JP5332676B2 - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
JP5332676B2
JP5332676B2 JP2009026843A JP2009026843A JP5332676B2 JP 5332676 B2 JP5332676 B2 JP 5332676B2 JP 2009026843 A JP2009026843 A JP 2009026843A JP 2009026843 A JP2009026843 A JP 2009026843A JP 5332676 B2 JP5332676 B2 JP 5332676B2
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
recording medium
heat dissipation
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009026843A
Other languages
Japanese (ja)
Other versions
JP2010182386A (en
Inventor
貞幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009026843A priority Critical patent/JP5332676B2/en
Publication of JP2010182386A publication Critical patent/JP2010182386A/en
Application granted granted Critical
Publication of JP5332676B2 publication Critical patent/JP5332676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording medium used for a magnetic recording device of a thermally-assisted recording system in which signal writing is performed at a temperature higher than in a signal holding state. <P>SOLUTION: The magnetic recording medium comprises at least a soft magnetic lining layer 3, a magnetic recording layer 5, and a protection layer 6 in this order on a nonmagnetic substrate 1, and has a layer constitution in which two heat-radiation layers 2-1 and 2-2 sandwich the soft magnetic lining layer 3. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は各種磁気記録装置に搭載される磁気記録媒体に関する。   The present invention relates to a magnetic recording medium mounted on various magnetic recording devices.

磁気記録の高記録密度を実現する技術として、「垂直磁気記録方式」が、最近実用化された。この方式は、記録磁化が記録媒体の面内方向に対して垂直なものであり、従来の記録磁化が面内方向に対して平行である長手磁気記録方式と置き換わるものである。磁気記録に用いられる垂直磁気記録媒体は主に、硬質磁性材料の磁気記録層と、磁気記録層の記録磁化を垂直方向に配向させるための下地層、磁気記録層の表面を保護する保護層、そしてこの記録層への記録に用いられる磁気ヘッドが発生する磁束を集中させる役割を担う軟磁性裏打ち層などの主要層から構成される。   As a technique for realizing a high recording density of magnetic recording, the “perpendicular magnetic recording method” has recently been put into practical use. This method replaces the conventional longitudinal magnetic recording method in which the recording magnetization is perpendicular to the in-plane direction of the recording medium and the conventional recording magnetization is parallel to the in-plane direction. The perpendicular magnetic recording medium used for magnetic recording mainly includes a magnetic recording layer of a hard magnetic material, an underlayer for orienting the recording magnetization of the magnetic recording layer in the vertical direction, a protective layer for protecting the surface of the magnetic recording layer, And it is comprised from main layers, such as a soft-magnetic underlayer which plays the role which concentrates the magnetic flux which the magnetic head used for the recording to this recording layer generate | occur | produces.

高密度化のための媒体設計の指針の一つとして、磁気記録層を構成する磁性粒子の磁気的な分離度を高め、磁化反転単位を小さくすることが挙げられる。基本的に、磁気記録層の膜厚は媒体面内方向に一様であるため、磁化反転単位を小さくしていくことは、磁化反転単位の高さが一定で断面積を小さくすることに対応するので、磁化反転単位が小さくなると、それ自身に作用する反磁界が小さくなり、反転磁界は大きくなる。このような関係が磁化反転単位の形状、サイズにあるので、記録密度を高めると、より大きな書き込み磁界が必要となる。一方で、記録信号の長期安定性のためには、熱エネルギーkTに対する粒子のエネルギーKuVの値を十分に高める必要があることが知られている(ここで、kはボルツマン定数、Kは絶対温度、Kuは結晶磁気異方性、Vは活性化体積)。前述の磁化反転単位サイズの低減は、Vの低下を意味し、この影響により信号不安定性、いわゆる”熱揺らぎ”の問題が生じる。これを回避するためにはKuを増大する必要あるが、一般にKuと反転磁界は比例関係にあるため、これも書き込み磁界の増大を招く結果となる。   One of the guidelines for designing the medium for increasing the density is to increase the magnetic separation degree of the magnetic particles constituting the magnetic recording layer and reduce the magnetization reversal unit. Basically, since the film thickness of the magnetic recording layer is uniform in the in-plane direction of the medium, reducing the magnetization reversal unit corresponds to reducing the cross-sectional area with a constant magnetization reversal unit height. Therefore, when the magnetization reversal unit becomes smaller, the demagnetizing field acting on itself becomes smaller and the reversal magnetic field becomes larger. Since such a relationship exists in the shape and size of the magnetization reversal unit, a higher write magnetic field is required when the recording density is increased. On the other hand, for long-term stability of the recording signal, it is known that the value of the particle energy KuV with respect to the thermal energy kT needs to be sufficiently increased (where k is the Boltzmann constant and K is the absolute temperature). Ku is the magnetocrystalline anisotropy, V is the activation volume). The aforementioned reduction in the magnetization reversal unit size means a decrease in V, and this influence causes a problem of signal instability, so-called “thermal fluctuation”. In order to avoid this, it is necessary to increase Ku. However, since Ku and the switching magnetic field are generally in a proportional relationship, this also results in an increase in the write magnetic field.

このような課題を解決する方法として、熱アシスト記録という記録方式が提案されている。これは、磁性材料におけるKuの温度依存性、すなわち高温ほどKuが小さいという特性を利用したものである。すなわち、磁気記録層を加熱して一時的にKu、すなわち反転磁界を低減させ、その間に書き込みを行うというものである。温度が戻った(下がった)後はKuが元の高い値に戻るため、安定して記録信号を保持できる。   As a method for solving such a problem, a recording method called heat-assisted recording has been proposed. This utilizes the temperature dependence of Ku in the magnetic material, that is, the characteristic that Ku becomes smaller as the temperature increases. That is, the magnetic recording layer is heated to temporarily reduce Ku, that is, the switching magnetic field, and writing is performed during that time. After the temperature has returned (decreased), Ku returns to the original high value, so that the recording signal can be held stably.

この新しい記録方式では、例えばレーザ光や近接場光を照射し、局所的に記録層の温度を上昇させる。この場合、隣接するトラックへの影響が問題となってくる。隣接トラックが加熱、減磁されてしまうと、トラック密度を高めることができないからである。これに対し、ヘッド側の対策の一つである、加熱スポットを小さくすることは、小さくするほどその問題は緩和されるものの、限界がある。一方、媒体側の対策としては、熱伝導率の高い材料である放熱層を付与する手法がある。   In this new recording method, for example, laser light or near-field light is irradiated to locally raise the temperature of the recording layer. In this case, the influence on adjacent tracks becomes a problem. This is because if the adjacent track is heated and demagnetized, the track density cannot be increased. On the other hand, reducing the heating spot, which is one of the countermeasures on the head side, has a limit, although the problem is alleviated as the heating spot is reduced. On the other hand, as a countermeasure on the medium side, there is a method of providing a heat dissipation layer which is a material having high thermal conductivity.

このような放熱層は一般的に金属層であり、熱伝導率の高い材料として金属層を記録層の下側に形成する際、放熱性を高めるためには金属層の厚さを厚くすることが好ましいが、放熱層の厚さを厚くすればするほど、放熱層の表面は、ボコボコと粒径状に荒れ不均一になりやすくなり、その上の記録層の表面にも影響が現れるという趣旨のことが記載されている公知文献がある(特許文献1)。   Such a heat dissipation layer is generally a metal layer, and when the metal layer is formed below the recording layer as a material having high thermal conductivity, the thickness of the metal layer must be increased in order to improve heat dissipation. However, as the thickness of the heat dissipation layer increases, the surface of the heat dissipation layer tends to become rough and uneven in particle size, and the surface of the recording layer thereon also has an effect. There is a publicly known document that describes this (Patent Document 1).

WO2004/038715号パンフレット(明細書の2頁23〜24行)WO2004 / 038715 pamphlet (2 pages 23-24 lines of the specification)

放熱層は加熱スポットに応じた膜厚を要するが、前述のように、放熱効果としては厚ければ厚いほど効果は大きい。しかしながら、放熱層の膜厚を増加させると、一般的には表面凹凸が大きくなる。表面凹凸が大きくなると、上層の記録層の微細構造、特に結晶配向性や磁性結晶粒子のサイズ制御に影響を及ぼし、結晶配向性を悪化させ、粒子サイズのばらつきを大きくする。その結果、高密度化の障害になる。また、放熱層の材質が結晶或いは微結晶質である場合も、厚膜化により結晶成長が促進されるので、やはり前記高密度化にとって障害になり易い。   Although the heat dissipation layer requires a film thickness corresponding to the heating spot, as described above, the thicker the heat dissipation effect, the greater the effect. However, when the film thickness of the heat dissipation layer is increased, the surface irregularities generally increase. When the surface irregularities become large, the fine structure of the upper recording layer, particularly the crystal orientation and the size control of the magnetic crystal grains, are affected, the crystal orientation is deteriorated, and the particle size variation is increased. As a result, it becomes an obstacle to high density. Also, when the material of the heat dissipation layer is crystalline or microcrystalline, crystal growth is promoted by increasing the film thickness, so that it tends to be an obstacle to the higher density.

軟磁性裏打ち層は、本来の役割であるヘッド磁束を集中させる効果を大きくするは、厚膜化が好ましい。しかし、この軟磁性裏打ち層の厚膜化についても放熱層と同様、厚くすると表面凹凸を増大させることが問題となる。この問題に対しては、結晶構造を非晶質とし、極力結晶成長を抑える材料組成を選択することにより回避できる。ただし、軟磁性裏打ち層の厚膜化の弊害はもう一つある。軟磁性裏打ち層の磁化成分はノイズとして磁気ヘッドの再生信号に検出されるので、厚膜化すると、軟磁性裏打ち層の磁化量が増え、ノイズ成分が増大することである。   In order to increase the effect of concentrating the head magnetic flux, which is the original role, the soft magnetic underlayer is preferably made thicker. However, as for the thickening of the soft magnetic backing layer, as with the heat dissipation layer, increasing the thickness causes a problem of increasing the surface unevenness. This problem can be avoided by making the crystal structure amorphous and selecting a material composition that suppresses crystal growth as much as possible. However, there is another adverse effect of increasing the thickness of the soft magnetic backing layer. Since the magnetization component of the soft magnetic backing layer is detected as noise in the reproduction signal of the magnetic head, when the film thickness is increased, the amount of magnetization of the soft magnetic backing layer increases and the noise component increases.

このように、従来の記録方式を熱アシスト記録方式に換えると、従来の記録方式の場合の限界を打破できる可能性があるので、磁気記録装置の高密度化のためには好ましい。しかし、この熱アシスト記録方式に対応するために、加熱スポットサイズを小さくして隣接トラックへの影響を抑えて良好な記録性能を持つことができ、かつ低ノイズでもある媒体を必要とするという課題が新たに発生する。   Thus, replacing the conventional recording method with the heat-assisted recording method is preferable for increasing the density of the magnetic recording apparatus because there is a possibility that the limitations of the conventional recording method can be overcome. However, in order to cope with this heat-assisted recording method, there is a problem that a medium that can reduce the heating spot size and suppress the influence on adjacent tracks to have good recording performance and also has low noise is required. Newly occurs.

本発明は前述の新たな課題が発生することを鑑みてなされたものであって、その目的とするところは、信号書き込みを信号保持状態よりも高い温度で行う熱アシスト記録方式の磁気記録装置に用いる磁気記録媒体を提供することである。詳しくは、表面凹凸や結晶成長を抑え、記録層の微細構造などへの影響を小さくするとともに、従来の構成と同等の放熱効果と書き込み性能を維持しつつ、軟磁性裏打ち層に由来するノイズを低減することができる磁気記録媒体を提供することである。   The present invention has been made in view of the above-described new problems, and an object of the present invention is to a heat-assisted recording type magnetic recording apparatus that performs signal writing at a temperature higher than the signal holding state. It is to provide a magnetic recording medium to be used. Specifically, while suppressing surface irregularities and crystal growth, reducing the influence on the fine structure of the recording layer, etc., while maintaining the heat dissipation effect and writing performance equivalent to the conventional configuration, noise from the soft magnetic backing layer is reduced. It is to provide a magnetic recording medium that can be reduced.

本発明による磁気記録媒体は、前記目的を達成するために、信号書き込みを信号保持状態よりも磁気記録層の温度が高い温度で行う磁気記録装置に用いられ、非磁性基板上に少なくとも軟磁性裏打ち層、前記磁気記録層、保護層をこの順に備える磁気記録媒体において、二層の放熱層が前記軟磁性裏打ち層を挟んだ層構成を有することを特徴とする。好ましくは、前記放熱層及び前記軟磁性裏打ち層が共に複数の層からなり、当該複数の層の各放熱層と各軟磁性裏打ち層とが交互に積層される層構成を有することを特徴とする。さらに好ましくは、前記放熱層及び前記軟磁性裏打ち層が共に複数の層からなり、当該複数の層の各放熱層と各軟磁性裏打ち層とが交互に積層される層構成を有することを特徴とする。 In order to achieve the above object, the magnetic recording medium according to the present invention is used in a magnetic recording apparatus in which signal writing is performed at a temperature higher than that of the signal holding state, and at least a soft magnetic backing is provided on a nonmagnetic substrate. A magnetic recording medium comprising a layer, the magnetic recording layer, and a protective layer in this order is characterized in that the two heat dissipation layers have a layer structure with the soft magnetic backing layer interposed therebetween. Preferably, the heat dissipation layer and the soft magnetic backing layer are both composed of a plurality of layers, and each heat dissipation layer and each soft magnetic backing layer of the plurality of layers have a layer structure in which the layers are alternately stacked. . More preferably, the heat dissipation layer and the soft magnetic backing layer are both composed of a plurality of layers, and each heat dissipation layer and each soft magnetic backing layer of the plurality of layers has a layer structure in which the layers are alternately laminated. To do.

さらに、前記放熱層の熱伝導率が前記軟磁性裏打ち層の熱伝導率よりも高い磁気記録媒体とすることも好ましい。
さらに、前記放熱層の室温300Kにおける熱伝導率が100(W/(m・K))よりも大きくすることも好ましい。
またさらに、前記放熱層がW、Ir、Mg、Mo、Re、Rh、Ru、Si、Zn、Al、Cu、Ag、Au、Cから選ばれるいずれかの元素からなる高熱伝導率材料または前記いずれかの元素を含む合金を主要成分とすることもできる。
Furthermore, it is also preferable that the magnetic recording medium has a higher heat conductivity of the heat dissipation layer than that of the soft magnetic backing layer.
Furthermore, it is also preferable that the thermal conductivity of the heat-dissipating layer at a room temperature of 300 K is greater than 100 (W / (m · K)).
Still further, the heat dissipation layer is a high thermal conductivity material made of any element selected from W, Ir, Mg, Mo, Re, Rh, Ru, Si, Zn, Al, Cu, Ag, Au, and C, or any of the above An alloy containing any of these elements can be used as a main component.

またさらに、前記軟磁性裏打ち層がFe,Co,Niから選ばれるいずれかの元素を主成分とする層であって、かつ非晶質或いは微結晶構造を有することもよい。
また、前記反強磁性結合層が、V、Cr、Ru、Cu、Ir、Nb、Mo、Re、Rh、Ta、Wから選ばれるいずれかの元素からなる金属または該いずれかの元素を主成分とする合金であってよい。
Furthermore, the soft magnetic backing layer may be a layer mainly containing any element selected from Fe, Co, and Ni, and may have an amorphous or microcrystalline structure.
Further, the antiferromagnetic coupling layer, V, Cr, Ru, Cu , Ir, Nb, Mo, Re, Rh, Ta, and W or al metal or said one element consisting of one element selected main It may be an alloy as a component.

放熱層と軟磁性裏打ち層を、従来よりも薄い膜厚で積層した構造とする。これにより記録層の表面凹凸や結晶成長を抑え、記録層の微細構造などへの影響を小さくする一方、従来の構成と同等の放熱効果と書き込み性能を維持しつつ、軟磁性裏打ち層に由来するノイズを低減することができる。これにより、熱アシスト記録方式に適した媒体が提供され、高密度記録が可能となる。   The heat dissipation layer and the soft magnetic backing layer are laminated with a thinner film thickness than in the past. This suppresses surface irregularities and crystal growth of the recording layer and reduces the influence on the fine structure of the recording layer, etc., while maintaining the same heat dissipation effect and writing performance as the conventional configuration, and derived from the soft magnetic backing layer Noise can be reduced. As a result, a medium suitable for the heat-assisted recording method is provided, and high-density recording is possible.

本発明に係る実施例1の磁気記録媒体の断面模式図である。It is a cross-sectional schematic diagram of the magnetic recording medium of Example 1 which concerns on this invention. 本発明に係る実施例2〜4の磁気記録媒体の断面模式図である。It is a cross-sectional schematic diagram of the magnetic recording media of Examples 2 to 4 according to the present invention. 本発明に係る実施例5の磁気記録媒体の断面模式図である。It is a cross-sectional schematic diagram of the magnetic recording medium of Example 5 which concerns on this invention.

以下、図面を参照して本発明の実施の形態について詳細に説明する。図1〜図3は、それぞれ本発明であるが、異なる層構成を有する磁気記録媒体を説明するための断面模式図である。最初に層構造について説明する。図1に示す磁気記録媒体は、非磁性基板1上に、軟磁性裏打ち層3を挟む放熱層2−1と放熱層2−2、下地層4、磁気記録層5、保護層6がこの順に積層された構造を有している。後述の実施例1で各層を構成する材料について説明する。図2に示す磁気記録媒体は、非磁性基板1上に、放熱層2、軟磁性裏打ち層3、下地層4、磁気記録層5、保護層6がこの順に積層される層構成を有し、特に放熱層2と軟磁性裏打ち層3が少なくとも2回以上交互に繰り返えされる積層構造とされる層構成にされる。放熱層2と軟磁性裏打ち層3をそれぞれ10回、5回、2回交互に繰り返えされる積層構造を後述の実施例2、実施例3、実施例4で採りあげて説明する。図3に示す磁気記録媒体は、後述の実施例5でも説明するように前記図2の積層構造に加え、さらに、二層の軟磁性裏打ち層3−A、3−Bの間に、反強磁性結合層7が挿入される積層構造を有する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 to FIG. 3 are schematic cross-sectional views for explaining a magnetic recording medium having a different layer structure, each of which is the present invention. First, the layer structure will be described. The magnetic recording medium shown in FIG. 1 has a heat dissipation layer 2-1, a heat dissipation layer 2-2, an underlayer 4, a magnetic recording layer 5, and a protective layer 6 in this order on a nonmagnetic substrate 1 with a soft magnetic backing layer 3 interposed therebetween. It has a laminated structure. The material which comprises each layer is demonstrated in Example 1 mentioned later. The magnetic recording medium shown in FIG. 2 has a layer configuration in which a heat dissipation layer 2, a soft magnetic backing layer 3, an underlayer 4, a magnetic recording layer 5, and a protective layer 6 are laminated in this order on a nonmagnetic substrate 1. In particular, a layer structure in which the heat dissipation layer 2 and the soft magnetic backing layer 3 are alternately laminated at least twice or more is employed. A laminated structure in which the heat dissipating layer 2 and the soft magnetic backing layer 3 are alternately repeated 10 times, 5 times, and 2 times will be described in the following Example 2, Example 3, and Example 4. The magnetic recording medium shown in FIG. 3 has an anti-strength between the two soft magnetic backing layers 3-A and 3-B in addition to the laminated structure of FIG. 2 as described in Example 5 described later. It has a laminated structure in which the magnetic coupling layer 7 is inserted.

次に、図3を参照して、本発明の磁気記録媒体の実施の形態について説明する。本発明の磁気記録媒体において、非磁性基板1としては、通常の磁気記録媒体用に用いられるNiPメッキを施したAl合金基板や強化ガラス基板或いは結晶化ガラス基板等を用いることができる。成膜時や記録時の基板温度を100℃程度以内に抑えることのできる場合は、ポリカーボネイト、ポリオレフィン等の樹脂からなるプラスチック基板を用いることもできる。その他、Si基板も用いることもできる。   Next, an embodiment of the magnetic recording medium of the present invention will be described with reference to FIG. In the magnetic recording medium of the present invention, as the nonmagnetic substrate 1, an Al alloy substrate, a tempered glass substrate, a crystallized glass substrate or the like subjected to NiP plating, which is used for a normal magnetic recording medium, can be used. In the case where the substrate temperature during film formation or recording can be suppressed to about 100 ° C. or less, a plastic substrate made of a resin such as polycarbonate or polyolefin can also be used. In addition, a Si substrate can also be used.

放熱層2は、熱伝導率の高い材料が好ましく用いられる。放熱層としての役割を果たすため、軟磁性裏打ち層よりも高い熱伝導率を有することが好ましい。熱伝導率としては、室温300Kにおける熱伝導率が100[W/(m・K)]よりも大きいことが好ましく、200[W/(m・K)]よりも大きいことがさらに好ましい。そのような高熱伝導率材料としては、W、Ir、Mg、Mo、Re、Rh、Ru、Si、Znなどの金属またはこれらの金属を含む合金が好ましく用いられ、Al、Cu、Ag、Au、Cなどのいずれかの金属材料またはグラファイトなどの高熱伝導率材料またはこれらの材料を主成分として含む合金がさらに好ましく用いられる。   For the heat dissipation layer 2, a material having high thermal conductivity is preferably used. In order to serve as a heat dissipation layer, it is preferable to have a higher thermal conductivity than the soft magnetic backing layer. The thermal conductivity is preferably greater than 100 [W / (m · K)] at a room temperature of 300 K, and more preferably greater than 200 [W / (m · K)]. As such a high thermal conductivity material, a metal such as W, Ir, Mg, Mo, Re, Rh, Ru, Si, Zn or an alloy containing these metals is preferably used, and Al, Cu, Ag, Au, Any metal material such as C, high thermal conductivity material such as graphite, or an alloy containing these materials as a main component is more preferably used.

軟磁性裏打ち層3は、現行の垂直磁気記録方式と同様、磁気ヘッドからの磁束を制御して記録・再生特性を向上することを目的とした層である。前記軟磁性裏打ち層3はの材料としては、Fe,Co,Niのいずれかが主成分とであるものが好ましく用いられる。結晶構造としては、非晶質、微結晶質、非晶質のいずれとしてもよく、直上の下地層の結晶配向性を勘案して適宜選択されることが好ましい。下地層の結晶配向への影響を小さくするには、非晶質が好ましい。軟磁性裏打ち層にも結晶配向制御の役割を持たせる場合、微結晶質或いは結晶質材料を用いるのが好ましい。また、数種類の軟磁性層材料を用いて、多層構造とすることも可能である。例えば、結晶質材料としてNiFe合金、CoFe合金、CoNi合金を用いることができ、微結晶化或いは非晶質化させるために、前記合金に対してB、Si、C、Zr、Nb、P、Taなどの微量添加物を用いたものとしたものも好ましく用いられる。その他、Fe,Co,Niなどの単金属に添加物を施した、例えばFeTaCなども用いることができる。記録能力を向上するためには、軟磁性裏打ち層3の飽和磁化は大きい方が好ましい。なお、軟磁性裏打ち層3における各層の膜厚、及び総合膜厚の最適値は、記録に用いるヘッドの構造や特性によって変化するが、100nm以下であることが望ましい。成膜方法としては、通常用いられるスパッタ法で形成することができる。   The soft magnetic underlayer 3 is a layer intended to improve the recording / reproducing characteristics by controlling the magnetic flux from the magnetic head, as in the current perpendicular magnetic recording system. The soft magnetic backing layer 3 is preferably made of a material mainly composed of Fe, Co, or Ni. The crystal structure may be any of amorphous, microcrystalline, and amorphous, and is preferably selected in consideration of the crystal orientation of the immediately underlayer. In order to reduce the influence on the crystal orientation of the underlayer, amorphous is preferable. When the soft magnetic underlayer also has a role of controlling crystal orientation, it is preferable to use a microcrystalline or crystalline material. It is also possible to make a multilayer structure using several kinds of soft magnetic layer materials. For example, NiFe alloy, CoFe alloy, CoNi alloy can be used as the crystalline material, and B, Si, C, Zr, Nb, P, Ta are added to the alloy for microcrystallization or amorphization. Those using a trace additive such as are also preferably used. In addition, for example, FeTaC or the like obtained by adding an additive to a single metal such as Fe, Co, or Ni can be used. In order to improve the recording ability, it is preferable that the saturation magnetization of the soft magnetic underlayer 3 is large. The optimum film thickness and total film thickness of the soft magnetic underlayer 3 vary depending on the structure and characteristics of the head used for recording, but are preferably 100 nm or less. As a film forming method, it can be formed by a commonly used sputtering method.

軟磁性裏打ち層3に由来するノイズ成分を抑制するため、軟磁性裏打ち層3を二層にして、二層間に非磁性の反強磁性結合層7を挿入することができる。反強磁性結合層7の上下に配した軟磁性裏打ち層3−A、3−Bが、反強磁性結合層7を介して磁気的に反平行に結合し、外部へ出力する磁化成分を相殺することにより、ノイズを抑制することができる。従って、上下の軟磁性裏打ち層3−A、3−Bは磁化量を等しくする、すなわち飽和磁化Msと膜厚の積を等しくすることが好ましい。反強磁性結合層7の材料としては、V、Cr、Ru、Cu、Ir、Nb、Mo、Re、Rh、Ta、W、Re、Irのうちから選ばれる元素、あるいはこれらの内の少なくとも一つの元素を主成分とする合金が好ましく用いられる。膜厚は、反強磁性結合を示し、かつ交換結合エネルギーが比較的大きい点を考慮して設定することが好ましく、用いる材料により最適値は異なるが、通常2nm以下にされることが好ましい。   In order to suppress a noise component derived from the soft magnetic backing layer 3, the soft magnetic backing layer 3 can be made into two layers, and the nonmagnetic antiferromagnetic coupling layer 7 can be inserted between the two layers. Soft magnetic backing layers 3-A and 3-B disposed above and below the antiferromagnetic coupling layer 7 are magnetically antiparallel coupled via the antiferromagnetic coupling layer 7 and cancel out the magnetization component output to the outside. By doing so, noise can be suppressed. Therefore, it is preferable that the upper and lower soft magnetic underlayers 3-A and 3-B have the same amount of magnetization, that is, the product of the saturation magnetization Ms and the film thickness. The material of the antiferromagnetic coupling layer 7 is an element selected from V, Cr, Ru, Cu, Ir, Nb, Mo, Re, Rh, Ta, W, Re, and Ir, or at least one of them. An alloy containing one element as a main component is preferably used. The film thickness is preferably set in consideration of the antiferromagnetic coupling and the relatively large exchange coupling energy, and the optimum value varies depending on the material used, but is usually preferably 2 nm or less.

下地層4は、第一に、上層磁気記録層5の材料の結晶粒子径や結晶配向を制御する目的で、第二には軟磁性裏打ち層3と磁気記録層5との磁気的な結合を防ぐ目的で、用いられる層である。従って、非磁性であることが好ましく、結晶構造は上層の磁気記録層5の材料に合わせて適宜選択することが必要であるが、非晶質構造でも用いることは可能である。例えば、直上の磁気記録層5に、六方最密充填(hcp)構造を取るCoを主体とした磁気記録層材料を用いる場合は、同じhcp構造もしくは面心立方(fcc)構造をとる材料が好ましく用いられる。具体的には、Ru、Re、Rh、Pt、Pd、Ir、Ni、Co或いはこれらを含む合金材料が好ましく用いられる。膜厚は、薄いほど書き込み容易性は向上するが、前記第一、第二の目的を考慮すれば、ある程度の膜厚が必要で、3〜30nmの範囲内とすることが好ましい。   The underlayer 4 is primarily used to control the crystal grain size and crystal orientation of the material of the upper magnetic recording layer 5, and secondly, the magnetic coupling between the soft magnetic backing layer 3 and the magnetic recording layer 5 is performed. It is a layer used for the purpose of prevention. Therefore, it is preferably non-magnetic, and the crystal structure needs to be appropriately selected according to the material of the upper magnetic recording layer 5, but it can also be used with an amorphous structure. For example, when a magnetic recording layer material mainly composed of Co having a hexagonal close-packed (hcp) structure is used for the magnetic recording layer 5 immediately above, the material having the same hcp structure or face-centered cubic (fcc) structure is preferable. Used. Specifically, Ru, Re, Rh, Pt, Pd, Ir, Ni, Co or an alloy material containing these is preferably used. The thinner the film thickness, the better the writeability. However, considering the first and second objects, a certain film thickness is required, and it is preferably within the range of 3 to 30 nm.

磁気記録層5は、結晶系の磁性層材料を用いることができる。Co、Fe、Niなどの磁性元素を主体とした直径数nmの柱状の結晶粒子が、サブnm程度の厚さの非磁性体で隔てられた構造をとることが好ましい。例えば、磁性結晶粒としては、CoPt合金やFePt合金に、Cr、B、Ta、W、Cuなどの金属を添加した材料、非磁性体としてはSi、Cr、Co、Ti、Ta、Bの酸化物や窒化物などを添加したものや、C或いは炭化物も好ましく用いられる。成膜方法としては、例えばマグネトロンスパッタリング法などが挙げられる。前記下地層4上の結晶部分に磁性結晶粒がエピタキシャル成長し、下地層4の粒界部分に前記非磁性体が配するような、1対1の結晶成長をする構造としてもよい。この他にも、光磁気記録で用いられる例えばTbFeCoなどの非晶質材料や、CoとPt、或いはCoとPdをそれぞれ2nm以下の薄い膜厚で交互に積層した多層積層膜を用いることも可能である。さらに、前記結晶系と組み合わせた積層構造として用いることも可能である。また、磁気記録層5は、物理的に加工された構造であってもよい。すなわち、例えば、ハードディスクで用いられる円盤形状の記録媒体の場合、周方向のトラック毎に記録層を物理的に分離したディスクリートトラック媒体や、さらにビット方向にも記録層を分断したビットパターン媒体にも、本発明の層構造を適用することができる。   For the magnetic recording layer 5, a crystalline magnetic layer material can be used. It is preferable to take a structure in which columnar crystal particles having a diameter of several nanometers mainly composed of a magnetic element such as Co, Fe, and Ni are separated by a nonmagnetic material having a thickness of about sub-nm. For example, a magnetic crystal grain is a material obtained by adding a metal such as Cr, B, Ta, W, or Cu to a CoPt alloy or FePt alloy, and a non-magnetic material is an oxidation of Si, Cr, Co, Ti, Ta, or B. A material added with an oxide or nitride, or C or carbide is also preferably used. Examples of the film forming method include a magnetron sputtering method. A structure may be adopted in which magnetic crystal grains are epitaxially grown on the crystal portion on the underlayer 4 and the nonmagnetic material is arranged on the grain boundary portion of the underlayer 4 so as to perform one-to-one crystal growth. In addition to this, it is also possible to use an amorphous material such as TbFeCo used in magneto-optical recording, or a multilayer film in which Co and Pt, or Co and Pd are alternately laminated with a thin film thickness of 2 nm or less. It is. Further, it can be used as a laminated structure combined with the crystal system. The magnetic recording layer 5 may have a physically processed structure. In other words, for example, in the case of a disk-shaped recording medium used in a hard disk, a discrete track medium in which the recording layer is physically separated for each track in the circumferential direction, and a bit pattern medium in which the recording layer is divided in the bit direction. The layer structure of the present invention can be applied.

保護層6は、従来使用されている保護膜を用いることができ、例えば、カーボンを主体とする保護膜である。単層ではなく、例えば異なる性質の二層カーボンや、金属膜とカーボン膜、酸化膜とカーボンの積層膜とすることもできる。
以下、本発明の磁気記録媒体の製造方法の実施例について詳細に説明する。なお、これらの実施例は、本発明の磁気記録媒体の製造方法を好適に説明するための代表例に過ぎず、これらに限定されるものではない。
The protective layer 6 may be a conventionally used protective film, for example, a protective film mainly composed of carbon. Instead of a single layer, for example, a double-layer carbon having different properties, a metal film and a carbon film, or a laminated film of an oxide film and carbon can be used.
Examples of the method for manufacturing a magnetic recording medium of the present invention will be described in detail below. These examples are merely representative examples for suitably explaining the method of manufacturing the magnetic recording medium of the present invention, and the present invention is not limited to these examples.

(実施例1)
実施例1で説明する磁気記録媒体を図1の断面模式図に示す。非磁性基板1として表面が平滑な円盤状のガラス基板を用いる。このガラス基板を洗浄後、スパッタリング装置内に導入し、Cuターゲットを用いてArガス圧5mTorr(133.322Pa)下で放熱層2−1としてCuを膜厚30nm形成する。引き続いてCo44Fe39Zr8Ni5Zr4ターゲットを用いてArガス圧5mTorr(133.322Pa)下で、軟磁性裏打ち層3としてFeCoZrNiNbを膜厚50nm形成する。引き続いてCu7920Cr1ターゲットを用いてArガス圧5mTorr(133.322Pa)下で、放熱層2−2としてCuCCrを膜厚20nm形成し、Cu/CoFeZrNiNb/CuCCrである放熱層2−1/軟磁性裏打ち層3/放熱層2−2を形成した。
Example 1
A magnetic recording medium described in Example 1 is shown in a schematic cross-sectional view of FIG. A disk-shaped glass substrate having a smooth surface is used as the nonmagnetic substrate 1. After cleaning this glass substrate, it is introduced into a sputtering apparatus, and Cu is formed to a thickness of 30 nm as a heat dissipation layer 2-1 under an Ar gas pressure of 5 mTorr (133.322 Pa) using a Cu target. Subsequently, using a Co 44 Fe 39 Zr 8 Ni 5 Zr 4 target, an FeCoZrNiNb film having a thickness of 50 nm is formed as the soft magnetic backing layer 3 under an Ar gas pressure of 5 mTorr (133.322 Pa). Subsequently, using a Cu 79 C 20 Cr 1 target and under an Ar gas pressure of 5 mTorr (133.322 Pa), a CuCCr film having a thickness of 20 nm is formed as the heat dissipation layer 2-2, and the heat dissipation layer 2-1 is Cu / CoFeZrNiNb / CuCCr. / Soft magnetic backing layer 3 / Heat dissipation layer 2-2 was formed.

続いて、Ruターゲットを用いArガス圧30mTorr(133.322Pa)下でRu下地層4を膜厚20nmで成膜する。その後、(Co75Pt20Ni591(TiO29ターゲットを用いて、Arガス圧60mTorr(133.322Pa)にてCoPtNi−TiO2磁性層を15nm成膜し、磁気記録層5を形成した。次に、CVD法によりカーボンからなる保護層6を膜厚3nmに成膜後、真空装置から取り出した。その後、パーフルオロポリエーテルからなる液体潤滑材層の膜厚2nmをディップ法により形成し、磁気記録媒体とした。なお、スパッタリングにおいては、磁性層の成膜にはパルスDCマグネトロンスパッタリング、その他の層はDCマグネトロンスパッタリング法を用いて行った。 Subsequently, the Ru underlayer 4 is formed with a film thickness of 20 nm under an Ar gas pressure of 30 mTorr (133.322 Pa) using a Ru target. Thereafter, using a (Co 75 Pt 20 Ni 5 ) 91 (TiO 2 ) 9 target, a CoPtNi—TiO 2 magnetic layer having a thickness of 15 nm is formed at an Ar gas pressure of 60 mTorr (133.322 Pa), thereby forming the magnetic recording layer 5. did. Next, the protective layer 6 made of carbon was formed to a thickness of 3 nm by the CVD method, and then taken out from the vacuum apparatus. Thereafter, a film thickness of 2 nm of a liquid lubricant layer made of perfluoropolyether was formed by a dip method to obtain a magnetic recording medium. In sputtering, pulsed DC magnetron sputtering was used for forming the magnetic layer, and DC magnetron sputtering was used for the other layers.

(実施例2)
実施例2で説明する磁気記録媒体を図2の断面模式図に示す。非磁性基板1上に、放熱層2としてCuを膜厚5nm形成し続いて軟磁性裏打ち層3としてCoFeZrNiNbを膜厚5nm形成することを、10回繰り返し、[Cu/Co44Fe39Zr8Ni5Zr410である放熱層2/軟磁性裏打ち層3の10回繰り返し層を形成する。前記実施例1におけるCu/CoFeZrNiNb/CuCCrである放熱層2−1/軟磁性裏打ち層3/放熱層2−2の部分のみを、前述の10回繰り返し層に置き換え、他の層は全て実施例1と同様にして磁気記録媒体とした。
(Example 2)
A magnetic recording medium described in Example 2 is shown in a schematic cross-sectional view of FIG. [Cu / Co 44 Fe 39 Zr 8 Ni] is formed 10 times on the nonmagnetic substrate 1 by repeatedly forming Cu as a heat dissipation layer 2 with a thickness of 5 nm and subsequently forming a soft magnetic backing layer 3 with a thickness of 5 nm as CoFeZrNiNb. 5 Zr 4 ] 10 heat dissipation layer 2 / soft magnetic backing layer 3 is formed 10 times repeatedly. In Example 1, the heat dissipation layer 2-1 which is Cu / CoFeZrNiNb / CuCCr is replaced with the above-mentioned 10 times repeating layer, and only the other layers are the examples. 1 was used as a magnetic recording medium.

(実施例3)
実施例3で説明する磁気記録媒体を図2の断面模式図に示す。非磁性基板1上に、放熱層2としてCuを膜厚10nm形成し、続いてeCoZrNiNbを膜厚10nm形成することを、5回繰り返し、[Cu/Co44Fe39Zr8Ni5Zr45である放熱層2/軟磁性裏打ち層3の5回繰り返し層を形成する。実施例1におけるCu/CoFeZrNiNb/CuCCrである放熱層2−1/軟磁性裏打ち層3/放熱層2−2の部分のみを、前述の5回繰り返し層に置き換え、他の層は全て実施例1と同様にして磁気記録媒体とした。
(Example 3)
A magnetic recording medium described in Example 3 is shown in a schematic cross-sectional view of FIG. [Cu / Co 44 Fe 39 Zr 8 Ni 5 Zr 4 ] 5 is formed five times on the nonmagnetic substrate 1 by forming Cu as a heat dissipation layer 2 with a thickness of 10 nm and subsequently forming eCoZrNiNb with a thickness of 10 nm. 5 layers of heat dissipation layer 2 / soft magnetic backing layer 3 are formed. Only the portion of the heat dissipation layer 2-1 / soft magnetic backing layer 3 / heat dissipation layer 2-2 which is Cu / CoFeZrNiNb / CuCCr in Example 1 is replaced with the above-mentioned five-time repeating layer, and all other layers are in Example 1. In the same manner as described above, a magnetic recording medium was obtained.

(実施例4)
実施例4で説明する磁気記録媒体を図2の断面模式図に示す。非磁性基板1上に、放熱層2としてCuを膜厚25nm形成し、続いてFeCoZrNiNbを膜厚25nm形成することを、2回繰り返し、[Cu/Co44Fe39Zr8Ni5Zr42である放熱層2/軟磁性裏打ち層3の2回繰り返し層を形成する。実施例1におけるCu/CoFeZrNiNb/CuCCrである放熱層2−1/軟磁性裏打ち層3/放熱層2−2の部分のみを、前述の2回繰り返し層に置き換え、他の層は全て実施例1と同様にして磁気記録媒体とした。
Example 4
A magnetic recording medium described in Example 4 is shown in a schematic cross-sectional view of FIG. [Cu / Co 44 Fe 39 Zr 8 Ni 5 Zr 4 ] 2 is formed twice on the nonmagnetic substrate 1 by repeatedly forming Cu as the heat dissipation layer 2 with a thickness of 25 nm and subsequently forming FeCoZrNiNb with a thickness of 25 nm. The heat-radiating layer 2 / soft magnetic backing layer 3 is repeatedly formed twice. Only the part of the heat radiation layer 2-1 / soft magnetic backing layer 3 / heat radiation layer 2-2 which is Cu / CoFeZrNiNb / CuCCr in Example 1 is replaced with the above-mentioned twice repeated layer, and all other layers are in Example 1. In the same manner as described above, a magnetic recording medium was obtained.

(実施例5)
実施例5で説明する磁気記録媒体を図3の断面模式図に示す。非磁性基板1上に、放熱層2としてCuを膜厚25nm、軟磁性裏打ち層3としてCo44Fe39Zr8Ni5Zr4を膜厚25nm、放熱層2としてCuを膜厚25nm、軟磁性裏打ち層3−AとしてCo44Fe39Zr8Ni5Zr4を膜厚12.5nm形成する。引き続いてRuターゲットを用いArガス圧5mTorr(133.322Pa)下でRu反強磁性結合層7を膜厚0.8nmで形成し、軟磁性裏打ち層3−BとしてFe44Co38Zr8Ni6Zr4を膜厚12.5nm成膜する。実施例1におけるCu/CoFeZrNiNb/CuCCrである放熱層2−1/軟磁性裏打ち層3/放熱層2−2の部分のみを、前述の複数層に置き換え、他の層は全て実施例1と同様にして磁気記録媒体とした。前述の置き換え複数層のうち、放熱層2と軟磁性裏打ち層3の連続層は複数回の繰り返し層としてもよい。
(Example 5)
A magnetic recording medium described in Example 5 is shown in a schematic cross-sectional view of FIG. On the nonmagnetic substrate 1, Cu is 25 nm thick as the heat dissipation layer 2, Co 44 Fe 39 Zr 8 Ni 5 Zr 4 is 25 nm thick as the soft magnetic backing layer 3, and Cu is 25 nm thick as the heat dissipation layer 2, soft magnetic Co 44 Fe 39 Zr 8 Ni 5 Zr 4 is formed to a thickness of 12.5 nm as the backing layer 3-A. Subsequently, a Ru antiferromagnetic coupling layer 7 is formed with a film thickness of 0.8 nm under an Ar gas pressure of 5 mTorr (133.322 Pa) using a Ru target, and Fe 44 Co 38 Zr 8 Ni 6 is formed as a soft magnetic backing layer 3-B. Zr 4 is deposited to a thickness of 12.5 nm. Only the portion of the heat dissipation layer 2-1 / soft magnetic backing layer 3 / heat dissipation layer 2-2 that is Cu / CoFeZrNiNb / CuCCr in Example 1 is replaced with the above-mentioned plural layers, and all other layers are the same as in Example 1. Thus, a magnetic recording medium was obtained. Of the plurality of replacement layers described above, the continuous layer of the heat dissipation layer 2 and the soft magnetic backing layer 3 may be a plurality of repeated layers.

(比較例1)
非磁性基板上に、放熱層としてCuを膜厚50nm形成し、続いて軟磁性裏打ち層としてFeCoZrNiNbを膜厚50nm形成し、Cu/Co44Fe39Zr8Ni5Zr4である放熱層/軟磁性裏打ち層を形成する。実施例1におけるCu/CoFeZrNiNb/CuCCrである放熱層2−1/軟磁性裏打ち層3/放熱層2−2の部分のみを、前述の放熱層と軟磁性裏打ち層に置き換え、他の層は全て実施例1と同様にして磁気記録媒体とした。
(Comparative Example 1)
On the non-magnetic substrate, Cu is formed with a thickness of 50 nm as a heat dissipation layer, and subsequently FeCoZrNiNb is formed with a thickness of 50 nm as a soft magnetic backing layer, and the heat dissipation layer / soft layer is Cu / Co 44 Fe 39 Zr 8 Ni 5 Zr 4. A magnetic backing layer is formed. Only the part of the heat dissipation layer 2-1 / soft magnetic backing layer 3 / heat dissipation layer 2-2 which is Cu / CoFeZrNiNb / CuCCr in Example 1 is replaced with the above heat dissipation layer and the soft magnetic backing layer, and all other layers are A magnetic recording medium was prepared in the same manner as in Example 1.

(比較例2)
非磁性基板上に、放熱層としてCuCCrを膜厚50nm形成し、続いて軟磁性裏打ち層としてFeCoZrNiNbを膜厚50nm形成し、Cu7920Cr1/Co44Fe39Zr8Ni5Zr4である放熱層/軟磁性裏打ち層を形成する。実施例1におけるCu/CoFeZrNiNb/CuCCrである放熱層2−1/軟磁性裏打ち層3/放熱層2−2の部分のみを、前述の放熱層と軟磁性裏打ち層に置き換え、他の層は全て実施例1と同様にして磁気記録媒体とした。
(Comparative Example 2)
On the nonmagnetic substrate, a CuCCr film having a thickness of 50 nm is formed as a heat dissipation layer, and subsequently a FeCoZrNiNb film having a thickness of 50 nm is formed as a soft magnetic backing layer, and Cu 79 C 20 Cr 1 / Co 44 Fe 39 Zr 8 Ni 5 Zr 4 is formed. A heat dissipation layer / soft magnetic backing layer is formed. Only the part of the heat dissipation layer 2-1 / soft magnetic backing layer 3 / heat dissipation layer 2-2 which is Cu / CoFeZrNiNb / CuCCr in Example 1 is replaced with the above heat dissipation layer and the soft magnetic backing layer, and all other layers are A magnetic recording medium was prepared in the same manner as in Example 1.

以上の実施例1〜5及び比較例1〜2は、比較を容易にするため、軟磁性裏打ち層と放熱層の膜厚の総和が100nmかつ、軟磁性裏打ち層膜厚の総和と放熱層膜厚の総和の比率が1:1となるように設定されている。
以下、本実施例1〜5及び比較例1〜1の磁気記録媒体の性能評価結果について説明する。下記表1には、各実施例及び比較例の表面粗さ(Ra)、電磁変換特性(重ね書き(OW)と信号雑音比(SNR))、隣接トラックへの影響(信号減衰割合)の結果をまとめて示す。
In the above Examples 1 to 5 and Comparative Examples 1 and 2, the total thickness of the soft magnetic backing layer and the heat dissipation layer is 100 nm, and the total thickness of the soft magnetic backing layer and the heat dissipation layer film are provided for easy comparison. The ratio of the total thickness is set to be 1: 1.
Hereinafter, the performance evaluation results of the magnetic recording media of Examples 1 to 5 and Comparative Examples 1 to 1 will be described. Table 1 below shows the results of surface roughness (Ra), electromagnetic conversion characteristics (overwriting (OW) and signal-to-noise ratio (SNR)), and influence on adjacent tracks (signal attenuation ratio) of each example and comparative example. Are shown together.

Figure 0005332676
なお、Raの評価にはAFM(原子間力顕微鏡)を用い、電磁変換特性評価は、レーザースポット加熱機構を搭載したスピンスタンドテスターにて、GMRヘッドを用いて行った。レーザーパワーは記録層温度200℃となるように設定し、記録時にレーザーパワーをONし、読み出し時はレーザーパワーOFFで行った。ヘッドは、記録トラック幅140nm、再生トラック幅90nmのものを用いた。隣接トラックへの影響は、読み出しトラックに隣接する両側のトラックにそれぞれ書き込みを行った後の信号出力減衰割合を評価した。
Figure 0005332676
Ra was evaluated using an AFM (Atomic Force Microscope), and electromagnetic conversion characteristics were evaluated using a GMR head with a spin stand tester equipped with a laser spot heating mechanism. The laser power was set so that the recording layer temperature was 200 ° C., the laser power was turned on during recording, and the laser power was turned off during reading. A head having a recording track width of 140 nm and a reproducing track width of 90 nm was used. As for the influence on the adjacent track, the signal output attenuation ratio after writing on both tracks adjacent to the read track was evaluated.

比較例1、比較例2を比較することにより、放熱層2材料の比較ができる。比較例1は比較例2に比して表面粗さは大きくて悪いが、隣接トラックの出力減衰は小さく優れる。この結果から、比較例1で用いた放熱層(Cu)は、比較例2で用いた放熱層(CuCCr)に比して熱伝導性は高いが、結晶成長しやすく表面凹凸が大きいことを示している。なお、比較例1、2間の表面凹凸の差を反映し、Raが低い比較例2の方がSNR(信号雑音比)は高くて良い。   By comparing the comparative example 1 and the comparative example 2, the materials of the heat dissipation layer 2 can be compared. Although Comparative Example 1 has a large and poor surface roughness as compared with Comparative Example 2, the output attenuation of the adjacent track is small and excellent. This result shows that the heat dissipation layer (Cu) used in Comparative Example 1 has higher thermal conductivity than the heat dissipation layer (CuCCr) used in Comparative Example 2, but it is easy to grow crystals and has large surface irregularities. ing. In addition, reflecting the difference in surface irregularities between Comparative Examples 1 and 2, Comparative Example 2 having a lower Ra may have a higher SNR (signal-to-noise ratio).

この事実を踏まえて、実施例1と比較例1及2と比較する。放熱層2を二層に分けた実施例1では、比較例1及び2のそれぞれに対してRa(表面粗さ)が大幅に小さく、その結果を反映してSNRは大きく向上している。実施例1の下地層4直下の放熱層のCu、CuCCrが二層に分けられたことにより、それぞれの放熱層2−1、2−2が比較例1、2の膜厚50nmよりも薄くなった効果が現れている。   Based on this fact, Example 1 is compared with Comparative Examples 1 and 2. In Example 1 in which the heat dissipation layer 2 is divided into two layers, Ra (surface roughness) is significantly smaller than those of Comparative Examples 1 and 2, and the SNR is greatly improved reflecting the result. Since Cu and CuCCr of the heat dissipation layer immediately below the base layer 4 of Example 1 are divided into two layers, the heat dissipation layers 2-1 and 2-2 are thinner than the film thickness of 50 nm of Comparative Examples 1 and 2. The effect has appeared.

OW(重ね書き)は、磁気スペーシング(軟磁性裏打ち層3の最表面と磁気ヘッドの距離)が比較例1及び2に対して大きくなるためやや劣化している一方、放熱層2が磁気記録層5に近づくことで分熱の分布が抑えられ、隣接トラックへの影響が小さくなっていることがわかる。
総合的に見ると、前記実施例1で説明した図1に示す磁気記録媒体はSNRの増加によるノイズ低減効果が非常に大きく、前述の熱アシスト記録方式に適した磁気記録媒体とすることができる。
OW (overwriting) is slightly deteriorated because the magnetic spacing (distance between the outermost surface of the soft magnetic backing layer 3 and the magnetic head) is larger than that of Comparative Examples 1 and 2, while the heat dissipation layer 2 is magnetically recorded. It can be seen that by approaching the layer 5, the distribution of heat distribution is suppressed, and the influence on the adjacent track is reduced.
Overall, the magnetic recording medium shown in FIG. 1 described in the first embodiment has a very large noise reduction effect due to an increase in SNR, and can be a magnetic recording medium suitable for the above-described heat-assisted recording method. .

次に、実施例2、実施例3、実施例4、比較例1を比較する。Ra(表面粗さ)の大きさは、実施例2=実施例3<実施例4<比較例1であり、SNR(信号雑音比)は実施例2、実施例3、実施例4、比較例1の順に高いから低いとなっている。隣接トラックの信号出力減衰も、この順で小さくなっている。OW(重ね書き)は同程度の値であった。この結果から、放熱層一層当たりの膜厚を低減することにより、表面粗さの増大を抑えて記録層の特性劣化を防ぎつつ、書き込み性能と放熱効果を維持していることがわかる。また、実施例2と実施例3を比較すると、Raが等しいにも関わらず実施例2の方のSNRが高いことから、実施例2では実施例3に比して軟磁性裏打ち層に由来するノイズが小さいことがわかる。以上のことから、前記実施例2、3、4で説明した図2の磁気記録媒体は前述の熱アシスト記録方式に適した磁気記録媒体とすることができる。   Next, Example 2, Example 3, Example 4, and Comparative Example 1 are compared. The magnitude of Ra (surface roughness) is Example 2 = Example 3 <Example 4 <Comparative Example 1, and SNR (Signal Noise Ratio) is Example 2, Example 3, Example 4, Comparative Example. Since it is high in order of 1, it is low. The signal output attenuation of the adjacent track also decreases in this order. OW (overwriting) was a comparable value. From this result, it can be seen that by reducing the film thickness per heat dissipation layer, the writing performance and the heat dissipation effect are maintained while suppressing the increase in surface roughness and preventing the characteristic deterioration of the recording layer. Further, when Example 2 and Example 3 are compared, the SNR of Example 2 is higher in spite of equal Ra, so that Example 2 is derived from the soft magnetic backing layer as compared to Example 3. It can be seen that the noise is small. From the above, the magnetic recording medium of FIG. 2 described in the second, third, and fourth embodiments can be a magnetic recording medium suitable for the above-described heat-assisted recording method.

続いて、実施例4と実施例5を比較すると、Ra及び隣接トラックへの影響は同等であるが、実施例5の方がSNRに優れている。これは軟磁性裏打ち層のノイズが抑制されているためである。OWはやや悪化しているものの、総合的には隣接トラックへの影響を抑え、SNRが高いことから、熱アシスト記録方式には適用することができる。以上のことから、前記実施例5で説明した図3の磁気記録媒体は前述の熱アシスト記録方式に適した磁気記録媒体とすることができる。   Subsequently, when Example 4 and Example 5 are compared, the influence on Ra and adjacent tracks is the same, but Example 5 is superior in SNR. This is because the noise of the soft magnetic underlayer is suppressed. Although OW is somewhat worse, it can be applied to the heat-assisted recording method because the influence on adjacent tracks is suppressed and the SNR is high overall. From the above, the magnetic recording medium of FIG. 3 described in the fifth embodiment can be a magnetic recording medium suitable for the above-described heat-assisted recording method.

以上のように、本発明の軟磁性裏打ち層と放熱層の構造を用いれば、厚膜化による表面凹凸の増加・結晶成長を抑え、記録層の微細構造などへの影響を小さくする一方、従来の構成と同等の放熱効果と書き込み性能を維持しつつ、軟磁性裏打ち層に由来するノイズを低減する効果を得ることも可能である。これにより、前述の熱アシスト記録方式に適した磁気記録媒体とすることができ、媒体が提供され、高密度記録が可能となる。   As described above, when the structure of the soft magnetic underlayer and the heat dissipation layer of the present invention is used, the increase in surface unevenness and crystal growth due to the thick film can be suppressed, and the influence on the fine structure of the recording layer can be reduced. It is also possible to obtain an effect of reducing noise derived from the soft magnetic underlayer while maintaining the heat radiation effect and the writing performance equivalent to the above configuration. As a result, a magnetic recording medium suitable for the above-described heat-assisted recording method can be obtained, and a medium is provided, enabling high-density recording.

1 非磁性基板
2 放熱層
2−1 放熱層
2−2 放熱層
3 軟磁性裏打ち層
3−A 軟磁性裏打ち層
3−B 軟磁性裏打ち層
4 下地層
5 磁気記録層
6 保護層
7 反強磁性結合層
DESCRIPTION OF SYMBOLS 1 Nonmagnetic board | substrate 2 Heat dissipation layer 2-1 Heat dissipation layer 2-2 Heat dissipation layer 3 Soft magnetic backing layer 3-A Soft magnetic backing layer 3-B Soft magnetic backing layer 4 Underlayer 5 Magnetic recording layer 6 Protective layer 7 Antiferromagnetic Bonding layer

Claims (8)

信号書き込みを信号保持状態よりも磁気記録層の温度が高い温度で行う磁気記録装置に用いられ、非磁性基体上に軟磁性裏打ち層、前記磁気記録層、保護層をこの順に備える磁気記録媒体において、二層の放熱層が前記軟磁性裏打ち層を挟んだ層構成を有することを特徴とする磁気記録媒体。 Temperature of the magnetic recording layer than the signal holding state signal writing is used in a magnetic recording apparatus for a high temperature, soft magnetic backing layer on a nonmagnetic substrate, the magnetic recording layer, a magnetic recording medium having a protective layer in this order A magnetic recording medium characterized in that the two heat-dissipating layers have a layer structure sandwiching the soft magnetic backing layer. 前記放熱層及び前記軟磁性裏打ち層が共に複数の層からなり、当該複数の層の各放熱層と各軟磁性裏打ち層とが交互に積層される層構成を有することを特徴とする請求項1記載の磁気記録媒体。   2. The heat dissipation layer and the soft magnetic backing layer are both composed of a plurality of layers, and each heat dissipation layer and each soft magnetic backing layer of the plurality of layers have a layer configuration that is alternately stacked. The magnetic recording medium described. 前記放熱層のうち最上層の放熱層の上に非磁性の反強磁性結合層を挟む二層の軟磁性裏打ち層を備え、該二層の軟磁性裏打ち層が前記反強磁性結合層を介して磁気的に相互に結合していることを特徴とする請求項2記載の磁気記録媒体。   A two-layer soft magnetic backing layer sandwiching a nonmagnetic antiferromagnetic coupling layer is disposed on the uppermost heat dissipation layer of the heat dissipation layer, and the two soft magnetic backing layers are interposed via the antiferromagnetic coupling layer. 3. The magnetic recording medium according to claim 2, wherein the magnetic recording medium is magnetically coupled to each other. 前記放熱層の熱伝導率が前記軟磁性裏打ち層の熱伝導率よりも高いことを特徴とする請求項1記載の磁気記録媒体。   2. The magnetic recording medium according to claim 1, wherein the heat dissipation layer has a thermal conductivity higher than that of the soft magnetic backing layer. 前記放熱層の室温300Kにおける熱伝導率が100(W/(m・K))よりも大きいことを特徴とする請求項4記載の磁気記録媒体。   5. The magnetic recording medium according to claim 4, wherein the heat dissipation layer has a thermal conductivity at a room temperature of 300 K of greater than 100 (W / (m · K)). 前記放熱層がW、Ir、Mg、Mo、Re、Rh、Ru、Si、Zn、Al、Cu、Ag、Au、Cから選ばれるいずれかの元素からなる高熱伝導率材料または前記いずれかの元素を含む合金を主要成分とすることを特徴とする請求項5記載の磁気記録媒体。   The heat dissipation layer is a high thermal conductivity material composed of any element selected from W, Ir, Mg, Mo, Re, Rh, Ru, Si, Zn, Al, Cu, Ag, Au, and C, or any of the above elements 6. A magnetic recording medium according to claim 5, wherein an alloy containing is used as a main component. 前記軟磁性裏打ち層がFe,Co,Niから選ばれるいずれかの元素を主成分とする層であって、非晶質または微結晶構造を有することを特徴とする請求項1記載の磁気記録媒体。   2. The magnetic recording medium according to claim 1, wherein the soft magnetic underlayer is a layer mainly composed of any element selected from Fe, Co, and Ni and has an amorphous or microcrystalline structure. . 前記反強磁性結合層が、V、Cr、Ru、Cu、Ir、Nb、Mo、Re、Rh、Ta、Wから選ばれるいずれかの元素からなる金属または該いずれかの元素を主成分とする合金であることを特徴とする請求項3記載の磁気記録媒体。 The antiferromagnetic coupling layer, and a main component V, Cr, Ru, Cu, Ir, Nb, Mo, Re, Rh, Ta, and W or al metal or said one element consisting of one element selected The magnetic recording medium according to claim 3, wherein the magnetic recording medium is an alloy.
JP2009026843A 2009-02-09 2009-02-09 Magnetic recording medium Active JP5332676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009026843A JP5332676B2 (en) 2009-02-09 2009-02-09 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009026843A JP5332676B2 (en) 2009-02-09 2009-02-09 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2010182386A JP2010182386A (en) 2010-08-19
JP5332676B2 true JP5332676B2 (en) 2013-11-06

Family

ID=42763858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009026843A Active JP5332676B2 (en) 2009-02-09 2009-02-09 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP5332676B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150925B2 (en) * 2010-12-06 2013-02-27 Tdk株式会社 Magnetic recording medium and magnetic recording / reproducing apparatus
JP5786347B2 (en) 2011-02-02 2015-09-30 富士電機株式会社 Magnetic recording medium for thermally assisted recording apparatus and method for manufacturing the same
JP5685983B2 (en) * 2011-02-23 2015-03-18 富士電機株式会社 Magnetic recording medium
JP5693345B2 (en) * 2011-04-14 2015-04-01 昭和電工株式会社 Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
US8599652B2 (en) 2011-07-14 2013-12-03 Tdk Corporation Thermally-assisted magnetic recording medium and magnetic recording/reproducing device using the same
CN103959924A (en) * 2011-10-05 2014-07-30 萨班哲大学 Nanoplasmonic device with nanoscale cooling
JP2013149316A (en) * 2012-01-19 2013-08-01 Showa Denko Kk Heat-assisted magnetic recording medium and magnetic recording and reproducing device
JP6073194B2 (en) 2013-07-03 2017-02-01 昭和電工株式会社 Magnetic recording medium, magnetic storage device
US9324353B2 (en) 2013-11-19 2016-04-26 HGST Netherlands B.V. Dual segregant heat assisted magnetic recording (HAMR) media
US9443545B2 (en) 2013-12-24 2016-09-13 HGST Netherlands B.V. Thermally stable Au alloys as a heat diffusion and plasmonic underlayer for heat-assisted magnetic recording (HAMR) media

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3388221B2 (en) * 2000-03-31 2003-03-17 株式会社東芝 Recording medium and recording / reproducing apparatus using the same
WO2004038716A1 (en) * 2002-10-25 2004-05-06 Fujitsu Limited Magneto-optical recording medium
WO2004040558A1 (en) * 2002-11-01 2004-05-13 Koninklijke Philips Electronics N.V. Thermally-assisted recording medium with a storage layer of antiferromagnetic double-layer structure with anti-parallel orientation of magnetization
JP2007164836A (en) * 2005-12-09 2007-06-28 Hitachi Maxell Ltd Magnetic recording medium and magnetic recording device
JP2008276833A (en) * 2007-04-26 2008-11-13 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and its manufacturing method

Also Published As

Publication number Publication date
JP2010182386A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP5332676B2 (en) Magnetic recording medium
JP5807944B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP5670638B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
JP5617112B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP5892213B2 (en) Magnetic recording method
JP5880686B2 (en) Magnetic recording medium for thermally assisted magnetic recording
JP6014385B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2008176858A (en) Perpendicular magnetic recording medium and hard disk drive using the same
JP2009110641A (en) Perpendicular magnetic recording medium
JP2011034603A (en) Vertical magnetic recording medium
JP2010211921A (en) Vertical magnetic recording disk manufacturing method and vertical magnetic recording disk
JP5575172B2 (en) Magnetic recording medium, magnetic recording / reproducing apparatus, and method of manufacturing magnetic recording medium
JP2011248969A (en) Perpendicular magnetic disk
JP2008097685A (en) Perpendicular magnetic recording medium, method for manufacturing same, and magnetic storage
JP4263133B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2009289360A (en) Perpendicular magnetic recording medium and device
JP7011477B2 (en) Assist magnetic recording medium and magnetic storage device
JP5786347B2 (en) Magnetic recording medium for thermally assisted recording apparatus and method for manufacturing the same
US20150017480A1 (en) Perpendicular magnetic recording medium
JP5923152B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
US20160293195A1 (en) Iridium underlayer for heat assisted magnetic recording media
KR20120062801A (en) Magnetic recording media with reliable writability and erasure
JP5325945B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP6416041B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP5267938B2 (en) Magnetic recording medium

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Ref document number: 5332676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250