JP5294397B2 - 金属錯体化合物 - Google Patents

金属錯体化合物 Download PDF

Info

Publication number
JP5294397B2
JP5294397B2 JP2008227072A JP2008227072A JP5294397B2 JP 5294397 B2 JP5294397 B2 JP 5294397B2 JP 2008227072 A JP2008227072 A JP 2008227072A JP 2008227072 A JP2008227072 A JP 2008227072A JP 5294397 B2 JP5294397 B2 JP 5294397B2
Authority
JP
Japan
Prior art keywords
formula
compound
complex compound
transition metal
hydroxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008227072A
Other languages
English (en)
Other versions
JP2010059103A (ja
Inventor
博彦 北條
貴逸 本山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2008227072A priority Critical patent/JP5294397B2/ja
Publication of JP2010059103A publication Critical patent/JP2010059103A/ja
Application granted granted Critical
Publication of JP5294397B2 publication Critical patent/JP5294397B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、有機電子材料として有用な金属錯体化合物、そのリガントとしての化合物、ならびにそれらの金属錯体化合物の製造方法と、その製造方法に有用な中間体化合物に関するものである。
π共役系が長くつながった有機分子、およびその金属錯体化合物は、有機電子材料などに応用可能な材料として注目されている。例えば、ポリアセチレン、ポリチオフェン、ポリピロール、ポリパラフェニレン、ポリパラフェニレンビニレンなどのπ共役系高分子は、有機半導体、導電性高分子又は発光性高分子として働くことが知られており、また近年、有機EL(Electroluminescence)又は有機LED(Light-Emitting Diode)素子の発光層への応用や、有機TFT(Thin Film Transistor)としての応用が検討されている。
また、金属原子をπ共役系が長くつながった有機分子の主鎖に直接結合(配位)させた金属錯体化合物は、半導体特性、導電性、レドックス活性、光ルミネセンス活性などの特性を有することが期待され、同様に、有機EL又は有機LED素子の発光層への応用や、有機TFTとして液晶ディスプレイへの応用が期待されている。そのような金属錯体化合物として、イミン化合物であるサレン(salen:N,N′−ジサリチリデンセチレンジアミン)およびサルフェン(salphen:N,N′−ジサリチリデン−o−フェニレンジアミン)リガンドと、遷移金属カチオンとを含むもの(以下、サレン系錯体化合物という)が知られている。そして、例えば、Ni−サレン系錯体化合物を電解重合より電極上で導電性フィルムとする製造手順が報告されている(例えば、非特許文献1−3参照)。
さらにサレン系錯体化合物は、従来から、シアニン色素やオキソノール染料などの再生劣化を改善する目的で、光学記録媒体などへの使用が検討されている(例えば、特許文献1、2参照)。しかしながら、そのような化合物は合成の煩雑さ、溶解性の低さなどにより取り扱いに難点があるものもが多い。
特開昭60−44390号公報 特表2007−513064号公報 P. Audebertら, New J. Chem. 15 (1991) p235-237 C. E. Dahmら, Anal. Chem., 66 (1994) p3117-3123 E. A. Dmitrievaら, Russ. J. Electrochem. 41 (2005) p381-387
本発明は、π共役系が長くつながった、新規な金属錯体化合物を提供することを目的とする。具体的に、本発明は、式Iおよび式IIで表される単核および二核錯体化合物、そのリガントとしての式IIIで表される化合物、ならびに式Iおよび式IIで表される錯体化合物の製造方法と、その製造方法に有用な式IVで表される中間体化合物を提供する。
本発明者らは、サリチルアルデヒドまたはその類縁体から誘導されるサレン系錯体化合物に着目し、そのπ共役系を伸展させて、半導体特性、導電性、レドックス活性、光ルミネセンス活性などの特性を有する新規な金属錯体化合物の探索を鋭意行なった結果、サリチルアルデヒドに代えて、2−ヒドロキシ−1−ナフトアルデヒド化合物から誘導される単核錯体化合物、および2,6−ジヒドロキシ−1,5−ナフタレンジカルバルデヒド化合物から誘導される二核錯体化合物を見出し、以下の本発明を完成させた。
(1)式I:
Figure 0005294397

(式中、Rは、互いに独立して、水素、C−C18アルキル基またはアリール基であり、R′は、互いに独立して、水素、水酸基、C−Cアルキル基、C−Cアルコキシル基またはアリール基であり、そしてMは、2価もしくは3価の遷移金属カチオンである)で表される単核錯体化合物。
(2)式II:
Figure 0005294397

(式中、Rは、互いに独立して、水素、C−C18アルキル基またはアリール基であり、R′は、互いに独立して、水素、水酸基、C−Cアルキル基、C−Cアルコキシル基またはアリール基であり、そしてMは、2価もしくは3価の遷移金属カチオンである)
で表される二核錯体化合物。
(3)遷移金属カチオンが、周期表第4周期の遷移金属から選択されるものである、上記(1)または(2)の錯体化合物。
(4)遷移金属カチオンが、亜鉛(II)、銅(II)、ニッケル(II)、コバルト(II)、マンガン(II)または鉄(III)である、上記(3)の錯体化合物。
(5)式III:
Figure 0005294397

(式中、RおよびR′は、上記に定義したとおりである)で表される化合物。
(6)上記(1)の式I:
Figure 0005294397

(式中、R、R′およびMは、上記に定義したとおりである)で表される単核錯体化合物の製造方法であって、式IV:
Figure 0005294397

(式中、RおよびR′は、上記に定義したとおりである)で表されるN−(2−ヒドロキシ−1−ナフタリデン)−o−フェニレンジアミン化合物と、式V:
Figure 0005294397

(式中、R′は、上記に定義したとおりである)で表される2−ヒドロキシ−1−ナフトアルデヒド化合物との混合物を、遷移金属化合物と反応させることを特徴とする、方法。
(7)上記(2)の式II:
Figure 0005294397

(式中、R、R′およびMは、上記に定義したとおりである)で表される二核錯体化合物の製造方法であって、式IV:
Figure 0005294397

(式中、RおよびR′は、上記に定義したとおりである)で表されるN−(2−ヒドロキシ−1−ナフタリデン)−o−フェニレンジアミン化合物と、式VI:
Figure 0005294397

の2,6−ジヒドロキシ−1,5−ナフタレンジカルバルデヒドとの混合物を、遷移金属化合物と反応させることを特徴とする、方法。
(8)式IV:
Figure 0005294397

(式中、RおよびR′は、上記に定義したとおりである)で表されるN−(2−ヒドロキシ−1−ナフタリデン)−o−フェニレンジアミン化合物。
本発明により、π共役系が長くつながった、式Iおよび式IIの新規錯体化合物を提供することができる。本発明の錯体化合物は、複雑な反応を必要とすることなく、2−ヒドロキシ−1−ナフトアルデヒド化合物から、または2,6−ジヒドロキシ−1,5−ナフタレンジカルバルデヒドから、容易に製造することができる。特に、2,6−ジヒドロキシ−1,5−ナフタレンジカルバルデヒドと、ハーフリガンドである式IVの化合物とを用いることにより、π共役系がより伸張した二核錯体化合物を、ワンポット反応により容易に製造することができる。また、本発明の錯体化合物は、添付の図面に示すように、600nmを超える長波長領域に吸収を示す。このような長波長領域に吸収を示す従来の有機化合物は、自らが吸収した光エネルギーにより分解し易く、一般に不安定なものが多い。これに対して本発明の化合物は、芳香族化合物と遷移金属カチオンからなる錯体によるものであることから、非常に安定である。したがって、本発明の錯体化合物は有機電子材料として、半導体特性、導電性又は発光性などの特性とその安定性を発揮することが期待される。
本発明の新規なサレン系錯体化合物である式Iおよび式IIの錯体化合物において、Rは、互いに独立して、水素、C−C18アルキル基またはアリール基であり、R′は、互いに独立して、水素、水酸基、C−Cアルキル基、C−Cアルコキシル基またはアリール基である。
RにおけるC−C18アルキル基は、直鎖状または分岐鎖状のC−C18アルキル基を意味し、例えば、メチル、エチル、n−プロピルまたはイソプロピル、あるいは直鎖状または分岐鎖状のブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシルまたはオクタデシルを意味する。式Iおよび式IIの錯体化合物の溶解性の点からは、少なくとも1つのRが、直鎖状または分岐鎖状のC-C18アルキル基であるのが好ましく、特に、オクチル、デシル、ドデシル、オクタデシルのような直鎖状または分岐鎖状のC-C18アルキル基であるのが好ましい。
R′におけるC−Cアルキル基は、直鎖状または分岐鎖状のC−Cアルキル基を意味し、例えば、メチル、エチル、n−プロピルまたはイソプロピル、あるいは直鎖状または分岐鎖状のブチル、ペンチル、ヘキシル、ヘプチルまたはオクチルを意味する。メチル、エチル、n−プロピル、イソプロピル、イソブチル、sec−ブチルまたはt−ブチルのような直鎖状または分岐鎖状のC-Cアルキル基であるのが好ましい。
R′におけるC−Cアルコキシル基は、−O−C−Cアルキルを意味し、ここでC−Cアルキルは、上記に定義したとおりである。RおよびR′におけるアリールは、フェニルまたはナフチルを意味する。
本発明の新規なサレン系錯体化合物である、式Iおよび式IIの単核および二核錯体化合物において、Mは、リガンドである上記式IIIの化合物に結合(配位)する、2価若しくは3価の遷移金属カチオンであり、好ましくは、周期表第4周期の遷移金属元素から選択されるものであり、特には、亜鉛(II)、銅(II)、ニッケル(II)、コバルト(II)、マンガン(II)または鉄(III)である。
本発明の新規なサレン系錯体化合物である、式Iおよび式IIの単核および二核錯体化合物において、Rは、両方共に、水素またはC−Cアルキル基、特に直鎖状または分岐鎖状のC-C18アルキル基であるのが好ましく;R′は、両方共に、水素、水酸基またはC−Cアルキル基、特に水酸基であるのが好ましく;Mは、亜鉛(II)、銅(II)、ニッケル(II)または鉄(III)であるのが好ましい。
本発明の新規なサレン系錯体化合物である式Iの単核錯体化合物は、以下に示すスキーム1および2にしたがって製造することができる。
Figure 0005294397
スキーム1では、先ず式Iの単核錯体化合物のリガンドである、式IIIの化合物の合成について概説する。かかる合成は、アルデヒドとアミンを反応させてイミンを形成する公知の方法に従って行なうことができる。例えば、メタノール、エタノール、THFまたはそれらの混合溶媒のような不活性溶媒中の式VIIのフェニレンジアミン化合物(市販されているか、公知の方法、例えば文献:D. T. Rosaら, Inorg. Synth. 33 (2002) p112-119 に記載の方法に従って合成される)に、式Vの2−ヒドロキシ−1−ナフトアルデヒド化合物(市販されているか、公知の方法、例えば文献:C. Schieleら, Tetrahedron 24 (1968) p2293-2296 に記載の方法に従って合成される)を加え、0℃〜使用する溶媒の還流温度までの温度で、好ましくは室温(約25℃)〜使用する溶媒の還流温度までの温度で、1〜24時間反応させることによって製造することができる。この反応では、式IIIのリガンドを単独で、又はハーフリガンドである式IVの化合物と共に得ることができる。あるいは、式Vのアルデヒド化合物と、式VIIのフェニレンジアミン化合物とを等モル量で反応させることにより、式IVの化合物をほぼ単独で得ることができる。このように、式IIIのリガンドまたは式IVのハーフリガンドのいずれが優位に形成されるかの決定は、原料である式Vのアルデヒド化合物と式VIIのフェニレンジアミン化合物との仕込み量のモル比を所望に応じて調整することにより行うことができる。また、式IVのハーフリガンドの形成が優位になるようこの反応を実施するには、形成した式IVのハーフリガンドのさらなる反応の進行(すなわち、式IIIのリガンドへの反応の進行)を阻害するため、形成したハーフリガンドが反応系から順次析出するように、溶媒の種類や使用量を適宜調整することにより行なうこともできる。式IVの化合物は、後述するように、式Iおよび式IIの錯体化合物の製造において使用しうる中間体である。
Figure 0005294397
スキーム2の方法Aにおいて、式Iの単核錯体化合物は、式IIIのリガンドと遷移金属化合物:MXを直接反応させる、公知の方法に従って得ることができる。例えば、メタノール、エタノール、THFまたはそれらの混合溶媒のような不活性溶媒中の式IIIのリガンドに、遷移金属化合物:MXを加え、0℃〜使用する溶媒の還流温度までの温度で、好ましくは室温(約25℃)〜使用する溶媒の還流温度までの温度で、1〜24時間撹拌することによって製造することができる。かかる反応は、必要に応じて、トリエチルアミンのような塩基の存在下に行なってもよい。
一方、スキーム2の方法Bにおいて、式Iの単核錯体化合物は、ハーフリガンドとして式IVの化合物と、式Vの2−ヒドロキシ−1−ナフトアルデヒド化合物との混合物に、遷移金属化合物:MXを順次加えて反応させることにより得ることができる。例えば、メタノール、エタノール、THFまたはそれらの混合溶媒のような不活性溶媒中の式IVの化合物に、式Vの2−ヒドロキシ−1−ナフトアルデヒド化合物を加え、次いで遷移金属化合物:MXを加え、0℃〜使用する溶媒の還流温度までの温度で、好ましくは室温(約25℃)〜使用する溶媒の還流温度までの温度で、1〜24時間撹拌することによって製造することができる。かかる反応は、必要に応じて、トリエチルアミンのような塩基の存在下に行なってもよい。
本発明の新規なサレン系錯体化合物である式IIの二核錯体化合物は、以下に示すスキーム3にしたがって製造することができる。
Figure 0005294397
スキーム3において、式IIの二核錯体化合物は、ハーフリガンドとして式IVの化合物と、式VIの2,6−ジヒドロキシ−1,5−ナフタレンジカルバルデヒド(公知の方法、例えば文献:A. P. Kuriakose et al., Jour. Indian Chem. Soc., Vol. 43, No. 6, 1966 に記載の方法に従って合成される)との混合物に、遷移金属化合物:MXを順次加えて反応させることにより得ることができる。例えば、メタノール、エタノール、THFまたはそれらの混合溶媒のような不活性溶媒中の式IVの化合物に、式VIのジカルバルデヒド化合物を加え、次いで遷移金属化合物:MXを加え、0℃〜使用する溶媒の還流温度までの温度で、好ましくは室温(約25℃)〜使用する溶媒の還流温度までの温度で、1〜24時間撹拌することによって製造することができる。かかる反応は、必要に応じて、トリエチルアミンのような塩基の存在下に行なってもよい。
本発明おいて遷移金属化合物:MXは、2価もしくは3価の遷移金属カチオンを、好ましくは、周期表第4周期の遷移金属から選択されるものを、特には、亜鉛(II)、銅(II)、ニッケル(II)、コバルト(II)、マンガン(II)または鉄(III)を、リガンドに供給し、式Iおよび式IIの錯体化合物を形成しうる化合物であればよい。本発明に使用する遷移金属化合物の例としては、上記遷移金属の低価数の無機酸塩、有機酸塩または錯塩の形で一般に使用されるものが挙げられる。そのような遷移金属化合物としては、アセチルアセトン亜鉛(II)、アセチルアセトン銅(II)、アセチルアセトンニッケル(II)、アセチルアセトンコバルト(II)、アセチルアセトンマンガン(II)、塩化亜鉛(II)、塩化コバルト(II)、塩化鉄(III)、炭酸亜鉛(II)、炭酸コバルト(II)、炭酸マンガン(II)、酸化コバルト(II)、酸化鉄(III)、酢酸亜鉛(II)、酢酸銅(II)、酢酸ニッケル(II)、酢酸コバルト(II)、酢酸マンガン(II)、ステアリン酸亜鉛(II)、ステアリン酸コバルト(II)、ステアリン酸マンガン(II)、乳酸亜鉛(II)等が挙げられるが、これらに限定されるものではない。酢酸亜鉛(II)、酢酸銅(II)、酢酸ニッケル(II)または塩化鉄(III)の使用が好ましい。
以下に実施例を示し、本発明の詳細を説明するが、これらの実施例は本発明を限定することを意図するものではない。
実施例で得られた、式Iの単核錯体化合物および式IIの二核錯体化合物の各スペクトルデータは、以下のように測定した。
−電子吸収スペクトル
測定機器:JASCO V-630 spectrophotometer
測定試料:各実施例化合物の1×10−4Mピリジン(分析用グレード)溶液
−NMRスペクトル
測定機器:JEOL JNM-AL400(400 MHz for 1H)
−IRスペクトル
測定機器:Shimadzu FTIR-8700
−MSスペクトル
測定機器:JEOL JMS-600H
−元素分析
測定機器:FUSION INSTRUMENTS EA1108
また、実施例で示した化合物の融点は、顕微鏡用の冷却・加熱装置である、Linkam LK−600を用いて、昇温速度2K/分にて測定したものである。
実施例1:リガンド(Rが、共にn−ドデシル基であり、R′が、共に水酸基である、式IIIの化合物)の合成
2,6−ジヒドロキシナフトアルデヒド(207mg, 1.1mmol;C. Schieleら, Tetrahedron 24 (1968) p2293-2296 に従って合成した)を、THF(4mL)に溶解し、これを4,5−ビス(デシルオキシ)−1,2−フェニレンジアミン(239mg, 0.5mmol;D. T. Rosaら, Inorg. Synth. 33 (2002) p112-119 に従って合成した)のTHF/メタノール(v/v=1/1,5mL)溶液に、室温で加えた。12時間撹拌した後、反応混合物にメタノールを加え、沈殿を促した。析出した沈殿物をろ取し、赤紫色の結晶性固体として目的化合物139mg(収率34%)を得た。
mp. 244-246 ℃;
IR (KBr) 3365 (νO-H), 1611 (νC=N) cm-1;
FAB(+) MS m/z 817.8 (817.5 calcd. for M+H+);
Elemental Analysis Calcd. for C52H68N2O6: C, 76.44; H, 8.39; N, 3.43. Found: C, 76.15; H, 8.40; N, 3.41.;
1H NMR (DMSO-d6) δ 0.85 (t (7.3 Hz), CH3, 6H), 1.20-1.40 (m, -CH2-, 32H), 1.42-1.51 (m, -CH2-, 4H), 1.73-1.80 (m, -CH2-, 4H), 4.15 (t (5.9 Hz), -CH2O-, 4H), 7.01 (d (9.2 Hz), ArH, 2H), 7.10-7.12 (m, ArH, 4H), 7.38 (s, ArH, 2H), 7.76 (d (9.3 Hz), ArH, 2H), 8.39 (d (9.7 Hz), ArH, 2H), 9.54 (br, ArOH, 2H), 9.56 (s, -CH=N-, 2H), 15.05 (br, ArOH, 2H).
実施例2:ハーフリガンド(Rが共にn−ドデシル基であり、R′が水酸基である、式IVの化合物)の合成
2,6−ジヒドロキシナフトアルデヒド(753mg, 4.0mmol)を、THF−エタノール(v/v=1/4,25mL)に溶解し、これを4,5−ビス(デシルオキシ)−1,2−フェニレンジアミン(954mg, 2.0mmol)のTHF/エタノール(v/v=1/1,35mL)溶液に、室温で加えた。12時間撹拌した後、反応混合物を真空エバポレータで濃縮し、次いでメタノール30mLを加え、さらなる沈殿を促した。析出した沈殿物をろ取し、橙色の結晶性固体として目的化合物946mg(収率73%)を得た。
mp. 140-142 ℃;
IR (KBr) 3192 (νO-H), 1607 (νC=N) cm-1;
FAB(+) MS m/z 647.5 (647.5 calcd. for M+H+);
Elemental Analysis Calcd. for C41H62N2O4・0.5H2O: C, 75.07; H, 9.68; N, 4.27. Found: C, 74.84; H, 9.71; N, 4.30.;
1H NMR (DMSO-d6) δ 0.85 (t (6.6 Hz), CH3, 6H), 1.19-1.38 (m, -CH2-, 32H), 1.40-1.48 (m, -CH2-, 4H), 1.64-1.74 (m, -CH2-, 4H), 3.90 (t (6.3 Hz), -CH2O-, 2H), 3.95 (t (6.4 Hz), -CH2O-, 2H), 4.76 (s, ArNH2, 2H), 6.50 (s, ArH, 1H), 7.04 (d (9.1 Hz), ArH, 1H), 7.10-7.13 (m, ArH, 2H), 7.22 (s, ArH, 1H), 7.72 (d (9.1 Hz), ArH, 1H), 8.41 (d (8.8 Hz), ArH, 1H), 9.49 (s, -CH=N-, 1H), 15.43 (s, ArOH, 1H).
実施例3:亜鉛(II)−単核錯体化合物([ZnL ]:Rが共にn−ドデシル基であり、R′が共に水酸基であり、MがZn(II)である、式Iの化合物)の合成
実施例1で得られたリガンド(40.9mg, 0.05mmol)を、THF(5mL)に溶解し、それに酢酸亜鉛(II)・二水和物(12.1mg, 0.055mmol)のメタノール(1mL)溶液を、室温で滴下した。18時間撹拌した後、メタノール(6mL)を加え、次いで混合物を真空エバポレータで、固体が析出するまで濃縮した。析出した沈殿物をろ取し、赤紫色の結晶性固体として目的化合物38mg(収率86%)を得た。
IR (KBr) 3368 (νO-H), 1607 (νC=N), 566 (νM-O), 419 (νM-N) cm-1;
FAB(+) MS m/z 879.6 (879.4 calcd. for M+H+);
Elemental Analysis Calcd. for C52H66N2O6Zn・2H2O: C, 68.15; H, 7.70; N, 3.06. Found: C, 68.18; H, 7.44; N, 3.00.;
1H NMR (DMSO-d6) δ 0.85 (t (6.5 Hz), CH3, 6H), 1.20-1.42 (m, -CH2-, 32H), 1.48-1.56 (m, -CH2-, 4H), 1.75-1.83 (m, -CH2-, 4H), 4.20 (t (6.0 Hz), -CH2O-, 4H), 6.92 (d (9.1 Hz), ArH, 2H), 6.99 (s, ArH, 2H), 7.03 (d (8.9 Hz), ArH, 2H), 7.56 (s, ArH, 2H), 7.59 (d 9.3 Hz), ArH, 2H), 8.29 (d (9.3 Hz), ArH, 2H), 9.23 (s, -CH=N-, 2H), 9.58 (s, ArOH, 2H).
実施例4:銅(II)−単核錯体化合物([CuL ]:Rが、共にn−ドデシル基であり、R′が共に水酸基であり、MがCu(II)である、式Iの化合物)の合成
実施例1で得られたリガンド(40.9mg, 0.05mmol)を、THF(2mL)に溶解し、それに酢酸銅(II)・無水物(10.0mg, 0.055mmol)のメタノール(2mL)溶液を、室温で滴下した。さらにメタノール(1mL)を加え、16時間撹拌すると、沈殿物が得られた。それをろ取し、暗紫色の結晶性固体として目的化合物45mg(収率100%)を得た。
IR (KBr) 3352 (νO-H), 1605 (νC=N) , 569 (νM-O), 419 (νM-N) cm-1;
FAB(+) MS m/z 878.5 (878.4 calcd. for M+H+), 900.7 (900.4 calcd. for M+Na+); Elemental Analysis Calcd. for C52H66CuN2O6・H2O: C, 69.65; H, 7.64; N, 3.12. Found: C, 69.38; H, 7.64; N, 3.15.
実施例5:ニッケル(II)−単核錯体化合物([NiL ]:Rが共にn−ドデシル基であり、R′が共に水酸基であり、MがNi(II)である、式Iの化合物)の合成
実施例1で得られたリガンド(40.9mg, 0.05mmol)を、THF(5mL)に溶解し、それに酢酸ニッケル(II)・四水和物(13.7mg, 0.055mmol)のメタノール(1mL)溶液を、室温で滴下した。混合物は速やか沈殿を形成した。これをろ取し、暗紫色の結晶性固体として目的化合物41mg(収率94%)を得た。
IR(KBr) 3354 (νO-H), 1605 (νC=N), 581 (νM-O), 421 (νM-N) cm-1;
FAB(+) MS m/z 873.7 (873.4 calcd. for M+H+), 895.7 (895.4 calcd. for M+Na+);
Elemental Analysis Calcd. for C52H66N2NiO6・H2O: C, 70.03; H, 7.69; N, 3.14. Found: C, 69.85; H, 7.54; N, 3.16.;
1H NMR (DMSO-d6) δ 0.84 (t (6.3 Hz), CH3, 6H), 1.20-1.40 (m, -CH2-, 32H), 1.45-1.54 (m, -CH2-, 4H), 1.73-1.80 (m, -CH2-, 4H), 4.18 (t (6.8 Hz), -CH2O-, 4H), 7.04 (d (9.1 Hz), ArH, 2H), 7.08 (s, ArH, 2H), 7.10 (d (8.9 Hz), ArH, 2H), 7.64 (d 9.2 Hz), ArH, 2H), 7.80 (s, ArH, 2H), 8.38 (d (8.5 Hz), ArH, 2H), 9.06 (s, -CH=N-, 2H), 9.44 (s, ArOH, 2H).
実施例6:鉄(III)−単核錯体化合物([FeL Cl]:Rが共にn−ドデシル基であり、R′が共に水酸基であり、MがFe(III)である、式Iの化合物)の合成
実施例1で得られたリガンド(40.9mg, 0.05mmol)を、THF(2mL)に溶解し、それに塩化鉄(III)・六水和物(14.9mg, 0.055mmol)のメタノール(1mL)溶液を、室温で滴下した。トリエチルアミン(5μL)を加え、混合物を18時間放置した。メタノール(6mL)を加えた後、真空エバポレータで濃縮すると、沈殿が得られた。それをろ取し、暗褐色の結晶性固体として目的化合物29mg(収率64%)を得た。
IR(KBr) 3366 (νO-H), 1601 (νC=N) , 584 (νM-O), 419 (νM-N) cm-1;
FAB(+) MS m/z 870.6 (870.4 calcd. for M-Cl-), 905.6 (905.4 calcd. for M+);
Elemental Analysis Calcd. for C52H66ClFeN2O6・H2O: C, 67.56; H, 7.41; N, 3.03. Found: C, 67.44; H, 6.83; N, 2.80.
実施例7:亜鉛(II)−二核錯体化合物([Zn ]:Rが共にn−ドデシル基であり、R′が共に水酸基であり、MがZn(II)である、式IIの化合物)の合成
実施例2で得られたハーフリガンド(129.4mg, 0.2mmol)を、THF(5mL)に溶解し、それに2,6−ジヒドロキシ−1,5−ナフタレンジカルバルデヒド(21.6mg,0.1mmol;A. P. Kuriakose et al., Jour. Indian Chem. Soc., Vol. 43, No. 6, 1966 に記載の方法に従って合成した)のTHF(5mL)溶液を加えた。混合物が赤褐色の溶液に変化した後、酢酸亜鉛(II)・二水和物(48.3mg, 0.22mmol)のメタノール(3mL)溶液を、室温で滴下した。4時間撹拌した後、沈殿物が得られた。沈殿物をろ取し、メタノールで洗浄し、赤紫色の結晶性固体として目的化合物127.6mg(収率80%)を得た。
IR(KBr) 3384 (νO-H), 1607 (νC=N), 569 (νM-O), 415 (νM-N) cm-1;
FAB(+) MS m/z 1599.7 (1597.8 calcd. for M+H+);
Elemental Analysis Calcd. for C94H124N4O10Zn2・4H2O: C, 67.49; H, 7.95; N, 3.35. Found: C, 67.38; H, 7.46; N, 3.48.;
1H NMR (pyridine-d5) δ 0.89 (t (6.6 Hz), CH3, 12H), 1.20-1.39 (m, -CH2-, 72H), 1.48-1.58 (m, -CH2-, 8H), 1.77-1.87 (m, -CH2-, 8H), 4.18 (t (6.4 Hz), -CH2O-, 4H), 4.22 (t (6.3 Hz), -CH2O-, 4H), 7.48 (d (9.3 Hz), ArH, 2H), 7.51 (d (9.2 Hz), ArH, 2H), 7.56 (s, ArH, 2H), 7.77 (d (9.5 Hz), ArH, 2H), 7.85 (s, ArH, 2H), 7.92 (s, ArH, 2H), 8.65 (d (9.3 Hz), ArH, 2H), 8.74 (d, ArH, 2H), 8.83 (d (9.3 Hz), ArH, 2H), 10.16 (s, -CH=N-, 2H), 10.20 (s, -CH=N-, 2H), 11.44 (s, ArOH, 2H).
実施例8:銅(II)−二核錯体化合物([Cu ]:Rが共にn−ドデシル基であり、R′が共に水酸基であり、MがCu(II)である、式IIの化合物)の合成
実施例2で得られたハーフリガンド(129.4mg, 0.2mmol)を、THF(5mL)に溶解し、それに2,6−ジヒドロキシ−1,5−ナフタレンジカルバルデヒド(21.6mg,0.1mmol)のTHF(5mL)溶液を加えた。混合物が赤褐色の溶液に変化した後、酢酸銅(II)・無水物(40.0mg, 0.22mmol)のメタノール/THF(v/v=1/3,8mL)溶液を、室温で滴下した。11時間撹拌した後、沈殿物が得られた。沈殿物をろ取し、メタノールで洗浄し、暗紫色の結晶性固体として目的化合物137.5mg(収率86%)を得た。
IR(KBr) 3378 (νO-H), 1605 (νC=N) , 571 (νM-O), 421 (νM-N) cm-1;
FAB(+) MS m/z 1596.9 (1594.8 calcd. for M+H+);
Elemental Analysis Calcd. for C94H124Cu2N4O10・2H2O: C, 69.13; H, 7.90; N, 3.43. Found: C, 68.92; H, 7.81; N, 3.35.
実施例9:ニッケル(II)−二核錯体化合物([Ni ]:Rが共にn−ドデシル基であり、R′が水酸基であり、MがNi(II)である、式IIの化合物)の合成
実施例2で得られたハーフリガンド(129.4mg, 0.2mmol)を、THF(5mL)に溶解し、それに2,6−ジヒドロキシ−1,5−ナフタレンジカルバルデヒド(21.6mg,0.1mmol)のTHF(5mL)溶液を加えた。混合物が赤褐色の溶液に変化した後、酢酸ニッケル(II)・四水和物(54.7mg, 0.22mmol)のメタノール/THF(v/v=1/3,8mL)溶液を、室温で滴下した。12時間撹拌した後、沈殿物が得られた。沈殿物をろ取し、メタノールで洗浄し、赤紫色の結晶性固体として目的化合物132.2mg(収率83%)を得た。
IR(KBr) 3354 (νO-H), 1603 (νC=N) , 550 (νM-O), 424 (νM-N) cm-1;
FAB(+) MS m/z 1585.4 (1585.8 calcd. for M+H+);
Elemental Analysis Calcd. for C94H124N4Ni2O10・3H2O: C, 68.78; H, 7.98; N, 3.41. Found: C, 69.15; H, 7.79; N, 3.41.
実施例10:鉄(III)−二核錯体化合物([Fe Cl ]:Rが共にn−ドデシル基であり、R′が水酸基であり、MがFe(III)である、式IIの化合物)の合成
実施例2で得られたハーフリガンド(64.7mg, 0.1mmol)を、THF(3mL)に溶解し、それに2,6−ジヒドロキシ−1,5−ナフタレンジカルバルデヒド(10.8mg,0.05mmol)のTHF(4mL)溶液を加えた。混合物が赤褐色の溶液に変化した後、塩化鉄(III)・六水和物(29.7mg, 0.11mmol)のメタノール(2mL)溶液を、室温で滴下した。トリエチルアミン(10μL)を加え、混合物を16時間放置した。沈殿物が得られ、それをろ取し、メタノールで洗浄し、黒色の結晶性固体として目的化合物33.0mg(収率40%)を得た。
IR(KBr) 3414 (νO-H), 1599 (νC=N), 573 (νM-O), 417 (νM-N) cm-1;
FAB(+) MS m/z 1580.7 (1580.8 calcd. for M+-2Cl-);
Elemental Analysis Calcd. for C94H124Cl2Fe2N4O10・2H2O: C, 66.86; H, 7.64; N, 3.32. Found: C, 66.70; H, 7.09; N, 3.45.
実施例11:電子吸収スペクトルの測定
実施例3〜10で得られた単核および二核錯体化合物の電子吸収スペクトルを、紫外可視分光光度計(JASCO V-630 spectrophotometer)にて測定した。試料は、実施例3〜10の化合物をピリジン(分析用グレード)に溶解し、1×10−4M溶液としたものを使用した。結果を図1〜4に示す。この電子吸収スペクトルから明らかなように、本発明の錯体化合物は、添付の図面に示すように、600nmを超える長波長領域に吸収を示すことから、半導体特性、導電性又は発光性などの特性を発揮することが期待される。
本発明の式Iおよび式IIの錯体化合物は、複雑な反応を必要とすることなく、2−ヒドロキシ−1−ナフトアルデヒド化合物から、あるいは2,6−ジヒドロキシ−1,5−ナフタレンジカルバルデヒドから、容易に製造することができる。特に、2,6−ジヒドロキシ−1,5−ナフタレンジカルバルデヒドと、ハーフリガンドである式IVの化合物とを用いることにより、π共役系がより伸張した二核錯体化合物を、ワンポット反応により容易に製造することができる。また、本発明の錯体化合物は、上記で述べたように、600nmを超える長波長領域に吸収を示す。このような長波長領域に吸収を示す従来の有機化合物は、自らが吸収した光エネルギーにより分解し易く、一般に不安定なものが多い。これに対して本発明の化合物は、芳香族化合物と遷移金属カチオンからなる錯体によるものであることから、非常に安定である。したがって、本発明の錯体化合物は有機電子材料として、半導体特性、導電性又は発光性などの特性とその安定性を発揮することが期待される。したがって、例えば、一対の電極間に有機発光層を狭持する有機EL素子において、その発光層に本発明の錯体化合物を含有させて、発光材料として使用することができる。そのような有機発光層は、必要に応じて、本発明の錯体化合物に加えて、慣用の発光材料、ドーピング材料、正孔注入材料等を含有させて、当業者に公知の方法に従って製造することができる。
実施例3で得られた式Iの亜鉛(II)−単核錯体化合物(破線)と、実施例7で得られた式Iの式IIの亜鉛(II)−二核錯体化合物(実線)の紫外−可視領域における電子吸収スペクトルである。 実施例4で得られた式Iの銅(II)−単核錯体化合物(破線)と、実施例8で得られた式Iの式IIの銅(II)−二核錯体化合物(実線)の紫外−可視領域における電子吸収スペクトルである。 実施例5で得られた式Iのニッケル(II)−単核錯体化合物(破線)と、実施例9で得られた式Iの式IIのニッケル(II)−二核錯体化合物(実線)の紫外−可視領域における電子吸収スペクトルである。 実施例6で得られた式Iの鉄(III)−単核錯体化合物(破線)と、実施例10で得られた式Iの式IIの鉄(III)−二核錯体化合物(実線)の紫外−可視領域における電子吸収スペクトルである。

Claims (8)

  1. 式I:
    Figure 0005294397

    (式中、Rは、互いに独立して、水素、C−C18アルキル基またはアリール基であり、R′は、互いに独立して、水素、水酸基、C−Cアルキル基、C−Cアルコキシル基またはアリール基であり、そしてMは、2価もしくは3価の遷移金属カチオンである)で表される単核錯体化合物。
  2. 式II:
    Figure 0005294397

    (式中、Rは、互いに独立して、水素、C−C18アルキル基またはアリール基であり、R′は、互いに独立して、水素、水酸基、C−Cアルキル基、C−Cアルコキシル基またはアリール基であり、そしてMは、2価もしくは3価の遷移金属カチオンである)
    で表される二核錯体化合物。
  3. 遷移金属カチオンが、周期表第4周期の遷移金属から選択されるものである、請求項1または2に記載の錯体化合物。
  4. 遷移金属カチオンが、亜鉛(II)、銅(II)、ニッケル(II)、コバルト(II)、マンガン(II)または鉄(III)である、請求項3に記載の錯体化合物。
  5. 式III:
    Figure 0005294397

    (式中、RおよびR′は、請求項1に定義したとおりである)で表される化合物。
  6. 請求項1に記載の式I:
    Figure 0005294397

    (式中、R、R′およびMは、請求項1に定義したとおりである)で表される単核錯体化合物の製造方法であって、式IV:
    Figure 0005294397

    (式中、RおよびR′は、請求項1に定義したとおりである)で表されるN−(2−ヒドロキシ−1−ナフタリデン)−o−フェニレンジアミン化合物と、式V:
    Figure 0005294397

    (式中、R′は、請求項1に定義したとおりである)で表される2−ヒドロキシ−1−ナフトアルデヒド化合物の混合物を、遷移金属化合物と反応させることを特徴とする、方法。
  7. 請求項2に記載の式II:
    Figure 0005294397

    (式中、R、R′およびMは、請求項2に定義したとおりである)で表される二核錯体化合物の製造方法であって、式IV:
    Figure 0005294397

    (式中、RおよびR′は、請求項1に定義したとおりである)で表されるN−(2−ヒドロキシ−1−ナフタリデン)−o−フェニレンジアミン化合物と、式VI:
    Figure 0005294397

    の2,6−ジヒドロキシ−1,5−ナフタレンジカルバルデヒドとの混合物を、遷移金属化合物と反応させることを特徴とする、方法。
  8. 式IV:
    Figure 0005294397

    (式中、RおよびR′は、請求項1に定義したとおりである)で表されるN−(2−ヒドロキシ−1−ナフタリデン)−o−フェニレンジアミン化合物。
JP2008227072A 2008-09-04 2008-09-04 金属錯体化合物 Expired - Fee Related JP5294397B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008227072A JP5294397B2 (ja) 2008-09-04 2008-09-04 金属錯体化合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008227072A JP5294397B2 (ja) 2008-09-04 2008-09-04 金属錯体化合物

Publications (2)

Publication Number Publication Date
JP2010059103A JP2010059103A (ja) 2010-03-18
JP5294397B2 true JP5294397B2 (ja) 2013-09-18

Family

ID=42186349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008227072A Expired - Fee Related JP5294397B2 (ja) 2008-09-04 2008-09-04 金属錯体化合物

Country Status (1)

Country Link
JP (1) JP5294397B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569009B2 (ja) * 2010-01-27 2014-08-13 株式会社Ihi 有機el用発光材料、および、これを用いた有機el素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH596276A5 (ja) * 1974-07-31 1978-03-15 Ciba Geigy Ag
DE2460396A1 (de) * 1974-12-20 1976-06-24 Hoechst Ag Wasserunloesliche disazomethinverbindungen, verfahren zu ihrer herstellung und ihre verwendung als farbmittel
DE19757510A1 (de) * 1997-12-23 1999-06-24 Henkel Kgaa Verwendung von Übergangsmetallkomplexen und Färbemittel

Also Published As

Publication number Publication date
JP2010059103A (ja) 2010-03-18

Similar Documents

Publication Publication Date Title
Liu et al. Synthesis and characterization of metal complexes of Cu (II), Ni (II), Zn (II), Co (II), Mn (II) and Cd (II) with tetradentate Schiff bases
Cheng et al. Synthesis and photophysical properties of colorful salen-type Schiff bases
Shan et al. Controllable synthesis of iridium (III)-based aggregation-induced emission and/or piezochromic luminescence phosphors by simply adjusting the substitution on ancillary ligands
Chen et al. Sensitized luminescence from lanthanides in d–f bimetallic complexes
Yu et al. Synthesis, crystal structure and photoluminescent properties of an aromatic bridged Schiff base ligand and its zinc complex
Fujisawa et al. Reversible thermal-mode control of luminescence from liquid-crystalline gold (I) complexes
Han et al. A new TICT and AIE-active tetraphenylethene-based Schiff base with reversible piezofluorochromism
Pitchaimani et al. Synthesis, crystal structures, luminescence properties and catalytic application of lanthanide (III) piperidine dithiocarbamate complexes
Chang et al. Synthesis of photo-luminescent Zn (II) Schiff base complexes and its derivative containing Pd (II) moiety
George et al. Near-infrared luminescence of Nd 3+ and Yb 3+ complexes using a polyfluorinated pyrene-based β-diketonate ligand
Yuan et al. Structure and photophysical properties of a dimeric Zn (II) complex based on 8-hydroxyquinoline group containing 2, 6-dichlorobenzene unit
Han et al. Novel ratio fluorescence probes for selectively detecting zinc ion based on Y-type quinoxaline framework
Xiao et al. Multifunctional AIE schiff-base ligands and corresponding europium (Ⅲ) complexes: pH response and fluorescence properties
Wang et al. AIE-active TPA modified Schiff base for successive sensing of Cu 2+ and His via an on–off–on method and its application in bioimaging
Li et al. Tunable luminescence of cyclometallated platinum (II) derivatives based on novel pyrimidine-contained tridentate Pt (NˆCˆN) Cl complexes
JP5294397B2 (ja) 金属錯体化合物
Lin et al. Synthesis of alkynylated photo-luminescent Zn (II) and Mg (II) Schiff base complexes
Wu et al. Synthesis, photoluminescence and electrochemical properties of a series of carbazole-functionalized ligands and their silver (I) complexes
Yu et al. Synthesis, characterization, and photo-and electro-luminescence of new Ir (III) complexes with carrier transporting group-functionalized dibenzoylmethane ligand for green phosphorescent OLEDs
JP5506306B2 (ja) 発光物質
JP2006143680A (ja) 新規化合物及びその製造方法並びにその利用
He et al. Synthesis and luminescent properties of novel Cu (II), Zn (II) polymeric complexes based on 1, 10-phenanthroline and biphenyl groups
JP5841783B2 (ja) 新規フルオレン化合物
Chen et al. Synthesis, crystal structures and photophysical properties of novel copper (I) complexes with 4-diphenylphosphino-1, 5-naphthyridine ligands
Sahin et al. Synthesis, characterization and photophysical properties of iridium complexes with amidinate ligands

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130607

R150 Certificate of patent or registration of utility model

Ref document number: 5294397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees