiment of the exhaust gas denitration reaction vessel.

[実施例]
以下、本発明の実施例を図面に基づいて説明する。
(船舶用排ガス脱硝設備)
図1は、本発明に係る船舶用ディーゼルエンジン13の燃焼室から排出される排ガスを脱硝処理するための船舶用排ガス脱硝設備の構成を示し、11は脱硝反応容器、12はディーゼルエンジン13の排ガスにより駆動される排ガス過給機である。脱硝反応容器11の容器本体20は、容器軸心O方向に沿う隔壁21により、下部に排ガス中に尿素水(又はアンモニア水)を吹き込む蒸発室23と、上部に尿素水が吹き込まれた排ガスを複数の触媒ユニット24に接触させてNOxを還元する反応室25とが区画形成され、蒸発室23と反応室25が一体に収容されている。
[Example]
Embodiments of the present invention will be described below with reference to the drawings.
(Ship exhaust gas denitration equipment)
FIG. 1 shows a configuration of a marine exhaust gas denitration facility for denitrating exhaust gas discharged from a combustion chamber of a marine diesel engine 13 according to the present invention, 11 is a denitration reactor, and 12 is exhaust gas of the diesel engine 13. It is an exhaust gas supercharger driven by. The vessel body 20 of the denitration reaction vessel 11 has an evaporation chamber 23 for blowing urea water (or ammonia water) into the exhaust gas at the lower portion and a flue gas in which urea water is blown at the upper portion by the partition wall 21 along the container axis O direction. A reaction chamber 25 for reducing NOx by bringing it into contact with a plurality of catalyst units 24 is partitioned, and the evaporation chamber 23 and the reaction chamber 25 are accommodated integrally.

脱硝反応容器11の容器本体20は、たとえば円筒状の胴殻体20Bの両端部が湾曲凸状の耐圧用端板20R,20Lにより閉鎖された耐圧容器に形成されている。胴殻体20Bの底部に、ディーゼルエンジン13における複数(図は4室)の燃焼室からそれぞれ蒸発室23に排ガスを導入する複数の排ガス入口26が形成され、この蒸発室23が排ガスを合流させる排ガスマニホールドに兼用されている。また胴殻体20Bの一方の端板20Lの下部近傍に、蒸発室23に臨んで開口される未処理ガス出口27が形成されている。さらに胴殻体20Bの一方の端板20Lの上部近傍に、反応室25に臨んで脱硝排ガスを排出する脱硝ガス出口28が形成されている。   The container body 20 of the denitration reaction container 11 is formed in a pressure resistant container in which both ends of a cylindrical shell body 20B are closed by curved pressure-proof end plates 20R, 20L, for example. A plurality of exhaust gas inlets 26 for introducing exhaust gas from a plurality of combustion chambers (four chambers in the figure) in the diesel engine 13 to the evaporation chamber 23 are formed at the bottom of the shell 20B, and the evaporation chamber 23 joins the exhaust gas. Also used for exhaust gas manifold. Further, an untreated gas outlet 27 is formed near the lower part of one end plate 20L of the shell body 20B. Further, a denitration gas outlet 28 is formed in the vicinity of the upper portion of one end plate 20L of the shell 20B so as to face the reaction chamber 25 and discharge the denitration exhaust gas.

排ガス過給機12は、互いに入出力軸で連結されたタービン部12Tとコンプレッサ部12Cとを具備している。タービン部12Tでは、ディーゼルエンジン13の燃焼室から排出された未処理排ガスまたは脱硝排ガスを脱硝反応容器11を介して給気口12iに供給し、排気口12oから放出された排ガスを排気煙突から排出する。コンプレッサ部12Cは、大気を吸気して加圧し、加圧された燃焼用空気をディーゼルエンジン13の燃焼室に供給する。   The exhaust gas supercharger 12 includes a turbine unit 12T and a compressor unit 12C that are connected to each other via an input / output shaft. In the turbine section 12T, the untreated exhaust gas or the denitrated exhaust gas discharged from the combustion chamber of the diesel engine 13 is supplied to the intake port 12i through the denitration reaction vessel 11, and the exhaust gas discharged from the exhaust port 12o is discharged from the exhaust chimney. To do. The compressor unit 12 </ b> C sucks and pressurizes the atmosphere, and supplies the pressurized combustion air to the combustion chamber of the diesel engine 13.

脱硝反応容器11の脱硝ガス出口28とタービン部12Tの給気口12iとの間に脱硝ガス排出管14が接続されている。この脱硝ガス排出管14の給気口12i近傍に、脱硝反応容器11の未処理ガス出口27に接続されたバイパス管16が接続されている。そしてこの接続部の上流側の脱硝ガス排出管14に、バタフライ弁からなる脱硝出口弁(ガス遮断弁)15が設けられて、脱硝ガス排出管14を閉鎖可能に構成している。またバイパス管16には、バタフライ弁からなる排ガス切換弁17が設けられている。   A denitration gas discharge pipe 14 is connected between the denitration gas outlet 28 of the denitration reaction vessel 11 and the air supply port 12i of the turbine section 12T. A bypass pipe 16 connected to the untreated gas outlet 27 of the denitration reaction vessel 11 is connected to the vicinity of the air inlet 12 i of the denitration gas discharge pipe 14. A denitration outlet valve (gas shutoff valve) 15 comprising a butterfly valve is provided on the denitration gas discharge pipe 14 upstream of the connecting portion, and the denitration gas discharge pipe 14 can be closed. Further, the bypass pipe 16 is provided with an exhaust gas switching valve 17 composed of a butterfly valve.

(脱硝反応容器)
容器本体20の一方の端板20Lには、蒸発室23の排ガス中に尿素水またはアンモニア水を吹き込むスプレーノズル22が配置されている。また容器本体20の他方の端板20R側に連通部30が形成されている。この連通部30は、隔壁21と蒸発室23の胴殻体20Bとの間に容器の横断面に沿う方向に取り付けられて蒸発室23を閉鎖する区画壁31と、隔壁21(区画壁31)と他方の端板20Rとの間に形成された中間通路32と、この区画壁31に設けられた蒸発室出口弁(ガス遮断弁)33と、蒸発室23と反応室25とを等圧に調整するために区画壁31に形成された単数または複数の調圧口34とで構成されている。なお、ここで蒸発室出口弁33を削除して開口部を形成し、脱硝出口弁15を閉鎖することにより、反応室25や脱硝ガス排出管14の通気抵抗を利用して、すべての排ガスを蒸発室23から排ガス過給機12のタービン部12Tに導入することもできる。この場合、蒸発室23と反応室25との間に圧力差が生じないため、調圧口34を形成する必要がない。
(Denitration reaction vessel)
A spray nozzle 22 that blows urea water or ammonia water into the exhaust gas in the evaporation chamber 23 is disposed on one end plate 20 </ b> L of the container body 20. A communication portion 30 is formed on the other end plate 20 </ b> R side of the container body 20. The communication portion 30 is attached between the partition wall 21 and the shell body 20B of the evaporation chamber 23 in a direction along the cross section of the container, and closes the evaporation chamber 23, and the partition wall 21 (partition wall 31). Between the first end plate 20R and the other end plate 20R, the evaporating chamber outlet valve (gas shut-off valve) 33 provided in the partition wall 31, the evaporating chamber 23 and the reaction chamber 25 at equal pressure. In order to adjust, it is comprised with the single or several pressure regulation opening 34 formed in the partition wall 31. FIG. Here, by removing the evaporation chamber outlet valve 33 to form an opening and closing the denitration outlet valve 15, all the exhaust gas is removed using the ventilation resistance of the reaction chamber 25 and the denitration gas discharge pipe 14. It can also introduce | transduce into the turbine part 12T of the exhaust gas supercharger 12 from the evaporation chamber 23. FIG. In this case, there is no pressure difference between the evaporation chamber 23 and the reaction chamber 25, so there is no need to form the pressure adjusting port 34.

(反応室)
図3,図4に示すように、反応室25には、隔壁21と胴殻体20Bの間に、複数の触媒ユニット24が上下、左右方向に積み重ねて配置され、かつ容器軸心O方向に連結されてユニット集合体41が形成されている。この触媒ユニット24は、たとえば図5に示すように、対抗する側面に切り欠き穴42aが形成された収納枠体42内に、ハニカム状断面の触媒エレメント43が収容されたもので、ユニット集合体41の断面形態として、収納枠体42を、図示した正方形断面以外に、図13に示すように、長方形断面や台形断面のものが採用される。
(Reaction room)
As shown in FIGS. 3 and 4, in the reaction chamber 25, a plurality of catalyst units 24 are stacked in the vertical and horizontal directions between the partition wall 21 and the shell 20 </ b> B, and in the container axis O direction. The unit aggregate 41 is formed by being connected. For example, as shown in FIG. 5, the catalyst unit 24 is a unit assembly in which a catalyst element 43 having a honeycomb-shaped cross section is housed in a housing frame 42 in which a notched hole 42a is formed on the opposite side surface. As a cross-sectional form of 41, a rectangular or trapezoidal cross section as shown in FIG. 13 is adopted as the storage frame 42 other than the illustrated square cross section.

このユニット集合体41は、胴殻体20B内で、間隔を調整可能な複数の外周支持具44を介して支持され、一端側(排ガス流の下流側)に、固定具45と、胴殻体20Bとユニット集合体41との空間を閉鎖する外周閉鎖板46が配置され、また他端側(排ガス流の上流側)に押さえ具47が配置されて保持されている。なお、図4に示すA−A断面矢視線は、図3の断面位置を示している。   This unit assembly 41 is supported in the shell 20B through a plurality of outer peripheral supports 44 whose intervals can be adjusted, and on one end side (downstream side of the exhaust gas flow), a fixing tool 45 and a shell body An outer peripheral closing plate 46 for closing the space between 20B and the unit assembly 41 is disposed, and a pressing tool 47 is disposed and held on the other end side (upstream side of the exhaust gas flow). In addition, the AA cross-section arrow line shown in FIG. 4 has shown the cross-sectional position of FIG.

外周支持具44は、図10に示すように、軸心に対して所定角度傾斜する傾斜面で切断されかつ傾斜面で摺動可能な一対のテーパスリーブ44a,44bのうち、一方のテーパスリーブ44aが触媒ユニット24の収納枠体42に取り付けられ、他方のテーパスリーブ44bが連結部材44cを介して胴殻体20Bに取り付けられている。そしてテーパスリーブ44a,44bの軸穴44e,44fに遊嵌された連結ボルト・ナット44dによりスライド限が規制され、連結ボルト・ナット44dによるテーパスリーブ44a,44bのスライド限の範囲で、胴殻体20Bとユニット集合体41の熱膨張による伸縮差を吸収することができる。したがって、胴殻体20Bと隔壁21との間で、これら外周支持具44によりユニット集合体41の外周部分が支持される。   As shown in FIG. 10, the outer peripheral support tool 44 is cut by an inclined surface inclined at a predetermined angle with respect to the axis and is one of the tapered sleeves 44a and 44b slidable on the inclined surface. Is attached to the storage frame body 42 of the catalyst unit 24, and the other taper sleeve 44b is attached to the shell body 20B via a connecting member 44c. The sliding limit is regulated by the connecting bolts / nuts 44d loosely fitted in the shaft holes 44e, 44f of the tapered sleeves 44a, 44b, and the shell body is within the sliding limit of the tapered sleeves 44a, 44b by the connecting bolts / nuts 44d. The expansion / contraction difference due to the thermal expansion of 20B and the unit assembly 41 can be absorbed. Accordingly, the outer peripheral portion of the unit assembly 41 is supported by the outer peripheral support 44 between the shell 20B and the partition wall 21.

ユニット集合体41の排ガス流の下流端に設置される固定具45は、図11(b)および図12に示すように、触媒ユニット24の配置パターンに対応する略格子状の板状枠体45aを具備し、この板状枠体45aは、面取りされた前端部が、隣接する触媒ユニット24同士の接触線に当接される。そして、板状枠体45aの外周端部が取付部材45bにより胴殻体20Bにそれぞれ連結固定されて、ユニット集合体41の排ガスの下流側への移動を規制している。外周閉鎖板46は、取付部材45bの下流側に設置されて排ガスを遮蔽している。なお、板状枠体45aの外縁部は、半割の断面形状に形成されている。   The fixture 45 installed at the downstream end of the exhaust gas flow of the unit assembly 41 is a substantially grid-like plate-like frame 45a corresponding to the arrangement pattern of the catalyst units 24, as shown in FIGS. In this plate-like frame body 45a, the chamfered front end is brought into contact with the contact line between the adjacent catalyst units 24. And the outer peripheral edge part of the plate-shaped frame 45a is each connected and fixed to the trunk | drum 20B by the attachment member 45b, and the movement to the downstream of the waste gas of the unit assembly 41 is controlled. The outer periphery closing plate 46 is installed on the downstream side of the attachment member 45b to shield the exhaust gas. In addition, the outer edge part of the plate-shaped frame 45a is formed in the half cross-sectional shape.

ユニット集合体41の排ガス流の上流端に設置される押さえ具47は、図11(a)に示すように、触媒ユニット24の配置パターンに対応する略格子状の線状枠体47aを具備し、この線状枠体47aは、円形断面のロッド状に形成されて、隣接する触媒ユニット24同士の接触部前面に形成されるテーパ溝に嵌合される。そして、胴殻体20Bに立設されたブラケット47bに、容器軸心O方向の押さえボルト47cが嵌合されて、ロックナット47dにより加圧状態で固定されており、押さえボルト47cの先端部に押さえ板47eを介して線状枠体47aが触媒ユニット24に押し付けられ、この押さえ具47によりユニット集合体41が固定具45との間で容器軸心O方向に位置決め固定されている。なお、線状枠体47aを縦横断面に沿って複数に分割された分割構造とし、組み立て使用してもよい。   The presser 47 installed at the upstream end of the exhaust gas flow of the unit assembly 41 includes a substantially grid-like linear frame 47a corresponding to the arrangement pattern of the catalyst units 24, as shown in FIG. The linear frame 47a is formed in a rod shape having a circular cross section, and is fitted into a tapered groove formed in front of the contact portion between the adjacent catalyst units 24. A holding bolt 47c in the direction of the container axis O is fitted to a bracket 47b erected on the shell 20B, and is fixed in a pressurized state by a lock nut 47d, and is attached to the tip of the holding bolt 47c. The linear frame 47a is pressed against the catalyst unit 24 via the pressing plate 47e, and the unit assembly 41 is positioned and fixed in the direction of the container axis O with the fixing tool 45 by the pressing tool 47. The linear frame 47a may be divided into a plurality of divided structures along the vertical and horizontal cross sections, and may be assembled and used.

(容器本体1)
図3に示すように、この容器本体20内で胴殻体20B内に設置される隔壁21が、略容器軸心Oをコーナー部とする鉛直壁部21Vと水平壁部21Hからなり、隔壁21で区画された右下の略1/4が蒸発室23に、残部が反応室25にそれぞれ形成されている。ここで、容器本体20を円筒形に形成しているが、四角筒や五角形以上の多角筒形などの筒形であってもよい。
(Container body 1)
As shown in FIG. 3, the partition wall 21 installed in the shell body 20 </ b> B in the container main body 20 is composed of a vertical wall portion 21 </ b> V and a horizontal wall portion 21 </ b> H having a substantially container axis O as a corner portion. In the lower right, approximately 1/4 is formed in the evaporation chamber 23, and the remainder is formed in the reaction chamber 25. Here, although the container main body 20 is formed in a cylindrical shape, it may be a cylindrical shape such as a square tube or a polygonal tube shape of pentagon or higher.

この隔壁21は、容器軸心Oおよび容器の横断面に沿う方向に伸縮して蒸発室23と反応室25との温度差による構成部材の熱膨張差を吸収できる熱膨張吸収構造に構成されている。   The partition wall 21 is configured to have a thermal expansion absorption structure that can expand and contract in a direction along the container axis O and the cross section of the container to absorb a difference in thermal expansion of the constituent members due to a temperature difference between the evaporation chamber 23 and the reaction chamber 25. Yes.

すなわち、隔壁21は、胴殻体20Bの内面で容器軸心O方向に沿う隔壁基材51と、この隔壁基材51の蒸発室側に取り付けられた主仕切り板52と、隔壁基材51の反応室25側で、主仕切り板52との間に、容器の横断面に沿う方向の熱膨張を吸収可能な一定の隙間54をあけて取り付けられた副仕切り板53からなる二重壁構造としている。この隔壁基材51により一定の隙間54が保持されていることで、主、副仕切り板52,53の容器の横断面に沿う方向の熱膨張(差)を吸収することができる。そして、隔壁基材51とこれら主仕切り板52および副仕切り板53との間に、容器軸心O方向の熱膨張を所定範囲で吸収可能な軸心方向スライド機構55が設けられている。この軸心方向スライド機構55は、図6に示すように、たとえば隔壁基材51に容器軸心O方向に一定間隔ごとに複数の調整ボルト(被ガイド部)55aを接線方向に貫設し、主、副仕切り板52,53に調整ボルト55aがそれぞれスライド自在に嵌合される長穴(ガイド部)55bが容器軸心Oに平行に形成されて、主、副仕切り板52,53における容器軸心O方向の熱膨張(差)を吸収することができる。そして、これら二重壁構造と軸心方向スライド機構55とで熱膨張吸収構造が構成される。   That is, the partition wall 21 includes a partition wall base 51 along the container axis O direction on the inner surface of the shell body 20B, a main partition plate 52 attached to the evaporation chamber side of the partition base 51, and the partition base 51 On the reaction chamber 25 side, a double wall structure comprising a sub partition plate 53 attached with a certain gap 54 capable of absorbing thermal expansion in the direction along the cross section of the container between the main partition plate 52 and the main partition plate 52. Yes. Since the fixed gap 54 is held by the partition wall base 51, the thermal expansion (difference) in the direction along the transverse cross section of the container of the main and sub partition plates 52 and 53 can be absorbed. An axial direction slide mechanism 55 that can absorb thermal expansion in the container axis O direction within a predetermined range is provided between the partition wall substrate 51 and the main partition plate 52 and the sub partition plate 53. As shown in FIG. 6, the axial direction slide mechanism 55 includes a plurality of adjustment bolts (guided portions) 55 a penetrating in a tangential direction at regular intervals in the direction of the container axis O in the partition wall base 51, for example. A long hole (guide portion) 55b into which the adjustment bolt 55a is slidably fitted to the main and sub partition plates 52 and 53 is formed in parallel to the container axis O, and the containers in the main and sub partition plates 52 and 53 are formed. Thermal expansion (difference) in the direction of the axis O can be absorbed. The double wall structure and the axial direction slide mechanism 55 constitute a thermal expansion absorption structure.

なお、ここで軸心方向スライド機構70を、図7(a)に示すように、調整ボルト(被ガイド部)55aを主、副仕切り板52,53に固定し、長穴(ガイド部)55bを隔壁基材51に設けることもできる。また調整ボルト55aおよび長穴55bに替えて、軸心方向スライド機構71を図7(b)に示すように、突条部(被ガイド部)71aとこれを案内するガイドレール(ガイド部)71bとで構成することができる。すなわち、隔壁基材51に、連結具(ボルト・ナット)や溶接などの連結手段を介して主、副仕切り板52,53が固定されて隙間54を保持させ、さらに隔壁基材51を胴殻体20Bから分離する。そして、隔壁基材51底部両側に一対の突条部(被ガイド部)71aを容器軸心Oに平行に一体形成し、胴殻体20Bに、両突条部71aをそれぞれスライド自在に案内するガイドレール(ガイド部)71bを固定したものである。また図7(c)に示すように、軸心方向スライド機構72を、主、副仕切り板52,53の縁部外面に突条部(被ガイド部)72aを容器軸心Oに平行に一体に取り付け、胴殻体20Bに、両突条部72aをそれぞれスライド自在に案内するガイドレール(ガイド部)72bを固定したものでもよい。このように、図7(a)〜(c)に示す他の実施例の軸心方向スライド機構70〜72も、先の実施例と同様の作用効果を奏することができる。   Here, as shown in FIG. 7 (a), the axial direction sliding mechanism 70 is fixed to the main and sub partition plates 52 and 53, and an elongated hole (guide portion) 55b. Can also be provided on the partition wall substrate 51. Further, in place of the adjusting bolt 55a and the elongated hole 55b, as shown in FIG. 7B, the axial direction sliding mechanism 71 has a protruding portion (guided portion) 71a and a guide rail (guide portion) 71b for guiding it. And can be configured. That is, the main and sub partition plates 52 and 53 are fixed to the partition wall base 51 via connecting means (bolts and nuts), welding, and the like to hold the gap 54, and the partition wall base 51 is further connected to the shell. Separate from body 20B. Then, a pair of protrusions (guided parts) 71a are integrally formed on both sides of the bottom of the partition wall base 51 in parallel with the container axis O, and both protrusions 71a are slidably guided to the shell 20B. A guide rail (guide portion) 71b is fixed. Further, as shown in FIG. 7 (c), the axial direction slide mechanism 72 is integrated with the rim portion (guided portion) 72a in parallel with the container axis O on the outer surface of the edge of the main and sub partition plates 52 and 53. And a guide rail (guide portion) 72b that slidably guides both protrusions 72a to the shell body 20B. Thus, the axial direction slide mechanisms 70 to 72 of the other embodiments shown in FIGS. 7A to 7C can also exhibit the same operational effects as the previous embodiments.

副仕切り板53は、ユニット集合体41の配置部位に対応して配置されており、触媒ユニット24が取り付けられている。この副仕切り板53の排ガスの上流側(他端側)および下流側(一端側)に、副仕切り板53と主仕切り板52との隙間54における排ガスの吹き抜けを防止する可動シール部56が設けられており、この可動シール部56は、副仕切り板53の容器軸心O方向および容器の横断面に沿う方向の変位に追従して排ガスをシールすることができる。   The sub partition plate 53 is arranged corresponding to the arrangement site of the unit assembly 41, and the catalyst unit 24 is attached thereto. On the upstream side (the other end side) and the downstream side (one end side) of the exhaust gas of the sub partition plate 53, a movable seal portion 56 for preventing the exhaust gas from blowing through the gap 54 between the sub partition plate 53 and the main partition plate 52 is provided. The movable seal portion 56 can seal the exhaust gas following the displacement of the sub partition plate 53 in the direction of the container axis O and in the direction along the cross section of the container.

すなわち、この可動シール部56は、図8に示すように、固定端が主仕切り板52に取付ビス56bを介して取り付けられ、遊端側が副仕切り板53の端部に摺接される耐熱性の弾性シール板56aにより構成されている。この弾性シール板56aは遊端側が湾曲状断面となって副仕切り板53の端部に圧接され、主仕切り板52に対して副仕切り板53が容器軸心O方向の変位βおよび容器の横断面に沿う方向に変位γの範囲で移動しても、その弾性により、変位に追従して副仕切り板53の端部に摺接され、隙間54のシール状態を維持することができる。   That is, as shown in FIG. 8, the movable seal portion 56 has a fixed end attached to the main partition plate 52 via the mounting screw 56b, and a free end side that is in sliding contact with the end portion of the sub partition plate 53. The elastic sealing plate 56a. The elastic seal plate 56a has a curved cross section on the free end side, and is pressed against the end of the sub partition plate 53. The sub partition plate 53 is displaced from the main partition plate 52 by the displacement β in the container axis O direction and the crossing of the container. Even if it moves within the range of the displacement γ in the direction along the surface, it follows the displacement and slides on the end of the sub partition plate 53 due to its elasticity, so that the sealed state of the gap 54 can be maintained.

もちろん、図9に示すように、弾性シール板57aの固定端を副仕切り板53の端板57cに取付ビス57bを介して取り付け、遊端側を主仕切り板52の表面に摺接させて可動シール部57を形成することもできる。   Of course, as shown in FIG. 9, the fixed end of the elastic seal plate 57a is attached to the end plate 57c of the sub partition plate 53 via the mounting screw 57b, and the free end side is slidably contacted with the surface of the main partition plate 52. The seal part 57 can also be formed.

(実施例1の使用方法)
上記構成において、NOx規制海域では、排ガス切換弁17を閉鎖操作してバイパス管16を閉じ、脱硝出口弁15を開放操作して脱硝ガス排出管14を開放し、蒸発室出口弁33を開放操作して蒸発室23と反応室25とを連通する。そして、ディーゼルエンジン13の燃焼室からそれぞれ排出される排ガスを脱硝反応容器11の蒸発室23に導入し混合する。そしてスプレーノズル22から尿素水(又はアンモニア水)を蒸発室23の排ガス中に吹き込む。さらに尿素水が吹き込まれた排ガスを、蒸発室23から蒸発室出口弁33、中間通路32を介して反応室25に導入し、触媒ユニット24を通過させて触媒エレメント43に接触させ、これにより排ガス中のNOxを還元する。次いで脱硝排ガスを脱硝ガス出口28から脱硝ガス排出管14を介して排ガス過給機12のタービン部12Tの給気口12iに導入し、排ガス過給機12を駆動した後、排気口12oから排気煙突を介して排出される。排ガス過給機12のコンプレッサ部12Cでは、燃焼用空気(大気)を吸引して圧縮し、ディーゼルエンジン13の燃焼室に供給する。
(How to use Example 1)
In the above configuration, in the NOx restricted sea area, the exhaust gas switching valve 17 is closed to close the bypass pipe 16, the denitration outlet valve 15 is opened to open the denitration gas discharge pipe 14, and the evaporation chamber outlet valve 33 is opened. Thus, the evaporation chamber 23 and the reaction chamber 25 are communicated. The exhaust gas discharged from the combustion chamber of the diesel engine 13 is introduced into the evaporation chamber 23 of the denitration reaction vessel 11 and mixed. Then, urea water (or ammonia water) is blown into the exhaust gas in the evaporation chamber 23 from the spray nozzle 22. Further, the exhaust gas into which urea water has been blown is introduced from the evaporation chamber 23 into the reaction chamber 25 via the evaporation chamber outlet valve 33 and the intermediate passage 32, and is allowed to pass through the catalyst unit 24 to be in contact with the catalyst element 43. NOx inside is reduced. Next, the denitration exhaust gas is introduced from the denitration gas outlet 28 through the denitration gas discharge pipe 14 to the intake port 12i of the turbine section 12T of the exhaust gas supercharger 12, and after driving the exhaust gas supercharger 12, the exhaust gas is exhausted from the exhaust port 12o. It is discharged through the chimney. In the compressor unit 12 </ b> C of the exhaust gas supercharger 12, combustion air (atmosphere) is sucked and compressed and supplied to the combustion chamber of the diesel engine 13.

この排ガス脱硝設備の運転時には、蒸発室23の構成部材も、反応室の構成部材も、それぞれ高温の排ガスに晒されることから同程度に熱膨張し、停止(冷温)時に比較して変化は少ない。   During operation of this exhaust gas denitration facility, both the constituent members of the evaporation chamber 23 and the constituent members of the reaction chamber are exposed to high-temperature exhaust gas, so that they thermally expand to the same extent and change less than when stopped (cold temperature). .

次いでNOx非規制海域になると、図2に示すように、スプレーノズル22からの尿素水の噴射を停止するとともに、排ガス切換弁17を開放してバイパス管16を連通し、脱硝出口弁15を閉鎖して脱硝ガス排出管14を閉じ、蒸発室出口弁33を閉鎖して蒸発室23と反応室25とを遮断する。これにより、ディーゼルエンジン13の燃焼室からそれぞれ排出される排ガスが脱硝反応容器11の蒸発室23に導入されて混合された後、バイパス管16からタービン部12Tの給気口12iに導入され、排ガス過給機12を駆動した後、排気口12oから排気煙突を介して排出される。   Next, in the NOx non-regulated sea area, as shown in FIG. 2, the injection of urea water from the spray nozzle 22 is stopped, the exhaust gas switching valve 17 is opened, the bypass pipe 16 is communicated, and the denitration outlet valve 15 is closed. Then, the denitration gas discharge pipe 14 is closed, the evaporation chamber outlet valve 33 is closed, and the evaporation chamber 23 and the reaction chamber 25 are shut off. As a result, the exhaust gas discharged from the combustion chamber of the diesel engine 13 is introduced into the evaporation chamber 23 of the denitration reaction vessel 11 and mixed, and then introduced from the bypass pipe 16 to the intake port 12i of the turbine section 12T. After the supercharger 12 is driven, it is discharged from the exhaust port 12o through the exhaust chimney.

この時、反応室25に高温の排ガスが導入されないため、蒸発室は高温に、反応室25は低温となる。この温度差により、隔壁21の主仕切り板52が熱膨張し、副仕切り板53が主仕切り板52ほど熱膨張しない。しかし、隔壁21が隙間54を有する二重壁構造であるため、脱硝反応容器11の横断面方向の熱膨張差が吸収される。また軸心方向スライド機構により、容器軸心O方向の熱膨張差が吸収され、熱歪みにより脱硝反応容器11が破損されることがない。   At this time, since high temperature exhaust gas is not introduced into the reaction chamber 25, the evaporation chamber is at a high temperature and the reaction chamber 25 is at a low temperature. Due to this temperature difference, the main partition plate 52 of the partition wall 21 is thermally expanded, and the sub partition plate 53 is not thermally expanded as much as the main partition plate 52. However, since the partition wall 21 has a double wall structure having the gap 54, the thermal expansion difference in the cross-sectional direction of the denitration reaction vessel 11 is absorbed. Further, the difference in thermal expansion in the container axis O direction is absorbed by the axial direction slide mechanism, and the denitration reaction vessel 11 is not damaged by thermal strain.

(実施例の効果)
上記実施例によれば、排ガスを脱硝処理しなくてもよいNOx非規制海域では、排ガス切換弁17を開放してバイパス管16を連通し、蒸発室出口弁33および脱硝出口弁15を閉じて連通部30および脱硝ガス排出管14を閉鎖し、複数のディーゼルエンジン13の燃焼室から排出された排ガスを蒸発室23内で合流させ、尿素水(またはアンモニア水)を吹き込むことなく未処理排ガスをバイパス管16から排ガス過給機12のタービン部12Tに導入することができる。この時、排ガスが導入される蒸発室23と、排ガスが導入されない反応室25との温度差により、隔壁21の主仕切り板52と副仕切り板53とに熱膨張差が発生しても、隔壁21の二重壁構造により、熱膨張による容器の横断面に沿う方向の伸縮差を吸収することができ、また隔壁21の軸心方向スライド機構55により、容器軸心O方向の熱膨張による伸縮差を吸収して、熱歪みによる脱硝反応容器11の隔壁21などの構成部材が損傷されるのを未然に防止することができる。
(Effect of Example)
According to the above embodiment, in the NOx non-regulated sea area where the exhaust gas need not be denitrated, the exhaust gas switching valve 17 is opened and the bypass pipe 16 is communicated, and the evaporation chamber outlet valve 33 and the denitration outlet valve 15 are closed. The communication part 30 and the denitration gas discharge pipe 14 are closed, exhaust gases discharged from the combustion chambers of the plurality of diesel engines 13 are merged in the evaporation chamber 23, and untreated exhaust gas is discharged without blowing urea water (or ammonia water). It can introduce into the turbine part 12T of the exhaust gas supercharger 12 from the bypass pipe 16. At this time, even if a difference in thermal expansion occurs between the main partition plate 52 and the sub partition plate 53 of the partition wall 21 due to a temperature difference between the evaporation chamber 23 into which the exhaust gas is introduced and the reaction chamber 25 into which the exhaust gas is not introduced, the partition wall The double wall structure 21 can absorb the expansion / contraction difference in the direction along the transverse cross section of the container due to thermal expansion, and the axial center slide mechanism 55 of the partition wall 21 allows expansion / contraction due to thermal expansion in the container axis O direction. By absorbing the difference, it is possible to prevent the structural members such as the partition wall 21 of the denitration reaction vessel 11 from being damaged due to thermal distortion.

また、軸心方向スライド機構55を、ガイド部である長穴55bと、この長穴55bにスライド自在に係合される被ガイド部である調整ボルト55aにより構成することにより、隔壁の軸心方向の熱膨張差による伸縮を効果的に吸収することができる。   Further, the axial direction slide mechanism 55 is constituted by an elongated hole 55b that is a guide portion and an adjustment bolt 55a that is a guided portion that is slidably engaged with the elongated hole 55b. The expansion and contraction due to the difference in thermal expansion can be effectively absorbed.

さらに、隔壁21では、主仕切り板52と副仕切り板53の開口端に、弾性シール板56aからなる可動シール部56を設けたので、主仕切り板52に対して副仕切り板53が変位しても、弾性シール板56aが追従して副仕切り板53に摺接されることにより、主仕切り板52と副仕切り板53との隙間を確実にシールすることができ、隔壁21の隙間54による排ガスの吹き抜けを防止することができる。   Further, in the partition wall 21, since the movable seal portion 56 made of the elastic seal plate 56 a is provided at the opening ends of the main partition plate 52 and the sub partition plate 53, the sub partition plate 53 is displaced with respect to the main partition plate 52. In addition, since the elastic seal plate 56a follows and is slidably contacted with the sub partition plate 53, the gap between the main partition plate 52 and the sub partition plate 53 can be reliably sealed, and the exhaust gas generated by the gap 54 of the partition wall 21 can be sealed. Can be prevented.

(容器本体の他の実施例)
容器本体20の他の実施例を図13を参照して説明する。先の実施例と同一部材には同一符号を付して説明を省略する。
(Another embodiment of the container body)
Another embodiment of the container body 20 will be described with reference to FIG. The same members as those in the previous embodiment are denoted by the same reference numerals and description thereof is omitted.

この容器本体80において、蒸発室83を、排ガスと尿素水(またはアンモニア水)を効率よく混合可能な円形断面に接近させるために、蒸発室83と反応室85とを区画する隔壁81は、隙間54を介して配置された主仕切り板52と副仕切り板53からなる二重壁構造に形成される。さらにこの隔壁81は、胴殻体80Bに垂設された外周鉛直壁部81Voおよび外周水平壁部81Hoの中間端部に、それぞれ反応室25側に傾斜する傾斜壁部81Vg,81Hgを介在させて中間鉛直壁部81Vmと中間水平壁部81Hmを形成し、これにより蒸発室83を反応室85側に拡張している。さらに、中間鉛直壁部81Vmと中間水平壁部81Hmのコーナー部に、隅部を削除する面取り斜壁部81Cを形成している。なお、隔壁81の二重壁構造や軸心方向スライド機構55や可動シール部56も同様に構成される。   In this container main body 80, in order to make the evaporation chamber 83 approach a circular cross section where the exhaust gas and urea water (or ammonia water) can be mixed efficiently, the partition wall 81 that partitions the evaporation chamber 83 and the reaction chamber 85 has a gap. 54 is formed in a double wall structure composed of a main partition plate 52 and a sub partition plate 53 arranged via 54. Further, the partition wall 81 has inclined wall portions 81Vg and 81Hg inclined to the reaction chamber 25 side at intermediate ends of the outer peripheral vertical wall portion 81Vo and the outer peripheral horizontal wall portion 81Ho suspended from the shell 80B. An intermediate vertical wall portion 81Vm and an intermediate horizontal wall portion 81Hm are formed, thereby expanding the evaporation chamber 83 to the reaction chamber 85 side. Further, a chamfered inclined wall portion 81C for removing the corner portion is formed at the corner portion of the intermediate vertical wall portion 81Vm and the intermediate horizontal wall portion 81Hm. The double wall structure of the partition wall 81, the axial direction slide mechanism 55, and the movable seal portion 56 are similarly configured.

このように断面形状を、ガス溜まりとなる隅部を無くして略円形断面に接近するように拡張して蒸発室83を形成することにより、排ガスの滞留を改善し、尿素水またはアンモニア水と排ガスとの混合状態を改善することができる。   In this manner, the cross-sectional shape is expanded so as to approach a substantially circular cross section without the corner portion that becomes a gas reservoir, thereby forming the evaporation chamber 83, thereby improving the retention of exhaust gas, and urea water or ammonia water and exhaust gas And the mixed state can be improved.

O 容器軸心
11 脱硝反応容器
12 排ガス過給機
12T タービン部
12C コンプレッサ部
13 ディーゼルエンジン
14 脱硝ガス排出管
15 脱硝出口弁(ガス遮断弁)
16 バイパス管
17 排ガス切換弁
20 容器本体
20B 胴殻体
21 隔壁
22 スプレーノズル
23 蒸発室
24 触媒ユニット
25 反応室
26 排ガス入口
27 未処理ガス出口
28 脱硝ガス出口
30 連通部
33 蒸発室出口弁(ガス遮断弁)
41 ユニット集合体
43 触媒エレメント
44 外周支持具
45 固定具
46 外周閉鎖板
47 押さえ具
51 隔壁基材
52 主仕切り板
53 副仕切り板
54 隙間
55 軸心方向スライド機構
55a 調整ボルト(被ガイド部)
55b 長穴(ガイド部)
56 可動シール部
56a 弾性シ―ル板
57 可動シール部
70 軸心方向スライド機構
71 軸心方向スライド機構
72 軸心方向スライド機構
81 隔壁
83 蒸発室
84 隙間
85 反応室
O Container axis 11 Denitration reaction vessel 12 Exhaust gas supercharger 12T Turbine part 12C Compressor part 13 Diesel engine 14 Denitration gas discharge pipe 15 Denitration outlet valve (gas shut-off valve)
16 Bypass pipe 17 Exhaust gas switching valve 20 Container body 20B Shell body 21 Bulkhead 22 Spray nozzle 23 Evaporation chamber 24 Catalyst unit 25 Reaction chamber 26 Exhaust gas inlet 27 Untreated gas outlet 28 Denitration gas outlet 30 Communication part 33 Evaporation chamber outlet valve (gas Shut-off valve)
41 Unit assembly 43 Catalytic element 44 Outer peripheral support 45 Fixing tool 46 Outer peripheral closing plate 47 Presser 51 Bulkhead substrate 52 Main partition plate 53 Subpartition plate 54 Gap 55 Axial direction slide mechanism 55a Adjustment bolt (guided portion)
55b Slot (guide part)
56 movable seal portion 56a elastic seal plate 57 movable seal portion 70 axial direction slide mechanism 71 axial direction slide mechanism 72 axial direction slide mechanism 81 partition wall 83 evaporation chamber 84 gap 85 reaction chamber

Claims (4)

筒状に形成された反応容器内に、排ガス中に尿素水またはアンモニア水を吹き込む蒸発室と、尿素水またはアンモニア水が吹き込まれた排ガスを接触させる触媒ユニットを設置した反応室とを設けた船舶用排ガス脱硝反応容器であって、
容器本体内に、容器軸心方向に沿う隔壁により区画された蒸発室と反応室とを設けるとともに、前記蒸発器に未処理ガス出口を設け、
前記隔壁を、容器軸心および容器の横断面に沿う方向に伸縮して蒸発室と反応室の構成部材の熱膨張差を吸収できる熱膨張吸収構造とし、
当該熱膨張吸収構造は、
容器本体の胴殻体内面で容器軸心方向に沿う隔壁基材に、蒸発室側に取り付けられた主仕切り板と、反応室側に取り付けられて前記主仕切り板との間に一定隙間をあけて配置されたかつ触媒ユニットが取り付けられた副仕切り板と、からなる二重壁構造とするとともに、隔壁基材とこれら主仕切り板および副仕切り板との間に、容器軸心方向に所定範囲で移動自在な軸心方向スライド機構を具備し、
さらに、副仕切り板の排ガス流送方向の前後端部で、副仕切り板と主仕切り板との間に、副仕切り板および主仕切り板の容器軸心方向および容器の横断面に沿う方向の熱膨張による変位に追従可能な可動シール部を設けた
ことを特徴とする船舶用排ガス脱硝反応容器。
A vessel provided with a reaction chamber provided with an evaporation chamber for blowing urea water or ammonia water into exhaust gas and a catalyst unit for contacting the exhaust gas into which urea water or ammonia water is blown, in a cylindrical reaction vessel An exhaust gas denitration reaction vessel,
In the container body, provided with an evaporation chamber and a reaction chamber partitioned by a partition along the container axial direction, and provided with an untreated gas outlet in the evaporator,
The partition wall is a thermal expansion absorption structure capable of absorbing the difference in thermal expansion between the constituent members of the evaporation chamber and the reaction chamber by expanding and contracting in the direction along the container axis and the cross section of the container,
The thermal expansion absorption structure is
A constant gap is formed between the main partition plate attached to the evaporation chamber side and the main partition plate attached to the reaction chamber side on the partition wall base material along the container axial direction on the inner surface of the shell of the container body. And a sub-partition plate to which the catalyst unit is attached, and a double wall structure, and a predetermined range in the container axial direction between the partition base material and the main partition plate and the sub-partition plate. It is equipped with an axial direction slide mechanism that is freely movable at
Further, at the front and rear end portions of the sub partition plate in the exhaust gas flow direction, heat between the sub partition plate and the main partition plate in the container axial direction of the sub partition plate and the main partition plate and in the direction along the cross section of the container. A marine exhaust gas denitration reaction vessel provided with a movable seal portion capable of following displacement due to expansion.
軸心方向スライド機構は、主仕切り板および副仕切り板と、隔壁基材の一方に容器軸方向に形成されたガイド部と、他方に形成されて前記ガイド部にスライド自在に係合される被ガイド部材とを具備した
ことを特徴とする請求項1記載の船舶用排ガス脱硝反応容器。
The axial direction slide mechanism includes a main partition plate and a sub-partition plate, a guide portion formed on one side of the partition base material in the container axial direction, and a cover formed on the other and slidably engaged with the guide portion. The ship exhaust gas denitration reaction vessel according to claim 1, further comprising a guide member.
可動シール部は、固定端が主仕切り板および副仕切り板の端部の一方に取り付けられて、遊端側が他方に摺接される弾性シール板を設けた
ことを特徴とする請求項1または2記載の船舶用排ガス脱硝反応容器。
The movable seal portion is provided with an elastic seal plate whose fixed end is attached to one of the end portions of the main partition plate and the sub partition plate and whose free end side is in sliding contact with the other. The vessel exhaust gas denitration reaction vessel as described.
請求項1乃至3のいずれかに記載の船舶用排ガス脱硝反応容器と、
反応室から脱硝ガス排出管を介して排ガスを給気口に供給する排ガス過給機(ターボチャージャ)と、
当該排ガス過給機の給気口と前記蒸発室の未処理ガス出口とを接続するバイパス管と、
当該バイパス管を開閉可能な排ガス切換弁と、
少なくとも前記脱硝ガス排出管に介在されて脱硝ガス排出管を開閉可能な排ガス開閉弁と、を具備し、
蒸発室を、複数のディーゼルエンジンから排出される排ガスを合流して前記排ガス過給機に排ガスを給気するマニホールドに兼用した
ことを特徴とする船舶用排ガス脱硝設備。
A marine exhaust gas denitration reaction vessel according to any one of claims 1 to 3,
An exhaust gas supercharger (turbocharger) that supplies exhaust gas from the reaction chamber to the intake port via a denitration gas discharge pipe;
A bypass pipe connecting the air supply port of the exhaust gas supercharger and the untreated gas outlet of the evaporation chamber;
An exhaust gas switching valve capable of opening and closing the bypass pipe;
An exhaust gas on-off valve capable of opening and closing the denitration gas discharge pipe interposed at least in the denitration gas discharge pipe,
An exhaust gas denitration facility for ships, wherein the evaporating chamber is also used as a manifold for joining exhaust gases discharged from a plurality of diesel engines to supply exhaust gases to the exhaust gas supercharger.
JP2012046008A 2012-03-02 2012-03-02 Marine exhaust gas denitration reactor and exhaust gas denitration equipment Active JP5295403B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012046008A JP5295403B2 (en) 2012-03-02 2012-03-02 Marine exhaust gas denitration reactor and exhaust gas denitration equipment
KR1020147019263A KR101590333B1 (en) 2012-03-02 2013-02-12 Exhaust gas denitration reaction container for ship and denitration euipment for ship
PCT/JP2013/053186 WO2013129089A1 (en) 2012-03-02 2013-02-12 Exhaust gas denitration reaction container for ship, and denitration equipment for ship
CN201380007359.5A CN104081014B (en) 2012-03-02 2013-02-12 Boats and ships exhaust gas denitration reaction vessel and boats and ships denitration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012046008A JP5295403B2 (en) 2012-03-02 2012-03-02 Marine exhaust gas denitration reactor and exhaust gas denitration equipment

Publications (2)

Publication Number Publication Date
JP2013181467A JP2013181467A (en) 2013-09-12
JP5295403B2 true JP5295403B2 (en) 2013-09-18

Family

ID=49082291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012046008A Active JP5295403B2 (en) 2012-03-02 2012-03-02 Marine exhaust gas denitration reactor and exhaust gas denitration equipment

Country Status (4)

Country Link
JP (1) JP5295403B2 (en)
KR (1) KR101590333B1 (en)
CN (1) CN104081014B (en)
WO (1) WO2013129089A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190015279A (en) 2016-05-31 2019-02-13 히다치 조센 가부시키가이샤 Exhaust gas treatment device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236305B1 (en) * 2012-05-24 2013-02-22 주식회사 덱코 Apparatus for removing nitrogen oxides and method for removing nitrogen oxides thereof
JP6108741B2 (en) * 2012-09-27 2017-04-05 日立造船株式会社 Marine exhaust gas denitration equipment
JP6794102B2 (en) * 2014-10-07 2020-12-02 ヴィンタートゥール ガス アンド ディーゼル アーゲー Reciprocating internal combustion engines, especially two-stroke large diesel engines, and exhaust gas distribution lines, especially compound exhaust gas distributors
JP6444329B2 (en) * 2016-03-24 2018-12-26 ヤンマー株式会社 Catalytic reactor and ship equipped with the same.
JP6442426B2 (en) 2016-03-24 2018-12-19 ヤンマー株式会社 Catalytic reactor and ship equipped with the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126817A (en) * 1994-10-28 1996-05-21 Niigata Eng Co Ltd Reactor of flue gas denitration device
DK199801295A (en) 1998-10-12 2000-04-13 Man B & W Diesel Gmbh Combustion engine with a reactor for reducing NO x content in the exhaust gas and a method
JP5137280B2 (en) 2001-06-12 2013-02-06 バブコック日立株式会社 Reactor for exhaust gas denitration apparatus and method for forming the same
JP2005155404A (en) * 2003-11-25 2005-06-16 Komatsu Ltd Exhaust emission control device for internal combustion engine
JP5017065B2 (en) * 2007-11-21 2012-09-05 日野自動車株式会社 Exhaust purification device
DE102007062662A1 (en) * 2007-12-24 2009-06-25 J. Eberspächer GmbH & Co. KG Sliding seat and exhaust treatment device
JP5465408B2 (en) * 2008-09-17 2014-04-09 ヤンマー株式会社 Exhaust gas purification device for ship use
JP2011144765A (en) 2010-01-15 2011-07-28 Mitsubishi Heavy Ind Ltd Marine exhaust gas denitration device
JP2011231672A (en) * 2010-04-27 2011-11-17 Toyota Industries Corp Exhaust gas purifying apparatus
JP5709100B2 (en) * 2010-08-11 2015-04-30 独立行政法人海上技術安全研究所 Denitration device for internal combustion engine and ship

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190015279A (en) 2016-05-31 2019-02-13 히다치 조센 가부시키가이샤 Exhaust gas treatment device

Also Published As

Publication number Publication date
KR101590333B1 (en) 2016-02-01
WO2013129089A1 (en) 2013-09-06
CN104081014A (en) 2014-10-01
KR20140105562A (en) 2014-09-01
JP2013181467A (en) 2013-09-12
CN104081014B (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5295403B2 (en) Marine exhaust gas denitration reactor and exhaust gas denitration equipment
US8141535B2 (en) Exhaust system device with mounting bracket
US8191668B2 (en) Mounting assembly for emissions control system
KR102060265B1 (en) Ship
JP2016514799A (en) Engine exhaust gas aftertreatment system
US20140000745A1 (en) Adjustable support structure for an after-treatment component
KR101273551B1 (en) The purifying system of exhaust gas
KR20140116083A (en) Exhaust gas reduction device for heavy equipment
JPWO2010004790A1 (en) Exhaust gas treatment equipment
KR101784567B1 (en) Exhaust Path Integral Type Selective Catalytic Reduction System
JP2012082804A (en) Maritime exhaust gas denitration device
KR20110129160A (en) Vessel
KR20150056767A (en) Exhaust gas denitration device
WO2014030968A1 (en) Fixing structure of exhaust gas after-treatment device in agricultural operation vehicle
US8950179B2 (en) Engine exhaust aftertreatment component including aftertreatment brick module
KR20150049807A (en) Exhaust pipe structure of ship
JP5582854B2 (en) Exhaust gas purification device
US20140318111A1 (en) Decomposition tube for an engine
KR101324128B1 (en) Apparatus for treating waste gas
KR102219049B1 (en) Low Pressure Selective Catalytic Reduction Reactor
JP7461193B2 (en) SCR catalytic converter, exhaust gas aftertreatment system and internal combustion engine
US20140175238A1 (en) System and Method for Installing Aftertreatment Bricks
KR200480137Y1 (en) Sliding type scr system for ship or overland plant
RU98480U1 (en) CATALYTIC COLLECTOR OF THE EXHAUST GAS SYSTEM OF THE INTERNAL COMBUSTION ENGINE
KR101313734B1 (en) Muffler for Waste Gas Reducing of Car

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

R151 Written notification of patent or utility model registration

Ref document number: 5295403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250