JP5294062B2 - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
JP5294062B2
JP5294062B2 JP2009018198A JP2009018198A JP5294062B2 JP 5294062 B2 JP5294062 B2 JP 5294062B2 JP 2009018198 A JP2009018198 A JP 2009018198A JP 2009018198 A JP2009018198 A JP 2009018198A JP 5294062 B2 JP5294062 B2 JP 5294062B2
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
magnetic
recording medium
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009018198A
Other languages
Japanese (ja)
Other versions
JP2010176747A (en
Inventor
貞幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009018198A priority Critical patent/JP5294062B2/en
Publication of JP2010176747A publication Critical patent/JP2010176747A/en
Application granted granted Critical
Publication of JP5294062B2 publication Critical patent/JP5294062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording medium in which the thermal changes in the backing layer characteristics is improved, in the magnetic recording medium used in a magnetic recording device to conduct signal writing at temperature higher than that at which signal is held. <P>SOLUTION: In the magnetic recording medium used in the magnetic recording device for conducting signal writing at the temperature higher than that at which the signal is held, the magnetic recording medium is constituted, by sequentially laminating at least a soft magnetic backing layer, a heat conduction preventing layer, an underlayer, a magnetic recording layer, and a protective layer on a non-magnetic substrate. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、磁気記録媒体に関する。この磁気記録媒体は各種磁気記録装置に搭載される。   The present invention relates to a magnetic recording medium. This magnetic recording medium is mounted on various magnetic recording devices.

磁気記録の高記録密度を実現する技術として、「垂直磁気記録方式」が、最近実用化されている。これは、記録磁化が記録媒体の面に対して垂直な方向に行われるもので、従来の記録磁化が面に対して平行であった長手磁気記録方式と置き換りつつある。   As a technique for realizing a high recording density of magnetic recording, a “perpendicular magnetic recording method” has recently been put into practical use. This is because the recording magnetization is performed in a direction perpendicular to the surface of the recording medium, which is replacing the conventional longitudinal magnetic recording method in which the recording magnetization is parallel to the surface.

この垂直磁気記録方式に用いられる垂直磁気記録媒体(略して垂直媒体)は主に、硬質磁性材料からなる磁気記録層と、磁気記録層の記録磁化を垂直方向に配向させるための下地層、磁気記録層の表面を保護する保護層、そしてこの記録層への記録に用いられる磁気ヘッドが発生する磁束を集中させる役割を担う軟磁性材料からなる裏打ち層から構成される。   The perpendicular magnetic recording medium (abbreviated perpendicular medium) used in this perpendicular magnetic recording system mainly includes a magnetic recording layer made of a hard magnetic material, an underlayer for orienting the recording magnetization of the magnetic recording layer in the vertical direction, and a magnetic layer. It comprises a protective layer for protecting the surface of the recording layer, and a backing layer made of a soft magnetic material that plays a role of concentrating the magnetic flux generated by the magnetic head used for recording on the recording layer.

垂直磁気記録の高密度化のための媒体設計の指針として、磁気記録層を構成する磁性粒子の磁気的な分離度を高め、磁化反転単位を小さくしていくことが一つとして挙げられる。基本的に、磁気記録層の膜厚は媒体面内方向に一様であるため、磁化反転単位を小さくしていくことは、磁化反転単位の高さが一定で断面積を小さくすることを意味する。その結果、それ自身に作用する反磁界が小さくなり、反転磁界は大きくなる。このように、磁化反転単位の形状で考えた場合、記録密度を高めることは、より大きな書き込み磁界を必要とする。   One guideline for medium design for increasing the density of perpendicular magnetic recording is to increase the magnetic separation of the magnetic particles constituting the magnetic recording layer and reduce the magnetization reversal unit. Basically, since the film thickness of the magnetic recording layer is uniform in the in-plane direction of the medium, reducing the magnetization reversal unit means that the height of the magnetization reversal unit is constant and the cross-sectional area is reduced. To do. As a result, the demagnetizing field acting on itself decreases and the reversal field increases. Thus, when considering the shape of the magnetization reversal unit, increasing the recording density requires a larger write magnetic field.

一方で、記録信号の長期安定性のためには、熱エネルギーkTに対する粒子のエネルギーKuVの値を十分に高める必要があることが知られている(ここで、kはボルツマン定数、Kは絶対温度、Kuは結晶磁気異方性、Vは活性化体積である)。先に述べた磁化反転単位サイズの低減は、Vの低下を意味し、この影響により信号不安定性、いわゆる”熱揺らぎ”の問題が生じる。これを回避するためにはKuを増大させる必要があるが、一般にKuと反転磁界は比例関係にあるため、これも書き込み磁界の増大を招く結果となる。   On the other hand, for long-term stability of the recording signal, it is known that the value of the particle energy KuV with respect to the thermal energy kT needs to be sufficiently increased (where k is the Boltzmann constant and K is the absolute temperature). , Ku is the magnetocrystalline anisotropy, and V is the activation volume). The reduction in the magnetization reversal unit size described above means a decrease in V, and this influence causes a problem of signal instability, so-called “thermal fluctuation”. In order to avoid this, it is necessary to increase Ku. However, since Ku and the switching magnetic field are generally in a proportional relationship, this also results in an increase in the write magnetic field.

このような書き込み能力の課題に対する別のアプローチとして、ヘッドとの組み合わせで考える熱アシスト記録という記録方式が提案されている。これは、磁性材料におけるKuの温度依存性、すなわち高温ほどKuが小さいという特性を利用したものである。つまり、磁気記録層を加熱して一時的にKu、すなわち反転磁界を低減させ、その間に書き込みを行うというものである。温度が戻った(下がった)後はKuが元の高い値に戻るため、安定して記録信号を保持できる。このような新しい記録方式を想定する場合、磁気記録媒体は、従来の指針に加え、熱の作用を考慮する必要が出てくる。   As another approach to the problem of the writing ability, a recording method called heat-assisted recording considered in combination with a head has been proposed. This utilizes the temperature dependence of Ku in the magnetic material, that is, the characteristic that Ku becomes smaller as the temperature increases. That is, the magnetic recording layer is heated to temporarily reduce Ku, that is, the switching magnetic field, and writing is performed during that time. After the temperature has returned (decreased), Ku returns to the original high value, so that the recording signal can be held stably. When such a new recording method is assumed, the magnetic recording medium needs to consider the effect of heat in addition to the conventional guidelines.

また、基板上に軟磁性材料で形成される第1の裏打ち層、フェリ磁性材料で形成される第2の裏打ち層、窒化物あるいは酸化物からなる誘電体層及び凹凸層を含む非磁性中間層、磁気記録層、保護層がこの順に積層された熱アシスト磁気記録媒体の提案がある(例えば、特許文献1参照。)。   A non-magnetic intermediate layer including a first backing layer formed of a soft magnetic material on a substrate, a second backing layer formed of a ferrimagnetic material, a dielectric layer made of nitride or oxide, and an uneven layer There is a proposal of a thermally assisted magnetic recording medium in which a magnetic recording layer and a protective layer are laminated in this order (see, for example, Patent Document 1).

特許文献1においては、誘電体層は窒化物あるいは酸化物からなるとしているが、この誘電体層はその上に凹凸層をアルミニウムで形成する場合に、アルミニウムが一様に拡散するのを妨げ、これにより凹凸を形成しやすくするために用いられているものである。   In Patent Document 1, the dielectric layer is made of nitride or oxide, but this dielectric layer prevents aluminum from diffusing uniformly when an uneven layer is formed of aluminum on the dielectric layer, This is used to make it easy to form irregularities.

特開2006−164436号公報JP 2006-164436 A

現行の垂直媒体の基本構成そのままを熱アシスト記録に適用した場合、記録層が加熱されるとき、熱伝導により、下層の下地層、さらに下層の軟磁性裏打ち層も加熱される。軟磁性裏打ち層に用いられる磁性材料は、通常、温度に伴い飽和磁化Msが低下する性質を有するため、本来磁気ヘッドの磁束を集中させる役割が低下することを意味する。熱の影響を緩和するため最表面層から裏打ち層を遠ざけると、これもヘッド磁界を十分ひきこみにくくし、本来の目的と反する結果となる。
このように、熱アシスト記録方式で用いる記録媒体が軟磁性裏打ち層を有する場合、裏打ち層が加熱されることによるMsの低下を防ぐ方法が必要とされていた。
When the basic configuration of the current perpendicular medium is applied to heat-assisted recording, when the recording layer is heated, the underlying layer and the underlying soft magnetic backing layer are also heated by heat conduction. Since the magnetic material used for the soft magnetic underlayer usually has a property that the saturation magnetization Ms decreases with temperature, it means that the role of concentrating the magnetic flux of the magnetic head is reduced. If the backing layer is moved away from the outermost surface layer to alleviate the influence of heat, this also makes it difficult to attract the head magnetic field, which is contrary to the original purpose.
Thus, when the recording medium used in the heat-assisted recording method has a soft magnetic backing layer, a method for preventing a decrease in Ms due to heating of the backing layer is required.

本発明は上述の問題に鑑み、なされたものであって、その目的とするところは、信号書き込みを信号保持状態よりも高い温度で行う磁気記録装置に用いる磁気記録媒体において、裏打ち層特性の熱変化を改善した磁気記録媒体を提供することである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a heat-resistant backing layer in a magnetic recording medium used in a magnetic recording apparatus that performs signal writing at a temperature higher than the signal holding state. It is to provide a magnetic recording medium with improved changes.

上述の目的を達成するため、本発明の磁気記録媒体は、信号書き込みを信号保持時の温度よりも高い温度で行う磁気記録装置に用いる磁気記録媒体において、非磁性基体上に少なくとも軟磁性裏打ち層、熱伝導防止層、下地層、磁気記録層、保護層が順次積層されてなることを特徴とする。   In order to achieve the above object, the magnetic recording medium of the present invention is a magnetic recording medium used in a magnetic recording apparatus in which signal writing is performed at a temperature higher than the temperature at which the signal is held. The heat conduction preventing layer, the underlayer, the magnetic recording layer, and the protective layer are sequentially laminated.

本発明の磁気記録媒体は熱伝導防止層を設けているため、軟磁性裏打ち層の温度上昇が抑制され、加熱書き込み時に飽和磁化Msの劣化がなくなる。従って、熱伝導防止層が無いものに比して良好な書き込み性能を示すことができる。   Since the magnetic recording medium of the present invention is provided with the heat conduction preventing layer, the temperature rise of the soft magnetic underlayer is suppressed, and the saturation magnetization Ms is not deteriorated at the time of heating writing. Therefore, it is possible to show better writing performance as compared with the case without the heat conduction preventing layer.

本発明の磁気記録媒体の1実施態様を示す断面模式図である。It is a cross-sectional schematic diagram which shows one embodiment of the magnetic recording medium of this invention.

以下、図面を参照して本発明の実施の形態について説明する。
図1は、本発明の磁気記録媒体の構成例を説明するための図であり、軟磁性裏打ち層を有する場合の構成を示す断面図である。磁気記録媒体は、非磁性基体1上に、軟磁性裏打ち層2、熱伝導防止層3、非磁性下地層3、磁気記録層4、保護層5が順次積層される。なお、保護層5の上には潤滑剤層がさらに形成されていてもよい。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram for explaining a configuration example of a magnetic recording medium according to the present invention, and is a cross-sectional view showing a configuration when a soft magnetic underlayer is provided. In the magnetic recording medium, a soft magnetic backing layer 2, a heat conduction preventing layer 3, a nonmagnetic underlayer 3, a magnetic recording layer 4, and a protective layer 5 are sequentially laminated on a nonmagnetic substrate 1. A lubricant layer may be further formed on the protective layer 5.

本発明の磁気記録媒体において、非磁性基体(非磁性基板)1としては、通常の磁気記録媒体用に用いられるNiPメッキを施したAl合金や強化ガラス、或いは結晶化ガラス等を用いることができる。成膜時や記録時の基板温度を100℃程度以内に抑える場合は、ポリカーボネイト、ポリオレフィン等の樹脂からなるプラスチック基板を用いることもできる。その他、Si基板も用いることもできる。   In the magnetic recording medium of the present invention, the nonmagnetic substrate (nonmagnetic substrate) 1 may be an Al alloy plated with NiP, tempered glass, or crystallized glass, which is used for ordinary magnetic recording media. . When the substrate temperature during film formation or recording is kept within about 100 ° C., a plastic substrate made of a resin such as polycarbonate or polyolefin may be used. In addition, a Si substrate can also be used.

軟磁性裏打ち層2は、現行の垂直磁気記録方式と同様、磁気ヘッドからの磁束を制御して記録・再生特性を向上するために形成することが好ましい層であるが、この層は省略することも可能である。軟磁性裏打ち層としては、例えば、結晶質のNiFe合金、センダスト(FeSiAl)合金、CoFe合金等、微結晶質のFeTaC、CoFeNi、CoNiP等を用いることができる。記録能力を向上するためには、軟磁性裏打ち層の飽和磁化は大きい方が好ましい。なお、軟磁性裏打ち層2の膜厚の最適値は、磁気記録に用いる磁気ヘッドの構造や特性によって変化する。膜厚増加による平坦性の悪化や、生産性との兼ね合いから100nm以下であることが望ましい。   The soft magnetic backing layer 2 is preferably formed in order to improve the recording / reproducing characteristics by controlling the magnetic flux from the magnetic head, as in the current perpendicular magnetic recording method, but this layer is omitted. Is also possible. As the soft magnetic underlayer, for example, crystalline NiFe alloy, Sendust (FeSiAl) alloy, CoFe alloy, or the like, microcrystalline FeTaC, CoFeNi, CoNiP, or the like can be used. In order to improve the recording ability, it is preferable that the saturation magnetization of the soft magnetic underlayer is large. Note that the optimum value of the thickness of the soft magnetic backing layer 2 varies depending on the structure and characteristics of the magnetic head used for magnetic recording. The thickness is desirably 100 nm or less in view of deterioration of flatness due to an increase in film thickness and balance with productivity.

成膜方法としては、通常用いられるスパッタ法が用いられる。軟磁性裏打ち層で膜厚をおよそ50nm以上に厚くする場合、磁壁を形成する他、記録層近傍の磁化が揺らぐなどにより垂直成分の磁化を発生し、ノイズ源となる場合がある。これを抑制するために、軟磁性裏打ち層を単磁区化することが好ましい。反強磁性層或いは硬磁性層を付与して、これらの層に接するよう軟磁性層を配すると、軟磁性層は界面の交換結合により、外部磁場を取り去った場合に、反強磁性或いは硬磁性層表面のスピンの向きに磁化が揃う。反強磁性層表面のスピン、或いは硬磁性層表面のスピンを一方向に揃えておくことで、軟磁性層は単磁区することができる。   As a film forming method, a commonly used sputtering method is used. When the thickness of the soft magnetic underlayer is increased to about 50 nm or more, in addition to forming a domain wall, magnetization in the vertical component may occur due to fluctuations in the magnetization in the vicinity of the recording layer, which may be a noise source. In order to suppress this, it is preferable to make the soft magnetic underlayer a single magnetic domain. When an antiferromagnetic layer or a hard magnetic layer is provided and a soft magnetic layer is disposed so as to be in contact with these layers, the soft magnetic layer is antiferromagnetic or hard magnetic when the external magnetic field is removed by exchange coupling at the interface. Magnetization is aligned with the spin direction of the layer surface. By aligning the spin on the antiferromagnetic layer surface or the spin on the hard magnetic layer surface in one direction, the soft magnetic layer can have a single magnetic domain.

反強磁性層或いは硬磁性層は、軟磁性層直下、直上、中間のいずれに設けてもよく、軟磁性層直下、直上、中間の2以上に設けてもよい。その他、軟磁性裏打ち層を、非磁性層と積層する構成を用いることも可能である。特に、非磁性層の膜厚を制御し、非磁性層を介しての反強磁性結合を用いるなどすると、垂直成分磁化を抑制することも可能である。即ち、軟磁性層の間に非磁性層が挿入された構造、つまり、軟磁性層/非磁性層/軟磁性層の構成とし、非磁性層を数nm以下の所定の膜厚に制御すると、上下の軟磁性層は、RKKY結合と呼ばれる結合により、磁化は反平行に揃う。例えば、上下の軟磁性層材料組成、及び膜厚を同一とした場合、全体でみた磁化は、両層の磁化が打ち消しあうことにより、見かけ上0となる。   The antiferromagnetic layer or the hard magnetic layer may be provided immediately below, immediately above, or in the middle of the soft magnetic layer, or may be provided immediately below, immediately above, or in the middle of the soft magnetic layer. In addition, it is also possible to use a configuration in which a soft magnetic backing layer is laminated with a nonmagnetic layer. In particular, by controlling the film thickness of the nonmagnetic layer and using antiferromagnetic coupling via the nonmagnetic layer, it is possible to suppress perpendicular component magnetization. That is, a structure in which a nonmagnetic layer is inserted between soft magnetic layers, that is, a structure of soft magnetic layer / nonmagnetic layer / soft magnetic layer, and when the nonmagnetic layer is controlled to a predetermined film thickness of several nm or less, The upper and lower soft magnetic layers have anti-parallel magnetization due to the coupling called RKKY coupling. For example, when the upper and lower soft magnetic layer material compositions and film thicknesses are the same, the overall magnetization is apparently zero because the magnetizations of both layers cancel each other.

熱伝導防止層3は、記録層側から裏打ち層へ移動する熱を遮断する目的で用いられる。熱伝導防止層3を構成する材料としては、熱伝導率の小さな酸化物や窒化物、或いは炭化物が用いられるこれらの化合物の具体例としては、SiO2,TiO2,Y23,Al23,SiN,TiN,AlN,TiC,SiCなどを例示できる。結晶構造は特に限定されず、非晶質構造でもよい。結晶質材料を用いる場合は、直上の下地層の結晶配向を考慮し、bcc、fcc、hcp構造を適宜選択することができる。熱伝導防止層3用材料は、磁性であってもよく、非磁性であってもよいが磁性とすれば直下の軟磁性裏打ち層と一体となり裏打ち層としての機能を助けることができる。熱伝導防止層3の膜厚としては、ヘッド−裏打ち層の距離を考慮すると薄い方が好ましく、30nm以下とすることが好ましい。 The heat conduction preventing layer 3 is used for the purpose of blocking heat transferred from the recording layer side to the backing layer. Specific examples of these compounds in which oxide, nitride, or carbide having a low thermal conductivity is used as the material constituting the heat conduction preventing layer 3 include SiO 2 , TiO 2 , Y 2 O 3 , Al 2. Examples thereof include O 3 , SiN, TiN, AlN, TiC, and SiC. The crystal structure is not particularly limited, and may be an amorphous structure. When a crystalline material is used, the bcc, fcc, and hcp structures can be selected as appropriate in consideration of the crystal orientation of the underlying layer immediately above. The material for the heat conduction preventing layer 3 may be magnetic or non-magnetic. However, if it is made magnetic, it can be integrated with the soft magnetic backing layer directly below and can serve as a backing layer. The film thickness of the heat conduction preventing layer 3 is preferably thinner in consideration of the distance between the head and the backing layer, and is preferably 30 nm or less.

下地層4は、1)上層記録層材料の結晶粒子径や結晶配向を制御するため、かつ、2)軟磁性裏打ち層と記録層の磁気的な結合を防ぐため、に用いられる層である。従って、非磁性であることが好ましく、結晶構造は上層の磁気記録層材料に合わせて適宜選択することが必要であるが、非晶質構造でも用いることは可能である。   The underlayer 4 is a layer used for 1) controlling the crystal grain size and crystal orientation of the upper recording layer material, and 2) preventing magnetic coupling between the soft magnetic backing layer and the recording layer. Therefore, it is preferably nonmagnetic, and the crystal structure needs to be appropriately selected according to the material of the upper magnetic recording layer, but it can also be used with an amorphous structure.

例えば、直上の磁性層に、六方最密充填(hcp)構造を取るCoを主体とした磁気記録層材料を用いる場合は、同じhcp構造もしくは面心立方(fcc)構造をとる材料が好ましく用いられる。具体的には、Ru、Re、Rh、Pt、Pd、Ir、Ni、Co、Cu或いはこれらを含む合金材料が好ましく用いられる。膜厚は、薄いほど書き込み容易性は向上するが、上記1)、2)の指針を考慮すれば、ある程度の膜厚が必要で、3〜30nmの範囲内とすることが好ましい。下層の熱伝導率防止層により、下方向への熱拡散は抑制されるため、下地層面内方向へ熱拡散することが好ましく、熱伝導率は高いほうが好ましい。下地層部分を多層化し、上層は結晶配向層、下層は放熱層などと役割分担させることもできる。具体的な材料としては、前記元素の組成比を調整することで、各々に適した特性に調整することができる。   For example, when a magnetic recording layer material mainly composed of Co having a hexagonal close-packed (hcp) structure is used for the magnetic layer immediately above, a material having the same hcp structure or face-centered cubic (fcc) structure is preferably used. . Specifically, Ru, Re, Rh, Pt, Pd, Ir, Ni, Co, Cu or an alloy material containing these is preferably used. The thinner the film thickness, the better the writeability. However, considering the guidelines 1) and 2) above, a certain film thickness is required, and it is preferably within the range of 3 to 30 nm. Since heat diffusion in the downward direction is suppressed by the lower heat conductivity prevention layer, it is preferable to perform heat diffusion in the in-plane direction of the underlayer, and higher heat conductivity is preferable. The underlayer portion can be multilayered, and the upper layer can be shared with the crystal orientation layer, and the lower layer can be shared with the heat dissipation layer. Specific materials can be adjusted to characteristics suitable for each by adjusting the composition ratio of the elements.

磁気記録層5は、結晶系の磁性層材料が好ましく用いられる。磁気記録層5としては、Co、Fe、Niなどの磁性元素を主体とした直径数nmの柱状の結晶粒子が、サブnm程度の厚さの非磁性体で隔てられた構造のものであることが好ましい。このような構造の磁気記録層5は、例えば、磁性元素と相分離しやすい非磁性体との合成ターゲットを用いたスパッタ、或いは同時スパッタにより得ることができる。このスパッタ法としては、例えばマグネトロンスパッタリング法などが挙げられる。さらに好ましくは、下地層の構造を制御し、前記下地層上の結晶部分に磁性結晶粒がエピタキシャル成長し、下地層の粒界部分に前記非磁性体が配するような、1対1の結晶成長をする構造が好ましい。これにより所望の構造(グラニュラー構造)を得ることができる。例えば、磁性結晶粒子としては、CoPt合金に、Cr、B、Ta、Wなどの金属を添加した材料、FePt合金にNi、Cuなどを添加した材料を用いることができる。非磁性体としてはSi、Cr、Co、Ti或いはTaの酸化物や窒化物などを添加したものが好ましく用いられる。   For the magnetic recording layer 5, a crystalline magnetic layer material is preferably used. The magnetic recording layer 5 has a structure in which columnar crystal grains having a diameter of several nm mainly composed of magnetic elements such as Co, Fe, and Ni are separated by a non-magnetic material having a thickness of about sub nm. Is preferred. The magnetic recording layer 5 having such a structure can be obtained, for example, by sputtering using a synthetic target of a magnetic element and a nonmagnetic material that easily phase separates, or by simultaneous sputtering. Examples of the sputtering method include a magnetron sputtering method. More preferably, the structure of the underlayer is controlled so that one-to-one crystal growth in which the magnetic crystal grains are epitaxially grown on the crystal portion on the underlayer and the nonmagnetic material is arranged on the grain boundary portion of the underlayer. A structure is preferred. Thereby, a desired structure (granular structure) can be obtained. For example, as the magnetic crystal particles, a material obtained by adding a metal such as Cr, B, Ta, or W to a CoPt alloy, or a material obtained by adding Ni, Cu, or the like to an FePt alloy can be used. As the nonmagnetic material, a material added with an oxide or nitride of Si, Cr, Co, Ti or Ta is preferably used.

磁気記録層5に含まれる磁性層のうち、少なくとも一層は結晶磁気異方性定数が大きい材料が好ましく、少なくとも5.0×106erg/cm3以上、さらに好ましくは1.0×107erg/cm3以上であることが好ましい。膜厚としては、20nm以下とすることが好ましい。また、二層を積層した構造とすることもできる。少なくとも一方を前述のような構造やKu値と持つものとし、もう一方は非磁性体で隔てられない構造とすることもでき、非晶質材料とすることもでき、Ku値も比較的小さくても可能である。非晶質材料としては、非晶質でも垂直異方性を示すTbCoやTbFe系フェリ磁性材料を用いることができる。 Of the magnetic layers included in the magnetic recording layer 5, at least one layer is preferably a material having a large magnetocrystalline anisotropy constant, at least 5.0 × 10 6 erg / cm 3 or more, more preferably 1.0 × 10 7 erg / cm 3 or more. It is preferable that The film thickness is preferably 20 nm or less. Moreover, it can also be set as the structure which laminated | stacked two layers. At least one has the structure or Ku value as described above, the other can be a structure not separated by a non-magnetic material, can be an amorphous material, and has a relatively low Ku value. Is also possible. As the amorphous material, a TbCo or TbFe-based ferrimagnetic material that exhibits perpendicular anisotropy even when amorphous can be used.

保護層6は、従来から磁気記録媒体の保護層に使用されている保護膜を用いることができ、例えば、カーボンを主体とする保護膜を用いることができる。単層ではなく、例えば異なる性質の二層カーボンや、金属膜とカーボン膜、金属酸化物の膜とカーボン膜の積層膜とすることもできる。   As the protective layer 6, a protective film conventionally used for a protective layer of a magnetic recording medium can be used. For example, a protective film mainly composed of carbon can be used. Instead of a single layer, for example, a double-layer carbon having different properties, a metal film and a carbon film, or a laminated film of a metal oxide film and a carbon film may be used.

以下に本発明の垂直磁気記録媒体を、実施例を用いて説明する。なお、これらの実施例は、本発明の磁気記録媒体を好適に説明するための代表例に過ぎず、これらに限定されるものではない。   The perpendicular magnetic recording medium of the present invention will be described below using examples. These examples are merely representative examples for suitably explaining the magnetic recording medium of the present invention, and are not limited thereto.

<実施例1>
非磁性基体1として表面が平滑な円盤状のガラス基板を用い、これを洗浄後、スパッタリング装置内に導入し、Co88Nb7Zr5ターゲットを用いてArガス圧5mTorr下でCoNbZrを80nm成膜し、CoNbZrからなる軟磁性裏打ち層2を形成した。
<Example 1>
A disc-shaped glass substrate having a smooth surface is used as the non-magnetic substrate 1, which is cleaned, introduced into a sputtering apparatus, and CoNbZr is deposited to a thickness of 80 nm under a Ar gas pressure of 5 mTorr using a Co88Nb7Zr5 target. A soft magnetic backing layer 2 was formed.

続いて、SiO2ターゲットを用いArガス圧30mTorr下でSiO2からなる熱伝導防止層3を膜厚10nmで成膜した。 Subsequently, the SiO 2 target was used to form the thermal conduction preventing layer 3 made of SiO 2 with a film thickness of 10 nm under an Ar gas pressure of 30 mTorr.

次いで、Cuターゲットを用いてArガス圧10mTorrにてCu層を、引き続いてRuターゲットを用いてArガス圧60mTorrにてRu層を形成し、Cu/Ru下地層4を形成した。   Next, a Cu layer was formed using a Cu target at an Ar gas pressure of 10 mTorr, and subsequently a Ru layer was formed using an Ru target at an Ar gas pressure of 60 mTorr to form a Cu / Ru underlayer 4.

続いて、(Co73Pt27)92(SiO2)8ターゲットを用いて、Arガス圧30mTorrにてCoPt−SiO2からなる磁性層を12nm形成し、磁気記録層4とした。 Subsequently, using a (Co73Pt27) 92 (SiO 2 ) 8 target, a magnetic layer made of CoPt—SiO 2 was formed to a thickness of 12 nm under an Ar gas pressure of 30 mTorr, thereby forming a magnetic recording layer 4.

次に、CVD法によりカーボンからなる保護層5を4nm成膜後、真空装置から取り出した。その後、パーフルオロポリエーテルからなる液体潤滑材層2nmをディップ法により形成し、磁気記録媒体とした。なお、スパッタリングにおいては、熱伝導防止層と磁気記録層の成膜にはRFマグネトロンスパッタリング、その他の層はDCマグネトロンスパッタリング法にて行った。   Next, the protective layer 5 made of carbon was formed with a thickness of 4 nm by the CVD method, and then taken out from the vacuum apparatus. Thereafter, a liquid lubricant layer 2 nm made of perfluoropolyether was formed by a dip method to obtain a magnetic recording medium. In the sputtering, RF magnetron sputtering was used for the formation of the heat conduction preventing layer and the magnetic recording layer, and the DC magnetron sputtering method was used for the other layers.

Kerr効果測定装置を用いて、上記で得られた磁気記録媒体の記録層のヒステリシスループを取得したところ、保磁力Hc=10.4kOe、S=1.0であった。
また、XRD回折を評価したところ、実施例1においてはSiO2のブロードなピークが観測され、SiO2が非晶質構造であることがわかった。
When a hysteresis loop of the recording layer of the magnetic recording medium obtained above was obtained using a Kerr effect measuring apparatus, the coercive force Hc = 10.4 kOe and S = 1.0.
We have also measured the XRD diffraction, in the embodiment 1 is broad peak of SiO 2 is observed, it was found that SiO 2 is amorphous structure.

表1に、得られた磁気記録媒体の電磁変換特性の結果を示す。電磁変換特性評価は、垂直磁気記録用ヘッドにレーザースポット加熱機構を搭載した熱アシスト用ヘッドを用い、スピンスタンドテスターにて行った。レーザーパワーは記録層温度200℃となるように設定し、記録時或いは重ね書き時にレーザーパワーをONにし、読み出し時はレーザーパワーをOFFにして行った。ヘッドは、記録トラック幅140nm、再生トラック幅90nmのものを用いた。   Table 1 shows the results of electromagnetic conversion characteristics of the obtained magnetic recording medium. The electromagnetic conversion characteristics were evaluated by a spin stand tester using a thermal assist head in which a laser spot heating mechanism was mounted on a perpendicular magnetic recording head. The laser power was set so that the recording layer temperature was 200 ° C., the laser power was turned on during recording or overwriting, and the laser power was turned off during reading. A head having a recording track width of 140 nm and a reproducing track width of 90 nm was used.

<比較例1>
SiO2熱伝導防止層を成膜しなかった以外は全て実施例1と同様にして磁気記録媒体を作製した。
Kerr効果測定装置を用いて、上記で得られた磁気記録媒体の記録層のヒステリシスループを取得したところ、保磁力Hc=10.4kOe、S=1.0であり、かつループ形状も実施例1で得られたものと一致していた。
<Comparative Example 1>
A magnetic recording medium was manufactured in the same manner as in Example 1 except that the SiO 2 heat conduction preventing layer was not formed.
When a hysteresis loop of the recording layer of the magnetic recording medium obtained above was obtained using a Kerr effect measuring apparatus, the coercive force Hc = 10.4 kOe, S = 1.0, and the loop shape was also Example 1. It was consistent with that obtained in

また、Cu、Ru、CoPtのピーク位置、強度は実施例1におけるそれぞれのピーク位置、強度と一致していた。
得られた磁気記録媒体の電磁変換特性の結果を実施例1の結果とともに表1に示す。
Further, the peak positions and intensities of Cu, Ru, and CoPt coincided with the respective peak positions and intensities in Example 1.
Table 1 shows the results of electromagnetic conversion characteristics of the obtained magnetic recording medium together with the results of Example 1.

<比較例2>
SiO2熱伝導防止層に代えて、Taターゲットを用いてTa層を10nm形成した以外は全て実施例1と同様にして磁気記録媒体を作製した。
Kerr効果測定装置を用いて、上記で得られた磁気記録媒体の記録層のヒステリシスループを取得したところ、保磁力Hc=10.4kOe、S=1.0であり、かつループ形状も実施例1で得られたものと一致していた。
<Comparative example 2>
A magnetic recording medium was manufactured in the same manner as in Example 1 except that a Ta layer was formed with a thickness of 10 nm using a Ta target instead of the SiO 2 heat conduction preventing layer.
When a hysteresis loop of the recording layer of the magnetic recording medium obtained above was obtained using a Kerr effect measuring apparatus, the coercive force Hc = 10.4 kOe, S = 1.0, and the loop shape was also Example 1. It was consistent with that obtained in

また、XRD回折を評価したところ、Taのブロードなピークが観測され、Taが非晶質構造であることがわかった。また、Cu、Ru、CoPtのピーク位置、強度は実施例1におけるそれぞれのピーク位置、強度と一致していた。
得られた磁気記録媒体の電磁変換特性の結果を実施例1の結果とともに表1に示す。
Further, when XRD diffraction was evaluated, a broad peak of Ta was observed, and it was found that Ta has an amorphous structure. Further, the peak positions and intensities of Cu, Ru, and CoPt coincided with the respective peak positions and intensities in Example 1.
Table 1 shows the results of electromagnetic conversion characteristics of the obtained magnetic recording medium together with the results of Example 1.

Figure 0005294062
Figure 0005294062

Kerr効果測定装置を用いた実施例1、比較例1、2の磁気記録媒体の記録層のヒステリシスループ及びXRD回折の検討結果から、SiO2熱伝導防止層、或いはTa層の有無で記録層の結晶構造や微細構造に影響がないことがわかった。 From the results of studying the hysteresis loop and XRD diffraction of the recording layers of the magnetic recording media of Example 1 and Comparative Examples 1 and 2 using the Kerr effect measurement device, the presence or absence of the SiO 2 thermal conduction prevention layer or the Ta layer was confirmed. It was found that there was no effect on the crystal structure and microstructure.

表1から、実施例1で得られた磁気記録媒体は、比較例1、2で得られた磁気記録媒体に比して、記録密度の指標となるSNR値が最も高いことがわかる。また、今回用いたヘッドでは、OW値が35[−dB]以上であれば、媒体に十分な書き込み性能があると考えられるが、実施例1に磁気記録媒体はその値よりもさらに4[−dB]以上高い値を示しており、MWWもヘッドの設計値よりやや小さく、良好であった。   From Table 1, it can be seen that the magnetic recording medium obtained in Example 1 has the highest SNR value as an index of recording density, compared with the magnetic recording media obtained in Comparative Examples 1 and 2. In the head used this time, if the OW value is 35 [-dB] or more, it is considered that the medium has sufficient writing performance. However, in the first embodiment, the magnetic recording medium is further 4 [- dB] was higher than that, and the MWW was slightly smaller than the design value of the head.

一方、比較例1では、OWがやや劣り、SNRが低く、MWWも大きい。OWが劣るのは、ヘッド−軟磁性裏打ち層間の磁気スペーシングが狭くなったにも関わらず、実施例1に比して熱伝導防止層がないために、記録中に軟磁性裏打ち層の飽和磁化が低下してしまっているためである。また、SNRは劣化しており、軟磁性裏打ち層のノイズを拾うと共に、記録層の温度を上げるためにレーザーパワーを大きくしているために書き滲み量が増加している。   On the other hand, in Comparative Example 1, OW is slightly inferior, SNR is low, and MWW is also large. The OW is inferior because the magnetic spacing between the head and the soft magnetic backing layer is narrow, but since there is no thermal conduction preventing layer as compared with Example 1, the soft magnetic backing layer is saturated during recording. This is because the magnetization has decreased. In addition, the SNR is deteriorated, and noise in the soft magnetic underlayer is picked up and the laser power is increased to raise the temperature of the recording layer, so that the amount of writing blur increases.

比較例2では、OWは実施例1に対して、さらに比較例1に比べても劣る。
実施例1のSiO2からなる熱伝導防止層の替わりに形成されたTa層の熱伝導率が高いために、比較例1と同様に、加熱時の熱が軟磁性層に拡散し軟磁性裏打ち層の飽和磁化が低下し、その影響でOWが低下する。また、比較例1と比較すると磁気スペーシングが大きいため、比較例1よりもOWが悪い値となる。比較例1と同様にMWWが増加しているが、これも記録層の温度を上げるためにレーザーパワーを増加させざるを得ないためである。SNRは軟磁性裏打ち層のノイズが小さくなる分比較例1よりはよいが、OWが劣るために飽和記録特性がやや劣化するのでために、実施例1に比べると劣る結果となる。
以上のように、本発明のように熱伝導防止層を軟磁性裏打ち層と下地層の間に設けたことによる効果が明らかとなった。
In Comparative Example 2, OW is inferior to that of Comparative Example 1 as compared with Comparative Example 1.
Since the thermal conductivity of the Ta layer formed in place of the SiO 2 thermal conduction preventing layer of Example 1 is high, the heat during heating diffuses into the soft magnetic layer as in Comparative Example 1, and the soft magnetic backing The saturation magnetization of the layer is lowered, and OW is lowered due to the influence. Further, since the magnetic spacing is larger than that of Comparative Example 1, the value of OW is worse than that of Comparative Example 1. The MWW increases as in Comparative Example 1, but this is also because the laser power must be increased to raise the temperature of the recording layer. The SNR is better than that of Comparative Example 1 because the noise of the soft magnetic underlayer is reduced. However, since the OW is inferior, the saturation recording characteristics are slightly deteriorated, so that the SNR is inferior to that of Example 1.
As described above, the effect of providing the heat conduction preventing layer between the soft magnetic underlayer and the underlayer as in the present invention has been clarified.

本発明によれば、良好な書き込み性能を示す磁気記録媒体を得ることができる。   According to the present invention, a magnetic recording medium showing good writing performance can be obtained.

1:非磁性基体
2:軟磁性裏打ち層
3:熱伝導防止層
4:下地層
5:磁気記録層
6:保護層
1: Nonmagnetic substrate 2: Soft magnetic backing layer 3: Thermal conduction prevention layer 4: Underlayer 5: Magnetic recording layer 6: Protective layer

Claims (5)

信号書き込みを信号保持時の温度よりも高い温度で行う磁気記録装置に用いる磁気記録媒体において、非磁性基体上に少なくとも軟磁性裏打ち層、熱伝導防止層、下地層、磁気記録層、保護層が順次積層されてなり、前記下地層は放熱層、結晶配向層をこの順に備えることを特徴とする磁気記録媒体。 In a magnetic recording medium used in a magnetic recording apparatus that performs signal writing at a temperature higher than the temperature at which the signal is held, at least a soft magnetic backing layer, a heat conduction preventing layer, an underlayer, a magnetic recording layer, and a protective layer are provided on a nonmagnetic substrate. Ri Na are sequentially stacked, the underlying layer is the heat dissipation layer, a magnetic recording medium which the crystal orientation layer, characterized in Rukoto in this order. 前記熱伝導防止層が酸化物、窒化物、炭化物のいずれかからなることを特徴とする請求項1に記載の磁気記録媒体。   2. The magnetic recording medium according to claim 1, wherein the heat conduction preventing layer is made of any one of oxide, nitride, and carbide. 前記磁気記録層が、非磁性基体面に対して垂直方向に磁気異方性を有することを特徴とする請求項1または2に磁気記録媒体。   3. The magnetic recording medium according to claim 1, wherein the magnetic recording layer has magnetic anisotropy in a direction perpendicular to the nonmagnetic substrate surface. 前記放熱層がCuからなることを特徴とする請求項1ないし3のいずれかに記載の磁気記録媒体。  4. The magnetic recording medium according to claim 1, wherein the heat dissipation layer is made of Cu. 前記結晶配向層がRuからなることを特徴とする請求項1ないし4のいずれかに記載の磁気記録媒体。  5. The magnetic recording medium according to claim 1, wherein the crystal orientation layer is made of Ru.
JP2009018198A 2009-01-29 2009-01-29 Magnetic recording medium Active JP5294062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009018198A JP5294062B2 (en) 2009-01-29 2009-01-29 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018198A JP5294062B2 (en) 2009-01-29 2009-01-29 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2010176747A JP2010176747A (en) 2010-08-12
JP5294062B2 true JP5294062B2 (en) 2013-09-18

Family

ID=42707565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018198A Active JP5294062B2 (en) 2009-01-29 2009-01-29 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP5294062B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8599652B2 (en) 2011-07-14 2013-12-03 Tdk Corporation Thermally-assisted magnetic recording medium and magnetic recording/reproducing device using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243186A (en) * 2004-02-27 2005-09-08 Tdk Corp Magnetic recording and reproducing device, and magnetic recording medium
JP2009223940A (en) * 2008-03-14 2009-10-01 Tdk Corp Magnetic recording medium and magnetic recording and playback device

Also Published As

Publication number Publication date
JP2010176747A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP5892213B2 (en) Magnetic recording method
US8941950B2 (en) Underlayers for heat assisted magnetic recording (HAMR) media
JP5880686B2 (en) Magnetic recording medium for thermally assisted magnetic recording
JP2008176858A (en) Perpendicular magnetic recording medium and hard disk drive using the same
JP5332676B2 (en) Magnetic recording medium
JP6168066B2 (en) Perpendicular magnetic recording medium
US20080075979A1 (en) Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording device
JP6163744B2 (en) Perpendicular magnetic recording medium
US10304485B2 (en) Magnetic recording medium
JP6358640B2 (en) Magnetic recording medium
JP6327357B2 (en) Magnetic recording medium
JP5294062B2 (en) Magnetic recording medium
JP5267938B2 (en) Magnetic recording medium
JP6304371B2 (en) Method for manufacturing magnetic recording medium
JP2006286106A (en) Vertical magnetic recording medium and magnetic storage apparatus
JP6428943B2 (en) Magnetic recording medium
JP2004213833A (en) Magnetic recording medium and its manufacturing method
JP2008251101A (en) Magnetic recording medium and manufacturing method of magnetic recording medium

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R150 Certificate of patent or registration of utility model

Ref document number: 5294062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250