JP5287298B2 - Diesel engine control device - Google Patents

Diesel engine control device Download PDF

Info

Publication number
JP5287298B2
JP5287298B2 JP2009018130A JP2009018130A JP5287298B2 JP 5287298 B2 JP5287298 B2 JP 5287298B2 JP 2009018130 A JP2009018130 A JP 2009018130A JP 2009018130 A JP2009018130 A JP 2009018130A JP 5287298 B2 JP5287298 B2 JP 5287298B2
Authority
JP
Japan
Prior art keywords
correction
maximum
combustion pressure
amount
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009018130A
Other languages
Japanese (ja)
Other versions
JP2010174737A (en
Inventor
巨樹 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009018130A priority Critical patent/JP5287298B2/en
Publication of JP2010174737A publication Critical patent/JP2010174737A/en
Application granted granted Critical
Publication of JP5287298B2 publication Critical patent/JP5287298B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

この発明は、実際の着火時期と実際のEGR量とを適正に制御するようにしたディーゼル機関の制御装置に関する。   The present invention relates to a control device for a diesel engine that appropriately controls an actual ignition timing and an actual EGR amount.

例えば筒内圧センサ等を用いて内燃機関の実際の燃焼状態を検出し、基本的な制御に種々の補正を加えることで、内燃機関の個体差等に対応する手法が従来から知られている。特許文献1は、予混合気に火花点火を行うガソリン機関に関するものであり、燃焼サイクル毎の最大燃焼圧、図示平均有効圧あるいは最大燃焼圧を発生するクランク角を検出し、これらのパラメータの変動が小さくなるように、燃料供給量および点火時期の少なくとも一方を補正することが開示されている。
特開平2−19636号公報
For example, a technique for detecting an actual combustion state of an internal combustion engine using, for example, an in-cylinder pressure sensor and applying various corrections to basic control to cope with individual differences of the internal combustion engine has been conventionally known. Patent Document 1 relates to a gasoline engine that performs spark ignition on a premixed gas, detects the maximum combustion pressure for each combustion cycle, the indicated mean effective pressure, or the crank angle that generates the maximum combustion pressure, and changes in these parameters. It is disclosed that at least one of the fuel supply amount and the ignition timing is corrected so as to reduce the fuel consumption.
JP-A-2-19636

ディーゼル機関においては、よく知られているように、NOx低減のために広い運転領域でいわゆる外部排気還流が行われ、筒内に比較的多量の排気ガスが導入されるが、ディーゼル機関におけるNOxとスモークはトレードオフの関係にあり、個体差により実際の排気ガス量(EGR量)がばらつくと、排気中のNOxが増加したり、スモークが急激に悪化したりしてしまう。この実際のEGR量を直接に検出することは困難であり、例えば、エアフロメータが検出する新気量や排気還流制御弁の開度などから推定する手法が採られるが、一般に精度が低く、必ずしも適正なEGR量を得ることができない。   In a diesel engine, as is well known, so-called external exhaust gas recirculation is performed in a wide operating range to reduce NOx, and a relatively large amount of exhaust gas is introduced into the cylinder. Smoke is in a trade-off relationship, and if the actual exhaust gas amount (EGR amount) varies due to individual differences, NOx in the exhaust gas increases or smoke deteriorates rapidly. It is difficult to directly detect this actual EGR amount. For example, a method of estimating from the amount of fresh air detected by the air flow meter or the opening degree of the exhaust gas recirculation control valve is adopted, but generally the accuracy is low and it is not always necessary. An appropriate amount of EGR cannot be obtained.

また、特許文献1に示されている最大燃焼圧やこの最大燃焼圧となるクランク角といったパラメータは、ディーゼル機関では、EGR量に大きく影響される。従って、例えば所望の着火時期を得るために最大燃焼圧等によって燃料噴射時期をフィードバック制御しようとしても、EGR量が個体差等により不確定である限りは、これによって一義的に燃料噴射時期等を補正することはできない。   Further, parameters such as the maximum combustion pressure and the crank angle at which this maximum combustion pressure is shown in Patent Document 1 are greatly influenced by the EGR amount in a diesel engine. Therefore, for example, even if an attempt is made to feedback control the fuel injection timing by the maximum combustion pressure or the like in order to obtain a desired ignition timing, as long as the EGR amount is uncertain due to individual differences or the like, the fuel injection timing or the like can be uniquely determined by this. It cannot be corrected.

そこで、この発明は、最大燃焼圧や燃焼圧の最大変化率などのような実際の着火時期と筒内のEGR量との双方に相関する少なくとも2つのパラメータを用いることで、燃料噴射時期とEGR量とを同時に補正し、着火時期とEGR量との双方を所望の特性に得るようにしたものである。   Therefore, the present invention uses at least two parameters correlated to both the actual ignition timing and the EGR amount in the cylinder, such as the maximum combustion pressure and the maximum change rate of the combustion pressure, so that the fuel injection timing and the EGR The amount is corrected at the same time, and both the ignition timing and the EGR amount are obtained in desired characteristics.

すなわち、この発明に係るディーゼル機関の制御装置は、筒内圧センサを備えたディーゼル機関において、実際の着火時期と筒内のEGR量との双方に相関するとともに筒内圧変化から抽出できる複数のパラメータの中で、少なくとも2つのパラメータを用い、これらのパラメータが同時に各々の目標値となるように、燃料噴射時期および上記EGR量の双方を補正するディーゼル機関の制御装置であって、
上記パラメータは、最大燃焼圧、着火遅れ期間、燃焼圧の最大変化率、燃焼圧の変化率が最大となるクランク角、燃焼期間、の中の少なくとも2つであり、
各々のパラメータの目標値が、機関運転条件毎に予め設定されており、
燃料噴射時期の補正量ないし補正係数が設定されたマップと、EGR量の補正量ないし補正係数が設定されたマップと、を有し、
これらのマップは、各パラメータの目標値と実測値との乖離を表す複数の入力値に対して補正量ないし補正係数を割り当てた多次元のマップからなる、ことを特徴としている。
That is, the diesel engine control device according to the present invention is a diesel engine equipped with an in-cylinder pressure sensor. A control device for a diesel engine that uses at least two parameters and corrects both the fuel injection timing and the EGR amount so that these parameters simultaneously become target values ,
The above parameters are at least two of the maximum combustion pressure, the ignition delay period, the maximum change rate of the combustion pressure, the crank angle at which the change rate of the combustion pressure is maximum, and the combustion period.
Target values for each parameter are preset for each engine operating condition,
A map in which a correction amount or correction coefficient for fuel injection timing is set and a map in which a correction amount or correction coefficient for EGR amount is set;
These maps are characterized by comprising multi-dimensional maps in which correction amounts or correction coefficients are assigned to a plurality of input values representing deviations between target values and actual measurement values of each parameter .

例えば、最大燃焼圧、着火遅れ期間、燃焼圧の最大変化率、燃焼圧の変化率が最大となるクランク角、燃焼期間、等のパラメータは、筒内圧センサを利用して検出される筒内圧変化から抽出つまり求めることができるが、これらのパラメータは、実際の着火時期と筒内のEGR量(これは外部排気還流および内部排気還流の双方を含む筒内の総排気ガス量である)との双方に相関し、例えば着火時期のばらつきによってある一つのパラメータの値が変動し、EGR量のばらつきによっても同じパラメータの値が変動する。従って、少なくとも2つのパラメータを用いることで、一種の連立方程式の原理でもって、燃料噴射時期およびEGR量にそれぞれ必要な補正が確定する。   For example, parameters such as the maximum combustion pressure, the ignition delay period, the maximum change rate of the combustion pressure, the crank angle at which the change rate of the combustion pressure becomes the maximum, the combustion period, etc. are detected by the in-cylinder pressure change. These parameters can be derived from the actual ignition timing and EGR amount in the cylinder (this is the total exhaust gas quantity in the cylinder including both external exhaust gas recirculation and internal exhaust gas recirculation). Corresponding to both, for example, the value of one parameter fluctuates due to variations in ignition timing, and the value of the same parameter also varies due to variations in EGR amount. Therefore, by using at least two parameters, necessary corrections for the fuel injection timing and the EGR amount are determined by the principle of a kind of simultaneous equations.

この発明によれば、ディーゼル機関において互いに相関する着火時期およびEGR量を、個体差によるばらつきを排除して、より適切な特性に維持することができ、例えば、トレードオフの関係にあるNOxおよびスモークを確実に低減することができる。   According to the present invention, the ignition timing and the EGR amount correlated with each other in a diesel engine can be maintained at more appropriate characteristics by eliminating variations due to individual differences. For example, NOx and smoke having a trade-off relationship can be maintained. Can be reliably reduced.

以下、この発明の好ましい実施の形態を図面に基づいて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図1は、この発明に係るディーゼル機関全体の構成を示している。このディーゼル機関1は、燃料噴射手段として、いわゆるコモンレール式燃料噴射装置を備えているものであって、図示せぬ高圧燃料ポンプによって所定圧力に加圧された燃料は、コモンレール(蓄圧室)6に導入され、該コモンレール6を介して、各気筒の燃料噴射ノズル5に供給されている。上記燃料噴射ノズル5は、コントロールユニット8からの制御信号によって開閉制御されるものであり、その噴射期間によって燃料噴射量が制御される。なお、上記コモンレール6の燃料圧力もコントロールユニット8からの制御信号によって可変的に制御され、燃料噴射量は、燃料圧力と噴射期間とによって定まる。   FIG. 1 shows the configuration of the entire diesel engine according to the present invention. The diesel engine 1 includes a so-called common rail type fuel injection device as fuel injection means, and fuel pressurized to a predetermined pressure by a high pressure fuel pump (not shown) is supplied to a common rail (accumulation chamber) 6. It is introduced and supplied to the fuel injection nozzle 5 of each cylinder via the common rail 6. The fuel injection nozzle 5 is controlled to be opened and closed by a control signal from the control unit 8, and the fuel injection amount is controlled by the injection period. The fuel pressure of the common rail 6 is also variably controlled by a control signal from the control unit 8, and the fuel injection amount is determined by the fuel pressure and the injection period.

また、このディーゼル機関1は、外部排気還流装置を備えている。すなわち、排気通路10と吸気通路9との間にEGR通路11が設けられ、ここに排気還流制御弁12が介装されている。この排気還流制御弁12は、例えばパルスモータをアクチュエータとするものであり、その開度が、コントロールユニット8が出力する駆動信号によって制御される。なお、上記排気通路10の下流側には、排気中のNOxを処理するNOx触媒16が介装されている。また、上記吸気通路9には、新気の流量を制限する吸気絞り弁15が設けられているとともに、その上流側に、吸入空気量を検出するエアフロメータ3が配置されている。   The diesel engine 1 includes an external exhaust gas recirculation device. That is, an EGR passage 11 is provided between the exhaust passage 10 and the intake passage 9, and an exhaust recirculation control valve 12 is interposed therein. The exhaust gas recirculation control valve 12 uses, for example, a pulse motor as an actuator, and its opening degree is controlled by a drive signal output from the control unit 8. A NOx catalyst 16 for treating NOx in the exhaust is interposed downstream of the exhaust passage 10. The intake passage 9 is provided with an intake throttle valve 15 for limiting the flow rate of fresh air, and an air flow meter 3 for detecting the intake air amount is disposed upstream thereof.

上記ディーゼル機関1は、公知のセンサ類として、冷却水温を検出する水温センサ2、クランク角を検出するクランク角センサ4、運転者により操作されるアクセル開度を検出するアクセル開度センサ13、燃料温度を検出する燃温センサ14などを備え、これらの検出信号もコントロールユニット8に入力されている。そして、筒内圧を検出するために、各気筒毎に公知の筒内圧センサ17が設けられている。   The diesel engine 1 includes, as well-known sensors, a water temperature sensor 2 for detecting a coolant temperature, a crank angle sensor 4 for detecting a crank angle, an accelerator opening sensor 13 for detecting an accelerator opening operated by a driver, a fuel A fuel temperature sensor 14 for detecting temperature is provided, and these detection signals are also input to the control unit 8. In order to detect the in-cylinder pressure, a known in-cylinder pressure sensor 17 is provided for each cylinder.

従って、上記筒内圧センサ17により検出される筒内圧の変化から、実際の着火時期と筒内のEGR量との双方に相関するいくつかのパラメータ、例えば、最大燃焼圧、着火遅れ期間、燃焼圧の最大変化率、燃焼圧の変化率が最大となるクランク角、燃焼期間、などを抽出することが可能であるが、この実施例では、その中で、最大燃焼圧(Pmax)と、燃焼圧の最大変化率(dP/dθmax)と、の2つのパラメータを用いて、燃料噴射時期とEGR量(例えば排気還流制御弁12の開度)とを補正する。   Accordingly, from the change in the in-cylinder pressure detected by the in-cylinder pressure sensor 17, several parameters correlated to both the actual ignition timing and the EGR amount in the cylinder, such as the maximum combustion pressure, the ignition delay period, the combustion pressure It is possible to extract the crank angle at which the change rate of the maximum pressure, the change rate of the combustion pressure, the combustion period, etc. are extracted. In this embodiment, the maximum combustion pressure (Pmax), the combustion pressure, The fuel injection timing and the EGR amount (for example, the opening degree of the exhaust gas recirculation control valve 12) are corrected using the two parameters of the maximum change rate (dP / dθmax).

図2は、NOx低減のために燃焼時期を比較的遅らせた状態での筒内圧変化の一例を示しており、図示するように、筒内圧のピークとして最大燃焼圧(Pmax)が得られ、また着火後の筒内圧の急激な立ち上がりにより燃焼圧の最大変化率(dP/dθmax)が得られるが、例えばEGR量が増えると、燃焼が緩慢となるため、破線に示すように、最大燃焼圧(Pmax)が低下し、かつ燃焼圧の最大変化率(dP/dθmax)も小さくなる。また図示していないが、実際の着火時期によっても最大燃焼圧(Pmax)および燃焼圧の最大変化率(dP/dθmax)は変化し、例えば実際の着火時期が遅くなると、予混合したより多くの燃料が一気に燃焼に至るため、最大燃焼圧(Pmax)および燃焼圧の最大変化率(dP/dθmax)が高くなる。なお、図2における最初の圧力上昇は、モータリングによるものである。   FIG. 2 shows an example of the in-cylinder pressure change in a state where the combustion timing is relatively delayed for NOx reduction. As shown in the figure, the maximum combustion pressure (Pmax) is obtained as the peak of the in-cylinder pressure. The maximum change rate (dP / dθmax) of the combustion pressure is obtained by the rapid rise of the in-cylinder pressure after ignition. However, for example, as the EGR amount increases, the combustion becomes slow, so that the maximum combustion pressure ( Pmax) decreases, and the maximum rate of change in combustion pressure (dP / dθmax) also decreases. Although not shown, the maximum combustion pressure (Pmax) and the maximum rate of change of the combustion pressure (dP / dθmax) also change depending on the actual ignition timing. For example, if the actual ignition timing is delayed, more than the premixed amount. Since the fuel burns at once, the maximum combustion pressure (Pmax) and the maximum change rate of the combustion pressure (dP / dθmax) increase. Note that the initial pressure increase in FIG. 2 is due to motoring.

このように、最大燃焼圧(Pmax)および燃焼圧の最大変化率(dP/dθmax)は、実際のEGR量および実際の着火時期の双方に相関しているので、仮に、ある運転条件の下で、いずれか一方のパラメータ(例えば最大燃焼圧(Pmax))が基準値(目標値)に合致していても、実際のEGR量および実際の着火時期が基準値(目標のEGR量および目標の着火時期)に合致しているとは限らない。しかし、2変数の連立方程式と同様に、2つのパラメータつまり最大燃焼圧(Pmax)および燃焼圧の最大変化率(dP/dθmax)が同時に各々の基準値(目標値)に合致している状態では、実際のEGR量および実際の着火時期の各々が基準値(目標のEGR量および目標の着火時期)に合致している、と言える。   As described above, the maximum combustion pressure (Pmax) and the maximum rate of change (dP / dθmax) of the combustion pressure are correlated with both the actual EGR amount and the actual ignition timing. Even if one of the parameters (for example, the maximum combustion pressure (Pmax)) matches the reference value (target value), the actual EGR amount and the actual ignition timing are the reference values (target EGR amount and target ignition). It is not always in line with (time). However, as in the case of the two-variable simultaneous equations, in a state where the two parameters, that is, the maximum combustion pressure (Pmax) and the maximum change rate of the combustion pressure (dP / dθmax) simultaneously match the respective reference values (target values). It can be said that each of the actual EGR amount and the actual ignition timing matches the reference values (target EGR amount and target ignition timing).

従って、本実施例では、図3のフローチャートに示す処理により、最大燃焼圧(Pmax)および燃焼圧の最大変化率(dP/dθmax)が同時に各々の目標値に合致するようにして、実際のEGR量および実際の着火時期の各々が個体差によるばらつきなく基準値(目標のEGR量および目標の着火時期)に揃うようにしているのである。   Therefore, in this embodiment, the processing shown in the flowchart of FIG. 3 is performed so that the maximum combustion pressure (Pmax) and the maximum change rate of the combustion pressure (dP / dθmax) simultaneously match the target values. Each of the quantity and the actual ignition timing is made to match the reference value (target EGR amount and target ignition timing) without variation due to individual differences.

以下、図3のフローチャートに従って説明すると、まず、ステップ1でクランク角θ毎の筒内圧Pθを読み込み、ステップ2でサイクル中の最大燃焼圧Pmax_rを算出し、ステップ3でサイクル中の燃焼圧最大変化率dPmax_rを算出する。なお、添字「r」は実測値を意味し、「t」は目標値を意味する。   Hereinafter, in accordance with the flowchart of FIG. 3, first, in-cylinder pressure Pθ for each crank angle θ is read in step 1, maximum combustion pressure Pmax_r in the cycle is calculated in step 2, and maximum change in combustion pressure in the cycle is determined in step 3. The rate dPmax_r is calculated. The subscript “r” means an actual measurement value, and “t” means a target value.

そして、ステップ4で、最大燃焼圧Pmaxおよび燃焼圧最大変化率dPmaxの各々について、実測値と目標値との比R_PmaxおよびR_dPmaxを求める。つまり、「R_Pmax=Pmax_r/Pmax_t」、「R_dPmax=dPmax_r/dPmax_t」とする。ここで、各々の目標値Pmax_tおよびdPmax_tは、機関運転条件つまり機関回転数と負荷(例えば噴射量)とに対応して予め設定されており、例えば、最大燃焼圧の目標値Pmax_tは、図4に示すような特性の制御マップから求められ、燃焼圧最大変化率の目標値dPmax_tは、図5に示すような特性の制御マップから求められる。   In step 4, the ratios R_Pmax and R_dPmax between the measured value and the target value are obtained for each of the maximum combustion pressure Pmax and the maximum change rate of combustion pressure dPmax. That is, “R_Pmax = Pmax_r / Pmax_t” and “R_dPmax = dPmax_r / dPmax_t”. Here, each target value Pmax_t and dPmax_t is set in advance corresponding to the engine operating condition, that is, the engine speed and the load (for example, the injection amount). The target value dPmax_t of the combustion pressure maximum change rate is obtained from the characteristic control map as shown in FIG.

なお、本発明においては、実測値と目標値との乖離を示すために、両者の差分を求める方法を用いることも可能であるが、本実施例のように、両者の比を求めた方が、運転点による影響が小さくなり、より精度の高いものとなる。   In the present invention, it is possible to use a method for obtaining the difference between the measured value and the target value in order to indicate the difference between the measured value and the target value. However, as in the present embodiment, it is preferable to obtain the ratio between the two. , The influence of the operating point is reduced and the accuracy becomes higher.

次に、ステップ5で、これらの比R_PmaxおよびR_dPmaxが「1」に十分に近似しているか否かを判定する。具体的には、これらの比から「1」を引いた値の絶対値が、所定値ε(例えば0.05つまり5%)より小さいか否かを判定する。従って、実測値と目標値との誤差が例えば5%未満であれば、これを無視し、特に補正は行わない。なお、閾値となるεの値は、5%に限られず適宜に設定できることは言うまでもない。   Next, in step 5, it is determined whether or not these ratios R_Pmax and R_dPmax are sufficiently close to “1”. Specifically, it is determined whether or not the absolute value of the value obtained by subtracting “1” from these ratios is smaller than a predetermined value ε (for example, 0.05 or 5%). Therefore, if the error between the actually measured value and the target value is less than 5%, for example, this is ignored and no correction is performed. Needless to say, the threshold value ε is not limited to 5% and can be set as appropriate.

いずれか一方でも5%以上の誤差がある場合には、ステップ6へ進み、2つの比R_PmaxおよびR_dPmaxに基づいて、燃料噴射時期ITについての必要な補正量ΔITを求める。具体的には、図6に示すような特性の制御マップを用いて補正量ΔITを求める。なお、図中の破線は各々の比が「1」である線であり、その交点(2つの比がいずれも1)では、補正量ΔITは0であって、図の左上側へは進角側、右下側へは遅角側への補正となる。   If either one has an error of 5% or more, the process proceeds to step 6 to obtain a necessary correction amount ΔIT for the fuel injection timing IT based on the two ratios R_Pmax and R_dPmax. Specifically, the correction amount ΔIT is obtained using a control map having characteristics as shown in FIG. The broken lines in the figure are lines whose ratios are “1”, and at the intersection (the two ratios are both 1), the correction amount ΔIT is 0 and the advance angle is on the upper left side of the figure. To the left and lower right, the correction is made to the retard side.

同様に、ステップ7では、2つの比R_PmaxおよびR_dPmaxに基づいて、排気還流制御弁12の開度EGRについての必要な補正量ΔEGRを求める。具体的には、図7に示すような特性の制御マップを用いて補正量ΔEGRを求める。なお、図中の破線は各々の比が「1」である線であり、その交点(2つの比がいずれも1)では、補正量ΔEGRは0であって、図の左下側へは負の補正量、右上側へは正の補正量となる。   Similarly, in step 7, a necessary correction amount ΔEGR for the opening degree EGR of the exhaust gas recirculation control valve 12 is obtained based on the two ratios R_Pmax and R_dPmax. Specifically, the correction amount ΔEGR is obtained using a control map having characteristics as shown in FIG. Note that the broken lines in the figure are lines whose ratios are “1”, and at the intersection (both ratios are both 1), the correction amount ΔEGR is 0 and negative to the lower left side of the figure. The correction amount is positive correction amount on the upper right side.

これらの図6、図7の制御マップは、図8に示すような燃料噴射時期ITとEGR量(ここでは排気還流率を用いている)と各パラメータ(最大燃焼圧(Pmax)および燃焼圧の最大変化率(dP/dθmax))との相関関係に基づいて導き出されたものである。図8は、縦軸を排気還流率、横軸を噴射時期(より詳しくはメイン噴射の噴射時期)ITとし、これらに対する最大燃焼圧(Pmax)の特性を実線で、燃焼圧の最大変化率(dP/dθmax)の特性を破線で、それぞれ示してある。この図8に示すように、排気還流率および噴射時期ITを変化させると、最大燃焼圧(Pmax)および燃焼圧の最大変化率(dP/dθmax)が単調な特性でもって変化するので、図6、図7の制御マップは、各々の補正により最大燃焼圧Pmax_rおよび燃焼圧最大変化率dPmax_rが目標値に近づくように設定されている。   These control maps in FIGS. 6 and 7 show the fuel injection timing IT, EGR amount (exhaust gas recirculation rate is used here), parameters (maximum combustion pressure (Pmax) and combustion pressure) as shown in FIG. It is derived based on the correlation with the maximum rate of change (dP / dθmax). In FIG. 8, the vertical axis represents the exhaust gas recirculation rate, the horizontal axis represents the injection timing (more specifically, the injection timing of the main injection) IT, the characteristic of the maximum combustion pressure (Pmax) with respect to these is a solid line, and the maximum change rate of combustion pressure ( The characteristics of dP / dθmax are indicated by broken lines. As shown in FIG. 8, when the exhaust gas recirculation rate and the injection timing IT are changed, the maximum combustion pressure (Pmax) and the maximum change rate of the combustion pressure (dP / dθmax) change with monotonic characteristics. The control map of FIG. 7 is set so that the maximum combustion pressure Pmax_r and the maximum change rate of combustion pressure dPmax_r approach the target values by the respective corrections.

そして、ステップ8において、そのときの運転条件に対して設定されている燃料噴射時期ITのマップ値ITに補正量ΔITを加えて、学習補正する。同様に、ステップ9において、そのときの運転条件に対して設定されている排気還流制御弁12の目標開度のマップ値EGRに補正量ΔEGRを加えて、学習補正する。これにより、次サイクルでは、補正された燃料噴射時期ITおよび排気還流制御弁開度EGRが用いられ、最大燃焼圧Pmax_rおよび燃焼圧最大変化率dPmax_rが目標値に近づくこととなる。従って、結果として、実際の着火時期および実際の筒内のEGR量が、それぞれ所望の値に維持されることになり、例えば、機関の個体差による特性のばらつきを縮小して、NOxおよびスモークの低減を達成できる。   In step 8, the correction amount ΔIT is added to the map value IT of the fuel injection timing IT set for the operating condition at that time to perform learning correction. Similarly, in step 9, the correction amount ΔEGR is added to the map value EGR of the target opening degree of the exhaust gas recirculation control valve 12 set for the operating condition at that time, and learning correction is performed. As a result, in the next cycle, the corrected fuel injection timing IT and the exhaust gas recirculation control valve opening EGR are used, and the maximum combustion pressure Pmax_r and the maximum combustion pressure change rate dPmax_r approach the target values. Therefore, as a result, the actual ignition timing and the actual in-cylinder EGR amount are respectively maintained at desired values. For example, the variation in characteristics due to individual differences among engines is reduced, and NOx and smoke are reduced. Reduction can be achieved.

なお、上記実施例では、補正に際して、補正量ΔIT、ΔEGRを加算するようにしているが、補正係数を求め、これを乗算することにより補正を行うことも可能である。   In the above embodiment, correction amounts ΔIT and ΔEGR are added at the time of correction. However, correction can be performed by obtaining a correction coefficient and multiplying it.

また、可変動弁機構を用いて例えばバルブオーバラップの可変制御によりいわゆる内部排気還流を可変制御する技術が知られているが、外部排気還流に代えて、あるいは外部排気還流に加えて、この内部排気還流の可変制御により所望のEGR量を維持するように本発明を適用することもできる。   In addition, a technique for variably controlling so-called internal exhaust gas recirculation by using a variable valve mechanism, for example, by variable control of valve overlap, is known in place of external exhaust gas recirculation or in addition to external exhaust gas recirculation. The present invention can also be applied to maintain a desired EGR amount by variable control of exhaust gas recirculation.

また、上記実施例では、補正の基礎となるパラメータとして、最大燃焼圧(Pmax)および燃焼圧の最大変化率(dP/dθmax)を用いたが、前述したように、着火遅れ期間、燃焼圧の変化率が最大となるクランク角、燃焼期間、等の他のパラメータを利用することもでき、さらには、3つ以上のパラメータを用いて補正を行うこともできる。この場合は、多次元の相関関係から必要な補正量を求めることになるが、最も簡単な手法は、いずれか一つのパラメータについての実測値と目標値との誤差(比ないし差分)に基づいて補正係数を設定し、図6、図7のように制御マップから求めた値をこの補正係数により補正すればよい。   In the above embodiment, the maximum combustion pressure (Pmax) and the maximum change rate of the combustion pressure (dP / dθmax) are used as the parameters as the basis of correction. As described above, the ignition delay period, the combustion pressure Other parameters such as the crank angle at which the rate of change becomes maximum, the combustion period, and the like can be used, and further, correction can be performed using three or more parameters. In this case, the required correction amount is obtained from the multidimensional correlation, but the simplest method is based on the error (ratio or difference) between the actual measurement value and the target value for any one parameter. A correction coefficient is set, and the value obtained from the control map may be corrected with this correction coefficient as shown in FIGS.

この発明に係るディーゼル機関のシステム構成を示す説明図。Explanatory drawing which shows the system configuration | structure of the diesel engine which concerns on this invention. 筒内圧の変化の例を示す特性図。The characteristic view which shows the example of the change of a cylinder pressure. この実施例における処理を示すフローチャート。The flowchart which shows the process in this Example. 最大燃焼圧Pmaxの目標値のマップの特性を示す特性図。The characteristic view which shows the characteristic of the map of the target value of the maximum combustion pressure Pmax. 燃焼圧最大変化率dPmaxの目標値のマップの特性を示す特性図。The characteristic view which shows the characteristic of the map of the target value of combustion pressure maximum change rate dPmax. 補正量ΔITの制御マップの特性を示す特性図。The characteristic view which shows the characteristic of the control map of correction amount (DELTA) IT. 補正量ΔEGRの制御マップの特性を示す特性図。The characteristic view which shows the characteristic of the control map of correction amount (DELTA) EGR. 燃料噴射時期ITと排気還流率と最大燃焼圧および燃焼圧最大変化率との相関関係を示す特性図。The characteristic view which shows the correlation with fuel injection timing IT, an exhaust gas recirculation rate, the maximum combustion pressure, and the maximum change rate of combustion pressure.

1…ディーゼル機関
5…燃料噴射ノズル
8…コントロールユニット
12…排気還流制御弁
17…筒内圧センサ
DESCRIPTION OF SYMBOLS 1 ... Diesel engine 5 ... Fuel injection nozzle 8 ... Control unit 12 ... Exhaust gas recirculation control valve 17 ... In-cylinder pressure sensor

Claims (2)

筒内圧センサを備えたディーゼル機関において、実際の着火時期と筒内のEGR量との双方に相関するとともに筒内圧変化から抽出できる複数のパラメータの中で、少なくとも2つのパラメータを用い、これらのパラメータが同時に各々の目標値となるように、燃料噴射時期および上記EGR量の双方を補正するディーゼル機関の制御装置であって、
上記パラメータは、最大燃焼圧、着火遅れ期間、燃焼圧の最大変化率、燃焼圧の変化率が最大となるクランク角、燃焼期間、の中の少なくとも2つであり、
各々のパラメータの目標値が、機関運転条件毎に予め設定されており、
燃料噴射時期の補正量ないし補正係数が設定されたマップと、EGR量の補正量ないし補正係数が設定されたマップと、を有し、
これらのマップは、各パラメータの目標値と実測値との乖離を表す複数の入力値に対して補正量ないし補正係数を割り当てた多次元のマップからなる、ことを特徴とするディーゼル機関の制御装置。
In a diesel engine equipped with an in-cylinder pressure sensor, at least two parameters are used among a plurality of parameters that correlate with both the actual ignition timing and the EGR amount in the cylinder and can be extracted from a change in the in-cylinder pressure. Is a control device for a diesel engine that corrects both the fuel injection timing and the EGR amount so that each becomes a target value at the same time ,
The above parameters are at least two of the maximum combustion pressure, the ignition delay period, the maximum change rate of the combustion pressure, the crank angle at which the change rate of the combustion pressure is maximum, and the combustion period.
Target values for each parameter are preset for each engine operating condition,
A map in which a correction amount or correction coefficient for fuel injection timing is set and a map in which a correction amount or correction coefficient for EGR amount is set;
These maps comprise a multi-dimensional map in which correction amounts or correction coefficients are assigned to a plurality of input values representing deviations between target values and actual measurement values of each parameter, and a control device for a diesel engine characterized by .
筒内圧センサと、
この筒内圧センサが検出する筒内圧変化に基づき、実際の着火時期と筒内のEGR量との双方に相関する第1パラメータおよび第2パラメータを算出する手段と、
運転条件に対応した所定の第1パラメータ目標値と実際の第1パラメータとの比を求める手段と、
運転条件に対応した所定の第2パラメータ目標値と実際の第2パラメータとの比を求める手段と、
これらの2つの比に対応して燃料噴射時期の補正量ないし補正係数を割り当てた3次元の第1制御マップと、
同じくこれらの2つの比に対応してEGR量の補正量ないし補正係数を割り当てた3次元の第2制御マップと、
上記第1制御マップから求めた補正量ないし補正係数を用いて燃料噴射時期を補正する手段と、
上記第2制御マップから求めた補正量ないし補正係数を用いてEGR量を補正する手段と、
を備えてなり、
上記第1,第2パラメータは、最大燃焼圧、着火遅れ期間、燃焼圧の最大変化率、燃焼圧の変化率が最大となるクランク角、燃焼期間、の中の2つであり、
これら2つの第1,第2パラメータが同時に各々の目標値に合致するように補正を行うディーゼル機関の制御装置。
An in-cylinder pressure sensor;
Means for calculating a first parameter and a second parameter correlated with both the actual ignition timing and the EGR amount in the cylinder based on the in-cylinder pressure change detected by the in-cylinder pressure sensor;
Means for determining a ratio between a predetermined first parameter target value corresponding to the operating condition and the actual first parameter;
Means for determining a ratio between a predetermined second parameter target value corresponding to the operating condition and the actual second parameter;
A three-dimensional first control map to which a fuel injection timing correction amount or correction coefficient is assigned corresponding to these two ratios;
Similarly, a three-dimensional second control map in which a correction amount or a correction coefficient of the EGR amount is assigned corresponding to these two ratios;
Means for correcting the fuel injection timing using the correction amount or correction coefficient obtained from the first control map;
Means for correcting the EGR amount using the correction amount or correction coefficient obtained from the second control map;
Ri name with a,
The first and second parameters are two of the maximum combustion pressure, the ignition delay period, the maximum change rate of the combustion pressure, the crank angle at which the change rate of the combustion pressure is maximum, and the combustion period.
A control device for a diesel engine that performs correction so that these two first and second parameters coincide with respective target values at the same time .
JP2009018130A 2009-01-29 2009-01-29 Diesel engine control device Expired - Fee Related JP5287298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009018130A JP5287298B2 (en) 2009-01-29 2009-01-29 Diesel engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018130A JP5287298B2 (en) 2009-01-29 2009-01-29 Diesel engine control device

Publications (2)

Publication Number Publication Date
JP2010174737A JP2010174737A (en) 2010-08-12
JP5287298B2 true JP5287298B2 (en) 2013-09-11

Family

ID=42705945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018130A Expired - Fee Related JP5287298B2 (en) 2009-01-29 2009-01-29 Diesel engine control device

Country Status (1)

Country Link
JP (1) JP5287298B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016110112B9 (en) 2015-06-11 2021-04-01 Denso Corporation Fuel injector
JP2019124140A (en) * 2018-01-12 2019-07-25 日本碍子株式会社 Combustion control method in engine for vehicle and engine system for vehicle
JP2019124141A (en) * 2018-01-12 2019-07-25 日本碍子株式会社 Combustion control method in engine for vehicle and engine system for vehicle
JP7055641B2 (en) * 2018-01-12 2022-04-18 日本碍子株式会社 Combustion control method for vehicle engine and vehicle engine system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4136554B2 (en) * 2002-09-09 2008-08-20 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
JP4086602B2 (en) * 2002-09-17 2008-05-14 株式会社日立製作所 Control device and control method for multi-cylinder engine
JP4367472B2 (en) * 2002-12-26 2009-11-18 トヨタ自動車株式会社 Control device for internal combustion engine
JP4323907B2 (en) * 2002-12-26 2009-09-02 トヨタ自動車株式会社 Control device for internal combustion engine
JP4161789B2 (en) * 2003-04-25 2008-10-08 いすゞ自動車株式会社 Fuel injection control device
JP2005240722A (en) * 2004-02-27 2005-09-08 Nissan Motor Co Ltd Control device for diesel engine
JP2008101591A (en) * 2006-10-20 2008-05-01 Toyota Motor Corp Ignition timing control device of internal combustion engine

Also Published As

Publication number Publication date
JP2010174737A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
US8046156B2 (en) Control apparatus of internal combustion engine
JP5905066B1 (en) Control device and control method for internal combustion engine
US10054071B2 (en) Method of operating an internal combustion engine
US8267076B2 (en) Engine control apparatus
US9797331B2 (en) Control apparatus for internal combustion engine
JP4314585B2 (en) Control device for internal combustion engine
US9702787B2 (en) In-cylinder pressure detecting apparatus for internal combustion engine
US9903302B2 (en) Control device for internal combustion engine
CN107250516B (en) Control device for internal combustion engine
JPWO2012147193A1 (en) Control device for internal combustion engine
JP4969546B2 (en) Control device and method for internal combustion engine
JP2010053823A (en) Air amount control device for internal combustion engine
JP5331613B2 (en) In-cylinder gas amount estimation device for internal combustion engine
JP5287298B2 (en) Diesel engine control device
JP2016125363A (en) Internal combustion engine control device
JP5099267B2 (en) Control device for internal combustion engine
JP2012207656A (en) Control device of internal combustion engine
JP5195466B2 (en) Diesel engine control device
US9002618B2 (en) Variable valve timing control apparatus for engine
JP2011157852A (en) Control device of internal combustion engine
JP4883068B2 (en) Fuel injection control device
JP4871307B2 (en) Engine fuel control device
WO2016190092A1 (en) Engine control device
JP4155036B2 (en) Internal EGR amount estimation device for internal combustion engine
JP7177385B2 (en) engine controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5287298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees