JP5293996B2 - Dispersion strengthened copper, dispersion strengthened copper manufacturing method, and conductor for electric wire - Google Patents

Dispersion strengthened copper, dispersion strengthened copper manufacturing method, and conductor for electric wire Download PDF

Info

Publication number
JP5293996B2
JP5293996B2 JP2008024891A JP2008024891A JP5293996B2 JP 5293996 B2 JP5293996 B2 JP 5293996B2 JP 2008024891 A JP2008024891 A JP 2008024891A JP 2008024891 A JP2008024891 A JP 2008024891A JP 5293996 B2 JP5293996 B2 JP 5293996B2
Authority
JP
Japan
Prior art keywords
strengthened copper
dispersion
compound
forming element
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008024891A
Other languages
Japanese (ja)
Other versions
JP2009185319A (en
Inventor
亮 丹治
鉄也 桑原
太一郎 西川
由弘 中井
保之 大塚
正人 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2008024891A priority Critical patent/JP5293996B2/en
Publication of JP2009185319A publication Critical patent/JP2009185319A/en
Application granted granted Critical
Publication of JP5293996B2 publication Critical patent/JP5293996B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dispersion-strengthening copper and a producing method thereof which disperses carbide material and boride material in a basic material and provides the strength and the electric conductivity in good balance, and to provide a conductor for electric wire composed of the dispersion-strengthening copper. <P>SOLUTION: Molten material mixing Cu or Cu alloy as the basic material, compound-forming element, such as Ti, and carbon and boron sources, are heated at the melting point or higher of the carbon-boron source and the above compound-formed elements and C and B of the carbon-boron source, are reacted to produce the carbide and the boride materials. The molten material is stirred and the generated carbide material and the boride material are uniformly dispersed in the molten material and solidified. In this way, the dispersion-strengthening copper, dispersing fine carbide grains and boride grains in the basic material is obtained. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、母材中に炭化物粒子及びホウ化物粒子が分散した分散強化銅、この分散強化銅の製造方法、及びこの分散強化銅からなる電線用導体に関する。特に、強度と導電率とをバランスよく具える分散強化銅に関するものである。   The present invention relates to dispersion-strengthened copper in which carbide particles and boride particles are dispersed in a base material, a method for producing the dispersion-strengthened copper, and a conductor for electric wires made of the dispersion-strengthened copper. In particular, the present invention relates to dispersion strengthened copper having a good balance between strength and electrical conductivity.

従来より、電線用導体の材料に銅や銅合金が用いられている。また、強度を向上させるために、母材中にアルミナといったセラミックス粒子を分散させた分散強化銅が開発されてきている。分散強化銅は、代表的には、上記セラミックス粉末と母材粉末とを混合して焼結したり(焼結法)、母材溶湯にセラミックス粉末を混合して鋳造する(溶製法)ことで製造される。その他、特許文献1は、ホウ素及び炭素源粉末と、Zr粉末と、銅粉末とを混合して溶融した後冷却すること(粉末冶金法)で、Zrの炭化物及びZrのホウ化物が分散した分散強化銅を開示している。   Conventionally, copper or a copper alloy has been used as a conductor material for electric wires. In order to improve strength, dispersion strengthened copper in which ceramic particles such as alumina are dispersed in a base material has been developed. Dispersion strengthened copper is typically mixed and sintered with the above ceramic powder and base metal powder (sintering method), or mixed and cast with ceramic powder in the base metal melt (melting method). Manufactured. In addition, Patent Document 1 discloses a dispersion in which Zr carbide and Zr boride are dispersed by mixing and melting boron and carbon source powder, Zr powder, and copper powder and then cooling (powder metallurgy method). Disclosed reinforced copper.

特開平11-100625号公報Japanese Patent Laid-Open No. 11-100625

しかし、溶製法は、セラミックス粒子が凝集し易いことから撹拌しても均一的に分散させ難く、粒子の偏在による特性のムラが生じ易い。一方、焼結法や粉末冶金法は、連続的な生産に適しておらず、電線用導体の素材を効率よく生産することが難しい。   However, in the melting method, the ceramic particles are likely to aggregate, so that even if they are stirred, it is difficult to uniformly disperse them, and unevenness in characteristics due to uneven distribution of the particles tends to occur. On the other hand, the sintering method and the powder metallurgy method are not suitable for continuous production, and it is difficult to efficiently produce a material for a conductor for electric wires.

また、電線用導体は、導電率が高く、高強度であることが望まれるが、従来、この要求に対して十分に検討されていない。特に、軽量化のために導体径を細した場合であっても、高強度である電線用導体の開発が望まれる。 Moreover, although the conductor for electric wires is desired to have high electrical conductivity and high strength, it has not been sufficiently studied for this requirement. In particular, even if the conductor diameter and subdivisions for weight reduction, the development of the wire conductor is a high strength is desired.

そこで、本発明の目的の一つは、導電率と強度とをバランスよく具える分散強化銅を提供することにある。また、本発明の他の目的は、分散強化銅を連続的に生産することができる製造方法を提供することにある。更に、本発明の他の目的は、導電率と強度とをバランスよく具える電線用導体を提供することにある。   Accordingly, one of the objects of the present invention is to provide dispersion strengthened copper having a good balance between conductivity and strength. Another object of the present invention is to provide a production method capable of continuously producing dispersion strengthened copper. Furthermore, the other object of this invention is to provide the conductor for electric wires which provides electrical conductivity and intensity | strength with sufficient balance.

本発明者らは、母材溶湯に分散材となるセラミックス粉末をそのまま添加するのではなく、分散材となる化合物の原料(化合物形成元素及び炭素ホウ素源)を母材原料と共に溶融して作製した溶湯を用いて、製造過程で分散材を生成することで、導電率が高く、高強度な分散強化銅を連続的に生産できる、との知見を得た。この知見に基づき、本発明は、鋳造法による分散強化銅の製造方法を規定する。   The present inventors did not add the ceramic powder as a dispersion material as it is to the molten base metal, but produced it by melting the raw material of the compound as a dispersion material (compound forming element and carbon boron source) together with the raw material of the base material. It was found that by using a molten metal to produce a dispersion material during the manufacturing process, it is possible to continuously produce dispersion-strengthened copper having high electrical conductivity and high strength. Based on this knowledge, the present invention defines a method for producing dispersion strengthened copper by a casting method.

本発明は、母材に化合物粒子が分散した分散強化銅を製造する製造方法であって、以下の工程を具える。
(1) 純Cu、又は純Cuと添加元素とからなるCu合金と、以下の化合物形成元素とC及びBを含有する炭素ホウ素源とが混合した溶湯を準備する工程。化合物形成元素は、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,及びWからなる群から選択される少なくとも1種の元素とする。
(2) 上記溶湯を上記炭素ホウ素源の融点以上として化合物形成元素と炭素ホウ素源中のC及びBとを反応させて炭化物及びホウ化物を生成すると共に、溶湯を撹拌する工程。
(3) 炭化物及びホウ化物の生成及び撹拌を行った溶湯を冷却して凝固する工程。
The present invention is a manufacturing method for manufacturing dispersion strengthened copper in which compound particles are dispersed in a base material, and includes the following steps.
(1) A step of preparing a molten metal in which pure Cu or a Cu alloy composed of pure Cu and an additive element, and the following compound forming element and a carbon boron source containing C and B are mixed. The compound forming element is at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W.
(2) A step of setting the molten metal to be equal to or higher than the melting point of the carbon boron source and reacting a compound-forming element with C and B in the carbon boron source to generate carbides and borides and stirring the molten metal.
(3) A step of cooling and solidifying the molten metal in which the carbide and boride are generated and stirred.

上記鋳造法による製造により、Cu又はCu合金からなる母材に化合物粒子、具体的には炭化物粒子及びホウ化物粒子が均一的に分散された組織を有する本発明分散強化銅が得られる。より具体的には、本発明分散強化銅は、Cを0.001〜1.0質量%、Bを0.001〜2.0質量%、上記化合物形成元素を0.004〜16質量%含有する。母材中には、実質的にCと上記化合物形成元素とからなる炭化物の粒子と、実質的にBと上記化合物形成元素とからなるホウ化物の粒子とが分散している。特に、本発明分散強化銅は、上記炭化物中の化合物形成元素と上記ホウ化物中の化合物形成元素とが同じ元素である炭化物及びホウ化物を含む。   The dispersion-strengthened copper of the present invention having a structure in which compound particles, specifically, carbide particles and boride particles are uniformly dispersed in a base material made of Cu or a Cu alloy is obtained by the production by the casting method. More specifically, the dispersion strengthened copper of the present invention contains 0.001 to 1.0 mass% of C, 0.001 to 2.0 mass% of B, and 0.004 to 16 mass% of the compound forming element. In the base material, carbide particles substantially composed of C and the compound forming element, and boride particles substantially composed of B and the compound forming element are dispersed. In particular, the dispersion strengthened copper of the present invention includes carbides and borides in which the compound-forming element in the carbide and the compound-forming element in the boride are the same element.

上記構成を具える本発明分散強化銅は、導電率が高く、高強度である。このように導電率と強度とをバランスよく具えることから本発明分散強化銅は、電線用導体の材料に好適に利用できる。特に、本発明分散強化銅は、細くしても強度に優れることから、軽量化のためなどで細径であることが望まれる電線用導体の材料に好適に利用できる。また、上記本発明製造方法によれば、本発明分散強化銅を連続的に生産可能であることから、例えば、電用導体の素材などの長尺材を生産性よく製造することができる。以下、本発明をより詳細に説明する。
The dispersion-strengthened copper of the present invention having the above configuration has high conductivity and high strength. As described above, since the conductivity and strength are well-balanced, the dispersion-strengthened copper of the present invention can be suitably used as a material for electric wire conductors. In particular, the dispersion-strengthened copper of the present invention is excellent in strength even if it is thinned, and therefore can be suitably used as a conductor material for electric wires that is desired to have a small diameter for the purpose of weight reduction. Further, according to the present invention production process, the present invention dispersion strengthened copper because it is continuously producible, for example, can be produced with good productivity a long material such as a material for electric wire conductor. Hereinafter, the present invention will be described in more detail.

[分散強化銅]
<組成>
《母材》
本発明分散強化銅は、純Cu又は純Cuに添加元素を添加したCu合金を主成分(母材)とする。添加元素は、Sn,Ni,Si,Fe,P,Ag,Crなどが挙げられる。例えば、公知の組成のCu-Sn合金、Cu-Ni-Si合金、Cu-Fe-P合金、Cu-Ag合金、Cu-Cr合金、Cu-Si合金を母材に利用できる。本発明分散強化銅は、炭化物及びホウ化物分散組織とすることで強度を高められるため、先に列記した公知の組成のCu合金よりも添加元素の含有量を低減可能である。本発明分散強化銅は、この純Cu又はCu合金からなる母材に、C、B及び化合物形成元素を含む組成である。具体的な組成を以下に挙げる。
組成(I) Cを0.001質量%以上1.0質量%以下、Bを0.001質量%以上2.0質量%以下、化合物形成元素を0.004質量%以上16質量%以下含有し、残部がCu及び不可避的不純物からなる
組成(II) Cを0.001質量%以上1.0質量%以下、Bを0.001質量%以上2.0質量%以下、化合物形成元素を0.004質量%以上16質量%以下含有し、更に、所定量の添加元素を含有し、残部がCu及び不可避的不純物からなる
[Dispersion strengthened copper]
<Composition>
《Base material》
The dispersion strengthened copper of the present invention contains pure Cu or a Cu alloy obtained by adding an additive element to pure Cu as a main component (base material). Examples of the additive element include Sn, Ni, Si, Fe, P, Ag, and Cr. For example, a Cu—Sn alloy, Cu—Ni—Si alloy, Cu—Fe—P alloy, Cu—Ag alloy, Cu—Cr alloy, or Cu—Si alloy having a known composition can be used as a base material. Since the strength of the dispersion-strengthened copper of the present invention can be increased by forming a carbide and boride dispersion structure, the content of additive elements can be reduced as compared with the Cu alloys having the known compositions listed above. The dispersion-strengthened copper of the present invention has a composition containing C, B, and a compound-forming element in a base material made of pure Cu or a Cu alloy. Specific compositions are listed below.
Composition (I) 0.001% to 1.0% by mass of C, 0.001% to 2.0% by mass of B, 0.004% to 16% by mass of a compound-forming element, and the balance consisting of Cu and inevitable impurities Composition (II) C contains 0.001% to 1.0% by mass, B contains 0.001% to 2.0% by mass, compound forming elements contain 0.004% to 16% by mass, and further contains a predetermined amount of additive elements And the balance consists of Cu and inevitable impurities

分散強化銅中の組成は、例えば、誘導結合プラズマ(ICP:Inductively
Coupled Plasma)発光分光分析やX線光電子分光法(XPS)により調べられる。分散強化銅中の炭化物及びホウ化物の存在は、例えば、X線回折(XRD)やエネルギー分散型X線分析(EDX)により調べられる。
The composition in dispersion strengthened copper is, for example, inductively coupled plasma (ICP: Inductively
Coupled Plasma) Emission spectroscopic analysis and X-ray photoelectron spectroscopy (XPS). The presence of carbides and borides in the dispersion strengthened copper is examined by, for example, X-ray diffraction (XRD) or energy dispersive X-ray analysis (EDX).

《C(炭素)及びB(ホウ素)》
本発明分散強化銅中のC及びBの大部分又は全部は、母材中に分散される炭化物、ホウ化物として存在する。本発明では、C及びBの一部がそれぞれ、Cu又はCu合金中に固溶していたり、結晶粒界に析出していたりすることを許容する。C及びBの含有量はそれぞれ、母材中に分散される炭化物、ホウ化物を形成するもの、Cu又はCu合金中に固溶しているもの、Cu又はCu合金に析出しているものの合計とする。Cが0.001質量%未満又はBが0.001質量%未満では、母材中に炭化物及びホウ化物が十分に存在せず、化合物粒子の分散による特性の向上効果が得られない。Cが1.0質量%超又はBが2.0質量%超では、元素が単独で結晶粒界に大量に析出して、逆に特性の低下を招く。Cのより好ましい含有量は、0.01質量%以上0.5質量%以下、Bのより好ましい含有量は、0.1質量%以上1.5質量%以下である。
《C (carbon) and B (boron)》
Most or all of C and B in the dispersion-strengthened copper of the present invention exists as carbides and borides dispersed in the base material. In the present invention, a part of C and B is allowed to be dissolved in Cu or a Cu alloy or to be precipitated at a grain boundary. The contents of C and B are respectively the total of carbides dispersed in the base material, those forming borides, those dissolved in Cu or Cu alloy, and precipitated in Cu or Cu alloy. To do. When C is less than 0.001% by mass or B is less than 0.001% by mass, carbides and borides are not sufficiently present in the base material, and the effect of improving the characteristics due to dispersion of compound particles cannot be obtained. If C is more than 1.0 mass% or B is more than 2.0 mass%, a large amount of the element is deposited alone at the grain boundary, and conversely, the characteristics are deteriorated. A more preferable content of C is 0.01% by mass or more and 0.5% by mass or less, and a more preferable content of B is 0.1% by mass or more and 1.5% by mass or less.

《炭化物形成元素》
本発明分散強化銅は、周期律表4A族,5A族,及び6A族の元素、具体的には、Ti,
Hf,V,Cr,Mo,及びWからなる群から選択される少なくとも1種の元素を化合物形成元素として含有する。化合物形成元素は、1種でも、2種以上でもよく、複数種とする場合、合計含有量が0.004質量%以上16質量%以下を満たす。化合物形成元素は、Cuと比較して炭化物及びホウ化物を形成し易い元素であり、その大部分又は全部が上記C及びBとそれぞれ反応して形成された炭化物及びホウ化物として母材中に存在する。本発明では、化合物形成元素の一部がCu又はCu合金中に固溶又は析出していることを許容する。化合物形成元素の含有量は、化合物を形成するもの、固溶しているもの、析出しているものの合計とする。化合物形成元素が0.004質量%未満では、母材中に炭化物及びホウ化物が十分に存在せず、化合物粒子の分散による特性の向上効果が得られない。化合物形成元素が16質量%超では、導電率が低下する。化合物形成元素のより好ましい含有量は、0.01質量%以上4.0質量%以下であり、より好ましい元素は、Tiである。Tiは、強度の向上効果が大きい。好ましい含有量は、化合物形成元素の種類によって異なる。表1に各元素の好ましい上限値、下限値を示す。複数種の化合物形成元素を含有する場合、例えば、3種の元素とするとき、各元素の含有量は、各元素における表1に示す範囲の平均値の1/3が目安となるが、実際に実験をして各元素の最適な含有量を求めてもよい。含有量は、添加量を調整することで適宜調整する。母材をCu合金とする場合、添加元素の一部を化合物形成元素とすることができる。大まかな傾向として、化合物形成元素やB,Cの含有量が多くなると強度が高くなり、含有量が少なくなると導電率が高くなる。
《Carbide forming element》
The dispersion-strengthened copper of the present invention is a periodic table elements 4A, 5A, and 6A, specifically Ti,
At least one element selected from the group consisting of Hf, V, Cr, Mo, and W is contained as a compound forming element. The compound forming element may be one type or two or more types. When a plurality of types are used, the total content satisfies 0.004% by mass to 16% by mass. Compound-forming elements are elements that are more likely to form carbides and borides than Cu, and most or all of them are present in the matrix as carbides and borides formed by reaction with C and B, respectively. To do. In the present invention, a part of the compound forming element is allowed to be dissolved or precipitated in Cu or Cu alloy. The content of the compound-forming element is the sum of the compound-forming element, the solid-dissolved element, and the precipitated element. When the compound forming element is less than 0.004% by mass, the carbide and boride are not sufficiently present in the base material, and the effect of improving the characteristics due to the dispersion of the compound particles cannot be obtained. When the compound forming element exceeds 16% by mass, the electrical conductivity decreases. A more preferable content of the compound forming element is 0.01% by mass or more and 4.0% by mass or less, and a more preferable element is Ti. Ti has a great effect of improving strength. The preferred content varies depending on the type of compound-forming element. Table 1 shows preferred upper and lower limits for each element. When containing multiple types of compound-forming elements, for example, when using three types of elements, the content of each element is 1/3 of the average value in the range shown in Table 1 for each element. The optimum content of each element may be obtained by conducting an experiment. The content is appropriately adjusted by adjusting the addition amount. When the base material is a Cu alloy, some of the additive elements can be compound forming elements. As a general tendency, the strength increases as the content of the compound-forming element and B, C increases, and the conductivity increases as the content decreases.

<組織>
《炭化物及びホウ化物》
本発明分散強化銅は、実質的にCと上記化合物形成元素とから構成される炭化物、及び実質的にBと上記化合物元素とから構成されるホウ化物が母材中に分散されている。上記炭化物は、代表的には、Cと上記化合物形成元素からなるもの、具体的には、TiC,HfC,VC,Cr3C2,Mo2C,WCの1種以上が挙げられ、上記ホウ化物は、代表的には、Bと上記化合物形成元素からなるもの、具体的には、TiB2,
HfB2,VB2,CrB,CrB2,MoB2,Mo2B5,MoB,W2B5の1種以上が挙げられる。上記炭化物やホウ化物中に、上記炭化物やホウ化物の他、Tiといった化合物形成元素をそのまま含有していたり、CuやPといった母材に含有される元素を含有していたりすることを許容する。
<Organization>
<< Carbides and borides >>
In the dispersion strengthened copper of the present invention, a carbide substantially composed of C and the compound forming element and a boride substantially composed of B and the compound element are dispersed in the base material. The carbide is typically composed of C and the compound-forming element, specifically, one or more of TiC, HfC, VC, Cr 3 C 2 , Mo 2 C, and WC. The compound is typically composed of B and the above compound-forming elements, specifically TiB 2 ,
HfB 2, VB 2, CrB, CrB 2, MoB 2, Mo 2 B 5, MoB, 1 or more W 2 B 5 and the like. In addition to the carbides and borides, the carbides and borides are allowed to contain compound forming elements such as Ti as they are, or elements contained in the base material such as Cu and P are allowed to be contained.

特に、本発明分散強化銅は、同じ化合物形成元素からなる炭化物及びホウ化物を含む。全ての炭化物及びホウ化物が共通の化合物形成元素からなるものでもよい。これら炭化物及びホウ化物は、Cuと比較して高硬度で高強度であることから、これらが母材中に分散された組織を有する本発明分散強化銅は、母材が強化される。つまり、本発明分散強化銅は、化合物粒子分散組織とすることで、母材に固溶させる添加元素の種類の追加や含有量の増加を行うことなく、導電率の低下を抑制しながら、効果的に強度が向上される。また、本発明分散強化銅の母材をCu合金とする場合、化合物粒子分散組織とすることで、強度が不足している固溶型合金(添加元素の含有量が少ないもの)や時効型合金の特性を向上できる。   In particular, the dispersion strengthened copper of the present invention includes carbides and borides composed of the same compound forming elements. All carbides and borides may be composed of common compound-forming elements. Since these carbides and borides are higher in hardness and higher in strength than Cu, the dispersion-strengthened copper of the present invention having a structure in which they are dispersed in the matrix is reinforced. In other words, the dispersion-strengthened copper of the present invention has a compound particle-dispersed structure, and it is effective while suppressing the decrease in conductivity without adding the kind of additive element to be dissolved in the base material and increasing the content. The strength is improved. In addition, when the base material of the dispersion-strengthened copper of the present invention is a Cu alloy, a solid solution type alloy (with a small content of additive elements) or an aging type alloy with insufficient strength can be obtained by forming a compound particle dispersed structure. The characteristics of can be improved.

炭化物及びホウ化物の合計含有量は、0.006〜19質量%が好ましく、炭化物及びホウ化物の種類によって適宜調整する。含有量は、化合物形成元素の添加量、CやBの添加量を調整することで行える。表2に炭化物及びホウ化物の好ましい上限値、下限値を示す。   The total content of the carbide and boride is preferably 0.006 to 19% by mass, and is appropriately adjusted depending on the types of the carbide and boride. The content can be adjusted by adjusting the addition amount of the compound forming element and the addition amount of C or B. Table 2 shows preferable upper limit values and lower limit values of carbides and borides.

本発明製造方法により得られる本発明分散強化銅は、粗大な化合物粒子が存在せず、炭化物粒子及びホウ化物粒子のいずれも微細である。具体的には、炭化物粒子の平均粒径が3μm以下、ホウ化物粒子の平均粒径が5μm以下である。これら微細な粒子は、本発明分散強化銅が凝固材の状態から圧延や伸線などの塑性加工を受けた塑性加工材(例えば、伸線材)の状態でも維持される。   The dispersion-strengthened copper obtained by the production method of the present invention has no coarse compound particles, and both the carbide particles and boride particles are fine. Specifically, the average particle diameter of the carbide particles is 3 μm or less, and the average particle diameter of the boride particles is 5 μm or less. These fine particles are maintained even in a state of a plastic working material (for example, a wire drawing material) obtained by subjecting the dispersion strengthened copper of the present invention to plastic working such as rolling or wire drawing from the state of a solidified material.

各粒子は、球形状(断面円形状)、断面楕円状、断面矩形状などの種々の形状で存在する。平均粒径は、本発明分散強化銅の断面における35μm四方の3000倍の顕微鏡写真を画像解析し、この断面における全粒子の直径を測定し、その平均値とする。各粒子の直径は、断面における粒子の面積から、この面積と等しい円の径(円相当径)を算出し、この円相当径を直径とし、この直径に基づいて平均粒径を求める。後述する試験例もこの手法で平均粒径を求める。   Each particle exists in various shapes such as a spherical shape (circular cross section), an elliptical cross section, and a rectangular cross section. The average particle diameter is obtained by analyzing the image of a micrograph of 3000 μm square of 35 μm square in the cross section of the dispersion strengthened copper of the present invention, measuring the diameter of all particles in this cross section, and taking the average value. As for the diameter of each particle, the diameter of a circle (equivalent circle diameter) equal to this area is calculated from the area of the particle in the cross section, this equivalent circle diameter is taken as the diameter, and the average particle diameter is obtained based on this diameter. In the test examples described later, the average particle diameter is obtained by this method.

[製造方法]
<溶湯の作製>
本発明分散強化銅は、原料を用意して溶融し、母材となる純Cu又はCu合金と、上記化合物形成元素と、C及びBを含有する炭素ホウ素源とが混合した溶湯を準備する。溶湯は、全ての原料を混合してから溶融して作製してもよいし、まず、Cu又はCu合金の溶湯を作製して、この溶湯に化合物形成元素や炭素ホウ素源を添加して作製してもよい。化合物形成元素は、単体で添加してもよいし、この元素を含有する化合物、例えばCuとの合金で添加してもよい。炭素ホウ素源は、上記溶湯中で化合物形成元素と反応して炭化物及びホウ化物を形成可能なものを利用する。炭素ホウ素源は炭素源とホウ素源とを別個とした複数種としてもよく、例えば、C単体(例えば、グラファイト)、Cを含有する合金や化合物(例えば、Fe-C合金,SiC,CaC2などの炭化物)や、B単体、Bを含有する合金や化合物(例えば、Cu-B合金,B4Cなどのホウ化物)が利用できる。単体で添加するよりも合金や化合物で添加する方が歩留まりが高くなり、ばらつきも小さくなる傾向にある。特に、炭素ホウ素源として炭化ホウ素(B4C)を用いると、炭素源とホウ素源とを別個に用意しなくて済み、かつ余分な元素を含んでいないため、母材に余分な元素が固溶して導電率が低下するなどの悪影響を防止できる。なお、母材に固溶した炭素ホウ素源のうち、B及びC以外の元素は、導電率の低下を防止するために、析出させることが好ましい。
[Production method]
<Production of molten metal>
The dispersion-strengthened copper of the present invention is prepared by melting a raw material and preparing a molten metal in which pure Cu or Cu alloy as a base material, the compound forming element, and a carbon boron source containing C and B are mixed. The molten metal may be prepared by mixing all the raw materials and then melting them, or by first preparing a molten metal of Cu or Cu alloy and adding a compound forming element or a carbon boron source to the molten metal. May be. The compound-forming element may be added alone or in a compound containing this element, for example, an alloy with Cu. As the carbon boron source, one that can react with a compound-forming element in the molten metal to form a carbide and a boride is used. The carbon boron source may be a plurality of types in which the carbon source and the boron source are separated, for example, C simple substance (for example, graphite), an alloy or compound containing C (for example, Fe-C alloy, SiC, CaC 2 etc. Carbides), B alone, alloys and compounds containing B (for example, borides such as Cu-B alloy and B 4 C) can be used. Yield increases and the variation tends to be smaller when added as an alloy or compound than when added alone. In particular, when boron carbide (B 4 C) is used as a carbon boron source, it is not necessary to prepare a carbon source and a boron source separately, and no extra elements are contained. It is possible to prevent adverse effects such as melting and lowering the conductivity. Of the carbon boron source dissolved in the base material, elements other than B and C are preferably precipitated in order to prevent a decrease in conductivity.

上記溶湯の作製は、大気雰囲気で行ってもよいが、窒素ガスやアルゴンガスといった不活性ガス雰囲気で行うと、溶湯中にスラグ(酸化物)が発生することを抑制できる。上記不活性ガスに水素ガスを5〜15体積%加えた混合ガス雰囲気とすると、不可避的に存在する酸素を除去することができる。   The molten metal may be produced in an air atmosphere. However, if the molten metal is produced in an inert gas atmosphere such as nitrogen gas or argon gas, generation of slag (oxide) in the molten metal can be suppressed. When the mixed gas atmosphere is obtained by adding 5 to 15% by volume of hydrogen gas to the inert gas, unavoidable oxygen can be removed.

<溶湯の加熱>
作製した上記溶湯は、炭素ホウ素源の融点(炭素ホウ素源が複数種の場合、最も融点が高いものの融点)以上の温度に加熱する。上記温度に加熱することで、炭素ホウ素源を完全に溶解させて、化合物形成元素と炭素ホウ素源中のC及びBとを十分に反応させて、炭化物及びホウ化物を形成できる。但し、形成される炭化物及びホウ化物の粒成長による粗大化を防止するため、溶湯の温度は、形成される炭化物及びホウ化物の融点を超えないことが好ましい。通常、炭素ホウ素源の融点は、母材となるCuやCu合金の融点よりも高いため、炭素ホウ素源の融点以上の温度に加熱することで母材は溶融状態にある。
<Heating of molten metal>
The produced molten metal is heated to a temperature equal to or higher than the melting point of the carbon boron source (if there are a plurality of carbon boron sources, the melting point of the highest melting point). By heating to the said temperature, a carbon boron source can be melt | dissolved completely, C and B in a carbon boron source can fully react with a compound formation element, and a carbide | carbonized_material and a boride can be formed. However, in order to prevent coarsening due to grain growth of the formed carbide and boride, the temperature of the molten metal preferably does not exceed the melting point of the formed carbide and boride. Usually, the melting point of the carbon boron source is higher than the melting point of Cu or Cu alloy as the base material, and therefore the base material is in a molten state by heating to a temperature higher than the melting point of the carbon boron source.

<溶湯の撹拌>
溶湯は、上記加熱と共に、撹拌フィンなどで撹拌する。撹拌によりC及びBと化合物形成元素との反応を促進できると共に、溶湯中に形成された炭化物及びホウ化物を母材中に均一的に分散させ、炭化物粒子及びホウ化物粒子が母材中に均一的に分散された本発明分散強化銅を製造できる。
<Agitating molten metal>
The molten metal is stirred with a stirring fin or the like together with the above heating. Stirring can promote the reaction between C and B and compound-forming elements, and the carbides and borides formed in the molten metal are uniformly dispersed in the base material, so that the carbide particles and the boride particles are uniform in the base material. The dispersion-strengthened copper according to the present invention can be produced.

<溶湯の凝固>
上記加熱及び撹拌した溶湯を凝固させて凝固材を作製する。凝固時の冷却速度を速くして急冷する、具体的には100℃/sec以上、特に150℃/sec以上とすることで、生成された化合物粒子の粒成長を抑制して粗大粒子の出現を低減し、化合物粒子を微細にできる。かつ、急冷することで、撹拌により化合物粒子が均一的に分散した状態の溶湯をほぼそのままの状態で凝固することができる。従って、微細な炭化物粒子及びホウ化物粒子が均一的に分散した組織を有する分散強化銅が得られる。上記冷却速度を満たす急冷は、強制冷却、例えば、水冷、冷風の吹き付けなどを行うことで実現できる。
<Solidification of molten metal>
The heated and stirred molten metal is solidified to produce a solidified material. Rapid cooling by increasing the cooling rate during solidification, specifically 100 ° C / sec or higher, especially 150 ° C / sec or higher, suppresses the growth of the generated compound particles and prevents the appearance of coarse particles. And the compound particles can be made finer. And by rapidly cooling, the molten metal in which the compound particles are uniformly dispersed by stirring can be solidified almost as it is. Therefore, a dispersion strengthened copper having a structure in which fine carbide particles and boride particles are uniformly dispersed is obtained. Rapid cooling satisfying the above cooling rate can be realized by performing forced cooling, for example, water cooling or blowing cold air.

<熱処理>
上記凝固工程以降において、適宜熱処理を行ってもよい。例えば、凝固材、この凝固材に伸線といった塑性加工を施した塑性加工材(伸線後の伸線材、又は伸線途中の加工材)に熱処理を施す。凝固後伸線前、多パスの伸線加工を行う場合は伸線途中、及び伸線後のいずれかにおいて少なくとも1回の熱処理を行うことで、以下の(1)〜(3)の効果が得られる。なお、得られた凝固材は、微細な化合物粒子が母材中に均一的に分散している組織を有することで、凝固後や伸線途中、伸線後に熱処理を施した際、粒子のピン止め効果により母材を構成する結晶粒の粗大化を阻止でき、粗大な結晶粒が伸線時に割れや破断の起点となったり、粗大な結晶粒により伸線材の靭性が低下する、といった不具合を防止できる。
<Heat treatment>
After the solidification step, heat treatment may be appropriately performed. For example, heat treatment is performed on the solidified material, or a plastic processed material obtained by subjecting the solidified material to plastic processing such as wire drawing (the drawn material after drawing or the processed material during drawing). When performing multi-pass wire drawing after solidification before wire drawing, the following effects (1) to (3) can be obtained by performing at least one heat treatment either during wire drawing or after wire drawing. can get. The obtained solidified material has a structure in which fine compound particles are uniformly dispersed in the base material, so that when the heat treatment is performed after solidification, during wire drawing, or after wire drawing, the pin of particles The stopping effect can prevent the coarsening of the crystal grains that make up the base metal, causing the coarse crystal grains to become the starting point of cracking and breaking during wire drawing, and the toughness of the wire drawing material to decrease due to the coarse crystal grains. Can be prevented.

(1)凝固材中に炭素やホウ素、化合物形成元素が固溶している場合、熱処理により化合物の生成を促進して、分散強化に寄与する化合物粒子を増加させることができる。
(2)母材が時効型合金や2相型合金である場合、熱処理により、母材に固溶している添加元素の析出を促進して、母材そのものの導電率と強度を高められる。
(3)伸線材や伸線途中の加工材に熱処理を施す場合、伸線加工による歪みを除去して、伸線材の伸びを回復させることができる。
(1) When carbon, boron, and a compound-forming element are dissolved in the solidified material, the formation of the compound can be promoted by heat treatment to increase the compound particles that contribute to dispersion strengthening.
(2) When the base material is an aging type alloy or a two-phase type alloy, the heat treatment promotes the precipitation of the additive element dissolved in the base material, thereby increasing the conductivity and strength of the base material itself.
(3) When heat treatment is performed on a wire drawing material or a work piece in the middle of wire drawing, distortion due to wire drawing can be removed and elongation of the wire drawing material can be recovered.

熱処理の加熱温度は、250℃以上が好ましい。250℃未満では、加熱対象材中の原子の移動が僅かであり、上記効果が十分に得られない。より好ましくは、250〜650℃である。保持時間は、0.1〜10時間が好ましい。   The heating temperature for the heat treatment is preferably 250 ° C. or higher. If it is less than 250 degreeC, the movement of the atom in a heating object material is slight, and the said effect is not fully acquired. More preferably, it is 250-650 degreeC. The holding time is preferably 0.1 to 10 hours.

上述した製造方法により、効果的に母材の分散強化を行え、強度と導電率とのバランスがとれた本発明分散強化銅を製造することができる。具体的には、引張強さ:550MPa以上、導電率:40%IACS以上の分散強化銅、或いは引張強さ:520MPa以上、導電率:90%IACS以上の分散強化銅を製造することができる。   By the manufacturing method described above, the dispersion strengthening of the base material can be effectively performed, and the dispersion-strengthened copper of the present invention having a balance between strength and electrical conductivity can be manufactured. Specifically, a dispersion strengthened copper having a tensile strength of 550 MPa or more and an electrical conductivity of 40% IACS or a dispersion strengthened copper having a tensile strength of 520 MPa or more and an electrical conductivity of 90% IACS or more can be produced.

なお、本発明の製造方法は、化合物形成元素としてZr,Nb,Taを用いることも可能である。各元素の好ましい含有量は、質量%で、Zr:0.008〜7.6、Nb:0.008〜7.7、Ta:0.015〜15.1である。また、これらの元素を添加する際の具体的な形態としては、Cu-Zr合金のインゴット(Zrの含有量:30質量%)、Nbフレーク、Ta粒が挙げられる。   In the production method of the present invention, Zr, Nb, Ta can also be used as a compound forming element. The preferable content of each element is, in mass%, Zr: 0.008 to 7.6, Nb: 0.008 to 7.7, Ta: 0.015 to 15.1. Further, specific forms when these elements are added include Cu-Zr alloy ingots (Zr content: 30% by mass), Nb flakes, and Ta grains.

<用途>
上記本発明分散強化銅は、導電率が高く、高強度であることから、電線用導体の材料に好適に利用できる。本発明分散強化銅からなる凝固材を所望の径となるように伸線して得られた伸線材を導体に利用する。この電線用導体は、φ0.2mm以下といった細径であっても高強度であり、引張強さ:550MPa以上、導電率:40%IACS以上を満たす。このような電線用導体は、例えば、ワイヤーハーネス用電線の導体に利用できる。
<Application>
Since the dispersion-strengthened copper of the present invention has high electrical conductivity and high strength, it can be suitably used as a conductor material for electric wires. The drawn material obtained by drawing the solidified material made of the dispersion-strengthened copper of the present invention to have a desired diameter is used as a conductor. This conductor for electric wire has high strength even if it has a small diameter of φ0.2 mm or less, and satisfies tensile strength: 550 MPa or more and conductivity: 40% IACS or more. Such a conductor for electric wires can be used, for example, as a conductor for electric wires for wire harnesses.

本発明分散強化銅及びこの分散強化銅からなる電線用導体は、強度と導電率とをバランスよく具える。また、本発明製造方法は、強度と導電率とをバランスよく具える本発明分散強化銅を生産性良く製造することができる。   The dispersion-strengthened copper of the present invention and the conductor for electric wires made of this dispersion-strengthened copper have a good balance between strength and electrical conductivity. In addition, the production method of the present invention can produce the dispersion-strengthened copper of the present invention having a good balance between strength and electrical conductivity with good productivity.

[試験例]
純銅からなる母材に炭化物及びホウ化物が分散した分散強化銅を作製し、導電率と引張強さを調べた。
[Test example]
Dispersion strengthened copper in which carbide and boride were dispersed in a base material made of pure copper was prepared, and the electrical conductivity and tensile strength were examined.

<試料No.1〜4>
純Cu(OFC)粒、化合物形成元素としてスポンジTi粒、炭素ホウ素源として炭化ホウ素粒(B4C)を用意して坩堝に入れ、アーク溶解炉で溶解した。溶融は、原料の酸化防止のため、アルゴン雰囲気で行った。得られた溶湯を炭化ホウ素の融点(約2350℃)以上にすると共に、撹拌フィンで撹拌した。この混合溶湯を水冷Cu製鋳型に鋳込み、100℃/sec以上の冷却速度(180℃/sec)で急冷して凝固し、幅40mm×厚さ20mm×長さ70mmの凝固材を得た。上記Ti及びB4Cの添加量を異ならせて、組成の異なる凝固材を得た(試料No.1〜4)。得られた凝固材を表面切削して、直径φ12mmの棒状体とし、この棒状体をφ6mmまでスウェージ加工を施した。得られた直径φ6mmの加工材を直径φ0.2mmになるまで伸線した。試料No.1は、伸線材に450℃×8hの熱処理(時効処理)を施し(冷却:炉冷)、試料No.2〜4は、伸線材のままとした。
<Sample Nos. 1 to 4>
Pure Cu (OFC) grains, sponge Ti grains as a compound forming element, and boron carbide grains (B 4 C) as a carbon boron source were prepared, put in a crucible, and melted in an arc melting furnace. Melting was performed in an argon atmosphere to prevent oxidation of the raw material. The obtained molten metal was heated to a melting point of boron carbide (about 2350 ° C.) or higher and stirred with a stirring fin. This mixed molten metal was cast into a water-cooled Cu mold and solidified by quenching at a cooling rate of 100 ° C./sec or higher (180 ° C./sec) to obtain a solidified material having a width of 40 mm × thickness 20 mm × length 70 mm. Different amounts of Ti and B 4 C were added to obtain solidified materials having different compositions (Sample Nos. 1 to 4). The obtained solidified material was subjected to surface cutting to obtain a rod-like body having a diameter of φ12 mm, and this rod-like body was swaged to φ6 mm. The obtained processed material having a diameter of 6 mm was drawn to a diameter of 0.2 mm. Sample No. 1 was subjected to a heat treatment (aging treatment) at 450 ° C. for 8 hours (cooling: furnace cooling), and Samples No. 2 to 4 were kept as the wire drawing material.

<試料No.100>
純Cu(OFC)粒、化合物形成元素としてスポンジTi粒、炭素源としてグラファイトを用意して坩堝に入れ、試料No.1〜4と同様にアーク溶解炉で溶解した。得られた溶湯を2300℃にすると共に、撹拌フィンで撹拌した後、試料No.1〜4と同様にして同じ大きさの凝固材を得た(試料No.100)。得られた凝固材を試料No.1〜4と同様にして、直径φ0.2mmの伸線材を作製し、試料No.1と同様の時効処理を施した。
<Sample No.100>
Pure Cu (OFC) grains, sponge Ti grains as a compound forming element, and graphite as a carbon source were prepared and placed in a crucible, and melted in an arc melting furnace in the same manner as in Samples Nos. 1 to 4. The obtained molten metal was heated to 2300 ° C. and stirred with a stirring fin, and then a solidified material having the same size was obtained as in Samples Nos. 1 to 4 (Sample No. 100). The obtained solidified material was used in the same manner as in Samples Nos. 1 to 4 to produce a wire drawing material having a diameter of 0.2 mm, and the same aging treatment as in Sample No. 1 was performed.

<試料No.101>
純Cu(OFC)粒、化合物形成元素としてスポンジTi粒、ホウ素源としてCu-B合金(Bの含有量:2質量%)を用意して坩堝に入れ、試料No.1〜4と同様にアーク溶解炉で溶解した。得られた溶湯を1150℃にすると共に、撹拌フィンで撹拌した後、試料No.1〜4と同様にして同じ大きさの凝固材を得た(試料No.101)。得られた凝固材を試料No.1〜4と同様にして直径φ0.2mmの伸線材とした。
<Sample No. 101>
Prepare pure Cu (OFC) grains, sponge Ti grains as compound-forming elements, and Cu-B alloy (B content: 2% by mass) as boron source, put them in a crucible, and arc as in Sample Nos. 1 to 4 Melting was performed in a melting furnace. The obtained molten metal was brought to 1150 ° C. and stirred with a stirring fin, and then a solidified material having the same size was obtained in the same manner as in Samples Nos. 1 to 4 (Sample No. 101). The obtained solidified material was made into a wire drawing material having a diameter of 0.2 mm in the same manner as in Samples Nos. 1 to 4.

得られた各凝固材の組成をICP発光分光分析により調べた。その結果を表3に示す。   The composition of each obtained solidified material was examined by ICP emission spectroscopic analysis. The results are shown in Table 3.

また、得られた各凝固材の断面をEDXが付属されている走査型電子顕微鏡(SEM)により観察した。図1は、試料No.1〜4の凝固材の断面の顕微鏡写真(35μm四方、3000倍)を示す。図1において薄い灰色部分(背景である比較的明るい部分)は母材、粒状で濃い灰色部分(比較的暗い部分)は炭化物(TiC)及びホウ化物(TiB2)である。化合物の存在は、EDXにより確認した。図1に示すように試料No.1〜4のいずれの凝固材も、母材に微細な炭化物及びホウ化物が均一的に分散していることが分かる。また、図1から、母材に含有するC,B,Tiは、実質的に炭化物(TiC)及びホウ化物(TiB2)として存在することが分かる。更に、試料No.1〜4について、炭化物粒子及びホウ化物粒子の平均粒径を測定したところ、例えば、試料No.3は、炭化物粒子:0.5μm、ホウ化物粒子:1.2μmであり、その他の試料も、炭化物粒子が3μm以下、ホウ化物粒子が5μm以下であった。 Further, the cross section of each obtained solidified material was observed with a scanning electron microscope (SEM) attached with EDX. FIG. 1 shows micrographs (35 μm square, 3000 times) of cross sections of the solidified materials of Sample Nos. 1 to 4. In FIG. 1, the light gray portion (relatively bright portion as a background) is a base material, and the granular dark gray portion (relatively dark portion) is carbide (TiC) and boride (TiB 2 ). The presence of the compound was confirmed by EDX. As can be seen from FIG. 1, in any of the solidified materials of Sample Nos. 1 to 4, fine carbides and borides are uniformly dispersed in the base material. Further, FIG. 1 shows that C, B, and Ti contained in the base material are substantially present as carbide (TiC) and boride (TiB 2 ). Further, the average particle size of carbide particles and boride particles was measured for sample Nos. 1 to 4, for example, sample No. 3 was carbide particles: 0.5 μm, boride particles: 1.2 μm, other The sample also had carbide particles of 3 μm or less and boride particles of 5 μm or less.

上記試料No.1〜4及び100,101の伸線材、及び熱処理材の引張強さ(MPa)、及び導電率(%IACS)を調べた。その結果を表4に示す。   The tensile strength (MPa) and electrical conductivity (% IACS) of the wire Nos. 1 to 4 and 100, 101 and the heat-treated materials were examined. The results are shown in Table 4.

表4に示すように試料No.1〜4は、導電率及び引張強さが高いことが分かる。特に、試料No.2〜4は、非常に導電率が高く、強度も高い。試料No.1は、Tiが多いことから、試料No.2〜4と比較すると導電率が低いものの、時効処理を施すことで、導電率の低下が低減されている。また、導電率が同程度である試料No.100と比較して試料No.1は、高強度であることが分かる。   As shown in Table 4, Samples Nos. 1 to 4 have high electrical conductivity and tensile strength. In particular, Sample Nos. 2 to 4 have very high electrical conductivity and high strength. Since Sample No. 1 has a large amount of Ti, although its conductivity is lower than that of Sample Nos. 2 to 4, a decrease in conductivity is reduced by applying an aging treatment. It can also be seen that Sample No. 1 is higher in strength than Sample No. 100 having the same conductivity.

このような結果となった理由は、試料No.1〜4の伸線材及び熱処理材は、微細な炭化物粒子及びホウ化物粒子が均一的に分散した組織が維持されているためと推測される。また、伸線後の熱処理の際、母材を構成する結晶粒の成長をこれら微細な炭化物やホウ化物のピン止め効果により抑えることができたためであると推測される。このように強度及び導電率をバランスよく具える試料No.1〜4は、電線用導体に好適に利用することができると考えられる。なお、上記試験例では、試験のために短尺材を作製したが、連続鋳造により長尺材も作製可能である。   The reason for such a result is presumed that the wire drawing material and the heat treatment material of Sample Nos. 1 to 4 maintain a structure in which fine carbide particles and boride particles are uniformly dispersed. In addition, it is presumed that during the heat treatment after wire drawing, the growth of crystal grains constituting the base material could be suppressed by the pinning effect of these fine carbides and borides. Thus, it is considered that Samples Nos. 1 to 4 having a good balance of strength and conductivity can be suitably used for the conductor for electric wires. In the above test example, a short material was produced for the test, but a long material can also be produced by continuous casting.

上記試験例において各原料を以下のように変更することができる。   In the above test example, each raw material can be changed as follows.

《母材》
母材をCu合金とする場合、上記純Cu(OFC)粒に代えて、Cu-Cr合金のインゴット(Crの含有量:5質量%)、Cu-Si合金のインゴット(Siの含有量:11質量%)、Cu-Sn合金のインゴット(Snの含有量:0.3質量%)などを用いることができる。
《Base material》
When the base material is a Cu alloy, instead of the pure Cu (OFC) grains, a Cu-Cr alloy ingot (Cr content: 5 mass%), a Cu-Si alloy ingot (Si content: 11) Mass%), Cu—Sn alloy ingots (Sn content: 0.3 mass%), and the like.

《化合物形成元素》
上記スポンジTi粒に代えて、或いは上記スポンジTi粒に加えて、例えば、スポンジHf粒、バナジウムフレーク、Cr粒、Mo粉末(粒径300μm程度)、W粉末(粒径150μm程度)を用いることができる。MoやWなど融点の高い金属は、溶け難いため、粒径の小さい粉末を用いて時間をかけて加熱することが望ましい。
<Compound-forming elements>
Instead of the sponge Ti particles or in addition to the sponge Ti particles, for example, sponge Hf particles, vanadium flakes, Cr particles, Mo powder (particle size of about 300 μm), W powder (particle size of about 150 μm) is used. it can. Since metals having a high melting point such as Mo and W are difficult to melt, it is desirable to heat them over time using a powder having a small particle size.

なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、炭素やホウ素の含有量、化合物形成元素の種類や含有量を変更することができる。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, the content of carbon and boron and the type and content of compound forming elements can be changed.

本発明分散強化銅は、高強度で高導電率が望まれる電線用導体の材料に好適に利用することができる。本発明分散強化銅の製造方法は、上記高強度で高導電率の分散強化銅の製造に好適に利用することができる。本発明電線用導体は、例えば、ワイヤーハーネス用電線の導体に好適に利用することができる。   The dispersion-strengthened copper of the present invention can be suitably used as a material for electric wire conductors that require high strength and high electrical conductivity. The manufacturing method of dispersion strengthened copper of this invention can be utilized suitably for manufacture of the said high intensity | strength and high conductivity dispersion strengthened copper. This invention conductor for electric wires can be utilized suitably for the conductor of the electric wire for wire harnesses, for example.

母材に炭化物及びホウ化物が分散した分散強化銅の断面の顕微鏡写真であり、(I)が試料No.1、(II)が試料No.2、(III)が試料No.3、(IV)が試料No.4を示す。It is a micrograph of a cross section of dispersion strengthened copper in which carbide and boride are dispersed in a base material, (I) is sample No. 1, (II) is sample No. 2, (III) is sample No. 3, (IV ) Shows Sample No.4.

Claims (6)

母材に化合物粒子が分散した分散強化銅であって、
母材は、Cu又はCu合金からなり、
Cを0.001質量%以上1.0質量%以下、Bを0.001質量%以上2.0質量%以下、Ti,Hf,V,Cr,Mo,及びWからなる群から選択される少なくとも1種の化合物形成元素を0.004質量%以上16質量%以下含有し、
実質的にCと前記化合物形成元素とからなる炭化物の粒子と、実質的にBと前記化合物形成元素とからなるホウ化物の粒子とが前記母材中に分散しており、
前記炭化物中の化合物形成元素と前記ホウ化物中の化合物形成元素とが同じ元素である炭化物及びホウ化物を含み、
前記炭化物の粒子の平均粒径は、3μm以下であり、
前記ホウ化物の粒子の平均粒径は、5μm以下であり、
引張強さが520MPa以上である分散強化銅。
A dispersion strengthened copper in which compound particles are dispersed in a base material,
The base material is made of Cu or Cu alloy,
C 0.001 wt% to 1.0 wt% or less, the B 0.001 wt% 2.0 wt% or less, Ti, Hf, V, Cr, Mo, and W and at least one compound forming element selected from the group consisting of 0.004 contains more mass% 16 mass% or less,
Substantially of carbides consisting of C and the compound forming element particles, substantially B and the compound forming elements consisting of boride particles are dispersed in said base material,
Look containing a carbide and boride and the compound forming element in said carbide compound forming element in said borides are the same element,
The carbide particles have an average particle size of 3 μm or less,
The average particle size of the boride particles is 5 μm or less,
Dispersion strengthened copper with a tensile strength of 520 MPa or more .
前記同じ化合物形成元素は、Tiである請求項1記載の分散強化銅。 The same compound forming element, the dispersion strengthened copper according to Motomeko 1 Ru Ti der. 前記化合物形成元素の含有量は、0.67質量%以下である請求項1又は請求項2に記載の分散強化銅。3. The dispersion strengthened copper according to claim 1, wherein a content of the compound forming element is 0.67% by mass or less. 請求項1〜請求項3のいずれか1項に記載の分散強化銅からなる電線用導体。 Claims 1 to one Kana that conductive line conductor a dispersion strengthened copper according to one of claims 3. 母材に化合物粒子が分散した分散強化銅を製造する分散強化銅の製造方法であって、
純Cu、又は純Cuと添加元素とからなるCu合金と、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,及びWからなる群から選択される少なくとも1種の化合物形成元素と、C及びBを含有する炭素ホウ素源とが混合した溶湯を準備する工程と、
前記溶湯を前記炭素ホウ素源の融点以上として化合物形成元素と炭素ホウ素源中のC及びBとを反応させて炭化物及びホウ化物を生成すると共に、溶湯を撹拌する工程と、
前記炭化物及び前記ホウ化物の生成及び撹拌を行った溶湯を100℃/sec以上の冷却速度で冷却して凝固する工程とを具える分散強化銅の製造方法。
A dispersion-strengthened copper manufacturing method for manufacturing dispersion-strengthened copper in which compound particles are dispersed in a base material,
Pure Cu, or a Cu alloy composed of pure Cu and an additive element, and at least one compound forming element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W, Preparing a molten metal mixed with a carbon boron source containing C and B;
A step of reacting a compound-forming element and C and B in the carbon boron source to make the molten metal above the melting point of the carbon boron source to produce carbides and borides, and stirring the molten metal;
The carbides and produce and a method of manufacturing process and the comprises that distributed strengthened copper to solidify by cooling with molten metal 100 ° C. / sec or more cooling rate went agitation of the boride.
前記凝固工程以降に熱処理を行う工程を更に具え、  Further comprising a heat treatment step after the solidification step,
前記熱処理は、加熱温度を250℃以上650℃以下、保持時間を0.1時間以上10時間以下とする請求項5に記載の分散強化銅の製造方法。  6. The method for producing dispersion strengthened copper according to claim 5, wherein the heat treatment is performed at a heating temperature of 250 ° C. or higher and 650 ° C. or lower and a holding time of 0.1 hour or longer and 10 hours or shorter.
JP2008024891A 2008-02-05 2008-02-05 Dispersion strengthened copper, dispersion strengthened copper manufacturing method, and conductor for electric wire Expired - Fee Related JP5293996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008024891A JP5293996B2 (en) 2008-02-05 2008-02-05 Dispersion strengthened copper, dispersion strengthened copper manufacturing method, and conductor for electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008024891A JP5293996B2 (en) 2008-02-05 2008-02-05 Dispersion strengthened copper, dispersion strengthened copper manufacturing method, and conductor for electric wire

Publications (2)

Publication Number Publication Date
JP2009185319A JP2009185319A (en) 2009-08-20
JP5293996B2 true JP5293996B2 (en) 2013-09-18

Family

ID=41068846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008024891A Expired - Fee Related JP5293996B2 (en) 2008-02-05 2008-02-05 Dispersion strengthened copper, dispersion strengthened copper manufacturing method, and conductor for electric wire

Country Status (1)

Country Link
JP (1) JP5293996B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6408309B2 (en) * 2014-09-03 2018-10-17 住友電気工業株式会社 Method for producing dispersion strengthened copper-containing material
CN104372196B (en) * 2014-10-09 2016-10-26 河海大学 A kind of reaction in-situ generates the method for TiC dispersion-strengtherning Cu alloy
CN111304485A (en) * 2020-03-07 2020-06-19 福达合金材料股份有限公司 Copper-based strip-shaped electric contact material and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049439A (en) * 1990-04-27 1992-01-14 Leotec:Kk Manufacture of boride dispersion strengthened alloy
JPH04246139A (en) * 1991-01-30 1992-09-02 Toyota Motor Corp Production of metal matrix composite
JPH11100625A (en) * 1997-09-26 1999-04-13 Yazaki Corp Boride and carbine dispersion-strengthened copper and its production
JP4392371B2 (en) * 2004-03-24 2009-12-24 本田技研工業株式会社 Method for producing particle-dispersed intermetallic compound

Also Published As

Publication number Publication date
JP2009185319A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
Liu et al. Microstructure and tensile properties of FeMnNiCuCoSnx high entropy alloys
JP5376604B2 (en) Lead-free brass alloy powder, lead-free brass alloy extruded material, and manufacturing method thereof
JP2005314806A (en) Powder of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high electric conductivity and high toughness, and production method thereof
CN103228804A (en) Copper alloy for electronic devices, method for producing copper alloy for electronic devices, and copper alloy rolled material for electronic devices
Zhang et al. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi
KR101310622B1 (en) Magnesium alloy chips and process for manufacturing molded article using same
JP5546196B2 (en) Aging precipitation type copper alloy, copper alloy material, copper alloy part, and method for producing copper alloy material
EP4083244A1 (en) Heat-resistant powdered aluminium material
Rajkovic et al. Properties of copper matrix reinforced with various size and amount of Al2O3 particles
JP6880203B2 (en) Aluminum alloy for additional manufacturing technology
JP2009167450A (en) Copper alloy and producing method therefor
JP2004353011A (en) Electrode material and manufacturing method therefor
Xu et al. Study of the preparation of Cu-TiC composites by reaction of soluble Ti and ball-milled carbon coating TiC
JP2021507088A5 (en)
JP5759426B2 (en) Titanium alloy and manufacturing method thereof
Lee et al. Correlation of the microstructure and mechanical properties of oxide-dispersion-strengthened coppers fabricated by internal oxidation
JP5293996B2 (en) Dispersion strengthened copper, dispersion strengthened copper manufacturing method, and conductor for electric wire
Vidyasagar et al. Improvement of mechanical properties of 2024 AA by reinforcing yttrium and processing through spark plasma sintering
JP4956266B2 (en) Dispersion strengthened copper and manufacturing method thereof, wire drawing material, automotive wire harness
JP6259978B2 (en) Ni-based intermetallic compound sintered body and method for producing the same
JP2017082309A (en) Fastening member
JPH03504142A (en) Arc melting process for producing metal-second phase composite materials and its products
JP2743720B2 (en) Method for producing TiB2 dispersed TiAl-based composite material
Du et al. Effects of copper addition on the in-situ synthesis of SiC particles in Al–Si–C–Cu system
JP2009185320A (en) Copper alloy and producing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees