JP5281782B2 - (Li, Na, K) (Nb, Ta) O3 piezoelectric material manufacturing method - Google Patents

(Li, Na, K) (Nb, Ta) O3 piezoelectric material manufacturing method Download PDF

Info

Publication number
JP5281782B2
JP5281782B2 JP2007274763A JP2007274763A JP5281782B2 JP 5281782 B2 JP5281782 B2 JP 5281782B2 JP 2007274763 A JP2007274763 A JP 2007274763A JP 2007274763 A JP2007274763 A JP 2007274763A JP 5281782 B2 JP5281782 B2 JP 5281782B2
Authority
JP
Japan
Prior art keywords
temperature
rate
hours
comparative example
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007274763A
Other languages
Japanese (ja)
Other versions
JP2008156210A (en
Inventor
和之 海川
修一 小澤
浩文 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to US11/958,636 priority Critical patent/US8124047B2/en
Priority to EP07254991A priority patent/EP1939951B1/en
Publication of JP2008156210A publication Critical patent/JP2008156210A/en
Application granted granted Critical
Publication of JP5281782B2 publication Critical patent/JP5281782B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、アクチュエータやセンサーに用いられる(Li,Na,K)(Nb,Ta)O系圧電材料の製造方法に関する。 The present invention relates to a method for producing a (Li, Na, K) (Nb, Ta) O 3 piezoelectric material used for actuators and sensors.

圧電/電歪アクチュエータは、サブミクロンのオーダーで変位を精密に制御することができるという利点を有する。特に、圧電/電歪磁器組成物の焼結体を圧電/電歪体として用いた圧電/電歪アクチュエータは、変位を精密に制御することができる他にも、電気機械変更効率が高く、発生力が大きく、応答速度が速く、耐久性が高く、消費電力が少ないという利点も有し、これらの利点を生かして、インクジェットプリンタのヘッドやディーゼルエンジンのインジェクタ等に採用されている。   Piezoelectric / electrostrictive actuators have the advantage that displacement can be precisely controlled on the order of submicrons. In particular, a piezoelectric / electrostrictive actuator using a sintered body of a piezoelectric / electrostrictive porcelain composition as a piezoelectric / electrostrictive body can precisely control displacement, and has high electromechanical change efficiency. It has the advantages of high power, fast response speed, high durability, and low power consumption. Taking advantage of these advantages, it is employed in inkjet printer heads, diesel engine injectors, and the like.

圧電/電歪アクチュエータ用の圧電/電歪磁器組成物としては、従来、Pb(Zr,Ti)O(PZT)系の圧電/電歪磁器組成物が用いられていたが、焼結体からの鉛の溶質が地球環境に与える影響が強く懸念されるようになってからは、(Li,Na,K)(Nb,Ta)O系の圧電/電歪磁器組成物も検討されている。 As a piezoelectric / electrostrictive ceramic composition for a piezoelectric / electrostrictive actuator, a Pb (Zr, Ti) O 3 (PZT) -based piezoelectric / electrostrictive ceramic composition has been conventionally used. (Li, Na, K) (Nb, Ta) O 3 -based piezoelectric / electrostrictive porcelain compositions have been studied since the influence of lead solutes on the global environment is strongly concerned. .

(Li,Na,K)(Nb,Ta)O系圧電材料は、一般的に1020〜1250℃で0.15〜4hr、大気中若しくは酸素雰囲気中で焼結される(例えば、非特許文献1〜3)。焼結温度に達するまでの昇温速度については、200℃/hr又は300℃/hrで、室温から焼結温度まで一定速度で昇温している(例えば、特許文献1)。昇温中に600〜650℃の範囲で1〜5hrキープする事により、粉末の成形性を良くする為に添加した有機バインダーを除去(脱バインダー工程)している研究例もある(例えば、特許文献1)。 (Li, Na, K) (Nb, Ta) O 3 based piezoelectric materials are generally sintered at 1020 to 1250 ° C. for 0.15 to 4 hours in the air or in an oxygen atmosphere (for example, non-patent literature). 1-3). About the temperature increase rate until it reaches the sintering temperature, the temperature is increased at a constant rate from room temperature to the sintering temperature at 200 ° C./hr or 300 ° C./hr (for example, Patent Document 1). There is also a research example in which the organic binder added to improve the moldability of the powder is removed (debinding process) by keeping it in the range of 600 to 650 ° C. during the temperature rise for 1 to 5 hours (for example, patent) Reference 1).

M. Matsubara et. al., Jpn. J. Appl. Phys. 44 (2005) pp.6136-6142.M. Matsubara et. Al., Jpn. J. Appl. Phys. 44 (2005) pp.6136-6142. E. Hollenstein et. al., Appl. Phys. Lett. 87 (2005) 182905.E. Hollenstein et. Al., Appl. Phys. Lett. 87 (2005) 182905. Y. Guo et. al., App. Phys. Lett. 85 (2004) 4121Y. Guo et. Al., App. Phys. Lett. 85 (2004) 4121 特開2006−28001号公報JP 2006-280001 A

しかしながら、以上の従来技術では、焼結温度や脱バインダーの検討はされているが、焼結温度に近い温度でのキープ工程や昇温速度の検討はなされていない。   However, in the above prior art, the sintering temperature and the binder removal have been studied, but the keep process and the temperature increase rate at temperatures close to the sintering temperature have not been studied.

また、上記した従来技術においては、次の問題点があった。
(1)焼結体内部に気孔(粒界、粒内)が多く、緻密化度が不十分である(相対密度90〜95%、例えば非特許文献2、K=Na=0.48、Li=0.04、Nb=0.9、Ta=0.1で相対密度94%)。
Further, the above-described prior art has the following problems.
(1) There are many pores (grain boundaries, intragrains) inside the sintered body, and the degree of densification is insufficient (relative density 90 to 95%, for example, Non-Patent Document 2, K = Na = 0.48, Li = 0.04, Nb = 0.9, Ta = 0.1, and a relative density of 94%).

(2)緻密化度が低い為、材料本来の特性を出せていない可能性がある。
(3)緻密化度が低い為、機械的強度に劣る。
(2) Since the degree of densification is low, the original characteristics of the material may not be achieved.
(3) Since the degree of densification is low, the mechanical strength is inferior.

(4)緻密化度を上げる為、CuやMn等の添加剤(焼結助剤)を加える研究例(例えば、非特許文献1)もあるが、添加元素が(Li,Na,K)(Nb,Ta)O系圧電材料に固溶しており、本来の特性を変えている可能性がある。
(5)添加元素が加わる事により、制御すべき組成が増える。
(4) There is a research example (for example, Non-Patent Document 1) in which an additive (sintering aid) such as Cu or Mn is added to increase the degree of densification, but the additive element is (Li, Na, K) ( It is a solid solution in the Nb, Ta) O 3 -based piezoelectric material, which may change the original characteristics.
(5) The composition to be controlled increases by adding the additive element.

本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、比誘電率や電界誘起歪を向上させることが可能な(Li,Na,K)(Nb,Ta)O系圧電材料の製造方法を提供することにある。 The present invention has been made in view of such problems of the prior art, and the problem is that the relative permittivity and electric field induced strain can be improved (Li, Na, K). An object of the present invention is to provide a method for producing a (Nb, Ta) O 3 -based piezoelectric material.

本発明者は、添加元素といった焼結助剤を加えるのでは無く、焼成スケジュールを変更する事により緻密化度を上げ、特性向上を目指した。具体的には、先ず(Li,Na,K)(Nb,Ta)Oの成形体から焼結体に至るまでの焼成収縮カーブを測定し、焼成収縮が発生する温度域を調べた。その結果、焼成収縮が発生する温度域内で、一定温度でキープする定温キープ工程を焼成スケジュールに挿入することにより、緻密化度に優れ、高い電界誘起歪を有する焼結体(圧電材料)が得られることを見出した。 The present inventor aimed to improve characteristics by increasing the degree of densification by changing the firing schedule instead of adding a sintering aid such as an additive element. Specifically, first, the firing shrinkage curve from the (Li, Na, K) (Nb, Ta) O 3 compact to the sintered body was measured, and the temperature range where firing shrinkage occurred was examined. As a result, a sintered body (piezoelectric material) with excellent densification and high electric field induced strain can be obtained by inserting a constant temperature keeping process that keeps at a constant temperature within the temperature range where firing shrinkage occurs. I found out that

本発明によれば、(Li,Na,K)(Nb,Ta)Oの組成からなる粉末粒子の成形体を焼成することにより、(Li,Na,K)(Nb,Ta)O系圧電材料を製造する方法であって、(Li,Na,K)(Nb,Ta)O系圧電材料は、構成する全ての金属元素のモル数を1molとした場合のモル比で、Liが0.009〜0.109、Naが0.075〜0.427、Kが0.075〜0.427、Nbが0.227〜0.500、Taが0.022〜0.263を含むものであって、粉末粒子の粒成長が生じる直前の温度、あるいは異相が僅かながら存在している温度である850〜1000℃の範囲内の、一定温度で少なくとも1時間維持するキープ工程を行った後、さらに昇温して1100℃未満の焼結温度にて焼結する、(Li,Na,K)(Nb,Ta)O系圧電材料の製造方法、が提供される。 According to the present invention, (Li, Na, K) (Nb, Ta) by firing a compact of powder particles having the composition O 3, (Li, Na, K) (Nb, Ta) O 3 based A method of manufacturing a piezoelectric material, wherein (Li, Na, K) (Nb, Ta) O 3 based piezoelectric material has a molar ratio in which the number of moles of all constituent metal elements is 1 mol, and Li is Including 0.009 to 0.109, Na 0.075 to 0.427, K 0.075 to 0.427, Nb 0.227 to 0.500, Ta 0.022 to 0.263 After performing a keeping step for maintaining at a constant temperature for at least 1 hour within a range of 850 to 1000 ° C., which is a temperature immediately before the occurrence of grain growth of powder particles or a temperature at which a heterogeneous phase is slightly present. , baked further at Atsushi Nobori to less than 1100 ° C. the sintering temperature To, (Li, Na, K) (Nb, Ta) METHOD FOR PRODUCING O 3 based piezoelectric material, is provided.

本発明の製造方法において、キープ温度の範囲が850〜950℃であることが好ましく、キープ時間としては1〜20時間であることが好ましい。また、焼成雰囲気が酸素雰囲気であることが好ましい。   In the production method of the present invention, the range of the keep temperature is preferably 850 to 950 ° C., and the keep time is preferably 1 to 20 hours. Further, the firing atmosphere is preferably an oxygen atmosphere.

なお、上記(Li,Na,K)(Nb,Ta)O系圧電材料としては、下記一般式(1)で表される組成を有するものが好ましい。 Note that the (Li, Na, K) (Nb, Ta) as O 3 based piezoelectric material is preferably one having a composition represented by the following general formula (1).

{Li(Na1−x1−y}(Nb1−zTa)O (1)
(但し、前記一般式(1)中、a=0.90〜1.2、x=0.2〜0.8、y=0.02〜0.2、及びz=0.05〜0.5である。)
{Li y (Na 1-x K x ) 1-y } a (Nb 1-z Ta z ) O 3 (1)
(However, in said general formula (1), a = 0.90-1.2, x = 0.2-0.8, y = 0.02-0.2, and z = 0.05-0. 5)

上記した本発明に係る(Li,Na,K)(Nb,Ta)O系圧電材料の製造方法は、焼成工程において、粒成長が生じる直前の温度、又は、異相が僅かながら存在している温度でキープする工程を加える事により、焼結助剤を用いることなく緻密化度の向上を達成し、高い電界誘起歪を得られるという効果がもたらされる。又、この工程を付加する事により結晶粒径が、より均一となる作用効果もあり、高い電界誘起歪が得られる。本発明の効果は、焼結方法に依存しない。即ち、加圧の無い焼結方法だけでなく、加圧機構のある焼結方法〔例えば、ホットプレス(HP)やホットアイソスタティックプレス(HIP)〕においても効果がある。本発明の効果は、雰囲気に依存しない。即ち、大気雰囲気や酸素雰囲気、及び、ArやN雰囲気といった還元雰囲気においても効果がある。 In the method for producing a (Li, Na, K) (Nb, Ta) O 3 piezoelectric material according to the present invention described above, a temperature just before grain growth or a heterogeneous phase slightly exists in the firing step. By adding the step of keeping at the temperature, an effect of achieving a high degree of densification without using a sintering aid and obtaining a high electric field induced strain is brought about. In addition, by adding this step, there is an effect that the crystal grain size becomes more uniform, and a high electric field induced strain can be obtained. The effect of the present invention does not depend on the sintering method. That is, it is effective not only in a sintering method without pressing but also in a sintering method having a pressing mechanism [for example, hot pressing (HP) or hot isostatic pressing (HIP)]. The effect of the present invention does not depend on the atmosphere. That is, it is also effective in a reducing atmosphere such as an air atmosphere, an oxygen atmosphere and an Ar or N 2 atmosphere.

以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described below, but the present invention is not limited to the following embodiment, and is based on the ordinary knowledge of those skilled in the art without departing from the gist of the present invention. It should be understood that modifications and improvements as appropriate to the following embodiments also fall within the scope of the present invention.

本発明の製造方法は、(Li,Na,K)(Nb,Ta)Oの組成からなる粉末粒子の成形体を焼成するにあたり、850〜1000℃の範囲、好ましくは850〜950℃の範囲内の一定温度で一定時間キープすることに特徴を有する。850〜1000℃の範囲は、粉末粒子の粒成長が生じる直前の温度、あるいは異相が僅かながら存在している温度であり、この温度範囲内の一定温度で一定時間でキープすることにより、焼結助剤を用いずに、得られる焼結体の緻密化度が向上し、高い電界誘起歪が得られる。 In the production method of the present invention, a powder particle compact having a composition of (Li, Na, K) (Nb, Ta) O 3 is fired in the range of 850 to 1000 ° C., preferably in the range of 850 to 950 ° C. It is characterized by keeping for a certain time at a certain temperature. The range of 850 to 1000 ° C. is a temperature immediately before the grain growth of the powder particles occurs, or a temperature at which a different phase is slightly present, and sintering is performed by keeping at a constant temperature within this temperature range for a certain time. Without using an auxiliary agent, the densification degree of the obtained sintered body is improved, and a high electric field induced strain is obtained.

上記したキープ温度が850℃より低い場合には、得られる焼結体の緻密化度はそれほど向上せず、電界誘起歪も低くなる。一方、キープ温度が1000℃を超える場合、焼結温度である1050℃に近くなり過ぎ、事実上、焼結を行っている事と同じとなり、キープ工程の意味がなくなる。   When the above-mentioned keep temperature is lower than 850 ° C., the densification degree of the obtained sintered body is not improved so much and the electric field induced strain is also lowered. On the other hand, when the keep temperature exceeds 1000 ° C., it becomes too close to the sintering temperature of 1050 ° C., which is practically the same as the sintering, and the meaning of the keep step is lost.

また、850〜1000℃の範囲にキープする時間としては、1〜20hrであることが好ましい。キープ時間が1hrより短いと、効果が低く、得られる焼結体の緻密化度が向上せず、電界誘起歪も低い。一方、キープ時間が20hrを超えても、特性はこれ以上向上しない。   Moreover, as time to keep in the range of 850-1000 degreeC, it is preferable that it is 1-20 hr. When the keep time is shorter than 1 hr, the effect is low, the densification degree of the obtained sintered body is not improved, and the electric field induced strain is also low. On the other hand, even if the keep time exceeds 20 hours, the characteristics are not improved further.

本発明の焼成工程においては、酸素雰囲気であることが好ましいが、これに限定されない。即ち、大気雰囲気や酸素雰囲気に限らず、ArやN雰囲気といった還元雰囲気においても所定の効果を有する。 In the firing step of the present invention, an oxygen atmosphere is preferable, but the present invention is not limited to this. That is, it has a predetermined effect not only in an air atmosphere and an oxygen atmosphere but also in a reducing atmosphere such as an Ar or N 2 atmosphere.

さらに、本発明の製造方法においては、焼結手法に依存しない。即ち、加圧の無い焼結方法だけでなく、加圧機構のある焼結方法〔例えば、ホットプレス(HP)やホットアイソスタティックプレス(HIP)〕においても、同様に本発明の効果を奏するものである。   Furthermore, the manufacturing method of the present invention does not depend on the sintering technique. That is, not only the sintering method without pressurization but also the sintering method with a pressurization mechanism [for example, hot press (HP) or hot isostatic press (HIP)] has the same effect as the present invention. It is.

本発明に用いる(Li,Na,K)(Nb,Ta)O系圧電材料としては、下記一般式(1)で表される組成を有するものが好ましい。 As the (Li, Na, K) (Nb, Ta) O 3 based piezoelectric material used in the present invention, one having a composition represented by the following general formula (1) is preferable.

{Li(Na1−x1−y}(Nb1−zTa)O (1)
(但し、前記一般式(1)中、a=0.90〜1.2、x=0.2〜0.8、y=0.02〜0.2、及びz=0.05〜0.5である。)
{Li y (Na 1-x K x ) 1-y } a (Nb 1-z Ta z ) O 3 (1)
(However, in said general formula (1), a = 0.90-1.2, x = 0.2-0.8, y = 0.02-0.2, and z = 0.05-0. 5)

本発明においては、Li、Na、K、Nb、及びTaからなる酸化物を含む圧電材料であれば、適用することができる。その中でも、一般式(1)において、a=0.90〜1.2、x=0.2〜0.8、y=0.02〜0.2、及びz=0.05〜0.5であることが好ましいが、さらに好ましくは、a=1.005〜1.10、x=0.4〜0.6、y=0.05〜0.1、及びz=0.08〜0.25である。   In the present invention, any piezoelectric material containing an oxide composed of Li, Na, K, Nb, and Ta can be applied. Among them, in the general formula (1), a = 0.90 to 1.2, x = 0.2 to 0.8, y = 0.02 to 0.2, and z = 0.05 to 0.5. More preferably, a = 1.005-1.10, x = 0.4-0.6, y = 0.05-0.1, and z = 0.08-0. 25.

ここで、A/B比(=a)に関し、a≦1.2としたのは、この範囲を上回ると、誘電損失が増加し、高電界印加時の電界誘起歪が小さくなる傾向があるからである。誘電損失の増加は、高電界を印加するアクチュエータ用の圧電/電歪磁器組成物では問題が大きい。一方、0.90≦aとしたのは、粒成長を促進させ、緻密化させるためである。この範囲を下回ると、粒成長を促進させるために1100℃以上の加熱が必要となる。この場合、アルカリ成分の蒸発が起こり易くなり、組成が変動することで特性が不安定になる。本発明では、特に1.005≦a≦1.10とすることが好ましく、この場合、緻密化と粒成長をさせる上で効果が高く、焼結温度を1100℃未満とすることができ、組成の変動を回避することができる。 Here, with respect to the A / B ratio (= a), the reason why a ≦ 1.2 is exceeded is that if it exceeds this range, the dielectric loss increases and the electric field induced strain when applying a high electric field tends to decrease. It is. The increase in dielectric loss is a serious problem in a piezoelectric / electrostrictive ceramic composition for an actuator that applies a high electric field. On the other hand, 0.90 ≦ a is set to promote grain growth and densify. Below this range, heating at 1100 ° C. or higher is required to promote grain growth. In this case, evaporation of the alkali component is likely to occur, and the characteristics become unstable due to fluctuations in the composition. In the present invention, it is particularly preferable that 1.005 ≦ a ≦ 1.10. In this case, the effect is high in densification and grain growth, and the sintering temperature can be less than 1100 ° C. Fluctuations can be avoided.

K、Li及びTa量をそれぞれ0.2≦x≦0.8、0.02≦y≦0.2及び0.05≦z≦0.5としたのは、この範囲でアクチュエータ用として好適な圧電/電歪磁器組成物を得る事ができるからである。   The K, Li, and Ta amounts are set to 0.2 ≦ x ≦ 0.8, 0.02 ≦ y ≦ 0.2, and 0.05 ≦ z ≦ 0.5, respectively. This is because a piezoelectric / electrostrictive ceramic composition can be obtained.

例えば、xがこの範囲を下回ると、圧電/電歪特性が急激に低下する。一方、xがこの範囲を上回ると、焼結が困難になり、焼結温度を高くしなければならなくなる。焼結温度を高くすることが望ましくないのは、焼結温度を高くすると、圧電/電歪磁器組成物に含まれるアルカリ成分が蒸発し、圧電/電歪特性を安定して得ることができなくなるからである。   For example, when x is less than this range, the piezoelectric / electrostrictive characteristics are rapidly lowered. On the other hand, if x exceeds this range, sintering becomes difficult and the sintering temperature must be increased. It is not desirable to increase the sintering temperature. When the sintering temperature is increased, the alkali component contained in the piezoelectric / electrostrictive porcelain composition evaporates, and the piezoelectric / electrostrictive characteristics cannot be obtained stably. Because.

また、yがこの範囲を下回ると、やはり、焼結が困難になり、焼結温度を高くしなければならなくなる。一方、yがこの範囲を上回ると、異相の析出が多くなり、絶縁性が低下する。   If y is less than this range, sintering becomes difficult, and the sintering temperature must be increased. On the other hand, when y exceeds this range, precipitation of heterogeneous phases increases, and the insulation properties decrease.

さらに、zがこの範囲を下回ると、圧電/電歪特性が低下する。一方、zがこの範囲を上回ると、やはり、焼結が困難になり、焼結温度を高くしなければならなくなる。   Furthermore, when z is below this range, the piezoelectric / electrostrictive characteristics are degraded. On the other hand, if z exceeds this range, sintering becomes difficult, and the sintering temperature must be increased.

次に、本発明の具体的な実施結果である実施例及び比較例を示す。   Next, examples and comparative examples, which are specific implementation results of the present invention, are shown.

(比較例1)
{Li(Na1−x1−y(Nb1−zTa)O(x=0.458、y=0.057、z=0.082、a=1.01)の組成から成る仮焼/粉砕紛(粒径0.2〜0.5μm、粒形状は球状)をペレット状に成形した(ペレット状試料)。このペレット状試料を、大気中で200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。得られた焼結体について、アルキメデス法による嵩密度、ペレット寸法変化による焼成収縮を測定した。また、得られた焼結体の表面微構造から、粒径はばらつきが大きく、不均一である事が分かる(図1のSEM写真を参照)。この焼結体を短冊状に加工した後、比誘電率、圧電定数d31、誘電損失(tanδ)、電界誘起歪S4000(4kV/mmの電界を加えた時の31方向、即ち、電界印加方向に対して垂直方向の歪量)を評価した。その結果を表1と表2に示した。
(Comparative Example 1)
{Li y (Na 1-x K x) 1-y} a (Nb 1-z Ta z) O 3 (x = 0.458, y = 0.057, z = 0.082, a = 1.01 ) Calcined / ground powder (particle size 0.2 to 0.5 μm, particle shape is spherical) was formed into pellets (pellet sample). The pellet sample was heated to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr in the atmosphere. After holding at 1050 ° C. for 3 hours, the furnace was cooled. About the obtained sintered compact, the firing density by the bulk density by the Archimedes method and the pellet size change was measured. Moreover, it can be seen from the surface microstructure of the obtained sintered body that the particle size varies widely and is not uniform (see the SEM photograph in FIG. 1). After processing this sintered body into a strip shape, the relative permittivity, the piezoelectric constant d 31 , the dielectric loss (tan δ), the electric field induced strain S4000 (31 directions when an electric field of 4 kV / mm is applied, that is, the electric field application direction) The amount of strain in the vertical direction) was evaluated. The results are shown in Tables 1 and 2.

(比較例2)
比較例1で示したペレット状試料を、大気中で200℃/hrの速度で800℃まで昇温し、800℃で3hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表1に示した。
(Comparative Example 2)
The pellet-like sample shown in Comparative Example 1 was heated to 800 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 800 ° C. for 3 hr, and then increased to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. Warm up. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 1.

(実施例1)
比較例1で示したペレット状試料を、大気中で200℃/hrの速度で850℃まで昇温し、850℃で3hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表1に示した。
Example 1
The pellet-like sample shown in Comparative Example 1 was heated to 850 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 850 ° C. for 3 hours, and then increased to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. Warm up. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 1.

(実施例2)
比較例1で示したペレット状試料を、大気中で200℃/hrの速度で900℃まで昇温し、900℃で3hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表1と表2に示した。
(Example 2)
The pellet-like sample shown in Comparative Example 1 was heated to 900 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 900 ° C. for 3 hours, and then increased to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. Warm up. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Tables 1 and 2.

(実施例3)
比較例1で示したペレット状試料を、大気中で200℃/hrの速度で950℃まで昇温し、950℃で3hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表1に示した。
(Example 3)
The pellet-like sample shown in Comparative Example 1 was heated to 950 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 950 ° C. for 3 hours, and then increased to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. Warm up. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 1.

(実施例4)
比較例1で示したペレット状試料を、大気中で200℃/hrの速度で1000℃まで昇温し、1000℃で3hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表1に示した。
Example 4
The pellet-like sample shown in Comparative Example 1 was heated to 1000 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 1000 ° C. for 3 hr, and then increased to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. Warm up. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 1.

(実施例5)
比較例1で示したペレット状試料を、大気中で200℃/hrの速度で900℃まで昇温し、900℃で1hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表2に示した。
(Example 5)
The pellet-like sample shown in Comparative Example 1 was heated to 900 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 900 ° C. for 1 hr, and then increased to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. Warm up. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 2.

(実施例6)
比較例1で示したペレット状試料を、大気中で200℃/hrの速度で900℃まで昇温し、900℃で6hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表2に示した。
(Example 6)
The pellet-like sample shown in Comparative Example 1 was heated to 900 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 900 ° C. for 6 hr, and then increased to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. Warm up. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 2.

(実施例7)
比較例1で示したペレット状試料を、大気中で200℃/hrの速度で900℃まで昇温し、900℃で10hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。得られた焼結体の表面微構造から、比較例1より粒径はばらつきが小さく、均一になっている事が分かる(図2のSEM写真を参照)。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表2と表4に示した。
(Example 7)
The pellet-like sample shown in Comparative Example 1 was heated to 900 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 900 ° C. for 10 hr, and then increased to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. Warm up. After holding at 1050 ° C. for 3 hours, the furnace was cooled. From the surface microstructure of the obtained sintered body, it can be seen that the particle size is smaller and uniform than Comparative Example 1 (see the SEM photograph in FIG. 2). The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Tables 2 and 4.

(実施例8)
比較例1で示したペレット状試料を、大気中で200℃/hrの速度で900℃まで昇温し、900℃で20hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表2に示した。
(Example 8)
The pellet-like sample shown in Comparative Example 1 was heated to 900 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 900 ° C. for 20 hr, and then increased to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. Warm up. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 2.

(比較例3)
比較例1で示したペレット状試料を、管状炉を用いた酸素フロー下で200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表3に示した。
(Comparative Example 3)
The pellet-like sample shown in Comparative Example 1 was heated to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr under an oxygen flow using a tubular furnace. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 3.

(実施例9)
比較例1で示したペレット状試料を、管状炉を用いた酸素フロー下で200℃/hrの速度で900℃まで昇温し、900℃で3hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表3に示した。
Example 9
The pellet-like sample shown in Comparative Example 1 was heated to 900 ° C. at a rate of 200 ° C./hr under an oxygen flow using a tubular furnace, held at 900 ° C. for 3 hours, and then baked at a rate of 200 ° C./hr. The temperature was raised to 1050 ° C. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 3.

(実施例10)
比較例1で示したペレット状試料を、管状炉を用いた酸素フロー下で200℃/hrの速度で900℃まで昇温し、900℃で6hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表3に示した。
(Example 10)
The pellet-like sample shown in Comparative Example 1 was heated to 900 ° C. at a rate of 200 ° C./hr under an oxygen flow using a tubular furnace, held at 900 ° C. for 6 hours, and then baked at a rate of 200 ° C./hr. The temperature was raised to 1050 ° C. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 3.

(実施例11)
{Li(Na1−x1−y(Nb1−zTa)O(x=0.458、y=0.057、z=0.082、a=0.85)の組成から成る仮焼/粉砕紛(粒径0.2〜0.5μm、粒形状は球状)をペレット状に成形した(ペレット状試料)。このペレット状試料を、大気中で200℃/hrの速度で900℃まで昇温し、900℃で10hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表4に示した。
(Example 11)
{Li y (Na 1-x K x ) 1-y } a (Nb 1-z Ta z ) O 3 (x = 0.458, y = 0.057, z = 0.082, a = 0.85) ) Calcined / ground powder (particle size 0.2 to 0.5 μm, particle shape is spherical) was formed into pellets (pellet sample). The pellet-like sample was heated to 900 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 900 ° C. for 10 hours, and then heated to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 4.

(実施例12)
{Li(Na1−x1−y(Nb1−zTa)O(x=0.458、y=0.057、z=0.082、a=0.90)の組成から成る仮焼/粉砕紛(粒径0.2〜0.5μm、粒形状は球状)をペレット状に成形した(ペレット状試料)。このペレット状試料を、大気中で200℃/hrの速度で900℃まで昇温し、900℃で10hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表4に示した。
(Example 12)
{Li y (Na 1-x K x ) 1-y } a (Nb 1-z Ta z ) O 3 (x = 0.458, y = 0.057, z = 0.082, a = 0.90) ) Calcined / ground powder (particle size 0.2 to 0.5 μm, particle shape is spherical) was formed into pellets (pellet sample). The pellet-like sample was heated to 900 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 900 ° C. for 10 hours, and then heated to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 4.

(実施例13)
{Li(Na1−x1−y(Nb1−zTa)O(x=0.458、y=0.057、z=0.082、a=0.95)の組成から成る仮焼/粉砕紛(粒径0.2〜0.5μm、粒形状は球状)をペレット状に成形した(ペレット状試料)。このペレット状試料を、大気中で200℃/hrの速度で900℃まで昇温し、900℃で10hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表4に示した。
(Example 13)
{Li y (Na 1-x K x ) 1-y } a (Nb 1-z Ta z ) O 3 (x = 0.458, y = 0.057, z = 0.082, a = 0.95) ) Calcined / ground powder (particle size 0.2 to 0.5 μm, particle shape is spherical) was formed into pellets (pellet sample). The pellet-like sample was heated to 900 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 900 ° C. for 10 hours, and then heated to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 4.

(実施例14)
{Li(Na1−x1−y(Nb1−zTa)O(x=0.458、y=0.057、z=0.082、a=1.00)の組成から成る仮焼/粉砕紛(粒径0.2〜0.5μm、粒形状は球状)をペレット状に成形した(ペレット状試料)。このペレット状試料を、大気中で200℃/hrの速度で900℃まで昇温し、900℃で10hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表4に示した。
(Example 14)
{Li y (Na 1-x K x) 1-y} a (Nb 1-z Ta z) O 3 (x = 0.458, y = 0.057, z = 0.082, a = 1.00 ) Calcined / ground powder (particle size 0.2 to 0.5 μm, particle shape is spherical) was formed into pellets (pellet sample). The pellet-like sample was heated to 900 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 900 ° C. for 10 hours, and then heated to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 4.

(実施例15)
{Li(Na1−x1−y(Nb1−zTa)O(x=0.458、y=0.057、z=0.082、a=1.005)の組成から成る仮焼/粉砕紛(粒径0.2〜0.5μm、粒形状は球状)をペレット状に成形した(ペレット状試料)。このペレット状試料を、大気中で200℃/hrの速度で900℃まで昇温し、900℃で10hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表4に示した。
(Example 15)
{Li y (Na 1-x K x) 1-y} a (Nb 1-z Ta z) O 3 (x = 0.458, y = 0.057, z = 0.082, a = 1.005 ) Calcined / ground powder (particle size 0.2 to 0.5 μm, particle shape is spherical) was formed into pellets (pellet sample). The pellet-like sample was heated to 900 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 900 ° C. for 10 hours, and then heated to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 4.

(実施例16)
{Li(Na1−x1−y(Nb1−zTa)O(x=0.458、y=0.057、z=0.082、a=1.10)の組成から成る仮焼/粉砕紛(粒径0.2〜0.5μm、粒形状は球状)をペレット状に成形した(ペレット状試料)。このペレット状試料を、大気中で200℃/hrの速度で900℃まで昇温し、900℃で10hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表4に示した。
(Example 16)
{Li y (Na 1-x K x ) 1-y } a (Nb 1-z Ta z ) O 3 (x = 0.458, y = 0.57, z = 0.082, a = 1.10) ) Calcined / ground powder (particle size 0.2 to 0.5 μm, particle shape is spherical) was formed into pellets (pellet sample). The pellet-like sample was heated to 900 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 900 ° C. for 10 hours, and then heated to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 4.

(実施例17)
{Li(Na1−x1−y(Nb1−zTa)O(x=0.458、y=0.057、z=0.082、a=1.15)の組成から成る仮焼/粉砕紛(粒径0.2〜0.5μm、粒形状は球状)をペレット状に成形した(ペレット状試料)。このペレット状試料を、大気中で200℃/hrの速度で900℃まで昇温し、900℃で10hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表4に示した。
(Example 17)
{Li y (Na 1-x K x ) 1-y } a (Nb 1-z Ta z ) O 3 (x = 0.458, y = 0.057, z = 0.082, a = 1.15 ) Calcined / ground powder (particle size 0.2 to 0.5 μm, particle shape is spherical) was formed into pellets (pellet sample). The pellet-like sample was heated to 900 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 900 ° C. for 10 hours, and then heated to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 4.

(実施例18)
{Li(Na1−x1−y(Nb1−zTa)O(x=0.458、y=0.057、z=0.082、a=1.20)の組成から成る仮焼/粉砕紛(粒径0.2〜0.5μm、粒形状は球状)をペレット状に成形した(ペレット状試料)。このペレット状試料を、大気中で200℃/hrの速度で900℃まで昇温し、900℃で10hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表4に示した。
(Example 18)
{Li y (Na 1-x K x) 1-y} a (Nb 1-z Ta z) O 3 (x = 0.458, y = 0.057, z = 0.082, a = 1.20 ) Calcined / ground powder (particle size 0.2 to 0.5 μm, particle shape is spherical) was formed into pellets (pellet sample). The pellet-like sample was heated to 900 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 900 ° C. for 10 hours, and then heated to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 4.

(実施例19)
{Li(Na1−x1−y(Nb1−zTa)O(x=0.458、y=0.057、z=0.082、a=1.25)の組成から成る仮焼/粉砕紛(粒径0.2〜0.5μm、粒形状は球状)をペレット状に成形した(ペレット状試料)。このペレット状試料を、大気中で200℃/hrの速度で900℃まで昇温し、900℃で10hr保持した後、200℃/hrの速度で焼結温度1050℃まで昇温した。1050℃で3hr保持した後、炉冷した。比較例1と同様にして、得られた焼結体の特性を評価した。その結果を表4に示した。
(Example 19)
{Li y (Na 1-x K x) 1-y} a (Nb 1-z Ta z) O 3 (x = 0.458, y = 0.057, z = 0.082, a = 1.25 ) Calcined / ground powder (particle size 0.2 to 0.5 μm, particle shape is spherical) was formed into pellets (pellet sample). The pellet-like sample was heated to 900 ° C. at a rate of 200 ° C./hr in the atmosphere, held at 900 ° C. for 10 hours, and then heated to a sintering temperature of 1050 ° C. at a rate of 200 ° C./hr. After holding at 1050 ° C. for 3 hours, the furnace was cooled. The characteristics of the obtained sintered body were evaluated in the same manner as in Comparative Example 1. The results are shown in Table 4.

以上の結果からわかるように、焼成スケジュールにキープ工程を焼成収縮が生じる温度域に入れる事により、密度だけでなく、比誘電率や電界誘起歪(S4000)も向上した。特に、粒成長が生じないぎりぎりの温度、又は異相が僅かながら存在できる温度(この実施例の組成の場合、850〜950℃)でのキープが電界誘起歪を向上させる上で最も効果が高い事が分かる。   As can be seen from the above results, not only the density but also the relative permittivity and the electric field induced strain (S4000) were improved by putting the keep process in the temperature range where the firing shrinkage occurs in the firing schedule. In particular, keeping at a marginal temperature at which grain growth does not occur, or a temperature at which a heterogeneous phase can exist slightly (in the case of the composition of this example, 850 to 950 ° C.) is most effective in improving the electric field induced strain. I understand.

又、キープ工程を焼成スケジュールに入れる事で、焼結体中の結晶粒のばらつきがより小さくなる効果もあり、これにより電界誘起歪の向上がもたらされた。この効果は、キープ時間を長くする事でさらに顕著となる。粒径のばらつきが小さくなる事は機械的特性の向上にもつながる。   In addition, putting the keep process in the firing schedule also has the effect of reducing the variation in crystal grains in the sintered body, resulting in an improvement in the electric field induced strain. This effect becomes more prominent by increasing the keep time. Smaller variations in particle size lead to improved mechanical properties.

本発明では、比誘電率や電界誘起歪が向上した優れた(Li,Na,K)(Nb,Ta)O系圧電材料を製造することができるので、アクチュエータ、センサー等に好ましく適用することができる。 In the present invention, an excellent (Li, Na, K) (Nb, Ta) O 3 -based piezoelectric material with improved relative permittivity and electric field induced strain can be produced, and therefore it is preferably applied to actuators, sensors, and the like. Can do.

比較例1で得られた焼結体の表面微構造を示すSEM写真である。4 is a SEM photograph showing a surface microstructure of a sintered body obtained in Comparative Example 1. 実施例7で得られた焼結体の表面微構造を示すSEM写真である。6 is a SEM photograph showing a surface microstructure of a sintered body obtained in Example 7.

Claims (5)

(Li,Na,K)(Nb,Ta)Oの組成からなる粉末粒子の成形体を焼成することにより、(Li,Na,K)(Nb,Ta)O系圧電材料を製造する方法であって、
該(Li,Na,K)(Nb,Ta)O系圧電材料は、構成する全ての金属元素のモル数を1molとした場合のモル比で、Liが0.009〜0.109、Naが0.075〜0.427、Kが0.075〜0.427、Nbが0.227〜0.500、Taが0.022〜0.263を含むものであって、
粉末粒子の粒成長が生じる直前の温度、あるいは異相が僅かながら存在している温度である850〜1000℃の範囲内の、一定温度で少なくとも1時間維持するキープ工程を行った後、さらに昇温して1100℃未満の焼結温度にて焼結する、(Li,Na,K)(Nb,Ta)O系圧電材料の製造方法。
(Li, Na, K) ( Nb, Ta) by firing a compact of powder particles having the composition O 3, a method for producing a (Li, Na, K) ( Nb, Ta) O 3 based piezoelectric material Because
The (Li, Na, K) (Nb, Ta) O 3 based piezoelectric material has a molar ratio in which the number of moles of all constituent metal elements is 1 mol, and Li is 0.009 to 0.109, Na Is 0.075 to 0.427, K is 0.075 to 0.427, Nb is 0.227 to 0.500, Ta is 0.022 to 0.263,
After performing a keeping step of maintaining at a constant temperature for at least 1 hour within a range of 850 to 1000 ° C., which is a temperature immediately before the occurrence of particle growth of powder particles or a temperature at which a heterogeneous phase is slightly present, the temperature is further increased. And (Li, Na, K) (Nb, Ta) O 3 based piezoelectric material manufacturing method for sintering at a sintering temperature of less than 1100 ° C.
前記キープ温度の範囲が850〜950℃である請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein a range of the keep temperature is 850 to 950 ° C. 前記キープ時間が1〜20時間である請求項1又は2記載の製造方法。   The manufacturing method according to claim 1, wherein the keep time is 1 to 20 hours. 焼成雰囲気が酸素雰囲気である請求項1〜3のいずれか1項に記載の製造方法。   The manufacturing method according to claim 1, wherein the firing atmosphere is an oxygen atmosphere. 前記(Li,Na,K)(Nb,Ta)O系圧電材料が、下記一般式(1)で表される組成を有するものである請求項1〜4のいずれか1項に記載の製造方法。
{Li(Na1−x1−y}(Nb1−zTa)O (1)
(但し、前記一般式(1)中、a=0.90〜1.2、x=0.2〜0.8、y=0.02〜0.2、及びz=0.05〜0.5である。)
The production according to any one of claims 1 to 4, wherein the (Li, Na, K) (Nb, Ta) O 3 piezoelectric material has a composition represented by the following general formula (1). Method.
{Li y (Na 1-x K x ) 1-y } a (Nb 1-z Ta z ) O 3 (1)
(However, in said general formula (1), a = 0.90-1.2, x = 0.2-0.8, y = 0.02-0.2, and z = 0.05-0. 5)
JP2007274763A 2006-12-22 2007-10-23 (Li, Na, K) (Nb, Ta) O3 piezoelectric material manufacturing method Expired - Fee Related JP5281782B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/958,636 US8124047B2 (en) 2006-12-22 2007-12-18 Method for manufacturing (Li, Na, K)(Nb, Ta)O3 type piezoelectric material
EP07254991A EP1939951B1 (en) 2006-12-22 2007-12-20 Method for manufacturing (Li, Na, K) (Nb, Ta)O3 type piezoelectric material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US87661906P 2006-12-22 2006-12-22
US60/876,619 2006-12-22

Publications (2)

Publication Number Publication Date
JP2008156210A JP2008156210A (en) 2008-07-10
JP5281782B2 true JP5281782B2 (en) 2013-09-04

Family

ID=39657560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007274763A Expired - Fee Related JP5281782B2 (en) 2006-12-22 2007-10-23 (Li, Na, K) (Nb, Ta) O3 piezoelectric material manufacturing method

Country Status (1)

Country Link
JP (1) JP5281782B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011227B2 (en) * 2008-07-28 2012-08-29 日本碍子株式会社 (Li, Na, K, Bi) (Nb, Ta) O3-based piezoelectric material and manufacturing method thereof
JP5711776B2 (en) * 2008-07-28 2015-05-07 日本碍子株式会社 Piezoelectric / electrostrictive ceramics sintered body
JP2010053021A (en) * 2008-07-28 2010-03-11 Ngk Insulators Ltd Piezoelectric/electrostrictive ceramic sintered body and method of calculating diffuse scattering intensity ratio
JP2010103301A (en) * 2008-10-23 2010-05-06 Ngk Insulators Ltd Method of manufacturing piezoelectric element, and piezoelectric element
KR101012143B1 (en) 2008-11-04 2011-02-07 한국전기연구원 Composition of lead-free piezoelectric ceramics for sensor and actuator and making method for the same
WO2011118884A1 (en) * 2010-03-23 2011-09-29 한국전기연구원 Lead-free piezoelectric ceramic composition for sensors and actuators and a production method for the same
WO2011118897A1 (en) * 2010-03-23 2011-09-29 한국전기연구원 Lead-free piezoelectric ceramic composition for a sensor and an actuator, and method for manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4927551B2 (en) * 2004-09-29 2012-05-09 日本碍子株式会社 Piezoelectric / electrostrictive film type element and manufacturing method thereof
WO2006095716A1 (en) * 2005-03-08 2006-09-14 Ngk Insulators, Ltd. Piezoelectric ceramic composition and method for producing same

Also Published As

Publication number Publication date
JP2008156210A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
JP5281786B2 (en) (Li, Na, K) (Nb, Ta) O3-based piezoelectric material and manufacturing method thereof
JP5281782B2 (en) (Li, Na, K) (Nb, Ta) O3 piezoelectric material manufacturing method
JP4849338B2 (en) Piezoelectric ceramic composition
JP4926389B2 (en) Crystal-oriented ceramics and method for producing the same
JP4973931B2 (en) Piezoelectric ceramic composition
JP2013537513A (en) ceramic
JP2009046373A (en) Piezoelectric/electrostrictive body, manufacturing method of the same, and piezoelectric/electrostrictive element
JP5011227B2 (en) (Li, Na, K, Bi) (Nb, Ta) O3-based piezoelectric material and manufacturing method thereof
CN100371298C (en) Grain oriented ceramics and production method thereof
JP5196879B2 (en) Piezoelectric material
JP2013189325A (en) Method for manufacturing piezoelectric/electrostrictive material film, and powder composition used for manufacture thereof
US8124047B2 (en) Method for manufacturing (Li, Na, K)(Nb, Ta)O3 type piezoelectric material
JP5967532B2 (en) Piezoelectric ceramics
JP2007055867A (en) Piezoelectric ceramic composition
JP2007055864A (en) Piezoelectric ceramic composition
Mahajan et al. Piezoelectric properties of 0.5 (PbNi1/3Nb2/3) O3–0.5 Pb (Zr0. 32Ti0. 68) O3 ceramics prepared by solid state reaction and mechanochemical activation-assisted method
Jiansirisomboon et al. Electrical and mechanical properties of ferroelectric lead zirconate titanate/tungsten oxide ceramics
JP5036758B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP2008260674A (en) Method for producing piezoelectric/electrostrictive ceramic composition
JP5550401B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP2014069988A (en) Piezoelectric ceramic and piezoelectric element using the same
JPWO2006093002A1 (en) Piezoelectric ceramic composition
JP6105777B2 (en) Piezoelectric ceramic and piezoelectric element using the same
US8282854B2 (en) (Li, Na, K)(Nb, Ta, Sb)O3 based piezoelectric material and manufacturing method thereof
WO2003051789A1 (en) Piezoelectric/electrostrictive material and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5281782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees