JP5288145B2 - Gear ratio control device and gear ratio control method - Google Patents

Gear ratio control device and gear ratio control method Download PDF

Info

Publication number
JP5288145B2
JP5288145B2 JP2011155919A JP2011155919A JP5288145B2 JP 5288145 B2 JP5288145 B2 JP 5288145B2 JP 2011155919 A JP2011155919 A JP 2011155919A JP 2011155919 A JP2011155919 A JP 2011155919A JP 5288145 B2 JP5288145 B2 JP 5288145B2
Authority
JP
Japan
Prior art keywords
power source
range
transmission
ratio
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011155919A
Other languages
Japanese (ja)
Other versions
JP2013018465A (en
Inventor
智史 小堂
光宏 岩垂
庸浩 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011155919A priority Critical patent/JP5288145B2/en
Publication of JP2013018465A publication Critical patent/JP2013018465A/en
Application granted granted Critical
Publication of JP5288145B2 publication Critical patent/JP5288145B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

本発明は、変速機構の変速比を制御する変速比制御装置及び変速比制御方法に関する。   The present invention relates to a transmission ratio control device and a transmission ratio control method for controlling a transmission ratio of a transmission mechanism.

特許文献1は、エンジン出力を無段変速機を介して車輪に伝達して走行駆動を行うとともに、エンジンと並列に配設された駆動モータによっても走行駆動が可能であり、所定の運転状態においてエンジンを一時的に停止して駆動モータにより車輪を駆動して走行駆動を行うように構成されたハイブリッド車両を開示する。   In Patent Document 1, the engine output is transmitted to the wheels via the continuously variable transmission to drive the vehicle, and the vehicle can be driven by a drive motor arranged in parallel with the engine. Disclosed is a hybrid vehicle that is configured to temporarily stop an engine and drive a wheel by a drive motor to drive the vehicle.

図9は、特許文献1に開示されたハイブリッド車両の動力伝達装置の構成を示す概略図である。図9に示すように、当該ハイブリッド車両は、エンジンEの回転を変速する金属Vベルト式無段変速機構20と、エンジンEと無段変速機20との係脱制御を行う前進クラッチ14及び後進ブレーキ15と、エンジンEと並列に車輪36を駆動可能な第2モータジェネレータ50とから構成され、その制御装置が、エンジン駆動の第1油圧ポンプ3と、ポンプ駆動用電気モータ55により駆動される第2油圧ポンプ56と、前進クラッチ14等への作動油圧供給を切換制御する前後進クラッチコントロールバルブとを有する。制御装置は、エンジンEが停止されて走行するときに、前後進クラッチコントロールバルブにより前進クラッチ14等を解放させ、ポンプ駆動用電気モータ55によって第2油圧ポンプ56を駆動し、その油圧を用いてそのときの運転状態に応じて無段変速機20の変速制御を行う。   FIG. 9 is a schematic diagram showing a configuration of a power transmission device for a hybrid vehicle disclosed in Patent Document 1. As shown in FIG. As shown in FIG. 9, the hybrid vehicle includes a metal V-belt continuously variable transmission mechanism 20 that changes the rotation of the engine E, a forward clutch 14 that performs engagement / disengagement control between the engine E and the continuously variable transmission 20, and a reverse drive. The brake 15 and a second motor generator 50 capable of driving the wheels 36 in parallel with the engine E are configured, and the control device is driven by the engine-driven first hydraulic pump 3 and the pump driving electric motor 55. A second hydraulic pump 56 and a forward / reverse clutch control valve for switching and controlling the operating hydraulic pressure supply to the forward clutch 14 and the like are provided. When the engine E stops and travels, the control device releases the forward clutch 14 and the like by the forward / reverse clutch control valve, drives the second hydraulic pump 56 by the pump driving electric motor 55, and uses the hydraulic pressure thereof. Shift control of the continuously variable transmission 20 is performed according to the driving state at that time.

特開2001−200920号公報JP 2001-200920 A

上記説明した特許文献1の制御装置は、ハイブリッド車両がエンジンEを停止した状態での第2モータジェネレータ50からの駆動力による走行中に、エンジンEを停止している間における目標変速比RTを車速Vとアクセル開度APから決定する。さらに、制御装置は、目標変速比RTと実変速比RAとの差分(変速比偏差RE=RT−RA)と所定値の大小関係に応じて、無段変速機20における変速比を制御する。当該制御によって、エンジンEを停止した第2モータジェネレータ50による走行からエンジンEによる走行への切り替わり時における燃費及びドライバビリティの向上を図っている。しかし、変速比偏差REと比較する所定値が固定値であると、運転条件によっては、不要な変速比の変更に伴うエネルギー消費によって燃費が悪化する。   The control device described in Patent Document 1 described above sets the target speed ratio RT while the engine E is stopped while the hybrid vehicle is running with the driving force from the second motor generator 50 in a state where the engine E is stopped. It is determined from the vehicle speed V and the accelerator pedal opening AP. Further, the control device controls the speed ratio in the continuously variable transmission 20 according to the magnitude relationship between the difference between the target speed ratio RT and the actual speed ratio RA (speed ratio deviation RE = RT−RA) and a predetermined value. With this control, the fuel efficiency and drivability are improved when switching from traveling by the second motor generator 50 with the engine E stopped to traveling by the engine E. However, if the predetermined value to be compared with the gear ratio deviation RE is a fixed value, the fuel consumption deteriorates due to energy consumption accompanying unnecessary change of the gear ratio depending on the driving conditions.

本発明の目的は、第1動力源を停止して第2動力源からの動力のみによる走行時に、第1動力源からの動力による走行に備えた変速機構の変速比の変更を、燃費及びドライバビリティを良好な状態に維持しつつ最小限に抑えることができる変速比制御装置及び変速比制御方法を提供することである。   The object of the present invention is to change the speed ratio of the speed change mechanism in preparation for traveling by the power from the first power source when the first power source is stopped and traveling only by the power from the second power source. It is to provide a transmission ratio control device and a transmission ratio control method capable of minimizing the performance while maintaining a good state.

上記課題を解決して係る目的を達成するために、請求項1に記載の発明の変速比制御装置は、車両が走行するための動力を発生する第1動力源(例えば、実施の形態での内燃機関103)と、前記第1動力源からの動力を前記車両の駆動輪(例えば、実施の形態での駆動輪119)に伝達する第1変速機と、前記第1変速機と前記駆動輪の間に配置され、前記動力源からの動力のみを前記駆動輪側に伝達可能なワンウェイクラッチ(例えば、実施の形態でのワンウェイクラッチ120)と、を有した、前記第1動力源から前記駆動輪への動力を伝達する変速機構(例えば、実施の形態での無段変速機105)と、車両が走行するための動力を発生する第2動力源(例えば、実施の形態での電動機101)と、を備えた駆動システムにおいて、前記変速機構の変速比を制御する変速比制御装置(例えば、実施の形態でのマネジメントECU115)であって、前記第1動力源からの動力による走行時の前記変速機構に設定され得る変速比の第1範囲、及び前記第1動力源の始動中に変更可能な前記変速比の変化量に基づいて、前記第1動力源が停止した状態で設定される前記変速機構の変速比の第2範囲を導出する変速比範囲導出部(例えば、実施の形態での上下限レシオ算出部151)と、前記車両が前記第2動力源からの動力のみによる走行中に、前記変速比範囲導出部が導出した第2範囲内に前記変速機構の変速比がおさまらないときのみ、前記変速機構の変速比が前記第2範囲内となるよう前記変速機構を制御する変速比制御部(例えば、実施の形態での変速比制御部153)と、を備えたことを特徴としている。   In order to solve the above-described problems and achieve the object, a transmission ratio control device according to a first aspect of the present invention is a first power source (for example, in the embodiment) that generates power for a vehicle to travel. An internal combustion engine 103), a first transmission for transmitting power from the first power source to driving wheels of the vehicle (for example, driving wheels 119 in the embodiment), the first transmission, and the driving wheels. And a one-way clutch (for example, the one-way clutch 120 in the embodiment) that can transmit only the power from the power source to the drive wheel side, and the drive from the first power source A speed change mechanism (for example, continuously variable transmission 105 in the embodiment) that transmits power to the wheels, and a second power source that generates power for running the vehicle (for example, electric motor 101 in the embodiment) And a drive system comprising: A transmission ratio control device (for example, the management ECU 115 in the embodiment) that controls the transmission ratio of the transmission mechanism, and a transmission ratio that can be set in the transmission mechanism when traveling by power from the first power source. A second range of the gear ratio of the transmission mechanism that is set in a state where the first power source is stopped based on a first range and a change amount of the gear ratio that can be changed during startup of the first power source. The gear ratio range deriving unit (for example, the upper / lower limit ratio calculating unit 151 in the embodiment) and the gear ratio range deriving unit derive while the vehicle is traveling only by the power from the second power source. Only when the transmission ratio of the transmission mechanism does not fall within the second range, the transmission ratio control unit (for example, in the embodiment) controls the transmission mechanism so that the transmission ratio of the transmission mechanism is within the second range. Gear ratio control unit 153 It is characterized by having a and.

さらに、請求項2に記載の発明の変速比制御装置では、前記変速比範囲導出部は、前記車両が前記第1動力源からの動力のみによる走行を行う際の、前記第1動力源の回転数の範囲及び前記変速機構の出力側の回転数の範囲に基づいて、前記第1範囲を導出することを特徴としている。   Furthermore, in the transmission ratio control apparatus according to the second aspect of the invention, the transmission ratio range deriving unit rotates the first power source when the vehicle travels using only the power from the first power source. The first range is derived based on a number range and a rotation speed range on the output side of the transmission mechanism.

さらに、請求項3に記載の発明の変速比制御装置では、前記第2範囲は、前記第1範囲の上限に前記変化量を減算した下限値から前記第1範囲の下限に前記変化量を加算した上限値までの範囲であることを特徴としている。   Furthermore, in the transmission ratio control apparatus according to claim 3, the second range adds the change amount to a lower limit of the first range from a lower limit value obtained by subtracting the change amount from the upper limit of the first range. It is characterized by being in the range up to the upper limit value.

さらに、請求項4に記載の発明の変速比制御装置では、前記変速比範囲導出部は、前記車両が前記第2動力源からの動力だけによる走行中のとき、前記第2範囲を導出することを特徴としている。   Further, in the transmission ratio control apparatus according to the invention of claim 4, the transmission ratio range deriving unit derives the second range when the vehicle is traveling only by power from the second power source. It is characterized by.

さらに、請求項5に記載の発明の変速比制御装置では、前記第1動力源は内燃機関であり、前記第2動力源は電動機であり、前記駆動システムは、前記第2動力源から前記駆動輪までの動力伝達経路を断接する断接部(例えば、実施の形態でのクラッチ109)を備えたことを特徴としている変速比制御装置。   Further, in the transmission ratio control apparatus according to the fifth aspect of the present invention, the first power source is an internal combustion engine, the second power source is an electric motor, and the drive system is driven from the second power source. A transmission ratio control device comprising a connecting / disconnecting portion (for example, clutch 109 in the embodiment) for connecting / disconnecting a power transmission path to a wheel.

さらに、請求項6に記載の発明の変速比制御方法では、車両が走行するための動力を発生する第1動力源(例えば、実施の形態での内燃機関103)と、前記第1動力源からの動力を前記車両の駆動輪(例えば、実施の形態での駆動輪119)に伝達する第1変速機と、前記第1変速機と前記駆動輪の間に配置され、前記動力源からの動力のみを前記駆動輪側に伝達可能なワンウェイクラッチ(例えば、実施の形態でのワンウェイクラッチ120)と、を有した、前記第1動力源から前記駆動輪への動力を伝達する変速機構(例えば、実施の形態での無段変速機105)と、車両が走行するための動力を発生する第2動力源(例えば、実施の形態での電動機101)と、を備えた駆動システムにおける、前記変速機構の変速比を制御する変速比制御方法であって、前記第1動力源からの動力による走行時の前記変速機構に設定され得る変速比の第1範囲、及び前記第1動力源の始動中に変更可能な前記変速比の変化量に基づいて、前記第1動力源が停止した状態で設定される前記変速機構の変速比の第2範囲を導出し、前記車両が前記第2動力源からの動力のみによる走行中に、前記変速比範囲導出部が導出した第2範囲内に前記変速機構の変速比がおさまらないときのみ、前記変速機構の変速比が前記第2範囲内となるよう前記変速機構を制御することを特徴としている。   Furthermore, in the transmission ratio control method according to the sixth aspect of the present invention, a first power source (for example, the internal combustion engine 103 in the embodiment) that generates power for traveling of the vehicle, and the first power source. Is transmitted between the first transmission and the driving wheel, and is transmitted from the power source to the driving wheel of the vehicle (for example, the driving wheel 119 in the embodiment). A one-way clutch (for example, the one-way clutch 120 in the embodiment) that can transmit only the power to the drive wheel side, and a transmission mechanism that transmits power from the first power source to the drive wheel (for example, The speed change mechanism in a drive system including a continuously variable transmission 105) according to an embodiment and a second power source (for example, the electric motor 101 according to the embodiment) that generates power for the vehicle to travel. To control the gear ratio A control method comprising: a first range of a gear ratio that can be set in the speed change mechanism when traveling by power from the first power source; and a change in the gear ratio that can be changed during startup of the first power source. A second range of a transmission gear ratio of the transmission mechanism set in a state where the first power source is stopped based on the amount, and the vehicle is traveling only by power from the second power source, The transmission mechanism is controlled such that the transmission ratio of the transmission mechanism is within the second range only when the transmission ratio of the transmission mechanism does not fall within the second range derived by the transmission ratio range deriving unit. Yes.

請求項1〜5に記載の発明の変速比制御装置及び請求項6に記載の変速比制御方法によれば、第1動力源を停止して第2動力源からの動力のみによる走行時に、第1動力源からの動力による走行に備えた変速機構の変速比の変更を、燃費及びドライバビリティを良好な状態に維持しつつ最小限に抑えることができる。   According to the transmission ratio control device of the inventions described in claims 1 to 5 and the transmission ratio control method described in claim 6, the first power source is stopped and the vehicle travels only with the power from the second power source. It is possible to minimize the change in the speed ratio of the speed change mechanism in preparation for traveling by power from one power source while maintaining the fuel consumption and drivability in a good state.

パラレル方式のHEVの内部構成を示すブロック図Block diagram showing the internal configuration of a parallel HEV 無段変速機105の一部の構成を軸線方向から見た側断面図Side sectional view of a part of the continuously variable transmission 105 viewed from the axial direction マネジメントECU115が無段変速機105のレシオを制御する際のフローチャートFlowchart when the management ECU 115 controls the ratio of the continuously variable transmission 105 マネジメントECU115が内燃機関103が停止中における無段変速機105のレシオの上下限を算出する際のフローチャートFlowchart when the management ECU 115 calculates the upper and lower limits of the ratio of the continuously variable transmission 105 when the internal combustion engine 103 is stopped. 要求出力Pに対する内燃機関103のBSFC及び回転数NEを示すグラフGraph showing BSFC and rotational speed NE of internal combustion engine 103 with respect to required output P 内燃機関103が停止中における無段変速機105のレシオの上下限と、エンジン走行時に無段変速機105に設定され得るレシオの下限imin及び上限imaxとの関係の一例を示すグラフThe graph which shows an example of the relationship between the upper and lower limits of the ratio of the continuously variable transmission 105 when the internal combustion engine 103 is stopped, and the lower limit imin and the upper limit imax of the ratio that can be set in the continuously variable transmission 105 when the engine is running. 車両が走行時の、(a)車速、(b)算出された上下限レシオ及び制御された無段変速機105の実レシオ、並びに、(c)内燃機関103の運転状態の一例を示すグラフA graph showing an example of (a) the vehicle speed, (b) the calculated upper and lower limit ratio, the actual ratio of the controlled continuously variable transmission 105, and (c) the operating state of the internal combustion engine 103 when the vehicle is traveling. パラレル方式のHEVの他の形態の内部構成を示すブロック図The block diagram which shows the internal structure of the other form of HEV of a parallel system 特許文献1に開示されたハイブリッド車両の動力伝達装置の構成を示す概略図Schematic which shows the structure of the power transmission device of the hybrid vehicle disclosed by patent document 1

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本実施形態の変速比制御装置は、HEV(Hybrid Electrical Vehicle:ハイブリッド電気自動車)に搭載される。HEVは、電動機及び内燃機関を備え、車両の走行状態に応じて電動機及び/又は内燃機関の駆動力によって走行する。HEVには、大きく分けてシリーズ方式とパラレル方式の2種類がある。シリーズ方式のHEVは、電動機の動力によって走行する。内燃機関は発電のためだけに用いられ、内燃機関の動力によって発電機で発電された電力は蓄電器に充電されるか、電動機に供給される。   The transmission ratio control device of the present embodiment is mounted on a HEV (Hybrid Electrical Vehicle). The HEV includes an electric motor and an internal combustion engine, and travels by the driving force of the electric motor and / or the internal combustion engine according to the traveling state of the vehicle. There are two types of HEVs: a series method and a parallel method. The series-type HEV travels by the power of the electric motor. The internal combustion engine is used only for power generation, and the electric power generated by the power generator by the power of the internal combustion engine is charged in the capacitor or supplied to the electric motor.

パラレル方式のHEVは、電動機及び内燃機関のいずれか一方又は双方の動力によって走行する。以下、電動機の駆動力だけを利用した走行を「EV走行」といい、内燃機関の駆動力だけを利用した走行を「エンジン走行」といい、電動機の駆動力と内燃機関の駆動力の両方を利用した走行を「パラレル走行」という。   The parallel HEV travels by the power of one or both of the electric motor and the internal combustion engine. Hereinafter, traveling using only the driving force of the electric motor is referred to as “EV traveling”, traveling using only the driving force of the internal combustion engine is referred to as “engine traveling”, and both the driving force of the electric motor and the driving force of the internal combustion engine are referred to. The travel that is used is called “parallel travel”.

図1は、パラレル方式のHEVの内部構成を示すブロック図である。図1に示すように、パラレル方式のHEV(以下、単に「車両」という)は、電動機(Mot)101と、内燃機関(ENG)103と、四節リンク機構の無段変速機105と、ディファレンシャルギア107と、クラッチ109と、車速センサ111と、回転数センサ113と、マネジメントECU(MG ECU)115とを備える。本発明に係る変速比制御装置の一実施形態はマネジメントECU115に対応する。なお、図1中の点線の矢印は値データを示し、実線は指示内容を含む制御信号を示す。   FIG. 1 is a block diagram showing an internal configuration of a parallel HEV. As shown in FIG. 1, a parallel HEV (hereinafter simply referred to as “vehicle”) includes an electric motor (Mot) 101, an internal combustion engine (ENG) 103, a continuously variable transmission 105 having a four-bar linkage mechanism, a differential, A gear 107, a clutch 109, a vehicle speed sensor 111, a rotation speed sensor 113, and a management ECU (MG ECU) 115 are provided. One embodiment of the gear ratio control apparatus according to the present invention corresponds to the management ECU 115. In FIG. 1, dotted arrows indicate value data, and solid lines indicate control signals including instruction contents.

電動機101は、車両が走行するための動力を発生する。電動機101の出力は、クラッチ109及びディファレンシャルギア107を介して車軸117に伝達される。内燃機関103は、車両が走行するための動力を発生する。内燃機関103の出力は無段変速機105に入力される。   The electric motor 101 generates power for the vehicle to travel. The output of the electric motor 101 is transmitted to the axle 117 via the clutch 109 and the differential gear 107. The internal combustion engine 103 generates power for the vehicle to travel. The output of the internal combustion engine 103 is input to the continuously variable transmission 105.

無段変速機105は、入力軸(駆動軸)の回転運動を揺動運動に変換し、更に揺動運動を回転運動に変換して出力軸(被駆動軸)から出力する方式のIVT(Infinity Variable Transmission)と呼ばれる無段変速機(以下「BD」とも表記する)である。本実施形態では、無段変速機105と内燃機関103の間にクラッチを必要とせず、無段変速機105の入力軸には内燃機関103の出力がそのまま入力される。また、無段変速機105の出力側には、クラッチ109を介して電動機101が接続されている。   The continuously variable transmission 105 converts the rotational motion of the input shaft (drive shaft) into a swing motion, further converts the swing motion into a rotational motion, and outputs it from the output shaft (driven shaft). A continuously variable transmission (variable transmission) (hereinafter also referred to as “BD”). In the present embodiment, no clutch is required between the continuously variable transmission 105 and the internal combustion engine 103, and the output of the internal combustion engine 103 is input to the input shaft of the continuously variable transmission 105 as it is. In addition, the electric motor 101 is connected to the output side of the continuously variable transmission 105 via a clutch 109.

図2は、無段変速機105の一部の構成を軸線方向から見た側断面図である。無段変速機105は、内燃機関103の出力軸の回転運動を揺動運動に変換し、更に揺動運動を回転運動に変換する。このため、無段変速機105では、偏心量r1を調整することで変速比を無段階に変更できると共に、変速比の最大値を無限大に設定することができる。なお、無段変速機105において、変速比が無限大に設定されたときの出力回転数はゼロである。図2に示すように、無段変速機105は、入力軸が内燃機関103のクランク軸に直結された偏心体駆動装置と、出力側に設けられたワンウェイクラッチ120と、偏心体駆動装置とワンウェイクラッチ120を結ぶ連結部材130とを備える。   FIG. 2 is a side sectional view of a part of the continuously variable transmission 105 as viewed from the axial direction. The continuously variable transmission 105 converts the rotary motion of the output shaft of the internal combustion engine 103 into a swing motion, and further converts the swing motion into a rotary motion. Therefore, in the continuously variable transmission 105, the gear ratio can be changed steplessly by adjusting the eccentricity r1, and the maximum value of the gear ratio can be set to infinity. In the continuously variable transmission 105, the output rotational speed is zero when the gear ratio is set to infinity. As shown in FIG. 2, the continuously variable transmission 105 includes an eccentric body driving device whose input shaft is directly connected to the crankshaft of the internal combustion engine 103, a one-way clutch 120 provided on the output side, an eccentric body driving device and a one-way And a connecting member 130 for connecting the clutch 120.

偏心体駆動装置は、内燃機関103からの回転動力を受けることで入力中心軸線O1の周りを回転する入力軸102と、入力軸102と一体回転する偏心ディスク104とを有する。ワンウェイクラッチ120の入力部材122から出力部材121への動力の伝達は、入力部材122の正方向(図2中矢印RD1方向)の回転速度が出力部材121の正方向の回転速度を超えた条件でのみ行われる。つまり、ワンウェイクラッチ120では、入力部材122の回転速度が出力部材121の回転速度より高くなったときに初めてローラ123を介しての噛み合い(ロック)が発生し、入力部材122の揺動動力が出力部材121の回転運動に変換される。したがって、図1に示した車両では、内燃機関103の出力によるワンウェイクラッチ120における入力部材122の正方向の回転速度が出力部材121の正方向の回転速度を超えた条件でのみ、内燃機関103からの動力が無段変速機105を介して駆動輪119に伝達される。   The eccentric body drive device includes an input shaft 102 that rotates around the input center axis O <b> 1 by receiving rotational power from the internal combustion engine 103, and an eccentric disk 104 that rotates integrally with the input shaft 102. The transmission of power from the input member 122 to the output member 121 of the one-way clutch 120 is performed under the condition that the rotational speed of the input member 122 in the positive direction (the arrow RD1 direction in FIG. 2) exceeds the rotational speed of the output member 121 in the positive direction. Only done. In other words, in the one-way clutch 120, meshing (locking) occurs through the roller 123 only when the rotational speed of the input member 122 becomes higher than the rotational speed of the output member 121, and the swinging power of the input member 122 is output. It is converted into the rotational motion of the member 121. Therefore, in the vehicle shown in FIG. 1, the internal combustion engine 103 is driven only when the positive rotation speed of the input member 122 in the one-way clutch 120 by the output of the internal combustion engine 103 exceeds the positive rotation speed of the output member 121. Is transmitted to the drive wheels 119 via the continuously variable transmission 105.

ディファレンシャルギア107は、電動機101及び/又は内燃機関103から伝達された駆動力を車両左右の車軸117に分配する。クラッチ109は、電動機101からディファレンシャルギア107までの駆動力伝達経路を開閉する。クラッチ109はマネジメントECU115によって制御される。   The differential gear 107 distributes the driving force transmitted from the electric motor 101 and / or the internal combustion engine 103 to the left and right axles 117. The clutch 109 opens and closes a driving force transmission path from the electric motor 101 to the differential gear 107. The clutch 109 is controlled by the management ECU 115.

車速センサ111は、車両の走行速度(車速)を検出する。車速センサ111によって検出された車速を示す信号は、マネジメントECU115に送られる。回転数センサ113は、内燃機関103の回転数(無段変速機105の入力回転数)NEを検出する。   The vehicle speed sensor 111 detects the traveling speed (vehicle speed) of the vehicle. A signal indicating the vehicle speed detected by the vehicle speed sensor 111 is sent to the management ECU 115. The rotation speed sensor 113 detects the rotation speed (input rotation speed of the continuously variable transmission 105) NE of the internal combustion engine 103.

マネジメントECU115は、電動機101、内燃機関103及び無段変速機105等の統括制御を行う。例えば、マネジメントECU115は、車両がEV走行中、AP開度及び車速VPに基づいて内燃機関103を始動する必要があると判断すると、内燃機関103の始動制御を行う。また、マネジメントECU115には、車速センサ111からの信号(車速VPを示す信号)、回転数センサ113からの信号(内燃機関103の回転数NEを示す信号)、及びドライバによって操作されるアクセルペダルの開度(AP開度)を示す信号が入力される。マネジメントECU115は、車速VP及びAP開度に基づいて要求出力Pを導出し、要求出力Pに対応する内燃機関103の状態に応じた無段変速機105の変速比(以下「レシオ」という)を制御する。   The management ECU 115 performs overall control of the electric motor 101, the internal combustion engine 103, the continuously variable transmission 105, and the like. For example, if the management ECU 115 determines that it is necessary to start the internal combustion engine 103 based on the AP opening and the vehicle speed VP while the vehicle is traveling on EV, the management ECU 115 performs start control of the internal combustion engine 103. The management ECU 115 also has a signal from the vehicle speed sensor 111 (a signal indicating the vehicle speed VP), a signal from the rotation speed sensor 113 (a signal indicating the rotation speed NE of the internal combustion engine 103), and an accelerator pedal operated by the driver. A signal indicating the opening (AP opening) is input. The management ECU 115 derives the required output P based on the vehicle speed VP and the AP opening, and determines the speed ratio (hereinafter referred to as “ratio”) of the continuously variable transmission 105 corresponding to the state of the internal combustion engine 103 corresponding to the required output P. Control.

図1に示すように、マネジメントECU115は、無段変速機105のレシオの制御に関する上下限レシオ算出部151及び変速比制御部153を有する。上下限レシオ算出部151は、内燃機関103が停止中における無段変速機105のレシオの上下限を算出する。変速比制御部153は、上下限レシオ算出部151が算出したレシオの上下限と実レシオに基づいて、無段変速機105のレシオを制御する。   As shown in FIG. 1, the management ECU 115 includes an upper / lower limit ratio calculation unit 151 and a gear ratio control unit 153 related to the ratio control of the continuously variable transmission 105. The upper and lower limit ratio calculation unit 151 calculates the upper and lower limits of the ratio of the continuously variable transmission 105 when the internal combustion engine 103 is stopped. The transmission ratio control unit 153 controls the ratio of the continuously variable transmission 105 based on the upper and lower limits of the ratio and the actual ratio calculated by the upper and lower limit ratio calculation unit 151.

図3は、マネジメントECU115が無段変速機105のレシオを制御する際のフローチャートである。図3に示すように、マネジメントECU115は、回転数センサ113からの信号が示す内燃機関103の回転数NEに基づいて、内燃機関103が停止中か否かを判断する(ステップS101)。ステップS101における判断では、回転数NE=0であれば内燃機関103が停止中と判断してステップS103に進み、回転数NE≠0であれば内燃機関103が稼動中と判断してステップS121に進む。   FIG. 3 is a flowchart when the management ECU 115 controls the ratio of the continuously variable transmission 105. As shown in FIG. 3, the management ECU 115 determines whether or not the internal combustion engine 103 is stopped based on the rotational speed NE of the internal combustion engine 103 indicated by the signal from the rotational speed sensor 113 (step S101). In the determination in step S101, if the rotational speed NE = 0, it is determined that the internal combustion engine 103 is stopped and the process proceeds to step S103. If the rotational speed NE ≠ 0, it is determined that the internal combustion engine 103 is operating and the process proceeds to step S121. move on.

ステップS103では、マネジメントECU115の上下限レシオ算出部151は、内燃機関103が停止中における無段変速機105のレシオの上下限を算出する。当該算出方法の詳細は後述する。次に、マネジメントECU115の変速比制御部153は、その時点で設定されているレシオi−1(前回値)がステップS103で算出したレシオの下限(下限レシオ)未満であるか否かを判断し(ステップS105)、レシオi−1<下限レシオであればステップS107に進み、レシオi−1≧下限レシオであればステップS109に進む。なお、レシオi−1は、無段変速機105に取り付けられているレシオセンサ(図示せず)により計測した値を用いる。   In step S103, the upper and lower limit ratio calculation unit 151 of the management ECU 115 calculates the upper and lower limits of the ratio of the continuously variable transmission 105 when the internal combustion engine 103 is stopped. Details of the calculation method will be described later. Next, the gear ratio control unit 153 of the management ECU 115 determines whether or not the ratio i-1 (previous value) set at that time is less than the lower limit (lower limit ratio) of the ratio calculated in step S103. (Step S105) If ratio i-1 <lower limit ratio, the process proceeds to step S107, and if ratio i-1≥lower limit ratio, the process proceeds to step S109. The ratio i-1 uses a value measured by a ratio sensor (not shown) attached to the continuously variable transmission 105.

ステップS107では、変速比制御部153は、無段変速機105のレシオi(今回値)を下限レシオの値に設定する(レシオi=下限レシオ)。一方、ステップS109では、変速比制御部153は、レシオi−1(前回値)がステップS103で算出したレシオの上限(上限レシオ)より大きいか否かを判断し、レシオi−1>上限レシオであればステップS111に進み、レシオi−1≦上限レシオであればステップS113に進む。   In step S107, the gear ratio control unit 153 sets the ratio i (current value) of the continuously variable transmission 105 to the value of the lower limit ratio (ratio i = lower limit ratio). On the other hand, in step S109, the gear ratio control unit 153 determines whether the ratio i-1 (previous value) is larger than the upper limit (upper limit ratio) of the ratio calculated in step S103, and the ratio i-1> the upper limit ratio. If so, the process proceeds to step S111, and if ratio i-1 ≦ upper limit ratio, the process proceeds to step S113.

ステップS111では、変速比制御部153は、無段変速機105のレシオi(今回値)を上限レシオの値に設定する(レシオi=上限レシオ)。一方、ステップS113では、変速比制御部153は、無段変速機105のレシオi(今回値)を前回値であるレシオi−1の値に設定する(レシオi=レシオi−1)。   In step S111, the gear ratio control unit 153 sets the ratio i (current value) of the continuously variable transmission 105 to the value of the upper limit ratio (ratio i = upper limit ratio). On the other hand, in step S113, the gear ratio control unit 153 sets the ratio i (current value) of the continuously variable transmission 105 to the value of the ratio i-1 that is the previous value (ratio i = ratio i-1).

ステップS103で内燃機関103が稼動中と判断した際に進むステップS121では、マネジメントECU115は、内燃機関103が稼動中における無段変速機105のレシオを算出する。当該レシオは、車速VP及びAP開度に基づく要求出力Pに応じた内燃機関103の回転数の目標値を無段変速機105の出力部材121の回転数(=車速VP/駆動輪119の周長L)で除算することによって得られる。なお、内燃機関103の回転数の目標値は、内燃機関103をBSFCボトム運転したときの回転数である。次に、マネジメントECU115は、無段変速機105のレシオi(今回値)をステップS121で算出したレシオに設定する(ステップS123)。   In step S121, which proceeds when it is determined in step S103 that the internal combustion engine 103 is operating, the management ECU 115 calculates the ratio of the continuously variable transmission 105 when the internal combustion engine 103 is operating. The ratio is obtained by setting the target value of the rotational speed of the internal combustion engine 103 according to the required output P based on the vehicle speed VP and the AP opening to the rotational speed of the output member 121 of the continuously variable transmission 105 (= vehicle speed VP / circumference of the drive wheel 119 Obtained by dividing by the length L). Note that the target value of the rotational speed of the internal combustion engine 103 is the rotational speed when the internal combustion engine 103 is operated in a BSFC bottom. Next, the management ECU 115 sets the ratio i (current value) of the continuously variable transmission 105 to the ratio calculated in step S121 (step S123).

以下、図3のステップS103に示した、内燃機関103が停止中における無段変速機105のレシオの上下限を算出する方法について、図4及び図5を参照して詳細に説明する。図4は、マネジメントECU115が内燃機関103が停止中における無段変速機105のレシオの上下限を算出する際のフローチャートである。図5は、要求出力Pに対する内燃機関103のBSFC(Brake Specific Fuel Consumption)及び回転数NEを示すグラフである。なお、図5に示す実線が内燃機関103のBSFCを示し、点線が内燃機関103の回転数を示す。本実施形態の車両は、図5のグラフの横軸に示す下限〜上限の間の要求出力Pのときに、内燃機関103の駆動力だけを利用したエンジン走行を行う。但し、エンジン走行時の内燃機関103の回転数NEは、図5のグラフの右縦軸に示すNEmin〜NEmaxの間に限定される。マネジメントECU115は、図5に示すグラフを示すテーブルを図示しないメモリから読み出し可能である。   Hereinafter, the method of calculating the upper and lower limits of the ratio of the continuously variable transmission 105 when the internal combustion engine 103 is stopped, shown in step S103 of FIG. 3, will be described in detail with reference to FIGS. FIG. 4 is a flowchart when the management ECU 115 calculates the upper and lower limits of the ratio of the continuously variable transmission 105 when the internal combustion engine 103 is stopped. FIG. 5 is a graph showing the BSFC (Brake Specific Fuel Consumption) and the rotational speed NE of the internal combustion engine 103 with respect to the required output P. 5 indicates the BSFC of the internal combustion engine 103, and the dotted line indicates the rotational speed of the internal combustion engine 103. The vehicle according to the present embodiment performs engine running using only the driving force of the internal combustion engine 103 at the required output P between the lower limit and the upper limit shown on the horizontal axis of the graph of FIG. However, the rotational speed NE of the internal combustion engine 103 during engine running is limited to NEmin to NEmax shown on the right vertical axis of the graph of FIG. The management ECU 115 can read a table showing the graph shown in FIG. 5 from a memory (not shown).

マネジメントECU115の上下限レシオ算出部151は、メモリに設定されたエンジン走行時の車速範囲VPmin〜VPmaxを読み出す(ステップS201)。次に、上下限レシオ算出部151は、車速範囲VPmin〜VPmax及び駆動輪119の周長Lに基づいて、無段変速機105の出力部材121の回転数の範囲VPmin/L〜VPmax/Lを算出し、車速センサ111から得られた車速VP及び駆動輪119の周長Lに基づいて、無段変速機105の出力部材121の現在の回転数VP/Lを算出する(ステップS203)。次に、上下限レシオ算出部151は、エンジン走行時に無段変速機105に設定され得るレシオの下限iminと上限imaxを、ステップS203で導出した無段変速機105の出力部材121の現在の回転数及び図5のグラフが示すNEmin,NEmaxから算出する(ステップS205)。なお、imin=NEmin/(VP/L)であり、imax=NEmax/(VP/L)である。また、VP/Lは、ステップS203で算出されたVPmin/L〜VPmax/Lの範囲内の値が用いられる。   The upper / lower limit ratio calculation unit 151 of the management ECU 115 reads the vehicle speed range VPmin to VPmax during engine running set in the memory (step S201). Next, the upper and lower limit ratio calculation unit 151 calculates the rotation speed range VPmin / L to VPmax / L of the output member 121 of the continuously variable transmission 105 based on the vehicle speed range VPmin to VPmax and the circumferential length L of the drive wheel 119. Based on the vehicle speed VP obtained from the vehicle speed sensor 111 and the circumference L of the drive wheel 119, the current rotational speed VP / L of the output member 121 of the continuously variable transmission 105 is calculated (step S203). Next, the upper / lower limit ratio calculation unit 151 calculates the current rotation of the output member 121 of the continuously variable transmission 105 derived in step S203, the lower limit imin and the upper limit imax of the ratio that can be set in the continuously variable transmission 105 during engine running. It calculates from the number and NEmin, NEmax shown in the graph of FIG. 5 (step S205). Note that imin = NEmin / (VP / L) and imax = NEmax / (VP / L). As VP / L, a value in the range of VPmin / L to VPmax / L calculated in step S203 is used.

次に、上下限レシオ算出部151は、内燃機関103の始動に要する時間Tesの間に変更可能な無段変速機105のレシオの変化量icを、レシオの最大変更速度viを用いて、ic=vi×Tesの計算式から求める(ステップS207)。次に、上下限レシオ算出部151は、ステップS205で算出したレシオの下限imin,上限imaxと、ステップS207で算出したレシオの変化量icとから、内燃機関103が停止中における無段変速機105のレシオの上下限(上限レシオ及び下限レシオ)を算出する(ステップS209)。なお、上限レシオ=imin+icであり、下限レシオ=imax−icである。   Next, the upper and lower limit ratio calculation unit 151 uses the maximum change speed vi of the ratio to change the ratio ic of the ratio of the continuously variable transmission 105 that can be changed during the time Tes required for starting the internal combustion engine 103, to ic. = Vi × Tes is obtained from the calculation formula (step S207). Next, the upper and lower limit ratio calculation unit 151 uses the ratio lower limit imin and upper limit imax calculated in step S205 and the ratio change ic calculated in step S207 to continuously variable transmission 105 when the internal combustion engine 103 is stopped. The upper and lower limits (upper limit ratio and lower limit ratio) of the ratio are calculated (step S209). Note that the upper limit ratio = imin + ic, and the lower limit ratio = imax−ic.

図6は、内燃機関103が停止中における無段変速機105のレシオの上下限と、エンジン走行時に無段変速機105に設定され得るレシオの下限imin及び上限imaxとの関係の一例を示すグラフである。また、図7は、車両が走行時の、(a)車速、(b)算出された上下限レシオ及び制御された無段変速機105の実レシオ、並びに、(c)内燃機関103の運転状態の一例を示すグラフである。   FIG. 6 is a graph showing an example of the relationship between the upper and lower limits of the ratio of the continuously variable transmission 105 when the internal combustion engine 103 is stopped, and the lower limit imin and the upper limit imax of the ratio that can be set in the continuously variable transmission 105 when the engine is running. It is. 7 shows (a) the vehicle speed, (b) the calculated upper and lower limit ratio, the actual ratio of the continuously variable transmission 105, and (c) the operating state of the internal combustion engine 103 when the vehicle is traveling. It is a graph which shows an example.

以上説明したように、本実施形態では、電動機101からの駆動力だけによるEV走行時に、マネジメントECU115が内燃機関103の稼働に備えた無段変速機105のレシオを導出する際、マネジメントECU115は、エンジン走行時のレシオの上下限imin,imaxと内燃機関103の始動中に変更可能なレシオの変化量icとに基づいて、内燃機関103が停止中における無段変速機105の上限レシオ及び下限レシオを算出する。さらに、マネジメントECU115は、無段変速機105の実レシオが上記算出した下限レシオ〜上限レシオの範囲内におさまるよう、無段変速機105を制御する。このとき、マネジメントECU115は、レシオが当該範囲内であればレシオを変更しない。   As described above, in the present embodiment, when the management ECU 115 derives the ratio of the continuously variable transmission 105 provided for the operation of the internal combustion engine 103 during EV travel using only the driving force from the electric motor 101, the management ECU 115 The upper limit ratio and the lower limit ratio of the continuously variable transmission 105 when the internal combustion engine 103 is stopped based on the upper and lower limits imin, imax of the ratio during engine running and the change amount ic of the ratio that can be changed during startup of the internal combustion engine 103 Is calculated. Furthermore, the management ECU 115 controls the continuously variable transmission 105 so that the actual ratio of the continuously variable transmission 105 falls within the range of the lower limit ratio to the upper limit ratio calculated above. At this time, the management ECU 115 does not change the ratio if the ratio is within the range.

このように、本実施形態のマネジメントECU115は、EV走行中の無段変速機105を、内燃機関103の稼働に備えたレシオとしつつも、頻繁なレシオの変更や変化量の大きいレシオの変更は行わない。その結果、燃費及びドライバビリティを良好な状態に維持しつつ、レシオの変更に伴う燃費の悪化を抑止できる。また、レシオの頻繁な変更がないため、無段変速機105の耐久性を向上できる。   As described above, the management ECU 115 of the present embodiment does not change the ratio with a large amount of change or frequent change of the ratio while the continuously variable transmission 105 during EV travel is set to the ratio prepared for the operation of the internal combustion engine 103. Not performed. As a result, fuel consumption and drivability can be maintained in a good state, and fuel consumption deterioration due to the ratio change can be suppressed. Further, since the ratio is not frequently changed, durability of the continuously variable transmission 105 can be improved.

さらに、エンジン走行時のレシオの上下限imin,imaxは、内燃機関103の回転数(無段変速機105の入力側の回転数)の範囲と無段変速機105の出力側の回転数の範囲に基づいて導出されるため、マネジメントECU115は、内燃機関103が停止中における無段変速機105の上限レシオ及び下限レシオを精度良く算出することができる。   Further, the upper and lower limits imin and imax of the ratio during engine running are the range of the rotational speed of the internal combustion engine 103 (the rotational speed on the input side of the continuously variable transmission 105) and the rotational speed range on the output side of the continuously variable transmission 105. Therefore, the management ECU 115 can accurately calculate the upper limit ratio and the lower limit ratio of the continuously variable transmission 105 when the internal combustion engine 103 is stopped.

なお、上記実施形態では、車両の構成として、内燃機関103と無段変速機105が一組と電動機101の組み合わせの構成の場合を例に説明したが、図8に示すように、電動機101及びクラッチ109の代わりに、内燃機関103と同様の内燃機関203及び無段変速機105と同様の無段変速機205をもう一組備えた構成の車両にも本発明を適用できる。但し、この場合、EV走行を「いずれか一方の内燃機関からの駆動力による走行」と読み替え、エンジン走行を「もう一方の内燃機関からの駆動力による走行」と読み替える。   In the above embodiment, the case where the internal combustion engine 103 and the continuously variable transmission 105 are a combination of the motor 101 and the motor 101 is described as an example of the configuration of the vehicle. However, as illustrated in FIG. Instead of the clutch 109, the present invention can also be applied to a vehicle having a configuration in which an internal combustion engine 203 similar to the internal combustion engine 103 and a continuously variable transmission 205 similar to the continuously variable transmission 105 are provided. However, in this case, EV travel is read as “travel by driving force from one of the internal combustion engines”, and engine travel is read as “travel by driving force from the other internal combustion engine”.

102 入力軸
104 偏心ディスク
120 ワンウェイクラッチ
121 出力部材
122 入力部材
123 ローラ(係合部材)
130 連結部材
101 電動機(Mot)
103 内燃機関(ENG)
105 無段変速機(BD)
107 ディファレンシャルギア
109 クラッチ
111 車速センサ
113 回転数センサ
115 マネジメントECU(MG ECU)
117 車軸
119 駆動輪
151 上下限レシオ算出部
153 変速比制御部
102 Input shaft 104 Eccentric disc 120 One-way clutch 121 Output member 122 Input member 123 Roller (engagement member)
130 Connecting member 101 Electric motor (Mot)
103 Internal combustion engine (ENG)
105 Continuously variable transmission (BD)
107 Differential gear 109 Clutch 111 Vehicle speed sensor 113 Speed sensor 115 Management ECU (MG ECU)
117 Axle 119 Drive Wheel 151 Upper / Lower Limit Ratio Calculation Unit 153 Gear Ratio Control Unit

Claims (6)

車両が走行するための動力を発生する第1動力源と、
前記第1動力源からの動力を前記車両の駆動輪に伝達する第1変速機と、前記第1変速機と前記駆動輪の間に配置され、前記動力源からの動力のみを前記駆動輪側に伝達可能なワンウェイクラッチと、を有した、前記第1動力源から前記駆動輪への動力を伝達する変速機構と、
車両が走行するための動力を発生する第2動力源と、を備えた駆動システムにおいて、前記変速機構の変速比を制御する変速比制御装置であって、
前記第1動力源からの動力による走行時の前記変速機構に設定され得る変速比の第1範囲、及び前記第1動力源の始動中に変更可能な前記変速比の変化量に基づいて、前記第1動力源が停止した状態で設定される前記変速機構の変速比の第2範囲を導出する変速比範囲導出部と、
前記車両が前記第2動力源からの動力のみによる走行中に、前記変速比範囲導出部が導出した第2範囲内に前記変速機構の変速比がおさまらないときのみ、前記変速機構の変速比が前記第2範囲内となるよう前記変速機構を制御する変速比制御部と、
を備えたことを特徴とする変速比制御装置。
A first power source that generates power for the vehicle to travel;
A first transmission for transmitting power from the first power source to the drive wheels of the vehicle; and disposed between the first transmission and the drive wheels, wherein only the power from the power source is on the drive wheel side A one-way clutch capable of transmitting to the transmission, and a transmission mechanism for transmitting power from the first power source to the drive wheels,
In a drive system comprising a second power source that generates power for traveling of the vehicle, a speed ratio control device that controls a speed ratio of the speed change mechanism,
Based on a first range of a gear ratio that can be set in the speed change mechanism during traveling by power from the first power source, and an amount of change in the gear ratio that can be changed during startup of the first power source, A speed ratio range deriving unit for deriving a second range of the speed ratio of the speed change mechanism set in a state where the first power source is stopped;
While the vehicle is traveling only with the power from the second power source, the gear ratio of the transmission mechanism is changed only when the gear ratio of the transmission mechanism does not fall within the second range derived by the gear ratio range deriving unit. A transmission ratio control unit for controlling the transmission mechanism so as to be within the second range;
A gear ratio control apparatus comprising:
請求項1に記載の変速比制御装置であって、
前記変速比範囲導出部は、前記車両が前記第1動力源からの動力のみによる走行を行う際の、前記第1動力源の回転数の範囲及び前記変速機構の出力側の回転数の範囲に基づいて、前記第1範囲を導出することを特徴とする変速比制御装置。
The transmission ratio control device according to claim 1,
The speed ratio range deriving unit is provided in a range of the rotational speed of the first power source and a range of the rotational speed on the output side of the transmission mechanism when the vehicle travels using only the power from the first power source. A transmission ratio control device, wherein the first range is derived based on the first range.
請求項1又は2に記載の変速比制御装置であって、
前記第2範囲は、前記第1範囲の上限に前記変化量を減算した下限値から前記第1範囲の下限に前記変化量を加算した上限値までの範囲であることを特徴とする変速比制御装置。
The transmission ratio control device according to claim 1 or 2,
The gear ratio control characterized in that the second range is a range from a lower limit value obtained by subtracting the change amount to the upper limit of the first range to an upper limit value obtained by adding the change amount to the lower limit of the first range. apparatus.
請求項1〜3のいずれか一項に記載の変速比制御装置であって、
前記変速比範囲導出部は、前記車両が前記第2動力源からの動力だけによる走行中のとき、前記第2範囲を導出することを特徴とする変速比制御装置。
The transmission ratio control device according to any one of claims 1 to 3,
The gear ratio control device, wherein the gear ratio range deriving unit derives the second range when the vehicle is traveling only by power from the second power source.
請求項1〜4のいずれか一項に記載の変速比制御装置であって、
前記第1動力源は内燃機関であり、前記第2動力源は電動機であり、
前記駆動システムは、前記第2動力源から前記駆動輪までの動力伝達経路を断接する断接部を備えたことを特徴とする変速比制御装置。
The transmission ratio control device according to any one of claims 1 to 4,
The first power source is an internal combustion engine, and the second power source is an electric motor;
The gear ratio control apparatus according to claim 1, wherein the drive system includes a connection / disconnection portion that connects / disconnects a power transmission path from the second power source to the drive wheel.
車両が走行するための動力を発生する第1動力源と、
前記第1動力源からの動力を前記車両の駆動輪に伝達する第1変速機と、前記第1変速機と前記駆動輪の間に配置され、前記動力源からの動力のみを前記駆動輪側に伝達可能なワンウェイクラッチと、を有した、前記第1動力源から前記駆動輪への動力を伝達する変速機構と、
車両が走行するための動力を発生する第2動力源と、を備えた駆動システムにおける、前記変速機構の変速比を制御する変速比制御方法であって、
前記第1動力源からの動力による走行時の前記変速機構に設定され得る変速比の第1範囲、及び前記第1動力源の始動中に変更可能な前記変速比の変化量に基づいて、前記第1動力源が停止した状態で設定される前記変速機構の変速比の第2範囲を導出し、
前記車両が前記第2動力源からの動力のみによる走行中に、前記変速比範囲導出部が導出した第2範囲内に前記変速機構の変速比がおさまらないときのみ、前記変速機構の変速比が前記第2範囲内となるよう前記変速機構を制御することを特徴とする変速比制御方法。
A first power source that generates power for the vehicle to travel;
A first transmission for transmitting power from the first power source to the drive wheels of the vehicle; and disposed between the first transmission and the drive wheels, wherein only the power from the power source is on the drive wheel side A one-way clutch capable of transmitting to the transmission, and a transmission mechanism for transmitting power from the first power source to the drive wheels,
A drive ratio control method for controlling a speed ratio of the speed change mechanism in a drive system including a second power source that generates power for traveling of the vehicle,
Based on a first range of a gear ratio that can be set in the speed change mechanism during traveling by power from the first power source, and an amount of change in the gear ratio that can be changed during startup of the first power source, Deriving a second range of the gear ratio of the transmission mechanism set in a state where the first power source is stopped;
While the vehicle is traveling only with the power from the second power source, the gear ratio of the transmission mechanism is changed only when the gear ratio of the transmission mechanism does not fall within the second range derived by the gear ratio range deriving unit. A speed ratio control method, wherein the speed change mechanism is controlled to be within the second range.
JP2011155919A 2011-07-14 2011-07-14 Gear ratio control device and gear ratio control method Expired - Fee Related JP5288145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011155919A JP5288145B2 (en) 2011-07-14 2011-07-14 Gear ratio control device and gear ratio control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011155919A JP5288145B2 (en) 2011-07-14 2011-07-14 Gear ratio control device and gear ratio control method

Publications (2)

Publication Number Publication Date
JP2013018465A JP2013018465A (en) 2013-01-31
JP5288145B2 true JP5288145B2 (en) 2013-09-11

Family

ID=47690328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011155919A Expired - Fee Related JP5288145B2 (en) 2011-07-14 2011-07-14 Gear ratio control device and gear ratio control method

Country Status (1)

Country Link
JP (1) JP5288145B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7414467B2 (en) * 2019-10-24 2024-01-16 株式会社Subaru vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170265A (en) * 2004-12-14 2006-06-29 Toyota Motor Corp Automobile and method of controlling the same
JP4281740B2 (en) * 2005-12-27 2009-06-17 トヨタ自動車株式会社 Vehicle and control method thereof

Also Published As

Publication number Publication date
JP2013018465A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5018972B2 (en) Power transmission control device
US8050830B2 (en) Driving apparatus for vehicle
US7951033B2 (en) Power unit
JP4998098B2 (en) Control device for drive device for hybrid vehicle
JP5573963B2 (en) Control device for hybrid vehicle
WO2010058470A1 (en) Controller of power transmission device for vehicle
KR101905060B1 (en) Driving system for vehicle
JP2004215404A (en) Controller for vehicle
WO2014091588A1 (en) Control device for hybrid vehicle
JP2009096326A (en) Driving control device for oil pump unit and hybrid car equipped with the driving control device
JP2011093474A (en) Controller for hybrid type vehicle with working device
JP5234443B2 (en) Drive control device and drive control method
JP5626662B2 (en) Vehicle power output device
JP5110133B2 (en) Control device for vehicle power transmission device
JP2013141918A (en) Power output device of vehicle
JP2010188808A (en) Driving control device for hybrid car
JP5429578B2 (en) Control device for vehicle drive system
CN104541042B (en) The control gear of vehicle and the controlling method of vehicle
JP5288145B2 (en) Gear ratio control device and gear ratio control method
WO2014174967A1 (en) Vehicle control device
JP2012207772A (en) Stepless transmission control device
JP2010184615A (en) Control device of transmission system for vehicle
JP2011178285A (en) Power transmission control device
JP5521733B2 (en) Vehicle drive device
JP2005082138A (en) Driving device for hybrid car

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130521

R150 Certificate of patent or registration of utility model

Ref document number: 5288145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees