JP5294571B2 - 星空の表示方法ならびに該表示方法を用いたプラネタリウム装置および星空の表示装置 - Google Patents
星空の表示方法ならびに該表示方法を用いたプラネタリウム装置および星空の表示装置 Download PDFInfo
- Publication number
- JP5294571B2 JP5294571B2 JP2007124411A JP2007124411A JP5294571B2 JP 5294571 B2 JP5294571 B2 JP 5294571B2 JP 2007124411 A JP2007124411 A JP 2007124411A JP 2007124411 A JP2007124411 A JP 2007124411A JP 5294571 B2 JP5294571 B2 JP 5294571B2
- Authority
- JP
- Japan
- Prior art keywords
- brightness
- sky
- night sky
- night
- distribution data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Controls And Circuits For Display Device (AREA)
- Instructional Devices (AREA)
- Projection Apparatus (AREA)
Description
これによれば、従来の地図ナビゲーションシステムと連動して全地球測位システムのターミナルを用いた特定されたその場所の緯度,経度,移動方向などの情報に基づきコンピュータプログラムの記憶装置に記憶された暦表時,赤経,赤緯,背景の空の表示,主な天体の位置の図示等のサブプログラムで構成されたコンピュータ・プログラムを実行することにより星座の表示を行うものである。
この特許文献1は上記と同様に、地球上のある地点での人工光に対する明るさを考慮した星空の表示方法は採用していない。
本発明の目的は、上記問題を解決するため、観測地を設定するだけで、自動的にその土地の光害の程度を算出し、それに応じた星空の見え方をリアルに再現することができる星空の表示方法を提供することにある。
本発明の他の目的は上記表示方法を用いたプラネタリウム装置および星空の表示装置を提供することにある。
本発明の請求項2は請求項1記載の発明において前記夜空の明度マップは、夜間の土地を撮影した画像であって各土地の輝度を表示する画像から作成するか、または土地を碁盤目状に分割し、各碁盤目の交点に輝度を有するマップであることを特徴とする。
本発明の請求項3は請求項1または2記載の発明において前記夜空の明度マップの任意の位置の明るさは、複数の人工照明の明るさから生成されることを特徴とする。
本発明の請求項4は入力装置によって観測地の位置が入力された際に、制御回路が、メモリ回路に格納された夜空の明度分布データマップを参照して、観測地の位置に対応する座標から夜空の明度分布データを読み込み、補間演算などにより観測値の明度分布データを求め、制御回路が、メモリ回路に格納された夜空の明度−恒星調光テーブルを参照して、恒星用調光装置に調光すべき恒星調光信号を送出し、制御回路が、メモリ回路に格納された夜空の明度−照明調光テーブルを参照して、照明用調光装置に調光すべき照明調光信号を送出するように構成された光学式プラネタリウム装置を用いる星空の表示方法であって、ある地域を細かく区切り、その交点を座標とし、各座標に夜空の明度分布データを保持してなる夜空の明度分布データマップを備え、所望の観測地を指定し、指定した観測地対応の前記夜空の明度分布データを前記夜空の明度分布データマップから読み出すことにより所望の観測地における夜空の明度分布データを求め、夜空の明度分布データに対応した星空を再現するように構成し、所望の観測地における夜空の明度分布データの求め方は、前記夜空の明度分布データマップの中から、観測地から一定距離内の複数の地点の夜空の明度分布データを読み出し、読み出した複数の夜空の明度分布データを用いて所定の演算をすることにより得られる夜空の明度分布データを所望の観測地における夜空の明度分布データとすることを特徴とする。
本発明の請求項5は請求項4記載の発明において前記夜空の明度分布データマップの明度分布データは、複数の土地の明度データにより形成された夜空の明度マップをもとに作成されることを特徴とする。
本発明の請求項6は請求項4記載の発明において前記夜空の明度分布データマップの明度分布データは、夜空の方向別の明度データであり、該夜空の方向別の明度データは夜空の明度マップから所定の演算によって生成されることを特徴とする。
本発明の請求項7は請求項1乃至6のいずれかに記載の発明において夜空の明度マップまたは夜空の明度分布データマップは、対象地域の範囲が異なる複数個のマップを有し、対象地域によって切り替えることにより、任意の土地の夜空の明度または明度分布データを得ることを特徴とする。
本発明の請求項8は請求項1乃至7のいずれかに記載の発明において前記星空の再現は、夜空の明度または夜空の明度分布に応じて星の数か、または個々の星の明るさを変化させることを特徴とする。
本発明の請求項9は請求項1乃至7のいずれかに記載の発明において前記星空の再現は、夜空の明度もしくは夜空の明度分布に応じて背景となる空の明るさか、または色を変化させることを特徴とする。
本発明の請求項10はドームに映像を投影することにより各土地の星空を表示するディジタルプラネタリウムで構成されたプラネタリウム装置において、複数の土地の人工照明による明るさを示すデータを形成する夜空の明度マップまたは夜空の明度分布データマップを記憶した記憶手段と、所望の観測地の位置情報に対し前記夜空の明度マップまたは夜空の明度分布データマップから夜空の明度または明度分布データを読み出すことにより所望の観測地の夜空の明度または明度分布データを求め、該所望の観測地の夜空の明度または明度分布を加味した空の明るさおよび色の映像を作成するか、または投影される恒星の数および明るさを変えた映像を作成する映像作成手段と、前記映像作成手段から出力される映像を投影する投影手段とを備え、夜空の明度または明度分布データに対応した星空を再現することを特徴とする。
本発明の請求項11はドームに投影原板からの光りを投影し多数の恒星を再現することにより各土地の星空を表示する光学式恒星投影機で構成されたプラネタリウム装置において、複数の土地の人工照明による明るさを示すデータを形成する夜空の明度マップまたは夜空の明度分布データマップを記憶した記憶手段と、所望の観測地の位置情報に対し前記夜空の明度マップまたは夜空の明度分布データマップから夜空の明度または明度分布データを読み出すことにより所望の観測地の夜空の明度または明度分布データを求め、該夜空の明度または明度分布データにより前記投影原板から出力される光量を制御する調光信号を出力する制御手段と、前記制御手段の調光信号により、投影される恒星の数または明るさを変えて投影する光学式投影手段とを備え、夜空の明度または明度分布データに対応した星空を再現することを特徴とする。
本発明の請求項12はドームに光学投影像または映像を投影することにより各土地の星空を表示するプラネタリウム装置において、その光量を制御することによりドーム内の明るさを調整する照明装置と、複数の土地の人工照明による明るさを示す明度データを形成する明度マップまたは夜空の明度分布データマップを記憶した記憶手段とを設け、所望の観測値の位置情報に対し前記明度マップまたは夜空の明度分布データマップから夜空の明度または明度分布データを読み出すことにより所望の観測地の夜空の明度または明度分布データを求め、該夜空の明度または夜空の明度分布データで前記照明装置の光量を制御することにより、ドームに投影される星空の、背景となる空の明るさおよび色を変化させることを特徴とする。
本発明の請求項13は請求項12記載の発明において前記照明装置は、ドーム内の予め設定された範囲に指向性を持って配置された複数の照明装置であり、該複数の照明装置を個別に制御する調光装置を備え、前記所望の観測地の夜空の明度分布に基づき各照明装置による照明を個別に制御することを特徴とする。
本発明の請求項14は天文シミュレーションソフトを読み込み、コンピュータで実行することにより各土地の星空をシミュレーション表示する、端末装置で構成される星空の表示装置において、複数の土地の人工照明による明るさを示すデータを形成する夜空の明度マップまたは夜空の明度分布データマップを記憶した記憶手段と、所望の観測地の位置情報に対し前記夜空の明度マップまたは夜空の明度分布データマップから夜空の明度または明度分布データを読み出すことにより所望の観測地の夜空の明度または明度分布データを求め、該所望の観測地の夜空の明度または明度分布を加味した空の明るさおよび色の映像を作成するか、または投影される恒星の数および明るさを変えた映像を作成する映像作成手段と、前記映像作成手段から出力される映像を表示する画像モニタとを備え、夜空の明度または明度分布データに対応した星空を再現することを特徴とする。
また、市街地郊外などで、その土地に照明がなくても、近隣の都市からの照明の影響も反映し、また方角によって照明の影響が異なるような場合でも、空のどの方向がどのくらい照明の影響を受けるか計算し、その様子を再現することができる。
まず、単一の明度で光害が発生する場合を説明する。光害の原因は夜空の明るさにある。そこで任意の場所における夜空の明度を求めることが必要である。任意の場所を観測点としたときに用いる明度マップの構成と、その明度マップにより夜空の明度の求め方の実施の形態について説明する。
図1に夜空全体の明るさのみを扱う明度マップの構成例を示す。
明度マップは矩形で、この中の碁盤目状に配置した地点の明度をデータとして保持する。明度マップに含まれる任意の地点の夜空の明度が得られる。
2次元配列位置(x,y)を表示する値は、整数もしくは浮動小数点数である。
このメモリ回路の座標(アドレス)、実際の土地の座標に対応させることとなる。横方向に経度LON を、縦方向に緯度LAT をとると、以下の関係式ができる(ただし西経は、東経に換算してlon=360-西経とするものとする。)
LON = x / 10
LAT = 90 - y / 10
x = LON * 10 ・・・(1)
y = (90 - LAT) * 10 ・・・(2)
このようにして2次元メモリ回路のすべてのX,Y 座標でそれぞれの経度、緯度の値の関係が算出でき、その経度,緯度ごとの夜空の明度データ(画像から各交点の輝度は分かっている)を2次元メモリ回路の座標(X,Y) に格納する。
市街地であれば明度データは明るく、山間部や海であれば明度データは小さくなる。
2次元メモリ回路はICメモリ回路やハードディスクなどであり、その明度データは読み出し可能である。
1)所望する観測地の土地の位置情報として経度(LON) と緯度(LAT) を指定する。
2)指定した経度(LON) と緯度(LAT) から(1)(2)式を用いてx,y を求める。
3)そのx,y の座標から明度データを読み出し、これを観測地の明度とする。
上記の方法は簡便であるが、x,y 対応のピクセル(各ピクセルでは例えば256段階のいずれかの輝度が格納されている)の間を跨ぐ時に急に値が変化するときには弊害も生じる。そこで実際には画像中の座標の小数点項も考慮して補間演算を行う。
補間演算の具体例を以下に示す。
X=139.24*10=1392.4
Y=(90-37.59)*10=524.1
ここで、夜景画像のX,Y 付近のピクセルの輝度の値が表1であったとする。表1は明度マップの具体例の一部として記載したものである。
補間演算は、まずX 方向に
B1=(109-150) * 0.4 + 109 = 92.6
B2=(88-220)*0.4 + 220 = 167.2
の輝度を求める。続いてY方向に
B=(167.2-92.6)*0.1 + 92.6 = 100.6
の輝度を求める。
上記Bがこの土地における夜空の明度となる。
現実の夜空では、光害の影響による夜空の明度は、全面にわたって一様とは限らない。例えば都市郊外などでは、その土地では夜間照明が少なくても、星空の見え方は近隣の都市の照明の影響を受ける。こうした場合は、都市のある方角の夜空は明るく見えるし、そうでない方向は暗く見えることは経験上も明かである。したがって、星空を再現する上でも、こうした方向が異なる場合の明るさの違いを再現できることが望ましい。そのためには、夜空の明度を単一のスカラー値として扱うのでなく、夜空の方向別の複数の明度データを含む夜空の明度分布データとして扱う。
図3に、X 方向を南, Y 方向を西, Z 方向を天頂にしたときの、方位角(AZM) と高度(ALT)の一例を示す。
ある土地で夜空を見上げ、ある方向(方位角と高度)の空の、単位角面積あたりの輝度を、夜空の方向別明度と呼ぶこととする。この値は、実際に現地で測定するか、または演算で求めるものである。
夜空の明度分布データの一例として、ドームマスター形式による夜空の明度分布データの構成を説明する。
ドームマスター形式とは、あかたも全天を魚眼レンズで撮影したような座標配置で扱う形式であり、図4にその例を示す。
数字は、それぞれの位置の方位角と高度を表す。中心が天頂であり、輪郭の四角形に内接する最外周の円が地平線に相当する。
まず縦と横それぞれ180 分割した座標位置(x, y)に対しそれぞれ明度データを保持する2次元メモリ回路を確保する。2次元メモリ回路はハードウエアの単体メモリである。また、コンピュータのソフトウエア上で上記のように縦と横それぞれ180 分割した座標位置(x, y)に対しそれぞれ明度データを記したもの(夜空の地球の画像データ)でも作ることができる。
このメモリ回路の座標位置(x, y)には、それぞれ所定の高度と方位角が対応付けられる。このメモリ回路の座標から、高度と方位角を求める式は以下のとおりである。
AZM = atan((Y - 90) / (X - 90)) ・・・(3)
ALT = 90 -√((X- 90)2 + (Y- 90)2) ・・・(4)
AZM は、70.34 度
ALT は、45.4度
である。
このメモリ回路の、全てのX,Y 座標について、高度と方位角を算出し、それぞれの高度と方位角における夜空の方向別明度を、実測または数値計算で算出し、算出した夜空の方向別明度をメモリ回路の対応のX,Y 座標の明度分布データとして記憶する。
X = (90 - ALT) * cos(AZM) + 90 ・・・(5)
Y = (90 - ALT) * sin(AZM) + 90 ・・・(6)
の式でX,Y の座標を求め、メモリ回路からX,Y 座標の明度分布データを読み出せば良い。実際には、X,Y 座標に近い複数の座標の明度分布データを用いて、先に明度マップを用いた補間演算と同様な補間演算を行えば、より精度の高い明度分布データを得ることができる。
メモリ回路はハードディスクなどであり、所望のファイル名で保存したり、読み出せるようになっている。
内接円の輪郭、つまり地平線付近が数カ所明るくなっているのは、近隣の照明の光によるものである。
夜空の明度分布データは、夜空の明度マップから演算で求める。または、複数の地域の夜空の明度データを保存しておき、この明度データをそのまま使用するか、もしくは演算して求める。
ここでは、あらかじめ演算によって作成した夜空の明度データを複数有し、これにより任意の土地の夜空の分布データが得ることのできる夜空の明度分布データマップの構成例と、これを使った実施の形態を説明する。
碁盤目に区切られた範囲内で、碁盤目状n ×m に配置した各交点に相当する地点の座標を決める。本図では地点(1,1),(1,2)...がその座標である。それぞれの地点における夜間の明度分布データは明度分布(1,1),(1,2)...である。
このように、碁盤目状の各交点の座標に対して夜空の明度分布データを保持したものが夜空の明度分布データマップである。
この夜空の明度分布データマップは例えば、n×mの2次元配列の各x,y 座標に対し夜空の明度分布データを記憶したメモリ回路で構成することができる。また、コンピュータ上のROM,RAM,ハードディスクなどに、それぞれの地点の番号に関連したファイル名で、各明度分布データを保存することにより夜空の明度分布データマップを構成することもできる。
例えば、図6に示されている観測地の座標から最も近い位置は地点(3,5)であり、その座標の明度分布データ(3,5) を読み出すこととなる。
さらに精度を上げた明度分布データを得るには、補間演算によって求めることができる。図6に示されている観測地の場合、この観測地を囲む4つの地点(3,5)、(3,6) 、(4,5) 、(4,6) からそれぞれ明度分布データを読み出し、上記明度マップを用いた補間演算と同じ手法で補間演算を行って観測地の明度分布データを得ることができる。
なお、補間演算は各位置の明度分布データを構成する複数の明度データごとに行うこととなる。
一方、地球上で街明かりによる影響を受ける地域は陸上の人工密集地など限られており、全世界にわたり等間隔でデータを用意するのは無駄なことである。その無駄を解決する一つの方法は、海や砂漠地帯など、街明かりがない地域についてはデータを省略し、省略した地点については街明かりが皆無であると判定させることである。
一方、含むエリアとデータピッチの異なる複数のマップを用意し、例えば都市のみを含むデータピッチの高い(細かい)マップと、それ以外の地域を含むデータピッチの低いマップを併用することが有用である。
エリアAは、最も大きいマップによってカバーされる領域である。エリアBは、エリアAに重なっていて、その領域は小さいがデータピッチの細かい領域である。エリアCは、他のエリアと重ならないがデータピッチの細かい領域である。
これらマップを用いてある地点の夜間の明度を算出する場合、以下のようにする。
この地点が複数のエリアに含まれる場合は、データピッチの細かいマップを用いる。いずれのマップにも含まれないときは、夜間明度をゼロとする。
例えば、地点1は、エリアAとエリアBに含まれるが、エリアBのデータピッチが細かいため、エリアBのマップにより、明度を求める。地点2は、エリアAにしか含まれないのでエリアAのマップによって明度を求める。地点3は、どこにも含まれないので、夜間明度はゼロとする。地点4は、エリアCに含まれるため、エリアCのマップによって明度を求める。
このようにして複数のマップを使い分けることにより、限られたデータ記憶領域を有効に活用することができる。
図8にディジタルプラネタリウムの構成例を示す。
最も単純な構成例であり、映像を生成させる映像生成コンピュータ1からの映像信号を垂直に立てられたプロジェクタ2に送り、これを魚眼レンズ3を用いて投影する構成となっている。映像生成コンピュータ1が生成する映像画面は図9のようなものであり、画面枠4の中で、これにほぼ内接する地平線5の内側部分が投影される範囲になる。この地平線の中に、背景を黒にして、星だけ所望の大きさの点で白く描画するドームマスター形式で描画すれば、これがドームスクリーンに投影されたときに星空のように見える。
星の位置と明るさは赤経赤緯,等級で与えられるため、実際には日時や場所の情報を参照して地平座標に変換し、これをドームマスター上の座標に変換する。この構成は公知であり、本発明の本質ではないのでその詳細は省略する。
通常、光害のない環境での星空を再現するには、背景を黒とし、星だけ明るい点で描画すれば良いが、光害の影響を表すには、背景の色を光害に相当するものに変える。夜空全体の明度が分かっている場合は、夜空全体の明度に応じて、背景の明度を設定する。
背景はニュートラルグレーもしくは青みがかった色が見た目で本物の夜空に近くみえる。
夜空の明度と表示する背景の明度とは基本的に比例させる関係にしてある。
また、都会などでは見える星の数が大幅に少なくなるが、この現象を効果的に表すには、表示する星の等級範囲を減少させる。例えば、光害のない土地では、概ね6等級まで肉眼で視認できるので、6等級までを投影することが通例である。
星空を再現するときは6等級まで投影するところを、光害のある土地では4等級乃至3等級までの星しか描画しない、すなわち最微等級を下げるようにする。ここで、最微等級とは再現される最も暗い星の等級のことをいう。
または、夜空の明度に応じて表示する星の明るさを下げれば良い。例えば、夜空の明度に応じて、投影する星の等級を意図的に下げることも有効である。
例えば描画する全ての星のデータに1等級を加える、等級オフセット演算を施せば、1等星は本来の2等星の明るさに、5等星は6等星の明るさで描画される。等級オフセット演算後の等級値に対して最微等級を一定にしておけば、再現される最微等級がオフセット分だけずれることになる。夜空の明度に応じて背景の空が明るくなる効果と、恒星が暗く表示される効果を両方併用することにより、よりリアルに光害の影響を再現することができる。図10(c)に夜空の明度と等級オフセットの関係を示す。
また、夜空の明度が方向別に算出されている場合は、方向別に、上記の計算処理を行えば、よりリアルな夜空の再現ができる。
図11Aにおいて、映像作成コンピュータ1は入力装置10およびプロジェクタに接続されている。入力装置10はキーボードなどにより構成され、観測地の位置(経度,緯度)を入力するものである。映像作成コンピュータ1はメモリ回路12,映像作成回路11および映像描画回路14より構成されている。メモリ回路12には各恒星の位置(赤道座標)と明るさを含む恒星データファイル12bが格納されている。また、夜空の明度分布データマップ12aが、さらに夜空の明度と背景の明度との関係を示す夜空の明度−背景の明度テーブル12c,夜空の明度と最微等級との関係を示す夜空の明度−最微等級テーブル12dおよび夜空の明度と等級オフセットとの関係を示す夜空の明度−等級オフセットテーブル12eが格納されている。
映像描画回路14は映像作成回路11からの夜空の背景画面および各恒星の画像を重畳して夜空の明度に対応した画像の描画処理をする。
キーボードなどの入力装置によって観測地の位置(経度,緯度)を入力する(ステップ(以下「S」という)001)。映像設作成回路11は夜空の明度分布データマップを参照して、観測地の位置に対応する座標から夜空の明度分布データを読み込む(S002)。そして補間演算などにより観測値の明度分布を求める(S003)。つぎに夜空の明度−背景の明度テーブル12cを参照して、画面に描画すべき背景の夜空の明度分布を算出し、その映像のデータを映像描画回路14に送る(S004,S005)。
さらに、S003で求めた観測値の明度分布より、各恒星の地平座標での夜空の明度を算出する(S006)。そして夜空の明度−最微等級テーブル12dから各恒星の位置での夜空の明度に対する最微等級を求める(S007)。さらに空の明度−等級オフセットテーブル12eから各恒星の位置での夜空の明度に対するオフセット値を得る(S008)。
地平座標に変換された各恒星についてS007で求めた最微等級のデータに基づき最微等級以下の恒星は削除する(S013)。さらにS008で求めたオフセット値により各恒星の等級オフセット処理を行う(S014)。
これら処理を行った映像のデータは映像描画回路14に送られ、映像描画回路14ではS005からの夜空の背景の映像のデータとS014からの映像のデータを重畳し、夜空の背景の映像と等級オフセット処理された恒星の描画処理が行われ、その映像信号はプロジェクタに送出される(S009)。
この実施の形態では、ディジタルプラネタリウムとして、単一のプロジェクタに魚眼レンズを装着した例を示したが、実際には複数のプロジェクタを使い、夜空を分割して投影する方式で実施してもよい。また同様の方法は、ディジタルプラネタリウムのみならず、モニタなどのパソコン画面上に星空を表示する天文シミュレーションソフトを用いた星空の表示装置を構成することができる。かかる場合の映像作成回路の構成は天文シミュレーションソフトの実行により実現できる。
マップとして夜空の明度分布データマップを用いた例について説明したが、夜空の明度マップを用いた場合でも同様に実施することができる。
光学式恒星投影機20は、恒星用調光装置25によって光源ランプ21に与える電圧を変えることにより、投影される光量を自在に変えられるようになっている。また、照明装置22による照明の明るさは、照明用調光装置24によって変えられるようになっている。恒星と照明の調光装置24,25の出力は、制御コンピュータ23から与えられる。
また、恒星投影機20で再現される恒星の位置を決める日周軸と緯度軸の角度も、制御コンピュータ23から制御される。
図14Aにおいて、制御コンピュータ23は入力装置26,照明用調光装置24および恒星用調光装置25に接続されている。入力装置26はキーボードなどにより構成され、観測地の位置(経度,緯度)を入力するものである。制御コンピュータ23はメモリ回路28および制御回路27より構成されている。メモリ回路28には夜空の明度マップ28aが、さらに夜空の明度と恒星用調光装置出力の関係を示す夜空の明度−恒星調光出力テーブル28bおよび夜空の明度と照明調光装置の関係を示す夜空の明度−照明調光出力テーブル28cが格納されている。
夜空の明度−照明調光テーブル28cは図14C(b)で示すような照明の調光関数の特性のデータで構成されている。夜空の明度が明るくなると照明を明るくするような関係になっている。この両者の組み合わせにより、夜空の明度が高い状態、すなわち市街地で見るような夜空も再現することができる
制御回路27は夜空の明度マップ28aの、入力される観測地の位置対応の座標の夜空の明度データを読み込み、補間演算などをして観測地の夜空の明度を演算する機能,さらに、夜空の明度−恒星調光テーブル28bから、上記で求めた観測地の夜空の明度対応の明るさに恒星を調光する恒星調光信号を出力する機能を有する。また、夜空の明度−照明調光テーブル28cから、求めた観測地の夜空の明度に対応するように照明の明るさを制御する照明調光信号を出力する機能を有する。この他に、入力される観測地の位置から光学式恒星投影機の日周軸および緯度軸をサーボモータ制御を行う機能を有する。
キーボードなどの入力装置によって観測地の位置(経度,緯度)を入力する(S021)。制御回路27は入力された観測地の位置から日周軸および経度軸を制御する(S022)。これにより恒星が適切な位置で投影されるように制御される。さらに夜空の明度マップ28aを参照して、観測地の位置に対応する座標から夜空の明度データを読み込む(S023)。そして補間演算などにより観測値の明度を求める(S024)。
つぎに夜空の明度−恒星調光テーブル28bを参照して、恒星用調光装置25に調光すべき恒星調光信号を送出する(S025,S026)。
さらに、夜空の明度−照明調光テーブル28cを参照して、照明用調光装置24に調光すべき照明調光信号を送出する(S027,S028)。
以上により、観測地における恒星の明るさと夜空の明るさが調整されて観測地の夜空の明度に対応した星空を再現することができる。
以上の光学式プラネタリウムの実施の形態として夜空の明度マップを用いた場合を説明したが、夜空の明度分布データマップを用いた場合でも同様に実施することができる。
図15に複数の照明装置をドーム内の、それぞれ所定の方向に指向性を持って配置し、それらを夜空の明度分布にもとづいて個別に光量を制御して、夜空の明度分布に近い、人工照明による効果を再現する実施の形態を示す。
ドームスクリーン31の内側の淵付近に、複数の照明装置30が等間隔に20台配置されている。これらは、ドーム周辺に配置されているため、照明装置に近い側を選択的に強く照明し、反対側にはあまり照明効果を及ぼさない。それぞれL1、L2...L20と番号が振られている。L1は真西で、18度刻みで南回りに一周している。そこからそれぞれが調光装置32−1〜32−20によって制御される。調光装置32−1〜32−20は、制御コンピュータ33によって個別に制御可能となっている。
図16は、ドームマスター型の夜の明度分布データの図解である。
方角毎の明度をサンプリングするサンプリング高度を決める。例えばサンプリング高度を5度とする。サンプリング点は、地平高度5度で、真西を1番とし、真西から真東まで方位角18刻みで等間隔に並んでいる。これが図中のサンプリング点1〜20である。
ドームマスター型明度分布データの縦横データ数が180ピクセルであるすると、サンプリング点nのドームマスター上の座標は
Xn = cos(n*18)*90 + 90 ・・・(7)
Yn = sin(n*18)*90 + 90 ・・・(8)
となる。ドームマスター型明度分布データからはこの座標Xn,Ynの明度分布データを読み出し、この値を調光装置に送り、各照明装置の明るさを制御すればよい。
すなわち手順としては、
1)明度分布データを算出する。
2)サンプリング点1〜20のドームマスター上の座標を得る。
3)サンプリング点1〜20の明度を、ドームマスター上の座標の明度分布データを読み込むことにより得る。
4)調光装置1〜20に、サンプリング点1〜20の明度か、それに比例した明るさの調光指令を送る。
この実施の形態ではサンプリング点から読み出すデータを単一の座標点としたが、実際には、サンプリング点を決定した上で、明度分布データより、その周囲一定の範囲の値を読み込んで平均化すればなおよい結果が得られる。
図17は、ディジタルプラネタリウムと光学式プラネタリウムを融合させた複合型プラネタリウムの実施の形態を示す図である。
ディジタルプラネタリウム40と光学式プラネタリウムである光学式恒星投影機41が並んで設置される。光学式恒星投影機41の光源の明るさは、制御コンピュータ43から恒星用調光装置42で制御される。また、光学式恒星投影機41内部に設置されているサーボモータも制御コンピュータ43を通じて制御される。制御コンピュータ43には図14Aで示した回路が内蔵されている。
さらにディジタルプラネタリウム40も制御コンピュータ43により制御される。
制御コンピュータ43には図11Aで示した回路も有しており、該回路により映像出力が得られるが、恒星調光信号は出力せず、ディジタルプラネタリウムでは恒星が表示されない構成となっている。なお、光学式恒星投影機では、照明装置が存在しない構成であってもよい。
以上の実施の形態における説明では観測地における光害のレベルは、常に夜空の明度マップや明度分布データマップを参照して設定される方法を説明したが、夜空の明度マップや明度分布データマップから求めた夜間明度に、所望の値を乗算または加算,減算する構成を追加することにより光害の影響を誇張したり、あるいは減らして星空を再現することもできる。光害の影響をゼロにすれば市街地でも本来非常にきれいな星が見える、またはもっと光害が酷くなると星が益々見えなくなる、といった効果を示すことができる。
街明かりによる光害が星を見えにくくする作用は、街灯などの照明の光が直接観測者の目に入り幻惑する直接的な効果と、街明かりが上空の大気を照らし、大気が街明かりを散乱することにより、夜空を明るくさせ、星の光が紛れてしまうことによる間接的な効果によって引き起こされる。このうち直接的な効果は、間近にある街灯を避けるなどの工夫で容易に回避できうるものであり、夜空の星を見えにくくする主要な要因はむしろ間接的な効果によるものが支配的と思われるため、本発明ではもっぱら後者に限って、まず光害の直接的な要因である夜空の明度を算出する方法を説明する。
図2は、NASAが公開している、宇宙から撮影された夜景の様子を世界地図上に展開した画像である。なお、各部の明るさを明瞭にするため白黒の濃度を反転させている。以下、この画像を夜景画像とよぶ。
この画像は、土地ごとの夜の明るさを概ね表していると考えて良い。本画像は、縦横の経度,緯度の間隔が等間隔の正距接円筒図法で展開されている。その場合、幅がwピクセルであるとすると、高さは必ずw/2 ピクセルとなる。ここでpr=w/360をピクセル倍率と呼ぶ。
x = LON * 10
y = (90 - LAT) * 10
x,y の値を整数化した上で、夜景画像の(x, y)座標のピクセルの輝度を読み出せば、この土地の夜空の明度を得られることになる。
上記の方法は簡便であるが、ピクセルの間を跨ぐ時に急に値が変化などの弊害も生じることから実際には画像中の座標の少数点項も考慮して補間演算したのが、先に説明したとおりである。すなわち、東経139.24度, 北緯37.59 度の地点のピクセル輝度を読み出す補間演算を行ってB=(167.2-92.6)*0.1 9 + 92.6 = 100.6 を得ている。
方法はいくつか考えられるが、実測するのが最も確実で正確である。例えばある土地で、夜間の月明かりなどの影響を受けない状態で照度計を用いて夜間照度を測定する。これをB(lx) とする。一方、その土地に相当する夜景画像のピクセルの明度を求める。これをP とする。この作業を、夜間照度が極めて暗い山間部から逆に明るい市街地まで様々な状態の場所で行なうと、B-P の多数のサンプルができる(表)この値から補間関数を導き出すことにより、世界中の任意の土地における夜間照度を取得できる。
補間関数の例を図18に示す。
夜間照度は、夜空の明度とほぼ比例しているという前提のもと、これにより夜空の明度を算出することができる。ここでいう明度は絶対的な物理量でなくても、相対的な値で良い。星空の表示に反映させる際に、星空の表示が実際の夜空に近くなるよう、適切な係数を設定して乗算すればよい。
観測点の座標を(Xs,Ys) とする。本図では1番から4番までの4つの人工照明52があり、それぞれの座標を(X1,Y1) 〜(X4,Y4) とし、それぞれの光度をB1〜B4とする。
照明による影響を距離の2乗に反比例すると仮定して、すべての照明による明度(B(xs,ys))を求めるには
とする。(Xs,Ys) が人工照明のどれかに一致するか極度に接近した場合は、0 による除算になってしまう不都合も起きる。実際には、以下の式(10)のように、分母に一定のバイアス数Hを加えるなどの処理をしてもよい。この場合、Hが大きいほうが計算結果の誤差が大きくなるので、実用上問題ない数値を選ぶ。
これを、Xs,Ys を適切な間隔で変化させながら夜空の輝度を算出し、これをデータテーブル化すればよい。例えばX 方向の単位を経度, Y 方向の単位を緯度とするならば、X を0から360 まで0.1 度刻みで、Yを-90 から90まで0.1 度刻みで、すなわち3600×1800のマトリックス状のデータテーブルを用意し、この上に、X,Y それぞれの値に対する夜空の明度を書き込めば良いことになる。
ここでは、近隣の地域の人工照明の影響を考慮して、夜空の明度分布を求める実施の形態を図20により以下に説明する。
まず、夜空に光害をもたらす人工照明(光源)が、観測地からX方向にX L , Y方向にY L だけ離れた地点に一つだけある場合について計算する例を示す。
光源の高度はZ L とし、通常は0と見なす。すなわち、光源の座標は(XL,Y L, Z L) である。この光源は、全方位に均等に光を放っているものとする。光源の光度はSとする。
観測地から見た、ある地平座標すなわち方位角AZM と高度ALT の方向の夜空の明度を求める。
まず、地平座標を視線ベクトルSX,SY,SZに変換する。これは視線の方向余弦である。
SX= cos(AZM) * cos(ALT) ・・・(11)
SY= sin(AZM) * cos(ALT) ・・・(12)
SZ= sin(ALT) ・・・(13)
となる。
夜空が明るくなるのは、人工照明からの光が大気中の粒子によって散乱されることで空が明るくなる現象によって起きる。夜空の明度は、観測点から見たある一定角面積内たとえば光度として扱うことができるが、これはすなわち、観測点48を頂点とし、視線47を中心として伸びる、仮想的に大気中に想定した錐状の部分、大気錐44内にある大気による散乱光と考えられる。
錐44を視線方向に細かく分断した要素として大気セル45を定義する。大気セル45は、観測点からdl間隔で等間隔にSp1,Sp2,Sp3 ...と並んでいる。dlが一定であれば、大気セルの容積は、視点からの距離の2 乗に比例する。
大気は高空に行くほど薄くなる。たとえば高度100km以上では事実上大気が存在しないものと見なせるので、この程度の数値を上限高度Cmax とする。大気セルを高度Cmaxまで並べると、大気錐の長さは図21に示すように、Cmax/sin(ALT) であるから、
大気セルの総数spnum は、これをdlで除算して
spnum = Cmax / dl / sin(ALT) ・・・(14)
として計算できる。
ここで、大気セルの一つ、Sp(n) によって散乱される光量を計算する。
大気セルSpn の空間座標(XSP(n), YSP(n), ZSP(n))は
X SP(n) = SX * dl * n ・・・(15)
Y SP(n) = SY * dl * n ・・・(16)
Z SP(n) = SZ * dl * n ・・・(17)
である。
一般的に光源の見かけの明るさは光源からの距離の2乗に反比例する。また大気セルにおける散乱光量はその散乱セルでの大気密度に比例すると考えられる。
大気は地表が最も濃く、上空に行くと薄くなる。一般的には凡そ高度17kmで密度が1/10となり、高度とは指数関数として近似できる。地表の大気密度を1としたときの高度Z km の大気密度AD(z) は以下の式で近似できる。
AD(z) = 10 (z / 17) ・・・(19)
したがって、大気セルSpn における照度B SP(n) は、光源の光量Sを考慮して
となる。
となる。これが夜空の明度である。
また、この説明では大気の散乱のみを考慮したが、同時に大気による屈折や吸収の影響も考慮して計算精度を上げても良い。また、dlは等間隔で計算したが、実際には大気密度の高い高空ではdlの値はより長くなっても問題ないため、高空になるほど間隔が延びる設定で計算数を減らしてもよい。ドームマスターの全画素についてこのような計算を行うのは、計算量が膨大になり処理時間の面から好ましくないが、大気による散乱光は概ねぼんやりしており、全ての画素について計算する必要はほとんどないため、画素をX,Y 両方向で一定の間隔で飛ばして計算し、補間をして計算数を減らすこともできる。
ドームマスター形式に格納したデータを、グラフィック描画した一例を図22に示す。
ただし、実際には人工照明は一つでないので、複数の光源をもとに上記の処理を行う必要がある。この場合は、複数の光源それぞれについて上記の計算をおこない、ドームマスター型の夜空の明度分布の各データでそれぞれ総和をとればよい。
図23は、衛星から撮影された夜の地球画像の関東平野付近の拡大図である。これを夜空の明度マップとする。この中で観測地を置く。観測地の位置をXS,YS とする。
観測地に対して実際に光害を及ぼす範囲は限られている。実際には、概ね200km 以上離れた地点の照明は観測地に影響を及ぼさないと考えられる。
観測地を中心に影響半径を描いた影響半径円の外接四角形の左上隅の点と、右下隅の点座標はそれぞれ
X1 =XS−RS ・・・(22)
Y1 =YS−RS ・・・(23)
X2 =XS+RS ・・・(24)
Y2 =YS+RS ・・・(25)
として算出できる。
以下の式で計算できる。
GX=X−XS ・・・(26)
GY=Y−YS ・・・(27)
画面上座標(X,Y) の画素の輝度をP(X,Y) とする。
上記の方法より、GX, GYの位置にある明るさP(X,Y) の光源があると仮定して計算すれば、夜空の明度が算出できるので、実際のこの地点における夜空の明度は以下のように算出すればよい。
このようにして観測地からみた夜空の明度分布を求めることができる。
図24は、この方法によって得られた観測点における空の明るさ分布をドームマスターに描画した一例を示す図である。
地平線付近が人工照明の影響を請けて特に明るくなっており、特に右側の関東平野側が明るくなっている様子が描かれている。
これを夜空の明度分布データとしてメモリ回路(ハードディスクなど)に記憶して夜空の明度分布データマップとして利用すればよい。
例えばOpenGLやDirectX などの3Dグラフィックスライブラリーを用いて、コンピュータ内に仮想的な3次元空間を形成させる。
その中で、観測地付近の夜の地球画像から、影響半径円内の各画素を抜き出し、それぞれの座標と画素の明度に応じた光源として平面上に配置する。
その上方に、大気となるモデルを形成する。たとえばOpenGLでは、図26に示すようなフォグなどのモデルを使用すればよい。
図27に、複数の拡散性を持つレイヤーを多数重ねて大気モデルにした3Dモデル例を示す。視点となるカメラを観測点においてレンダリングすれば、光源の光が大気モデルに拡散して、実際の夜空に似た夜空の明度分布で夜空が描かれる。3Dグラフィックス機能を使用した例では、前述の数値計算ほど正確ではないが、夜景画像から高速で直接夜空の明度分布を画像として得られるので有用である。
2 プロジェクタ
3 魚眼レンズ
4 画面枠
5 地平線
6 天頂
10 入力装置
11 映像作成回路
12 メモリ回路
13 バス
14 映像処理回路
20,41 光学式恒星投影機
21 光源ランプ
22 照明装置
23,43 制御コンピュータ
24 照明用調光装置
25,42 恒星用調光装置
30 照明装置
31 ドームスクリーン
32−1〜32−20 調光装置
40 ディジタルプラネタリウム
41 観測地
44 大気錐
45 大気セル
46 視線ベクトル
47 視線
52 人工照明
Claims (14)
- 入力装置によって観測地の位置が入力された際に、制御回路が、メモリ回路に格納された夜空の明度マップを参照して、観測地の位置に対応する座標から夜空の明度データを読み込み、補間演算などにより観測値の明度を求め、
制御回路が、メモリ回路に格納された夜空の明度−恒星調光テーブルを参照して、恒星用調光装置に調光すべき恒星調光信号を送出し、
制御回路が、メモリ回路に格納された夜空の明度−照明調光テーブルを参照して、照明用調光装置に調光すべき照明調光信号を送出するように構成された光学式プラネタリウム装置を用いる星空の表示方法であって、
複数の土地の人工照明による明るさを示す明度データで形成される夜空の明度マップを備え、
所望の観測地を指定し、指定した観測地対応の土地の明度データを前記夜空の明度マップから読み出すことにより所望の観測地における夜空の明度を求め、
夜空の明度に対応した星空を再現するように構成し、
所望の観測地における夜空の明度の求め方は、前記明度マップの中から、観測地から一定距離内の複数の地点の明度データを読み出し、読み出した複数の明度データを用いて所定の演算をすることにより得られる明度を所望の観測地における夜空の明度とすることを特徴とする星空の表示方法。 - 前記夜空の明度マップは、夜間の土地を撮影した画像であって各土地の輝度を表示する画像から作成するか、または土地を碁盤目状に分割し、各碁盤目の交点に輝度を有するマップであることを特徴とする請求項1記載の星空の表示方法。
- 前記夜空の明度マップの任意の位置の明るさは、複数の人工照明の明るさから生成されることを特徴とする請求項1または2記載の星空の表示方法。
- 入力装置によって観測地の位置が入力された際に、制御回路が、メモリ回路に格納された夜空の明度分布データマップを参照して、観測地の位置に対応する座標から夜空の明度分布データを読み込み、補間演算などにより観測値の明度分布データを求め、
制御回路が、メモリ回路に格納された夜空の明度−恒星調光テーブルを参照して、恒星用調光装置に調光すべき恒星調光信号を送出し、
制御回路が、メモリ回路に格納された夜空の明度−照明調光テーブルを参照して、照明用調光装置に調光すべき照明調光信号を送出するように構成された光学式プラネタリウム装置を用いる星空の表示方法であって、
ある地域を細かく区切り、その交点を座標とし、各座標に夜空の明度分布データを保持してなる夜空の明度分布データマップを備え、
所望の観測地を指定し、指定した観測地対応の前記夜空の明度分布データを前記夜空の明度分布データマップから読み出すことにより所望の観測地における夜空の明度分布データを求め、
夜空の明度分布データに対応した星空を再現するように構成し、
所望の観測地における夜空の明度分布データの求め方は、前記夜空の明度分布データマップの中から、観測地から一定距離内の複数の地点の夜空の明度分布データを読み出し、読み出した複数の夜空の明度分布データを用いて所定の演算をすることにより得られる夜空の明度分布データを所望の観測地における夜空の明度分布データとすることを特徴とする星空の表示方法。 - 前記夜空の明度分布データマップの明度分布データは、複数の土地の明度データにより形成された夜空の明度マップをもとに作成されることを特徴とする請求項4記載の星空の表示方法。
- 前記夜空の明度分布データマップの明度分布データは、夜空の方向別の明度データであり、該夜空の方向別の明度データは夜空の明度マップから所定の演算によって生成されることを特徴とする請求項4記載の星空の表示方法。
- 夜空の明度マップまたは夜空の明度分布データマップは、対象地域の範囲が異なる複数個のマップを有し、
対象地域によって切り替えることにより、任意の土地の夜空の明度または明度分布データを得ることを特徴とする請求項1乃至6のいずれかに記載の星空の表示方法。 - 前記星空の再現は、夜空の明度または夜空の明度分布に応じて星の数か、または個々の星の明るさを変化させることを特徴とする請求項1乃至7のいずれかに記載の星空の表示方法。
- 前記星空の再現は、夜空の明度もしくは夜空の明度分布に応じて背景となる空の明るさか、または色を変化させることを特徴とする請求項1乃至7のいずれかに記載の星空の表示方法。
- ドームに映像を投影することにより各土地の星空を表示するディジタルプラネタリウムで構成されたプラネタリウム装置において、
複数の土地の人工照明による明るさを示すデータを形成する夜空の明度マップまたは夜空の明度分布データマップを記憶した記憶手段と、
所望の観測地の位置情報に対し前記夜空の明度マップまたは夜空の明度分布データマップから夜空の明度または明度分布データを読み出すことにより所望の観測地の夜空の明度または明度分布データを求め、該所望の観測地の夜空の明度または明度分布を加味した空の明るさおよび色の映像を作成するか、または投影される恒星の数および明るさを変えた映像を作成する映像作成手段と、
前記映像作成手段から出力される映像を投影する投影手段とを備え、
夜空の明度または明度分布データに対応した星空を再現することを特徴とするプラネタリウム装置。 - ドームに投影原板からの光りを投影し多数の恒星を再現することにより各土地の星空を表示する光学式恒星投影機で構成されたプラネタリウム装置において、
複数の土地の人工照明による明るさを示すデータを形成する夜空の明度マップまたは夜空の明度分布データマップを記憶した記憶手段と、
所望の観測地の位置情報に対し前記夜空の明度マップまたは夜空の明度分布データマップから夜空の明度または明度分布データを読み出すことにより所望の観測地の夜空の明度または明度分布データを求め、該夜空の明度または明度分布データにより前記投影原板から出力される光量を制御する調光信号を出力する制御手段と、
前記制御手段の調光信号により、投影される恒星の数または明るさを変えて投影する光学式投影手段とを備え、
夜空の明度または明度分布データに対応した星空を再現することを特徴とするプラネタリウム装置。 - ドームに光学投影像または映像を投影することにより各土地の星空を表示するプラネタリウム装置において、
その光量を制御することによりドーム内の明るさを調整する照明装置と、
複数の土地の人工照明による明るさを示す明度データを形成する明度マップまたは夜空の明度分布データマップを記憶した記憶手段とを設け、
所望の観測値の位置情報に対し前記明度マップまたは夜空の明度分布データマップから夜空の明度または明度分布データを読み出すことにより所望の観測地の夜空の明度または明度分布データを求め、該夜空の明度または夜空の明度分布データで前記照明装置の光量を制御することにより、ドームに投影される星空の、背景となる空の明るさおよび色を変化させることを特徴とするプラネタリウム装置。 - 前記照明装置は、ドーム内の予め設定された範囲に指向性を持って配置された複数の照明装置であり、
該複数の照明装置を個別に制御する調光装置を備え、
前記所望の観測地の夜空の明度分布に基づき各照明装置による照明を個別に制御することを特徴とする請求項12記載のプラネタリウム装置。 - 天文シミュレーションソフトを読み込み、コンピュータで実行することにより各土地の星空をシミュレーション表示する、端末装置で構成される星空の表示装置において、
複数の土地の人工照明による明るさを示すデータを形成する夜空の明度マップまたは夜空の明度分布データマップを記憶した記憶手段と、
所望の観測地の位置情報に対し前記夜空の明度マップまたは夜空の明度分布データマップから夜空の明度または明度分布データを読み出すことにより所望の観測地の夜空の明度または明度分布データを求め、該所望の観測地の夜空の明度または明度分布を加味した空の明るさおよび色の映像を作成するか、または投影される恒星の数および明るさを変えた映像を作成する映像作成手段と、
前記映像作成手段から出力される映像を表示する画像モニタとを備え、
夜空の明度または明度分布データに対応した星空を再現することを特徴とする星空の表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007124411A JP5294571B2 (ja) | 2007-05-09 | 2007-05-09 | 星空の表示方法ならびに該表示方法を用いたプラネタリウム装置および星空の表示装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007124411A JP5294571B2 (ja) | 2007-05-09 | 2007-05-09 | 星空の表示方法ならびに該表示方法を用いたプラネタリウム装置および星空の表示装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008281684A JP2008281684A (ja) | 2008-11-20 |
JP5294571B2 true JP5294571B2 (ja) | 2013-09-18 |
Family
ID=40142566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007124411A Active JP5294571B2 (ja) | 2007-05-09 | 2007-05-09 | 星空の表示方法ならびに該表示方法を用いたプラネタリウム装置および星空の表示装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5294571B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111536965B (zh) * | 2020-05-25 | 2023-06-06 | 中国科学院长春光学精密机械与物理研究所 | 一种以全天空成像为背景的星图显示方法 |
CN118230173B (zh) * | 2024-05-09 | 2024-10-01 | 中国气象局公共气象服务中心(国家预警信息发布中心) | 一种星空观赏适宜度实时判定方法和系统 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006153936A (ja) * | 2004-11-25 | 2006-06-15 | Konica Minolta Planetarium Co Ltd | プラネタリウム装置 |
-
2007
- 2007-05-09 JP JP2007124411A patent/JP5294571B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008281684A (ja) | 2008-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Horn | Hill-shading and the reflectance map | |
CN108474666A (zh) | 用于在地图显示中定位用户的系统和方法 | |
US4940972A (en) | Method of representing a perspective image of a terrain and a system for implementing same | |
EP0066998A1 (en) | Display system | |
US7589740B2 (en) | Planetarium picture-creating apparatus and picture-creating method thereof | |
US20150285654A1 (en) | Apparatus, method and computer program for spatially representing a digital map section | |
CN115690336B (zh) | 一种卫星波束覆盖区域可视化方法、服务器及存储介质 | |
JP5283214B2 (ja) | 定点観測装置、及び定点観測方法 | |
EP1067478A2 (en) | Real time digital map shading | |
AU2003298666A1 (en) | Reality-based light environment for digital imaging in motion pictures | |
CN111047506B (zh) | 环境图生成和孔填充 | |
KR101359011B1 (ko) | 지구 환경 3차원 가시화 시스템 | |
CN110908510A (zh) | 一种倾斜摄影建模数据在沉浸式显示设备中的应用方法 | |
CN107590280A (zh) | 一种三维地理信息系统全球真实云层的仿真方法 | |
JP5105917B2 (ja) | 複合プラネタリウムシステム | |
CN115526976A (zh) | 虚拟场景渲染方法、装置、存储介质和电子设备 | |
CN115292287A (zh) | 一种卫星特征部件图像自动标注及数据库构建方法 | |
JP5295411B2 (ja) | 複合プラネタリウムシステム | |
JP5294571B2 (ja) | 星空の表示方法ならびに該表示方法を用いたプラネタリウム装置および星空の表示装置 | |
CN111563947B (zh) | 全球三维云的互动实时体渲染方法 | |
GB2051525A (en) | C.G.I.-Surface textures | |
JP4980153B2 (ja) | 画像表示装置および画像表示方法 | |
CN114494563B (zh) | 航拍视频在数字地球上的融合显示方法和装置 | |
Timokhin et al. | Computer modeling and visualization of accurate terrain shadows in virtual environment system | |
CN111970504A (zh) | 利用虚拟投影反向模拟三维球体的展示方法、装置和系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080716 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120501 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120925 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130611 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5294571 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |