JP5294249B2 - Porous free-standing clay film and method for producing the same - Google Patents

Porous free-standing clay film and method for producing the same Download PDF

Info

Publication number
JP5294249B2
JP5294249B2 JP2008092850A JP2008092850A JP5294249B2 JP 5294249 B2 JP5294249 B2 JP 5294249B2 JP 2008092850 A JP2008092850 A JP 2008092850A JP 2008092850 A JP2008092850 A JP 2008092850A JP 5294249 B2 JP5294249 B2 JP 5294249B2
Authority
JP
Japan
Prior art keywords
clay
film
supporting
self
clay film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008092850A
Other languages
Japanese (ja)
Other versions
JP2009242198A (en
Inventor
英治 河崎
健志 太見
正人 崎山
武雄 蛯名
富士夫 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&A Material Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
A&A Material Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&A Material Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical A&A Material Corp
Priority to JP2008092850A priority Critical patent/JP5294249B2/en
Publication of JP2009242198A publication Critical patent/JP2009242198A/en
Application granted granted Critical
Publication of JP5294249B2 publication Critical patent/JP5294249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous self-supporting clay film excellent in not only heat resistance but also thermal insulation properties and a method for producing the porous self-supporting clay film. <P>SOLUTION: The porous self-supporting clay film is based on clay, has such a structure that clay layered crystals are layered on one another, is used as a self-supporting film, has a void among the adjacent clay layered crystals, and has a hole which penetrates the clay layered crystals and reaches the surface of the clay film. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、耐熱性及び断熱性に優れた多孔質自立粘土膜及びその製造法に関する。   The present invention relates to a porous self-supporting clay film excellent in heat resistance and heat insulation and a method for producing the same.

一般に、多くの産業分野において、高温条件下での種々の生産プロセスが用いられている。そのため、アルミナ多孔体のような無機系多孔質膜、ポリオレフィン多孔膜のような有機高分子膜などの種々の耐熱性、断熱性ホスト材料がメンブレンとして用いられている。このメンブレンに触媒、酵素、吸着剤等の種々の化学物質を内包させ、触媒反応、吸着、分離反応等を行う。また、高温となる配管等に巻きつけて使用する。しかしながら、無機系多孔質膜の耐熱性は高いものの、柔軟性がなく、一方、有機高分子膜は柔軟性には優れるものの、耐熱性に劣り、柔軟性及び耐熱性を両立したメンブレン材料が存在しないという問題点があった。   In general, various production processes under high temperature conditions are used in many industrial fields. Therefore, various heat-resistant and heat-insulating host materials such as inorganic porous films such as alumina porous bodies and organic polymer films such as polyolefin porous films are used as membranes. Various chemical substances such as a catalyst, an enzyme, and an adsorbent are encapsulated in this membrane, and catalytic reaction, adsorption, separation reaction, and the like are performed. It is also used by wrapping around high temperature piping. However, although the inorganic porous membrane has high heat resistance, it is not flexible. On the other hand, the organic polymer membrane has excellent flexibility, but there is a membrane material that is inferior in heat resistance and has both flexibility and heat resistance. There was a problem of not doing.

かかる観点から、無機系材料である粘土に着目し、種々検討してきたところ、本発明者らは、粘土の結晶を積層配向させた、自立膜として利用可能な機械的強度を有する粘土薄膜(特許文献1、2)及び柔軟性を有し、粘土層状結晶が積層した構造を有し、自立膜として用いることができ、多孔質構造を有する粘土膜(特許文献3)を開発した。
特開2005−104133号公報 特開2006−77237号公報 特開2006−188418号公報
From such a point of view, various studies have been made by paying attention to clay, which is an inorganic material, and the present inventors have made a clay thin film having a mechanical strength that can be used as a self-supporting film in which clay crystals are laminated and oriented (patented) Documents 1, 2) and a flexible clay film having a structure in which clay layered crystals are laminated and can be used as a self-supporting film have been developed (Patent Document 3).
JP 2005-104133 A JP 2006-77237 A JP 2006-188418 A

特許文献1及び2に記載の粘土薄膜は、優れたフレキシビリティーと機械的強度を有するが、多孔質ではなく、断熱特性はない。一方、特許文献3記載の粘土膜は自立膜であり、多孔質である。しかし、当該多孔質粘土膜は、粘土膜を湿潤として急加温により発泡させる方法により製造されるが、膜の構造が均一でなくまた著しい反りが生じるために断熱シート材料としては使用できないものであった。   The clay thin films described in Patent Documents 1 and 2 have excellent flexibility and mechanical strength, but are not porous and have no heat insulating properties. On the other hand, the clay film described in Patent Document 3 is a self-supporting film and is porous. However, the porous clay film is manufactured by a method in which the clay film is wet and foamed by rapid heating. However, the structure of the film is not uniform and significant warpage occurs, so it cannot be used as a heat insulating sheet material. there were.

従って、本発明の課題は、耐熱性だけでなく、断熱性にも優れる多孔質自立粘土膜及びその製造法を提供することにある。   Therefore, the subject of this invention is providing the porous self-supporting clay film which is excellent not only in heat resistance but also in heat insulation, and its manufacturing method.

そこで本発明者は、前述の多孔質粘土膜の欠点を克服すべく種々検討を行った。まず、この多孔質粘土膜の構造について検討した結果、粘土膜の加熱により水を蒸発させて粘土層間に空隙を有する多孔質構造を形成させるものであるが、膜自身が極めて優れたガスバリア性を有することから、過剰になった水分の逃げ場がなく、水分の蒸発(発泡)に伴い膜表面を破壊してしまい、発泡が不均一となり、同時に膜に著しい反りが生じることが判明した。そこでさらに検討した結果、発泡前の粘土膜に微細な孔加工を行うことにより、加工された孔位置での空隙の成長が抑制され、余剰なガスが加工箇所から放出されるため、発泡サイズが均質となる結果、膜内部の空隙が均一な多孔質粘土膜が得られることを見出した。また、得られた多孔質粘土膜は形状も均一で、反り等がほとんどなく、優れた耐熱性と断熱性能を有することを見出し、本発明を完成した。   Therefore, the present inventor has made various studies to overcome the above-described drawbacks of the porous clay film. First, as a result of examining the structure of this porous clay film, the clay film is heated to evaporate water to form a porous structure having voids between clay layers. The film itself has an extremely excellent gas barrier property. Therefore, it has been found that there is no escape space for excess moisture, and the membrane surface is destroyed as the moisture evaporates (foaming), resulting in non-uniform foaming and at the same time significant warping of the membrane. Therefore, as a result of further investigation, by performing fine hole processing on the clay film before foaming, the growth of voids at the processed hole position is suppressed, and excess gas is released from the processed part, so the foam size is reduced. As a result, it was found that a porous clay film with uniform voids inside the film can be obtained. Moreover, the obtained porous clay film was found to have a uniform shape, almost no warpage and the like, and excellent heat resistance and heat insulation performance, thereby completing the present invention.

すなわち、本発明は、粘土を主要成分として構成され、粘土層状結晶が積層した構造を有し、自立膜として用いることができ、粘土層状結晶間に空隙を有し、かつ当該粘土層状結晶を貫通し、粘土膜表面に達する孔を有することを特徴とする多孔質自立粘土膜を提供するものである。
また、本発明は、上記多孔質自立粘土膜からなる断熱シート材を提供するものである。
さらに本発明は、粘土を主要成分とする原料を、水又は水を含む液体に分散させ、均一な粘土分散液を得、この分散液を容器に注入し又は物体表面に塗布した後、分散媒である液体を除去して粘土膜を作製し、当該粘土膜に微細な孔開け加工を施した後、加熱処理することを特徴とする上記多孔質自立粘土膜の製造法を提供するものである。
That is, the present invention is composed of clay as a main component, has a structure in which clay layered crystals are laminated, can be used as a self-supporting film, has voids between clay layered crystals, and penetrates the clay layered crystals The present invention provides a porous self-supporting clay film characterized by having pores reaching the surface of the clay film.
Moreover, this invention provides the heat insulation sheet material which consists of the said porous self-supporting clay film.
Furthermore, the present invention is to disperse a raw material containing clay as a main component in water or a liquid containing water, obtain a uniform clay dispersion, and inject the dispersion into a container or apply it to the surface of an object, and then disperse the dispersion medium. The present invention provides a method for producing a porous self-supporting clay film, wherein a clay film is produced by removing the liquid, and the clay film is subjected to a fine hole forming process and then subjected to a heat treatment. .

本発明の多孔質自立粘土膜は、粘土層状結晶間に均質な空隙を有することから、膜平面の熱伝導率が均質であり、優れた断熱性を有し、自立膜として利用可能な機械的強度とフレキシビリティーを有し、かつその膜形状は均一であり、反り等がないため、耐熱性シート材、特に断熱シート材として有用である。特に、工業プラントの高温となる配管、熱利用設備に巻きつけて使用できる断熱シート材として有用である。   Since the porous self-supporting clay film of the present invention has uniform voids between the clay layered crystals, the thermal conductivity of the film plane is uniform, has excellent heat insulation, and can be used as a self-supporting film. Since it has strength and flexibility, and its film shape is uniform and does not warp, it is useful as a heat-resistant sheet material, particularly a heat-insulating sheet material. In particular, it is useful as a heat insulating sheet material that can be used by wrapping around high-temperature piping and heat utilization equipment in an industrial plant.

本発明の多孔質自立粘土膜は、粘土を主要成分として構成され、粘土層状結晶が積層した構造を有し、自立膜として用いることができ、粘土層状結晶間に空隙を有し、かつ当該粘土層状結晶を貫通し、粘土膜表面に達する孔を有するものである。   The porous self-supporting clay film of the present invention is composed of clay as a main component, has a structure in which clay layered crystals are laminated, can be used as a self-supporting film, has voids between clay layered crystals, and the clay It has pores that penetrate the layered crystal and reach the surface of the clay film.

本発明の多孔質自立粘土膜の主要成分は、天然粘土あるいは合成粘土である。前記粘土膜の主要構成成分としては、例えば、雲母、バーミキュライト、モンモリロナイト、鉄モンモリロナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイト及びノントロナイトが例示される。また、粘土以外の添加物としては、例えば、補強材、及び熱重合をするモノマー、熱硬化性ポリマーが例示される。前記補強材としては、鉱物繊維、グラスウール、炭素繊維、セラミックス繊維、植物繊維が例示される。前記添加物の、全固体に対する重量割合は、好適には、30%以下であり、補強材の、全固体に対する重量割合は、好適には、30%以下である。本発明において粘土の含有重量割合は70%以上、さらに80%以上、特に90%以上が好ましい。   The main component of the porous self-supporting clay film of the present invention is natural clay or synthetic clay. Examples of main constituents of the clay film include mica, vermiculite, montmorillonite, iron montmorillonite, beidellite, saponite, hectorite, stevensite, and nontronite. Examples of additives other than clay include a reinforcing material, a monomer that performs thermal polymerization, and a thermosetting polymer. Examples of the reinforcing material include mineral fiber, glass wool, carbon fiber, ceramic fiber, and vegetable fiber. The weight ratio of the additive to the total solid is preferably 30% or less, and the weight ratio of the reinforcing material to the total solid is preferably 30% or less. In the present invention, the content ratio of clay is preferably 70% or more, more preferably 80% or more, and particularly preferably 90% or more.

本発明の多孔質自立粘土膜は、粘土層状結晶が積層した構造を有している。ここで粘土層状結晶とは、粘土結晶粒子が層状を形成していることを意味し、特開2006−188418号公報の図1のように層状を形成していることをいう。   The porous self-supporting clay film of the present invention has a structure in which clay layered crystals are laminated. Here, the clay layered crystal means that the clay crystal particles form a layer, and means that a layer is formed as shown in FIG. 1 of JP-A-2006-188418.

本発明の多孔質自立粘土膜は、自立膜として、すなわち、何ら固体に担持させることなく、膜自体として利用できるものである。   The porous self-supporting clay film of the present invention can be used as a self-supporting film, that is, as a film itself without being supported on any solid.

本発明の多孔質自立粘土膜は、粘土層状結晶間に空隙を有する。この空隙は、特開2006−188418号公報の図1のように、粘土結晶粒子の層間に層状の空隙を有することをいう。当該空隙を有することにより、本発明粘土膜に優れた断熱性が付与される。ここで、粘土結晶粒子層の厚さ及び層間の空隙厚さは、いずれもマイクロメートル、ナノオーダーであり、高配向である。好適な粘土層状結晶の層厚は0.1〜5nmであり、長径は0.1〜10μmであり、アスペクト比は100〜500程度である。より好ましい粘土層状結晶の層厚は約0.5〜5nmであり、長径1〜10μmであり、アスペクト比は200〜400である。また、層間の空隙厚さは0.5〜30μm、さらに1〜20μmが好ましい。この層間の空隙は、粘土膜全体において均質であることが、本発明の多孔質自立粘土膜の特徴であり、該空隙の均質性は、下記の貫通孔の形成により達成される。   The porous self-supporting clay film of the present invention has voids between clay layered crystals. This void means having a layered void between layers of clay crystal particles as shown in FIG. 1 of JP-A-2006-188418. By having the voids, excellent heat insulating properties are imparted to the clay film of the present invention. Here, the thickness of the clay crystal particle layer and the gap thickness between the layers are both in the order of micrometers and nanometers and are highly oriented. The preferred layer thickness of the clay layered crystal is 0.1 to 5 nm, the major axis is 0.1 to 10 μm, and the aspect ratio is about 100 to 500. More preferably, the layer thickness of the clay layered crystal is about 0.5 to 5 nm, the major axis is 1 to 10 μm, and the aspect ratio is 200 to 400. The gap thickness between the layers is preferably 0.5 to 30 μm, more preferably 1 to 20 μm. It is a feature of the porous self-supporting clay film of the present invention that the voids between the layers are uniform throughout the clay film, and the homogeneity of the voids is achieved by forming the following through holes.

本発明の多孔質自立粘土膜は、粘土層状結晶を貫通し、粘土膜表面に達する孔を有する。この孔は粘土結晶粒子の層に対して、たて方向となる。この貫通孔の存在により、従来技術における前記層間の空隙形成段階における不都合が解消される。すなわち、層間の空隙形成は、層間に存在する水分を蒸発させることにより行われるが、貫通孔がない場合には、過剰になった水分の逃げ場がないため、膜表面の破壊(例えば、特開2006−188418号公報、図1の膜表面構造のように)してしまい、発泡サイズが不均一になり、膜に著しい反りが生じる。これに対し、本発明では、貫通孔が形成されているため、層間に存在する水分が、蒸発して層間に空隙を形成すると同時に、余剰な水蒸気は貫通孔を通じて膜外に逃げるため、空隙が均質となり、かつ膜の形状も均一となる。   The porous self-supporting clay film of the present invention has pores that penetrate the clay layered crystal and reach the surface of the clay film. This hole is perpendicular to the layer of clay crystal particles. Due to the presence of the through hole, the disadvantages in the step of forming the gap between the layers in the prior art are eliminated. In other words, the formation of voids between layers is performed by evaporating moisture present between the layers, but when there is no through hole, there is no escape space for excess moisture, so that the film surface is destroyed (for example, JP No. 2006-188418, as in the film surface structure of FIG. 1), the foam size becomes non-uniform, and the film is significantly warped. On the other hand, in the present invention, since the through holes are formed, moisture existing between the layers evaporates to form voids between the layers, and at the same time, excess water vapor escapes out of the film through the through holes. It becomes homogeneous and the shape of the membrane is also uniform.

この貫通孔は、得られる多孔質自立粘土膜の断熱性の低下防止、機械的強度保持、そり防止の点から、孔径が1mm以下、さらに0.1mm以下、特に0.05mm以下が好ましい。また、貫通孔の間隔(ピッチ)もまた、同様の理由から1〜3mm、さらに1.5〜3mm、特に2〜3mmが好ましい。また、貫通孔の間隔は、均一であるのが、上記と同様の理由により好ましい。なお、この貫通孔は、本発明粘土膜の表面のいずれか一方に達していればよいが、表面から裏面まで貫通していてもよい。   The through-holes preferably have a pore diameter of 1 mm or less, more preferably 0.1 mm or less, and particularly preferably 0.05 mm or less from the viewpoints of preventing the heat insulating property of the resulting porous self-supporting clay film from being deteriorated, maintaining mechanical strength, and preventing warpage. Also, the interval (pitch) between the through holes is preferably 1 to 3 mm, more preferably 1.5 to 3 mm, and particularly preferably 2 to 3 mm for the same reason. Further, it is preferable that the interval between the through holes is uniform for the same reason as described above. In addition, although this through-hole should just reach any one of the surface of this invention clay film, you may penetrate from the surface to the back surface.

本発明の多孔質自立粘土膜は、自立膜として利用可能な機械的強度とフレキシビリティーを有する。膜厚は、5〜3000μm、さらに50〜2000μm、特に500〜1500μmが好ましい。気孔率は20〜80%、特に20〜70%が好ましい。また、耐熱性は600℃以上であり、引っ張り強度はポリプロピレン相当、すなわち、30〜40MPaである。耐熱性に関しては、本発明の多孔質自立粘土膜は250℃以上600℃以下において、構造変化が生じないという特性を有する。   The porous self-supporting clay film of the present invention has mechanical strength and flexibility that can be used as a self-supporting film. The film thickness is preferably 5 to 3000 μm, more preferably 50 to 2000 μm, and particularly preferably 500 to 1500 μm. The porosity is preferably 20 to 80%, particularly preferably 20 to 70%. Moreover, heat resistance is 600 degreeC or more, and tensile strength is equivalent to a polypropylene, ie, 30-40 MPa. Regarding heat resistance, the porous self-supporting clay film of the present invention has a characteristic that no structural change occurs at 250 ° C. or more and 600 ° C. or less.

また、本発明の多孔質自立粘土膜は、熱伝導率が0.01〜0.1W/mK、さらに0.01〜0.1W/mK、特に0.03〜0.1W/mKであるのが好ましい。この熱伝導率は、ほぼ静止空気の熱伝導率に匹敵する。このような熱伝導率を有することから、特に優れた耐熱性を要求される、断熱シート材として有用である。   The porous self-supporting clay film of the present invention has a thermal conductivity of 0.01 to 0.1 W / mK, more preferably 0.01 to 0.1 W / mK, and particularly 0.03 to 0.1 W / mK. Is preferred. This thermal conductivity is comparable to that of still air. Since it has such thermal conductivity, it is useful as a heat insulating sheet material that requires particularly excellent heat resistance.

本発明の多孔質自立粘土膜は、粘土を主要成分とする原料を、水又は水を含む液体に分散させ、均一な粘土分散液を得、この分散液を容器に注入し又は物体表面に塗布した後、分散媒である液体を除去して粘土膜を作製し、当該粘土膜に微細な孔開け加工を施した後、加熱処理することにより製造される。   In the porous self-supporting clay film of the present invention, a raw material mainly composed of clay is dispersed in water or a liquid containing water to obtain a uniform clay dispersion, and this dispersion is poured into a container or applied to the surface of an object. After that, the liquid that is the dispersion medium is removed to produce a clay film, and the clay film is manufactured by subjecting it to a fine hole punching process, followed by heat treatment.

粘土を主要成分とする原料は、前記の本発明粘土膜の構成成分と同様である。これらの原料の分散媒としては水又は水を含む液が用いられ、水、又はアルコール水溶液等が挙げられる。粘土分散液の濃度は、好適には0.5〜15重量%、より好ましくは、1〜10重量%である。このとき、粘土分散液の濃度が薄すぎる場合、乾燥に時間がかかりすぎるという問題がある。また、粘土分散液の濃度が濃すぎる場合、よく粘土が分散しないため、粘土粒子の配向が悪く、均一な膜ができないという問題がある。   The raw materials mainly composed of clay are the same as the constituent components of the above-mentioned clay film of the present invention. As a dispersion medium of these raw materials, water or a liquid containing water is used, and water, an aqueous alcohol solution, or the like can be given. The concentration of the clay dispersion is suitably 0.5 to 15% by weight, more preferably 1 to 10% by weight. At this time, if the concentration of the clay dispersion is too thin, there is a problem that it takes too long to dry. Further, when the concentration of the clay dispersion is too high, clay does not disperse well, so that there is a problem that the orientation of clay particles is poor and a uniform film cannot be formed.

必要に応じて、秤量した固体状あるいは液体状の添加物を、粘土分散液に加え、均一な分散液を調製する。添加物としては、熱重合をするモノマー、あるいは熱硬化性ポリマーであれば、特に限定されないが、例えば、イプシロン−カプロラクタム、多価フェノールのうちの1種以上を用いることができる。添加物の全固体に対する重量割合は、30%以下であり、好ましくは1〜10%である。このとき、添加物の割合が低過ぎる場合、添加の効果が現れず、添加物の割合が高すぎる場合、調製した膜中で添加物と粘土の分布が不均一になり、結果として得られる粘土膜の均一性が低下し、やはり添加効果が薄れる。   If necessary, a weighed solid or liquid additive is added to the clay dispersion to prepare a uniform dispersion. The additive is not particularly limited as long as it is a thermopolymerizable monomer or a thermosetting polymer. For example, one or more of epsilon-caprolactam and polyhydric phenol can be used. The weight ratio of the additive to the total solid is 30% or less, preferably 1 to 10%. At this time, if the ratio of the additive is too low, the effect of the addition does not appear, and if the ratio of the additive is too high, the distribution of the additive and the clay becomes uneven in the prepared film, and the resulting clay The uniformity of the film is lowered and the effect of addition is also diminished.

必要に応じて、秤量した補強材を、粘土分散液に加え、均一な分散液を調製する。補強材として、鉱物繊維、グラスウール、炭素繊維、セラミックス繊維、植物繊維樹脂のうちの1種以上を用いることができる。補強材の全固体に対する重量割合は、30%以下であり、好ましくは1〜10%である。このとき、補強材の割合が低過ぎる場合、添加の効果が現れず、補強材の割合が高すぎる場合、調製した膜中で補強材と粘土の分布が不均一になり、結果として得られる粘土膜の均一性が低下し、やはり添加効果が薄れる。なお、補強材と添加物の添加順序は、どちらが先と決まっているわけではなく、どちらを先に加えてもよい。   If necessary, a weighed reinforcing material is added to the clay dispersion to prepare a uniform dispersion. As the reinforcing material, one or more of mineral fiber, glass wool, carbon fiber, ceramic fiber, and vegetable fiber resin can be used. The weight ratio of the reinforcing material to the total solid is 30% or less, preferably 1 to 10%. At this time, if the proportion of the reinforcing material is too low, the effect of addition does not appear, and if the proportion of the reinforcing material is too high, the distribution of the reinforcing material and the clay becomes uneven in the prepared film, and the resulting clay The uniformity of the film is lowered and the effect of addition is also diminished. Note that the order of addition of the reinforcing material and the additive is not determined first, and either may be added first.

次に、この分散液を容器に流し込む、あるいは物体表面に塗布したのち、分散媒である液体を乾燥除去し、粘土膜を作製する。粘土膜の作製方法としては、例えば、分散液である液体をゆっくりと蒸発させ、膜状に成形する。分散液を支持体表面に塗布し、分散媒である液体を乾燥除去する、などの方法がある。分散媒である液体の乾燥除去法としては、例えば、種々の固液分離方法、例えば、遠心分離、ろ過、真空乾燥、凍結真空乾燥、加熱蒸発法の何れか、あるいはこれらの方法を組み合わせが可能である。これらの方法のうち、例えば、分散液を容器に流し込み加熱蒸発法を用いる場合、粘土の濃度を0.5〜3重量%に調整し、事前に脱気処理した分散液を平坦なトレイ、好ましくはプラスチック製、あるいは金属製のトレイ等の支持体に注ぎ、水平を保った状態で、強制送風式オーブン中で30〜70℃の温度条件下、好ましくは30〜50℃の温度条件下で、3時間〜半日間程度、好ましくは3〜5時間、乾燥して粘土薄膜を得る。   Next, after pouring this dispersion into a container or applying it to the surface of an object, the liquid as a dispersion medium is removed by drying to produce a clay film. As a method for producing a clay film, for example, a liquid which is a dispersion liquid is slowly evaporated to form a film. There is a method of applying a dispersion liquid on the surface of a support and drying and removing a liquid as a dispersion medium. As a method for drying and removing the liquid as a dispersion medium, for example, various solid-liquid separation methods such as centrifugation, filtration, vacuum drying, freeze vacuum drying, heat evaporation, or a combination of these methods can be used. It is. Among these methods, for example, when the dispersion is poured into a container and the heating evaporation method is used, the concentration of the clay is adjusted to 0.5 to 3% by weight, and the dispersion deaerated in advance is preferably a flat tray, preferably Is poured into a support such as a plastic or metal tray and kept in a horizontal state in a forced air oven at a temperature of 30 to 70 ° C, preferably 30 to 50 ° C. Dry for about 3 hours to half a day, preferably 3 to 5 hours to obtain a clay thin film.

また、別の例として、分散液を物体に塗布し、加熱蒸発法を用いる場合、粘土の濃度を4〜7重量%に調整し、事前に脱気処理した分散液を平坦な金属板の上に2mmの厚さに塗布し、強制送風式オーブン中で30〜70℃の温度条件下、好ましくは30〜50℃の温度条件下で、10分間〜2時間程度、好ましくは20分間〜1時間、乾燥して粘土膜を得る。   As another example, when the dispersion liquid is applied to an object and the heating evaporation method is used, the clay concentration is adjusted to 4 to 7% by weight, and the dispersion liquid that has been deaerated in advance is placed on a flat metal plate. To a thickness of 2 mm, and for 10 minutes to 2 hours, preferably 20 minutes to 1 hour under a temperature condition of 30 to 70 ° C., preferably 30 to 50 ° C. in a forced air oven. Dry to obtain a clay film.

分散液を事前に脱気処理しない場合、粘土薄膜に気泡に由来する孔ができ易くなるという問題がある場合がある。また、乾燥条件は、液体分を乾燥除去するのに十分であるように設定される。このとき、乾燥速度が遅すぎると、乾燥に時間がかかるという問題がある。また、乾燥速度が速すぎると、分散液の対流が起こり、粘土膜の均一性が低下するという問題がある。本粘土膜の厚さは、分散液に用いる固体量を調整することによって、任意の厚さの膜を得ることができる。   If the dispersion is not degassed in advance, there may be a problem that pores derived from bubbles are easily formed in the clay thin film. The drying conditions are set so as to be sufficient to dry and remove the liquid component. At this time, if the drying speed is too slow, there is a problem that it takes time to dry. Further, when the drying rate is too high, there is a problem that convection of the dispersion occurs and the uniformity of the clay film is lowered. The thickness of the clay film can be obtained by adjusting the amount of solid used in the dispersion liquid.

本発明において、加熱乾燥法による乾燥条件は、好ましくは、強制送風式オーブン中で30〜70℃の温度条件下、より好ましくは、30〜50℃の温度条件下で、10分間〜半日間程度の乾燥、より好ましくは、10分間〜5時間程度の乾燥である。   In the present invention, the drying condition by the heat drying method is preferably about 30 to 70 ° C., more preferably about 30 to 50 ° C. for about 10 minutes to half a day in a forced air oven. More preferably, the drying is for about 10 minutes to 5 hours.

粘土膜を自立膜として用いる場合は、粘土膜を容器、あるいは物体表面から剥離し、粘土自立膜を得る。粘土薄膜が容器等の支持体から自然に剥離しない場合は、好適には、真空引きにより剥離を促進させ自立膜を得る。また、剥離の別の方法として、好適には、約110〜200℃の温度条件下で乾燥し、剥離を容易にして自立膜を得る。このとき、温度が低すぎる場合には、剥離が起こりにくいという問題がある。温度が高すぎる場合には、添加物が劣化しやすくなるという問題がある。   When the clay film is used as a self-supporting film, the clay film is peeled off from the container or the object surface to obtain a clay self-supporting film. In the case where the clay thin film does not naturally peel from a support such as a container, the peeling is preferably promoted by evacuation to obtain a self-supporting film. Moreover, as another method of peeling, it is preferably dried under a temperature condition of about 110 to 200 ° C. to facilitate peeling and obtain a self-supporting film. At this time, if the temperature is too low, there is a problem that peeling does not easily occur. When the temperature is too high, there is a problem that the additive tends to deteriorate.

本発明においては、ここで得られた粘土膜に微細な孔開け加工をする。孔開け加工は、粘土膜全体に貫通する加工でもよいし、片面から半分程度貫通させ、他の面から半分程度貫通させてもよい。孔開け加工は前述の如く、一定間隔で1mm以下、さらに0.1mm以下、特に0.05mm以下の孔径の孔を形成するのが好ましい。また、孔の間隔は、1〜3mm、さらに1.5〜3mm、特に2〜3mmが好ましい。孔のパターンは格子状、同心円状、放射状、亀甲状等均一なパターンであれば特に限定されない。針状の穿孔機を用いて孔開けするのが簡便である。   In the present invention, fine drilling is performed on the clay film obtained here. The drilling process may be a process of penetrating the entire clay film, or may be penetrated about half from one side and about half from the other side. As described above, it is preferable to form holes with a hole diameter of 1 mm or less, further 0.1 mm or less, and particularly 0.05 mm or less at a predetermined interval. The interval between the holes is preferably 1 to 3 mm, more preferably 1.5 to 3 mm, and particularly preferably 2 to 3 mm. The hole pattern is not particularly limited as long as it is a uniform pattern such as a lattice shape, a concentric circle shape, a radial shape, or a turtle shell shape. It is easy to make a hole using a needle-shaped punch.

次に、粘土膜、あるいは粘土自立膜を、室温付近の温度、相対湿度40〜90%の範囲に保った強制対流式オーブンで保管する。このとき、上記温度、湿度条件が安定して得られれば、必ずしも強制対流式オーブンの中でなくてもよい。上記条件下で保管された粘土は、適度な水分を含んでおり、この水分が後段で説明する加熱処理の際に蒸気になり、膜内に空隙をもたらす。このとき、相対湿度が5%よりも低い場合は、粘土の含水が十分ではなく、結果的に目的とした多孔質膜ができない。また、相対湿度が95%よりも高い場合は、粘土の含水が過剰で、均一な多孔質膜が得られないという問題がある。保管時間は10秒〜3日間おくことが望ましい。   Next, the clay film or the clay free-standing film is stored in a forced convection oven maintained at a temperature near room temperature and a relative humidity of 40 to 90%. At this time, as long as the above temperature and humidity conditions are obtained stably, it does not necessarily have to be in a forced convection oven. The clay stored under the above conditions contains moderate moisture, and this moisture becomes vapor during the heat treatment described later, resulting in voids in the film. At this time, when the relative humidity is lower than 5%, the water content of the clay is not sufficient, and as a result, the intended porous film cannot be obtained. Further, when the relative humidity is higher than 95%, there is a problem that the water content of the clay is excessive and a uniform porous film cannot be obtained. The storage time is desirably 10 seconds to 3 days.

次に、粘土膜、あるいは粘土自立膜を、急激に加熱し、粘土に含まれる水を蒸気にするとともに、必要により熱重合可能なモノマーを重合させる、あるいは熱硬化性樹脂を硬化させる。この処理に用いる装置としては、ラムが加熱可能な油圧プレス、電子レンジなどが考えられるが、急激に加熱するという目的が達せられれば、この限りではない。強制対流型オーブンなどでゆっくり加熱した場合、試料の温度が少しずつ上昇するため、200℃以上の熱重合、あるいは熱硬化温度までに内部の水分が乾燥してしまい、結果として空隙が生成されない。この段階で、本発明においては、微細な孔開け加工を施しているので、水分の蒸発(発泡サイズ)が均一になり、膜の形状、層間の空隙が均一になる。   Next, the clay film or the clay self-supporting film is rapidly heated to vaporize water contained in the clay, and if necessary, a thermopolymerizable monomer is polymerized or a thermosetting resin is cured. As an apparatus used for this treatment, a hydraulic press capable of heating a ram, a microwave oven, and the like are conceivable, but this is not limited as long as the purpose of rapid heating is achieved. When the sample is slowly heated in a forced convection oven or the like, the temperature of the sample gradually increases, so that the internal moisture is dried up to a temperature of 200 ° C. or higher, or a thermosetting temperature, and as a result, voids are not generated. At this stage, in the present invention, since fine hole punching is performed, the evaporation of water (foam size) becomes uniform, and the shape of the film and the gap between layers become uniform.

本発明の粘土自立膜は、例えば、はさみ、カッター等で容易に円、正方形、長方形などの任意の大きさ、形状に切り取ることができる。本発明の粘土自立膜は、好適には、厚さは1mmよりも薄く、面積は1cm2よりも大きい。また、本発明の粘土膜は、自立膜として利用可能な機械的強度を有し、柔軟性が高く、耐熱性が高く、多孔質であり、電気に対して不導体であり、熱伝導率が低く、膜内部に種々の化学物質を内包することが可能である、かつ膜が均一であるといった特徴を有する。また、本発明の粘土膜は、粘土層状結晶が積層した構造を有しているため、グラスウールやロックウールのような微細な繊維の落下がなく、安全性も良好である。 The clay self-supporting film of the present invention can be easily cut into an arbitrary size and shape such as a circle, a square, and a rectangle with, for example, scissors and a cutter. The clay free-standing film of the present invention preferably has a thickness of less than 1 mm and an area of more than 1 cm 2 . The clay film of the present invention has mechanical strength that can be used as a self-supporting film, has high flexibility, high heat resistance, is porous, is non-conductive to electricity, and has a thermal conductivity. It has a feature that it is low, can contain various chemical substances inside the film, and the film is uniform. Further, since the clay film of the present invention has a structure in which clay layered crystals are laminated, fine fibers such as glass wool and rock wool do not fall, and safety is also good.

従って、本発明の粘土自立膜は、触媒の担体、酵素の担体等の他、耐熱性絶縁膜、断熱シート材として特に有用である。   Therefore, the clay self-supporting film of the present invention is particularly useful as a heat-resistant insulating film and a heat-insulating sheet material in addition to a catalyst carrier and an enzyme carrier.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。 Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.

実施例1
(1)粘土膜の製造
粘土として、0.95グラムの天然モンモリロナイト(クニピアP、クニミネ工業株式会社製)を、60cm3の蒸留水に加え、プラスチック製密封容器に、テフロン(登録商標)製回転子とともに入れ、激しく振とうし、均一な分散液を得た。この分散液に、添加剤として、イプシロン−カプロラクタム(和光純薬工業株式会社製)を0.05グラム含む水溶液を加え、得られた分散液を、底面が平坦であり、底面の形状が円形であり、その直径の長さが約15cmの真鍮製トレイに注ぎ、分散液を水平に静置し、粘土粒子をゆっくりと沈積させるとともに、トレイの水平を保った状態で、強制送風式オーブン中で50℃の温度条件下で5時間乾燥して、厚さ約30μmの均一な水溶性高分子複合粘土薄膜を得た。生成した粘土薄膜をトレイから剥離して粘土膜を得た。その粘土膜を、10cm平方に切り、温度20℃、相対湿度70%のオーブンに12時間保管し、その後、アルミホイルに挟んで、油圧プレスで200kNで加圧しながら、250℃で30分加熱して、白色の多孔質粘土膜を得た。
Example 1
(1) Manufacture of clay film As clay, 0.95 grams of natural montmorillonite (Kunipia P, manufactured by Kunimine Kogyo Co., Ltd.) is added to 60 cm 3 of distilled water, and sealed in a plastic sealed container made of Teflon (registered trademark). It was put together with the child and shaken vigorously to obtain a uniform dispersion. An aqueous solution containing 0.05 g of epsilon-caprolactam (manufactured by Wako Pure Chemical Industries, Ltd.) as an additive was added to this dispersion, and the resulting dispersion had a flat bottom and a round bottom. Yes, poured into a brass tray with a diameter of about 15 cm, the dispersion is allowed to stand horizontally, clay particles are slowly deposited, and the tray is kept horizontal in a forced air oven. It was dried for 5 hours under a temperature condition of 50 ° C. to obtain a uniform water-soluble polymer composite clay thin film having a thickness of about 30 μm. The produced clay thin film was peeled from the tray to obtain a clay film. The clay film is cut into 10 cm square, stored in an oven at a temperature of 20 ° C. and a relative humidity of 70% for 12 hours, then sandwiched between aluminum foils and heated at 250 ° C. for 30 minutes while being pressurized with a hydraulic press at 200 kN. Thus, a white porous clay film was obtained.

粘土膜(t=50〜70μm)へ0.5、1、2、3、4mm間隔でそれぞれシート全面に微細穴加工を行い、80℃20分の高湿環境下で約20%に含水調整した後、電子レンジ(500W2分)で発泡処理を行った。得られた発泡膜についてHotDisk熱物性測定装置(京都電子(株)TPA−501)により熱伝導率の測定を行い、目視評価にて外観評価を行った。   Fine holes were processed on the entire surface of the clay film (t = 50 to 70 μm) at intervals of 0.5, 1, 2, 3, 4 mm, respectively, and the water content was adjusted to about 20% in a high humidity environment at 80 ° C. for 20 minutes. Thereafter, foaming was performed in a microwave oven (500 W for 2 minutes). About the obtained foamed film, the heat conductivity was measured with a HotDisk thermophysical property measuring apparatus (Kyoto Electronics Co., Ltd. TPA-501), and the appearance was evaluated by visual evaluation.

発泡膜の熱伝導率及び外観評価結果を表1及び図1に示す。また小片を用いた加湿条件の予備検討結果を表2に示す。   The thermal conductivity and appearance evaluation results of the foamed film are shown in Table 1 and FIG. Table 2 shows the results of preliminary examination of humidification conditions using small pieces.


表1及び図1より、発泡前の粘土膜へ穴加工を行うことにより、発泡工程でのふくれ最大寸法は加工穴と接する円が上限サイズとなる傾向を示した。また穴加工間隔が狭くなるにつれて個々の泡サイズは一定となり、膜の反りも減少した。
熱伝導率測定結果から、2mm間隔以上で穴加工を行うことにより、熱伝導率は無加工の発泡膜と同程度の値を示した。
また、発泡処理前の粘土膜含水率は発泡形状に大きく影響し、約20%の含水率となる条件が好適であった。但し長時間の加湿や膜が直接水と接した場合は、膜の脆弱化により発泡不良となる傾向を示した。
From Table 1 and FIG. 1, by performing hole processing on the clay film before foaming, the maximum blister size in the foaming process showed a tendency that the circle in contact with the processed hole became the upper limit size. In addition, as the drilling interval narrowed, the individual bubble size became constant and the warpage of the film also decreased.
From the results of thermal conductivity measurement, by performing hole machining at intervals of 2 mm or more, the thermal conductivity showed the same value as the unprocessed foam film.
Further, the moisture content of the clay film before the foaming treatment has a great influence on the foamed shape, and the condition that the moisture content is about 20% was suitable. However, when humidifying for a long time or when the film was in direct contact with water, the foaming was apt to be poor due to the weakening of the film.

穴加工と得られた多孔質自立粘土膜の外観変化との関係を示す図である。It is a figure which shows the relationship between a hole process and the external appearance change of the obtained porous self-supporting clay film.

Claims (7)

粘土を主要成分として構成され、粘土層状結晶が積層した構造を有し、自立膜として用いることができ、粘土層状結晶間に空隙を有し、かつ当該粘土層状結晶を貫通し、粘土膜表面に達する孔を1〜3mm間隙で有することを特徴とする多孔質自立粘土膜。 It is composed of clay as a main component, has a structure in which clay layered crystals are laminated, can be used as a self-supporting film, has voids between clay layered crystals, penetrates the clay layered crystals, and is on the surface of the clay film A porous self-supporting clay film characterized by having reaching holes with a gap of 1 to 3 mm . 前記粘土層状結晶を貫通し、粘土膜表面に達する孔の孔径が1mm以下である請求項1記載の多孔質自立粘土膜。   The porous self-supporting clay film according to claim 1, wherein the pore diameter of the holes penetrating the clay layered crystal and reaching the surface of the clay film is 1 mm or less. 自立膜として利用可能な機械的強度とフレキシビリティーを有する請求項1又は2記載の多孔質自立粘土膜。 The porous self-supporting clay film according to claim 1 or 2, which has mechanical strength and flexibility usable as a self-supporting film. 熱伝導率が0.01〜0.1W/mKである請求項1〜のいずれか1項記載の多孔質自立粘土膜。 The porous self-supporting clay film according to any one of claims 1 to 3 , which has a thermal conductivity of 0.01 to 0.1 W / mK. 粘土層状結晶間の空隙が、粘土膜全体において均質である請求項1〜のいずれか1項記載の多孔質自立粘土膜。 The porous self-supporting clay film according to any one of claims 1 to 4 , wherein voids between the clay layered crystals are uniform throughout the clay film. 請求項1〜のいずれか1項記載の多孔質自立粘土膜からなる断熱シート材。 The heat insulation sheet material which consists of a porous self-supporting clay film of any one of Claims 1-5 . 粘土を主要成分とする原料を、水又は水を含む液体に分散させ、均一な粘土分散液を得、この分散液を容器に注入し又は物体表面に塗布した後、分散媒である液体を除去して粘土膜を作製し、当該粘土膜に微細な孔開け加工を施し、室温付近の温度、相対湿度40〜90%の範囲で保管した後、加熱処理することを特徴とする請求項1〜5のいずれか1項記載の多孔質自立粘土膜の製造法。 Disperse the raw material containing clay as the main component in water or a liquid containing water to obtain a uniform clay dispersion, and then inject the dispersion into a container or apply it to the surface of the object, then remove the liquid as the dispersion medium. Then, a clay film is produced, and the clay film is finely perforated , stored at a temperature near room temperature and in a range of 40 to 90% relative humidity , and then heat-treated . 6. The method for producing a porous self-supporting clay film according to any one of 5 above.
JP2008092850A 2008-03-31 2008-03-31 Porous free-standing clay film and method for producing the same Active JP5294249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008092850A JP5294249B2 (en) 2008-03-31 2008-03-31 Porous free-standing clay film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008092850A JP5294249B2 (en) 2008-03-31 2008-03-31 Porous free-standing clay film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009242198A JP2009242198A (en) 2009-10-22
JP5294249B2 true JP5294249B2 (en) 2013-09-18

Family

ID=41304565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008092850A Active JP5294249B2 (en) 2008-03-31 2008-03-31 Porous free-standing clay film and method for producing the same

Country Status (1)

Country Link
JP (1) JP5294249B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185871A (en) * 1986-09-11 1988-08-01 松下電工株式会社 Manufacture of inorganic layered porous body
JP5137050B2 (en) * 2003-12-17 2013-02-06 独立行政法人産業技術総合研究所 Nylon composite clay membrane and method for producing the same
JP3855003B2 (en) * 2003-09-08 2006-12-06 独立行政法人産業技術総合研究所 Clay alignment film and method for producing the same
JP5219059B2 (en) * 2004-08-10 2013-06-26 独立行政法人産業技術総合研究所 Protective film composed of clay alignment film
JP4941922B2 (en) * 2004-12-10 2012-05-30 独立行政法人産業技術総合研究所 Porous clay film and method for producing the same
JP4779151B2 (en) * 2005-07-29 2011-09-28 独立行政法人産業技術総合研究所 Flexible substrate

Also Published As

Publication number Publication date
JP2009242198A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
Klett et al. High-thermal-conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties
KR100555074B1 (en) Pitch-Based Carbon Foam And Composites
Wu et al. Controllable synthesis of a robust sucrose-derived bio-carbon foam with 3D hierarchical porous structure for thermal insulation, flame retardancy and oil absorption
JP4999128B2 (en) Method for producing porous body
KR101854673B1 (en) Heat insulation composites having aerogel with preserving aerogel pores using volatile solvent and method for preparing the same
JP5219059B2 (en) Protective film composed of clay alignment film
Farhan et al. Preparation and characterization of carbon foam derived from pitch and phenolic resin using a soft templating method
US20100189991A1 (en) Macroporous carbon nanofoam composites and methods of making the same
Kiciński et al. Porous graphitic materials obtained from carbonization of organic xerogels doped with transition metal salts
TW202120775A (en) Method for preparing graphite sheet
JP4941922B2 (en) Porous clay film and method for producing the same
Idesaki et al. Synthesis of a Ni‐containing porous SiOC material from polyphenylmethylsiloxane by a direct foaming technique
Zhang et al. Preparation of a carbon fibre-reinforced carbon aerogel and its application as a high-temperature thermal insulator
JP5190905B2 (en) Surface treated clay film
JP5294249B2 (en) Porous free-standing clay film and method for producing the same
TWI656684B (en) Method of manufacturing roll type gas diffusion layer with excellent spreading property
JP5170607B2 (en) Fiber-reinforced clay film and method for producing the same
Lépine et al. Preparation of a poly (furfuryl alcohol)‐coated highly porous polystyrene matrix
JPWO2019069570A1 (en) Carbon foam, laminated carbon foam, and method for producing laminated carbon foam
JP4691721B2 (en) Composite film made of cloth and clay
JP5441067B2 (en) Porous clay material and method for producing the same
JP2008007380A (en) Porous graphite and method for producing the same
Yu et al. The preparation and properties of novel structural carbon foams derived from different mesophase pitches
JP2008169245A (en) Heat-radiating material and method for producing the same
JP5652672B2 (en) Surface treated clay film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130605

R150 Certificate of patent or registration of utility model

Ref document number: 5294249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250