JP5280939B2 - building - Google Patents

building Download PDF

Info

Publication number
JP5280939B2
JP5280939B2 JP2009124103A JP2009124103A JP5280939B2 JP 5280939 B2 JP5280939 B2 JP 5280939B2 JP 2009124103 A JP2009124103 A JP 2009124103A JP 2009124103 A JP2009124103 A JP 2009124103A JP 5280939 B2 JP5280939 B2 JP 5280939B2
Authority
JP
Japan
Prior art keywords
vibration
ceiling member
overhang
building
overhanging portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009124103A
Other languages
Japanese (ja)
Other versions
JP2010270522A (en
Inventor
正宏 星野
信雄 中山
章浩 杉内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2009124103A priority Critical patent/JP5280939B2/en
Publication of JP2010270522A publication Critical patent/JP2010270522A/en
Application granted granted Critical
Publication of JP5280939B2 publication Critical patent/JP5280939B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the propagation of vibration from a facility to an overhung part. <P>SOLUTION: A ceiling member 26 is isolated from the overhung part 16 provided above the ceiling member 26. The vibration of the ceiling member 26 amplified through resonance with the vibration A is thereby prevented from being propagated to the overhung part 16. The propagation of the vibration from the facility 14 to the overhung part 16 is reduced thereby. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、建物に関する。   The present invention relates to a building.

建物に、振動源(例えば、コンサートホール、スポーツジム、ダンススタジオや、大型の破砕機、輪転機等が設置された機械室、工場など)を設ける場合、振動源から建物へ伝播される振動が問題となる。特に、振動源と、振動を抑制すべき室(例えば、住居、飲食店舗、会議室や、精密機器を取り扱う研究室、診療所、撮影スタジオなど)とが併存する場合は、振動源から振動を抑制すべき室(以下、「嫌振室」という)へ伝播される振動が大きな問題となる。   When a building is equipped with a vibration source (for example, a concert hall, a sports gym, a dance studio, a machine room with a large crusher or rotary press, a factory, etc.), the vibration transmitted from the vibration source to the building It becomes a problem. In particular, if a vibration source and a room where vibration is to be suppressed (for example, a residence, a restaurant, a conference room, a laboratory that handles precision equipment, a clinic, a photography studio, etc.) exist, vibration is generated from the vibration source. Vibration transmitted to a room to be suppressed (hereinafter referred to as “vibration chamber”) is a big problem.

上記問題の対策として、特許文献1では、二棟の建物を離して併設し、振動源と嫌振室とを別々の建物に設けることにより、振動源から嫌振室へ伝播される振動を低減している。   As a countermeasure against the above problem, in Patent Document 1, two buildings are separated from each other, and vibrations transmitted from the vibration source to the vibration isolation room are reduced by providing the vibration source and the vibration isolation room in separate buildings. doing.

しかしながら、特許文献1のように二棟の建物を併設すると、建築面積が大きくなり、敷地の利用効率が低下するばかりか、敷地が狭い場合には採用することができない。更に、特許文献1では、併設された二棟の建物をダンパーで連結している。このように、二棟の建物をダンパーで連結した場合、ダンパーの減衰効果によって振動エネルギーが吸収される一方で、ダンパーのばね剛性によって、振動発生室から嫌振室へ振動が伝播されてしまう。   However, if two buildings are provided side by side as in Patent Document 1, the building area increases, the use efficiency of the site decreases, and it cannot be adopted when the site is small. Furthermore, in patent document 1, the two buildings built side by side are connected with a damper. In this way, when two buildings are connected by a damper, vibration energy is absorbed by the damping effect of the damper, while vibration is propagated from the vibration generating chamber to the anti-vibration chamber by the spring stiffness of the damper.

また、特許文献2には、同一建物内において、トラス構造からなる架構の上に振動源(振動発生部)を設けると共に、架構内に構築された床(振動絶縁床)の上に嫌振室を設けている。この建物では、振動源を支持する架構と、嫌振室を支持する振動絶縁床との縁が切られているため、振動源から嫌振室へ伝播される振動が低減されている。   Further, in Patent Document 2, a vibration source (vibration generating unit) is provided on a frame made of a truss structure in the same building, and a vibration isolation room is provided on a floor (vibration insulating floor) constructed in the frame. Is provided. In this building, since the edge of the frame that supports the vibration source and the vibration insulating floor that supports the vibration isolation chamber is cut, vibration transmitted from the vibration source to the vibration isolation chamber is reduced.

しかしながら、重量が大きい破砕機、輪転械等の振動源を設置する場合、架構の補強が増大し、コストが膨む。また、短時間に多数の利用者が出入りするコンサートホール等の振動源を嫌振室の上方に設けると、利用者の移動経路が長くなり、利便性が低下する。   However, when a vibration source such as a heavy crusher or a wheel rolling machine is installed, the reinforcement of the frame increases and the cost increases. Further, if a vibration source such as a concert hall where many users come and go in a short time is provided above the vibration isolation room, the movement path of the user becomes long and convenience is lowered.

一方、振動源から建物へ伝播される振動を低減するものではないが、特許文献3には、隣接する二棟の建物をダンパーで連結し、人の歩行や設備機械による建物の振動を低減する防振構造が開示されている。この防振構造では、一方の建物に、他方の建物の頂部へ延出する延設部が設けられており、この延設部と他方の建物の頂部とがダンパーで連結されている。このダンパーによって、延設部の振動が低減されている。   On the other hand, although it does not reduce the vibration propagated from the vibration source to the building, in Patent Document 3, the two adjacent buildings are connected by a damper to reduce the vibration of the building due to human walking and equipment machinery. An anti-vibration structure is disclosed. In this anti-vibration structure, one building is provided with an extending portion that extends to the top of the other building, and the extending portion and the top of the other building are connected by a damper. By this damper, the vibration of the extended portion is reduced.

しかしながら、特許文献3の防振構造は、前述した特許文献1の建物と同様に、二棟の建物をダンパーで連結するため、ダンパーのばね剛性によって二棟の建物間で振動が伝播されてしまう。   However, since the vibration-proof structure of Patent Document 3 connects the two buildings with dampers as in the building of Patent Document 1 described above, vibration is propagated between the two buildings due to the spring rigidity of the dampers. .

特開2007−255071号公報JP 2007-255071 A 特開2001−336297号公報JP 2001-336297 A 特開2008−57121号公報JP 2008-57121 A

本発明は、上記の事実を考慮し、施設室から張出し部への振動伝播を低減することを目的とする。   In consideration of the above-described facts, the present invention aims to reduce vibration propagation from a facility room to an overhang portion.

請求項1に記載の建物は、構造体と、前記構造体に隣接して設けられた施設室と、前記構造体から前記施設室の上方へ張り出すと共に、前記施設室の天井部材とは該天井部材の端部以外では連結されておらず縁が切られた張出し部と、を備えている。 Building according to claim 1, and the structure, and facilities chamber provided adjacent to said structure, together with the projecting upwardly of the facility chamber from said structure, a ceiling member of the facility chamber is the And an overhanging portion that is not connected except at the end of the ceiling member and has a cut edge.

上記の構成によれば、施設室及び張出し部を備えている。張出し部は、構造体から施設室の上方へ張り出すと共に、施設室の天井部材とは当該天井部材の端部以外では連結されておらず縁が切られている。そのため、天井部材の振動が張出し部に直接伝播されない。従って、張出し部の振動を低減することができる。また、天井部材から張出し部へ固体伝播音が直接伝播されないため、張出し部の騒音が低減される。
請求項2に記載の建物は、構造体と、前記構造体に隣接して設けられ、該構造体と一体化された施設室と、前記構造体から前記施設室の上方へ張り出すと共に、該施設室の天井部材と縁が切られた張出し部と、を備えている。
According to said structure, the facility room and the overhang | projection part are provided. The projecting portion projects from the structure to the upper side of the facility room, and is not connected to the ceiling member of the facility room except at the end of the ceiling member, and is cut off. Therefore, the vibration of the ceiling member is not directly propagated to the overhanging portion. Therefore, the vibration of the overhang portion can be reduced. Further, since the solid propagation sound is not directly transmitted from the ceiling member to the overhanging portion, the noise in the overhanging portion is reduced.
The building according to claim 2 is provided with a structure, a facility room provided adjacent to the structure, integrated with the structure, and projecting upward from the structure to the facility room. A ceiling member of the facility room, and an overhang part with a cut edge.

請求項に記載の建物は、請求項1または請求項2に記載の建物において、前記張出し部が、前記施設室に存在する振動源から発生する振動と共振しない。 The building according to claim 3 is the building according to claim 1 or 2 , wherein the projecting portion does not resonate with vibration generated from a vibration source existing in the facility room.

上記の構成によれば、張出し部が、施設室にある振動源から発生する振動と共振しないようになっているため、張出し部の振動が低減される。   According to said structure, since the overhang | projection part does not resonate with the vibration generate | occur | produced from the vibration source in a facility room, the vibration of an overhang | projection part is reduced.

請求項に記載の建物は、請求項に記載の建物において、前記天井部材の固有振動数が前記張出し部の固有振動数よりも小さくされ、前記天井部材が、前記振動源から発生する振動と共振する。 The building according to claim 4 is the building according to claim 3 , wherein the natural frequency of the ceiling member is smaller than the natural frequency of the projecting portion, and the ceiling member generates vibration generated from the vibration source. Resonates with.

上記の構成によれば、施設室に存在する振動源から発生する振動と天井部材とが共振するため、天井部材の揺れが増幅される。一方、天井部材と張出し部とは縁が切られているため、天井部材から張出し部へ振動が直接伝達されない。従って、張出し部の振動が低減される。   According to said structure, since the vibration generate | occur | produced from the vibration source which exists in a facility room, and a ceiling member resonate, the shaking of a ceiling member is amplified. On the other hand, since the edge of the ceiling member and the overhang portion is cut, vibration is not directly transmitted from the ceiling member to the overhang portion. Therefore, the vibration of the overhang portion is reduced.

また、天井部材の固有振動数が張出し部の固有振動数よりも小さくなっており、即ち、天井部材の固有振動数と張出し部の固有振動数が異なっている。従って、張出し部は、振動源から発生する振動と共振しないため、張出し部の振動が低減される。   Further, the natural frequency of the ceiling member is smaller than the natural frequency of the overhanging portion, that is, the natural frequency of the ceiling member and the natural frequency of the overhanging portion are different. Therefore, since the overhanging portion does not resonate with the vibration generated from the vibration source, the vibration of the overhanging portion is reduced.

請求項に記載の建物は、請求項又は請求項に記載の建物において、前記張出し部が、トラス構造を備えている。 The building according to claim 5 is the building according to claim 3 or claim 4 , wherein the overhanging portion has a truss structure.

上記の構成によれば、張出し部がトラス構造を備えている。このトラス構造によって、張出し部の剛性を大きくすることにより、張出し部の固有振動を大きくすることができる。従って、施設室に存在する振動源から発生する振動と、張出し部との共振を回避し、張出し部の振動を低減することができる。   According to said structure, the overhang | projection part is equipped with the truss structure. By this truss structure, the natural vibration of the overhang portion can be increased by increasing the rigidity of the overhang portion. Therefore, the vibration generated from the vibration source existing in the facility room and the resonance with the overhanging portion can be avoided, and the vibration of the overhanging portion can be reduced.

請求項に記載の建物は、請求項3〜5の何れか1項に記載の建物において、前記張出し部が、鋼製耐震壁を備えている。 The building according to claim 6 is the building according to any one of claims 3 to 5 , wherein the overhanging portion includes a steel earthquake-resistant wall.

上記の構成によれば、張出し部が鋼製耐震壁を備えている。この鋼製耐震壁によって、張出し部の剛性を大きくすることにより、張出し部の固有振動を大きくすることができる。従って、施設室に存在する振動源から発生する振動と、張出し部との共振を回避し、張出し部の振動を低減することができる。   According to said structure, the overhang | projection part is equipped with the steel earthquake-resistant wall. By increasing the rigidity of the overhang portion by the steel earthquake resistant wall, the natural vibration of the overhang portion can be increased. Therefore, the vibration generated from the vibration source existing in the facility room and the resonance with the overhanging portion can be avoided, and the vibration of the overhanging portion can be reduced.

本発明は、上記の構成としたので、施設室から張出し部への振動伝播を低減することができる。   Since this invention set it as said structure, the vibration propagation from a facility room to an overhang | projection part can be reduced.

本発明の第1実施形態に係る建物を示す、図2の2−2線断面図である。It is the 2-2 sectional view taken on the line of FIG. 2 which shows the building which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る建物を示す、概略平面図である。It is a schematic plan view which shows the building which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る建物を示す、図2の2−2線断面図である。It is the 2-2 sectional view taken on the line of FIG. 2 which shows the building which concerns on 1st Embodiment of this invention. (A)及び(B)は従来の建物における張出し部の応答加速度の振動数特性であり、(C)は本発明の第1実施形態に係る張出し部の応答加速度の振動数特性である。(A) And (B) is the frequency characteristic of the response acceleration of the overhang | projection part in the conventional building, (C) is the frequency characteristic of the response acceleration of the overhang | projection part which concerns on 1st Embodiment of this invention. (A)は加振力を示す曲線であり、(B)は本発明の第1実施形態に係る張出し部の共振曲線であり、(C)は本発明の第1実施形態に係る張出し部の応答加速度の振動数特性である。(A) is a curve showing the excitation force, (B) is a resonance curve of the overhanging part according to the first embodiment of the present invention, and (C) is a curve of the overhanging part according to the first embodiment of the present invention. It is a frequency characteristic of response acceleration. 本発明の第2実施形態に係る建物を示す、図2の2−2線断面に相当する図である。It is a figure equivalent to the 2-2 line section of Drawing 2 showing the building concerning a 2nd embodiment of the present invention. 本発明の第1、第2実施形態の変形例に係る建物を示す、平面図である。It is a top view which shows the building which concerns on the modification of 1st, 2nd embodiment of this invention. 本発明の第1、第2実施形態の変形例に係る鋼製耐震壁を示しており、(A)は立面図であり、(B)は図8(A)の8−8線断面図である。The steel shear wall which concerns on the modification of 1st, 2nd embodiment of this invention is shown, (A) is an elevation view, (B) is the 8-8 sectional view taken on the line of FIG. 8 (A). It is. 本発明の第1、第2実施形態の変形例に係る鋼製耐震壁を示しており、(A)は立面図であり、(B)は図9(A)の9−9線断面図である。The steel shear wall which concerns on the modification of 1st, 2nd embodiment of this invention is shown, (A) is an elevation, (B) is 9-9 line sectional drawing of FIG. 9 (A). It is. 比較例としての建物を示す、立面図である。It is an elevational view showing a building as a comparative example.

以下、図面を参照しながら、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

先ず、第1実施形態について説明する。   First, the first embodiment will be described.

図1及び図2に示されるように、鉄骨造の建物10は、構造体12、施設室14、及び張出し部16を備えている。構造体12は、柱18及び梁20から構成されたラーメン構造とされており、基礎22に支持された下部構造部12Aと、下部構造部12Aの上に構築された上部構造部12B(図2参照)とから構成されている。   As shown in FIGS. 1 and 2, the steel structure building 10 includes a structure 12, a facility room 14, and an overhang portion 16. The structure 12 has a ramen structure composed of columns 18 and beams 20, and includes a lower structure portion 12A supported by a foundation 22 and an upper structure portion 12B constructed on the lower structure portion 12A (FIG. 2). For example).

施設室14は、下部構造部12Aに隣接して構築されており、当該下部構造部12Aと一体化されている。この施設室14は、壁24によって区画された大空間とされており、コンサートホール、スポーツジム、ダンススタジオや、大型の破砕機、輪転機等が設置される機械室、工場として使用され、低振動数帯域(本実施形態では、2〜4Hz)で相対的に大きな加振力を持つ振動Aを発生する振動源が設けられる。なお、本実施形態では、振動Aを発生するものを振動源といい、コンサートホール、スポーツジムのように人為的に振動Aを発生するものも振動源に含まれる。また、振動Aにおいて、相対的に加振力が大きくなる振動数帯域を卓越振動数帯域という。   The facility room 14 is constructed adjacent to the lower structure portion 12A, and is integrated with the lower structure portion 12A. The facility room 14 is a large space partitioned by a wall 24, and is used as a concert hall, a gym, a dance studio, a machine room where a large crusher, a rotary press, etc. are installed, and a factory. A vibration source that generates vibration A having a relatively large excitation force in the frequency band (2 to 4 Hz in the present embodiment) is provided. In the present embodiment, those that generate vibration A are referred to as vibration sources, and those that generate vibration A artificially, such as concert halls and sports gyms, are also included in the vibration sources. In vibration A, a frequency band in which the excitation force is relatively large is referred to as a dominant frequency band.

施設室14の天井部材26は、下部構造部12Aの柱18と施設室14の壁24との間に架設された天井面材又はこれを支持する梁等の水平部材からなり、大スパン(本実施形態では、約20m)とされている。このような大スパンの水平部材は、一般的に固有振動数が小さくなる傾向にあり、本実施形態の天井部材26の固有振動数も2〜4Hzとなっている。即ち、天井部材26は、卓越振動数帯域において振動Aと共振するようになっている。なお、天井部材26は、天井面材及びこれを支持する梁を一体化したものでも良い。   The ceiling member 26 of the facility room 14 is made of a horizontal member such as a ceiling surface material or a beam supporting the ceiling surface material laid between the pillar 18 of the lower structural portion 12A and the wall 24 of the facility room 14, and has a large span (main In the embodiment, it is about 20 m). Such a long span horizontal member generally tends to have a lower natural frequency, and the natural frequency of the ceiling member 26 of the present embodiment is 2 to 4 Hz. That is, the ceiling member 26 resonates with the vibration A in the dominant frequency band. The ceiling member 26 may be an integrated ceiling surface material and a beam supporting the ceiling member.

施設室14の上方には、張出し部16が設けられている。張出し部16は、上部構造部12Bから施設室14の上方へ張り出しており、上部構造部12Bに片持ちで支持されている。この張出し部16と施設室14の天井部材26との間には隙間が設けられており、即ち、張出し部16と天井部材26との縁が切られている。これにより、天井部材26の振動が張出し部16へ直接伝播されないようになっている。また、張出し部16は、鋼材からなる柱16A、梁16B、及び斜材16Cを連結した高剛性のトラス構造とされ、その固有振動数が5〜10Hz程度となっている。即ち、張出し部16の固有振動数は、振動Aの卓越振動数帯域から外れており、当該卓越振動数帯域において振動Aと共振しないようになっている。   An overhang portion 16 is provided above the facility room 14. The overhanging portion 16 protrudes from the upper structure portion 12B to the upper side of the facility room 14, and is supported by the upper structure portion 12B in a cantilever manner. A gap is provided between the overhang portion 16 and the ceiling member 26 of the facility room 14, that is, the edge between the overhang portion 16 and the ceiling member 26 is cut. Thereby, the vibration of the ceiling member 26 is not directly propagated to the overhanging portion 16. The overhanging portion 16 has a highly rigid truss structure in which steel columns 16A, beams 16B, and diagonal members 16C are connected, and has a natural frequency of about 5 to 10 Hz. That is, the natural frequency of the overhanging portion 16 is out of the dominant frequency band of the vibration A, and does not resonate with the vibration A in the dominant frequency band.

次に、第1実施形態の作用について説明する。   Next, the operation of the first embodiment will be described.

図3に示されるように、施設室14において振動Aが発生すると、振動Aが天井部材26に伝播されると共に、基礎22を介して下部構造部12Aに伝播される。ここで、天井部材26は、大スパンとされていることから、その固有振動数(本実施形態では、2〜4Hz)が小さくなっている。そのため、天井部材26が、卓越振動数帯域において振動Aと共振し、その振幅が増幅される。   As shown in FIG. 3, when the vibration A is generated in the facility room 14, the vibration A is propagated to the ceiling member 26 and is propagated to the lower structure portion 12 </ b> A via the foundation 22. Here, since the ceiling member 26 has a large span, its natural frequency (2 to 4 Hz in this embodiment) is small. Therefore, the ceiling member 26 resonates with the vibration A in the dominant frequency band, and the amplitude thereof is amplified.

一方、天井部材26と当該天井部材26の上方に設けられた張出し部16とは縁が切られているため、共振によって増幅された天井部材26の振動が、張出し部16へ直接伝播されない。これにより、施設室14から張出し部16への振動伝播が低減されている。従って、施設室14の上方のスペースを利用しつつ、張出し部16の振動性能を向上することができる。更に、天井部材26から張出し部16へ固体伝播音が直接伝播されないため、張出し部16の騒音が低減される。   On the other hand, since the edge of the ceiling member 26 and the overhanging portion 16 provided above the ceiling member 26 is cut off, the vibration of the ceiling member 26 amplified by resonance is not directly propagated to the overhanging portion 16. Thereby, the vibration propagation from the facility room 14 to the overhang part 16 is reduced. Therefore, the vibration performance of the overhanging portion 16 can be improved while using the space above the facility room 14. Further, since the solid propagation sound is not directly propagated from the ceiling member 26 to the overhanging portion 16, the noise of the overhanging portion 16 is reduced.

また、張出し部16には、基礎22及び構造体12を介して振動Aが伝播されるが、張出し部16は高剛性のトラス構造されており、その固有振動数(本実施形態では、5〜10Hz)が大きくなっている。そのため、張出し部16が、卓越振動数帯域において振動Aと共振しない。従って、張出し部16の振動が低減され、当該張出し部の振動性能を向上することができる。   In addition, the vibration A is propagated to the overhanging portion 16 through the foundation 22 and the structure 12, but the overhanging portion 16 has a highly rigid truss structure, and its natural frequency (in this embodiment, 5 to 5). 10 Hz) is increased. Therefore, the overhanging portion 16 does not resonate with the vibration A in the dominant frequency band. Therefore, the vibration of the overhang portion 16 is reduced, and the vibration performance of the overhang portion can be improved.

このように張出し部16の振動が低減された建物10は、振動源となる施設室14と、嫌振室(例えば、住居、飲食店舗、会議室や、精密機器を取り扱う研究室、診療所、撮影スタジオなど)とを並存させる場合に、特に有効である。具体的には、張出し部16に嫌振室を設けることにより、例えば、コンサートホールと飲食店舗とを同一建物10内に並存させることができる。   In this way, the building 10 in which the vibration of the overhanging portion 16 is reduced includes a facility room 14 serving as a vibration source, a vibration isolation room (for example, a residence, a restaurant, a conference room, a laboratory that handles precision equipment, a clinic, This is particularly effective when coexisting with a photography studio. Specifically, by providing an anti-vibration room in the overhanging portion 16, for example, a concert hall and a restaurant can coexist in the same building 10.

また、本実施形態では、施設室14の上方に張出し部16を設けたことにより、張出し部16と比較して施設室14が地表に近くなっている。従って、例えば、施設室14に重量が大きい破砕機、輪転械等の振動源を設置する場合に、これらの振動源の設置作業が容易になる。また、短時間に多数の利用者が出入りするコンサートホール等として施設室14を使用する場合に、利用者の移動経路が短くなり、利便性が向上する。   In the present embodiment, since the overhanging portion 16 is provided above the facility room 14, the facility room 14 is closer to the ground surface than the overhanging portion 16. Therefore, for example, when installing a vibration source such as a heavy crusher or a wheel rolling machine in the facility room 14, installation work of these vibration sources becomes easy. In addition, when the facility room 14 is used as a concert hall or the like where a large number of users come and go in a short time, the user's travel route is shortened and convenience is improved.

次に、比較例と対比しながら本実施形態の作用を更に説明する。   Next, the operation of this embodiment will be further described in comparison with a comparative example.

図10には、比較例としての建物100が示されている。また、図4(A)及び図4(B)には、建物100の張出し部106及び構造体102の応答加速度の振動数特性112、114が模式的に示されており、図4(C)には、本実施形態に係る張出し部16及び構造体12の応答加速度の振動数特性28、30が模式的に示されている。なお、図4(A)〜図4(C)中の符号32は、振動Aの加振力を模式的に表している。   FIG. 10 shows a building 100 as a comparative example. 4 (A) and 4 (B) schematically show frequency characteristics 112 and 114 of the response acceleration of the overhanging portion 106 and the structure 102 of the building 100, and FIG. 4 (C). 1 schematically shows frequency characteristics 28 and 30 of response accelerations of the overhang portion 16 and the structure 12 according to the present embodiment. In addition, the code | symbol 32 in FIG. 4 (A)-FIG. 4 (C) represents the excitation force of the vibration A typically.

図10に示されるように、建物100は、構造体102、施設室104、及び張出し部106を備えている。ここで、建物100の張出し部106はトラス構造とされていない。そのため、張出し部106の剛性は、本実施形態に係る張出し部16よりも小さく、その固有振動は2〜4Hzとなっている。従って、図4(A)に示されるように、卓越振動数帯域において、張出し部106が振動Aと共振する。また、建物100では、施設室104の天井部材108と張出し部106との縁が切られていない。従って、振動Aとの共振によって増幅された天井部材108の振動が、張出し部106へ直接伝播される。従って、卓越振動数帯域において、張出し部106の振動(応答加速度)が増大している。   As shown in FIG. 10, the building 100 includes a structure body 102, a facility room 104, and an overhang portion 106. Here, the overhanging portion 106 of the building 100 is not a truss structure. Therefore, the rigidity of the overhang portion 106 is smaller than that of the overhang portion 16 according to the present embodiment, and its natural vibration is 2 to 4 Hz. Therefore, as shown in FIG. 4A, the overhanging portion 106 resonates with the vibration A in the dominant frequency band. Further, in the building 100, the edge between the ceiling member 108 and the overhanging portion 106 of the facility room 104 is not cut. Therefore, the vibration of the ceiling member 108 amplified by the resonance with the vibration A is directly propagated to the overhang portion 106. Therefore, the vibration (response acceleration) of the overhanging portion 106 is increased in the dominant frequency band.

次に、張出し部106をトラス構造とし、当該張出し部106の剛性を本実施形態に係る張出し部16と同じにした場合の、張出し部106の応答加速度の振動数特性112を図4(B)に示す。この場合、卓越振動数帯域において、張出し部106が振動Aと共振しないため、図4(A)と比較して張出し部106の振動(応答加速度)が低減されている。しかしながら、張出し部106には振動Aとの共振よって増幅された天井部材108の振動が直接伝播されるため、張出し部106の振動(応答加速度)が大きくなっている。   Next, the frequency characteristic 112 of the response acceleration of the overhanging portion 106 when the overhanging portion 106 has a truss structure and the rigidity of the overhanging portion 106 is the same as that of the overhanging portion 16 according to the present embodiment is shown in FIG. Shown in In this case, since the overhang portion 106 does not resonate with the vibration A in the dominant frequency band, the vibration (response acceleration) of the overhang portion 106 is reduced as compared to FIG. However, since the vibration of the ceiling member 108 amplified by the resonance with the vibration A is directly propagated to the overhanging portion 106, the vibration (response acceleration) of the overhanging portion 106 is large.

一方、本実施形態では、天井部材26と張出し部16との縁が切られているため、天井部材26の振動が張出し部16へ直接伝播されない。また、張出し部16の固有振動数(5〜10Hz)が大きいため、卓越振動数帯域において、張出し部16が振動Aと共振しない。従って、図4(C)に示される応答加速度の振動数特性28から分かるように、卓越振動数帯域における張出し部16の振動が低減されている。   On the other hand, in the present embodiment, since the edge between the ceiling member 26 and the overhang portion 16 is cut, the vibration of the ceiling member 26 is not directly propagated to the overhang portion 16. Moreover, since the natural frequency (5 to 10 Hz) of the overhang portion 16 is large, the overhang portion 16 does not resonate with the vibration A in the dominant frequency band. Accordingly, as can be seen from the response acceleration frequency characteristic 28 shown in FIG. 4C, the vibration of the overhanging portion 16 in the dominant frequency band is reduced.

なお、構造体12には基礎22を介して振動Aが伝播されるが、構造体12は剛性が大きく、即ち、固有振動数が大きいため、卓越振動数帯域において振動Aと共振しない。従って、卓越振動数帯域においては、構造体12の振動(応答加速度)が増幅されていない。一方、構造体12が振動Aと共振する高振動数帯域においては、構造体102の振動(振幅)が共振によって増幅されている。比較例の構造体102についても同様である。   The vibration A is propagated to the structure 12 through the foundation 22, but the structure 12 has high rigidity, that is, has a large natural frequency, and therefore does not resonate with the vibration A in the dominant frequency band. Therefore, in the dominant frequency band, the vibration (response acceleration) of the structure 12 is not amplified. On the other hand, in the high frequency band where the structure 12 resonates with the vibration A, the vibration (amplitude) of the structure 102 is amplified by resonance. The same applies to the structure 102 of the comparative example.

次に、張出し部16の固有振動数について説明する。   Next, the natural frequency of the overhang portion 16 will be described.

図5(A)は、振動Aの加振力曲線34が模式的に示されており、図5(B)には、固有振動数が異なる3つの張出し部16の共振曲線36A、36B、36Cが模式的に示されており、図5(C)には、各張出し部16の応答加速度の振動数特性38A、38B、38Cが示されている。   5A schematically shows an excitation force curve 34 of the vibration A, and FIG. 5B shows resonance curves 36A, 36B, and 36C of the three overhang portions 16 having different natural frequencies. Is schematically shown, and FIG. 5C shows the frequency characteristics 38A, 38B, and 38C of the response acceleration of each overhang portion 16.

前述したように、加振力が大きい卓越振動数帯域において、振動Aと張出し部16との共振を回避することにより、張出し部16の振動を効率的に低減することができる。従って、振動Aと張出し部16とが共振しないように、張出し部16の固有振動数を設計することが好ましい。また、張出し部16の固有振動数は、張出し部16の用途に応じた目標性能を満たすように適宜設計される。例えば、張出し部16の目標性能が、居住性能評価指針(日本建築学会環境基準)における鉛直振動に関する性能評価レベルV−30である場合、図4(C)からわかるように、固有振動数が一番大きい張出し部16(応答加速度の振動数特性38C)のみが性能評価レベルV−30を満たすことになる。   As described above, the vibration of the overhanging portion 16 can be efficiently reduced by avoiding the resonance between the vibration A and the overhanging portion 16 in the dominant frequency band where the excitation force is large. Therefore, it is preferable to design the natural frequency of the overhang portion 16 so that the vibration A and the overhang portion 16 do not resonate. Further, the natural frequency of the overhang portion 16 is appropriately designed so as to satisfy the target performance corresponding to the use of the overhang portion 16. For example, when the target performance of the overhanging portion 16 is the performance evaluation level V-30 related to vertical vibration in the residential performance evaluation guidelines (Environmental Standards of Architectural Institute of Japan), as shown in FIG. Only the largest overhang portion 16 (frequency characteristic 38C of response acceleration) satisfies the performance evaluation level V-30.

次に、第2実施形態について説明する。なお、第1実施形態と同じ構成のものは同符号を付すると共に、適宜省略して説明する。   Next, a second embodiment will be described. In addition, the thing of the same structure as 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits suitably and demonstrates.

図6には、第2実施形態に係る建物40が示されている。この建物40では、施設室14の上方へ張り出した張出し部42が施設室14で支持されている。具体的には、張出し部42は、鋼材からなる柱42A、梁42B、及び斜材42Cを連結した高剛性のトラス構造とされ、上部構造部12Bから施設室14の上方へ張出している。張出し部42の自由端側(先端側)には、支持部として柱44が設けられており、この柱44が施設室14を区画する壁24によって支持されている。即ち、天井部材26と、当該天井部材26を支持する壁24との節点上で、張出し部42の柱44が支持されている。これにより、天井部材26から柱44を介して張出し部42へ伝播される振動が低減されている。   FIG. 6 shows a building 40 according to the second embodiment. In this building 40, a projecting portion 42 that projects upward from the facility room 14 is supported by the facility room 14. Specifically, the overhanging portion 42 has a high-rigidity truss structure in which steel columns 42A, beams 42B, and diagonal members 42C are connected, and overhangs the facility room 14 from the upper structure portion 12B. A column 44 is provided as a support portion on the free end side (tip side) of the overhanging portion 42, and this column 44 is supported by the wall 24 that partitions the facility room 14. That is, the pillar 44 of the overhanging portion 42 is supported on the node between the ceiling member 26 and the wall 24 that supports the ceiling member 26. Thereby, the vibration propagated from the ceiling member 26 to the overhanging portion 42 via the column 44 is reduced.

一方、張出し部42と施設室14の天井部材26との間には隙間が設けられており、即ち、張出し部16と天井部材26との縁が切られている。これにより、天井部材26の振動が張出し部16へ直接伝播されないようになっている。   On the other hand, a gap is provided between the overhang portion 42 and the ceiling member 26 of the facility room 14, that is, the edge between the overhang portion 16 and the ceiling member 26 is cut. Thereby, the vibration of the ceiling member 26 is not directly propagated to the overhanging portion 16.

次に、第2実施形態の作用について説明する。   Next, the operation of the second embodiment will be described.

張出し部42を施設室14で支持したことにより、構造体12の負担を低減しつつ、張出し部42の張出し量(突出量)を大きくし、張出し部42のスペースを広くすることができる。   By supporting the overhanging portion 42 in the facility room 14, it is possible to increase the overhang amount (projection amount) of the overhanging portion 42 and widen the space of the overhanging portion 42 while reducing the burden on the structure 12.

また、天井部材26と壁24との節点上で、張出し部42の柱44を支持したことにより、当該柱18から張出し部へ伝播される振動を低減することができる。天井部材26の振動(振幅)は、天井部材26の中央部から端部に向かって小さくなり、他の構造部材と天井部材26との接合部である節点において最小となるためである。   Further, by supporting the column 44 of the overhanging portion 42 on the node between the ceiling member 26 and the wall 24, vibration propagated from the column 18 to the overhanging portion can be reduced. This is because the vibration (amplitude) of the ceiling member 26 decreases from the center portion to the end portion of the ceiling member 26 and becomes minimum at a node that is a joint portion between the other structural member and the ceiling member 26.

なお、本実施形態では、天井部材26と壁24との節点上で、張出し部42の柱44を支持したが、天井部材26の端部側で張出し部42の柱44を支持しても良い。また、支持部は、柱44に限らず、張出し部42の壁でも良い。   In this embodiment, the column 44 of the overhang portion 42 is supported on the node between the ceiling member 26 and the wall 24, but the column 44 of the overhang portion 42 may be supported on the end side of the ceiling member 26. . Further, the support portion is not limited to the pillar 44 but may be a wall of the overhang portion 42.

また、上記第1、第2実施形態は、種々の形状(平面視にて、円形、楕円形、多角形)、構造の張出し部に適用することができる。例えば、図7(A)示されるように、張出し部46は、下部構造部12Aの隅角部から施設室14の中央部へ向かって張り出しても良い。また、図7(B)に示されるように、張出し部48は平面視にて楕円形であっても良い。更に、図7(C)に示されるように、張出し部50は、平面視にて楕円形であって、下部構造部12Aの隅角部から施設室14の中央部へ向かって張り出しても良い。   In addition, the first and second embodiments can be applied to projecting portions of various shapes (circular, elliptical, polygonal in plan view) and structures. For example, as shown in FIG. 7A, the overhanging portion 46 may overhang from the corner portion of the lower structure portion 12 </ b> A toward the center portion of the facility room 14. Further, as shown in FIG. 7B, the overhang portion 48 may be elliptical in plan view. Further, as shown in FIG. 7C, the overhang portion 50 is elliptical in plan view, and may protrude from the corner portion of the lower structure portion 12 </ b> A toward the center portion of the facility room 14. .

また、トラス構造に替えて又はトラス構造と組み合わせて鋼製耐震壁を設置することにより、張出し部16、42の剛性を高めても良い。例えば、図8(A)及び図8(B)に示されるように、張出し部16を構成する架構62には、鋼製耐震壁60が設置されている。鋼製耐震壁60は、架構62に設けられる複数の形鋼部材64と、上下方向に隣接する形鋼部材64を接合する接合手段と、を備えている。   Moreover, you may raise the rigidity of the overhang | projection parts 16 and 42 by replacing with a truss structure or combining with a truss structure and installing a steel earthquake-resistant wall. For example, as shown in FIGS. 8A and 8B, a steel seismic wall 60 is installed on the frame 62 constituting the overhanging portion 16. The steel seismic wall 60 includes a plurality of structural steel members 64 provided on the frame 62 and joining means for joining the structural steel members 64 adjacent in the vertical direction.

架構62は、角形鋼管からなる柱16Aと、H形鋼からなる梁16Bを接合して構成されている。各形鋼部材64は断面C形に形成されている。これらの形鋼部材64は、上下方向に隣接して配置され、隣接するフランジ部に貫通される高力ボルト66及びナット68等の接合手段によってせん断力を伝達可能に接合されている。また、水平方向に隣接する形鋼部材64には、裏面側から鋼製の添え板70が当てられており、各形鋼部材64と添え板70とが高力ボルト72及びナット73で接合されている。なお、形鋼部材64は、断面C形に限らず、断面H形、I形、角形等であっても良い。   The frame 62 is configured by joining a column 16A made of a square steel pipe and a beam 16B made of an H-shaped steel. Each section member 64 is formed in a C-shaped cross section. These structural steel members 64 are arranged adjacent to each other in the vertical direction, and are joined so as to transmit shearing force by joining means such as high-strength bolts 66 and nuts 68 that penetrate through the adjacent flange portions. In addition, steel shaped plate 70 is applied to the structural steel member 64 adjacent in the horizontal direction from the back side, and each shaped steel member 64 and the attached plate 70 are joined by a high strength bolt 72 and a nut 73. ing. The shape steel member 64 is not limited to the C-shaped section, but may be a H-shaped section, an I-shaped section, a rectangular section, or the like.

一方、柱18には、断面L形の鋼製の取付部材74が固定されている。この取付部材74と形鋼部材64のウェブ部とが高力ボルト72で接合されている。なお、形鋼部材64の材料としては、普通鋼(例えば、SM490、SS400等)や低降伏点鋼(例えば、LY225等)等が用いられる。   On the other hand, a steel mounting member 74 having an L-shaped cross section is fixed to the column 18. The attachment member 74 and the web portion of the shaped steel member 64 are joined by a high-strength bolt 72. In addition, as a material of the shape steel member 64, normal steel (for example, SM490, SS400, etc.), low yield point steel (for example, LY225, etc.), etc. are used.

この鋼製耐震壁60によって、張出し部16の剛性が高められると共に、張出し部16の耐震性能が向上する。即ち、地震等によって架構62に層間変形角が生じると、上下の梁20から各形鋼部材64に水平力が伝達され、各形鋼部材64がせん断変形する。これにより、各形鋼部材64が水平力に抵抗して耐震効果を発揮する。また、水平力に対して鋼板102が降伏するように設計することで、鋼板の履歴エネルギーによって振動エネルギーが吸収され、制振効果を発揮する。   The steel seismic wall 60 increases the rigidity of the overhanging portion 16 and improves the seismic performance of the overhanging portion 16. That is, when an interlayer deformation angle is generated in the frame 62 due to an earthquake or the like, a horizontal force is transmitted from the upper and lower beams 20 to each shape steel member 64, and each shape steel member 64 undergoes shear deformation. Thereby, each shape-steel member 64 resists a horizontal force, and exhibits an earthquake resistance effect. Moreover, by designing so that the steel plate 102 yields with respect to a horizontal force, vibration energy is absorbed by the hysteresis energy of a steel plate, and the damping effect is exhibited.

また、図9(A)及び図9(B)に示されるように、波形鋼板82を用いた鋼製耐震壁80を架構62に設けても良い。具体的には、鋼製耐震壁80は、架構62に設けられる波形鋼板82と、波形鋼板82の外周に設けられる枠体84と、を備えている。波形鋼板82は、鋼板を波形形状に折り曲げ加工して構成され、その折り筋82Aを縦(折り筋の向きを上下方向)にして架構62の構面に配置されている。波形鋼板82の材料としては、普通鋼(例えば、SM490、SS400等)や低降伏点鋼(例えば、LY225等)等が用いられる。   Further, as shown in FIGS. 9A and 9B, a steel earthquake resistant wall 80 using a corrugated steel plate 82 may be provided on the frame 62. Specifically, the steel earthquake-resistant wall 80 includes a corrugated steel plate 82 provided on the frame 62 and a frame body 84 provided on the outer periphery of the corrugated steel plate 82. The corrugated steel plate 82 is configured by bending a steel plate into a corrugated shape, and is disposed on the surface of the frame 62 with the crease 82A being vertical (the direction of the crease is in the vertical direction). As the material of the corrugated steel plate 82, ordinary steel (for example, SM490, SS400, etc.), low yield point steel (for example, LY225, etc.) or the like is used.

波形鋼板82の外周に設けられた枠体84は、波形鋼板82の左右の端部に設けられた縦フランジ84Aと、波形鋼板82の上下の端部に設けられた横フランジ84Bと、から構成されている。これらの縦フランジ84A及び横フランジ84Bは鋼板からなり、波形鋼板82の端部に沿って溶接等で固定されている。この横フランジ84Bと上下の梁20とは、高力ボルト86及びナット88でせん断力を伝達可能に接合されている。   The frame body 84 provided on the outer periphery of the corrugated steel plate 82 includes a vertical flange 84A provided at the left and right ends of the corrugated steel plate 82, and a horizontal flange 84B provided at the upper and lower ends of the corrugated steel plate 82. Has been. The vertical flange 84A and the horizontal flange 84B are made of steel plates, and are fixed along the end of the corrugated steel plate 82 by welding or the like. The horizontal flange 84 </ b> B and the upper and lower beams 20 are joined by a high-strength bolt 86 and a nut 88 so that a shearing force can be transmitted.

鋼製耐震壁80によって、張出し部16の剛性が高められると共に、耐震性能が向上する。即ち、地震等によって架構62に層間変形角が生じると、上下の梁20から波形鋼板82に水平力が伝達され、各形鋼部材64がせん断変形する。これにより、各形鋼部材64が水平力に抵抗して耐震効果を発揮する。また、水平力に対して鋼板102が降伏するように設計することで、鋼板の履歴エネルギーによって振動エネルギーが吸収され、制振効果を発揮する。   The steel seismic wall 80 increases the rigidity of the overhanging portion 16 and improves the seismic performance. That is, when an interlayer deformation angle is generated in the frame 62 due to an earthquake or the like, a horizontal force is transmitted from the upper and lower beams 20 to the corrugated steel plate 82, and each section steel member 64 undergoes shear deformation. Thereby, each shape-steel member 64 resists a horizontal force, and exhibits an earthquake resistance effect. Moreover, by designing so that the steel plate 102 yields with respect to a horizontal force, vibration energy is absorbed by the hysteresis energy of a steel plate, and the damping effect is exhibited.

ここで、波形鋼板82は、その折り筋82Aと直交する方向の剛性が弱いというアコーディオン効果を有しており、一般的な鋼板耐震壁と比較して優れた変形性能を有している。そのため、波形鋼板82は、一般的な鋼板耐震壁と比較してせん断座屈耐力が大きく、耐久性、エネルギー吸収性能に優れている。なお、波形鋼板82には、せん断座屈防止用の補剛リブを適宜設けても良い。   Here, the corrugated steel plate 82 has an accordion effect that the rigidity in the direction orthogonal to the folding line 82A is weak, and has excellent deformation performance as compared with a general steel plate earthquake resistant wall. Therefore, the corrugated steel plate 82 has a greater shear buckling strength than a general steel plate earthquake resistant wall, and is excellent in durability and energy absorption performance. The corrugated steel plate 82 may be appropriately provided with stiffening ribs for preventing shear buckling.

また、波形鋼板82の折り筋82Aを縦にして配置することにより、張出し部16の上下方向(鉛直方向)の剛性を大きくしている。これにより、波形鋼板82の折り筋82Aを横(折り筋の向きを水平方向)にして配置する場合と比較して、鉛直方向の揺れ(鉛直振動)を低減することができる。なお、波形鋼板82は、その折り筋82Aを横にして配置しても良い。   Further, by arranging the crease 82A of the corrugated steel plate 82 vertically, the rigidity of the overhanging portion 16 in the vertical direction (vertical direction) is increased. Thereby, as compared with the case where the crease 82A of the corrugated steel plate 82 is disposed sideways (the direction of the crease is horizontal), vertical vibration (vertical vibration) can be reduced. The corrugated steel plate 82 may be arranged with its crease 82A sideways.

また、波形鋼板82と柱16Aとの間に隙間を空けて配置しても良い。これにより、単純な構成で鋼製耐震壁80に設備開口等の開口を設けることができる。更に、波形鋼板82の断面形状(板厚、波形のピッチ、波高等)は、図9(B)示す形状に限らず、鋼製耐震壁80に求められる耐震性能に応じて適宜変更可能である。   Moreover, you may arrange | position with a clearance gap between the corrugated steel plate 82 and the pillar 16A. Thereby, opening, such as equipment opening, can be provided in the steel earthquake-resistant wall 80 with a simple configuration. Furthermore, the cross-sectional shape (plate thickness, corrugated pitch, wave height, etc.) of the corrugated steel plate 82 is not limited to the shape shown in FIG. 9B, and can be changed as appropriate according to the seismic performance required for the steel seismic wall 80. .

なお、上記第1、第2実施形態で示した天井部材26の固有振動数(2〜4Hz)、張出し部16、42の固有振動数(5〜10Hz)は、あくまでも一例であって、本発明の構成を何ら限定するものではない。また、本実施形態における共振とは、振動Aによって加振される部材(例えば、天井部材26)の振動(応答倍率)が著しく大きくなることをいう。また、本実施形態では、加振力が相対的に大きくなる卓越振動数帯域(2〜4Hz)が一つであるが、卓越振動数帯域が複数ある場合には、何れかの卓越振動数帯域において、加振される部材が共振すれば良い。
逆に、本実施形態における共振しないとは、振動Aによって加振される部材(例えば、張出し部16、42)の固有振動数が振動Aの卓越振動数帯域から外れており、その振幅が著しく増幅されないことをいう。
The natural frequency (2 to 4 Hz) of the ceiling member 26 and the natural frequency (5 to 10 Hz) of the overhang portions 16 and 42 shown in the first and second embodiments are merely examples, and the present invention. It is not intended to limit the configuration. The resonance in the present embodiment means that the vibration (response magnification) of a member (for example, the ceiling member 26) excited by the vibration A is remarkably increased. Further, in this embodiment, there is one dominant frequency band (2 to 4 Hz) in which the excitation force is relatively large. However, when there are a plurality of dominant frequency bands, any of the dominant frequency bands In this case, the member to be vibrated only needs to resonate.
On the other hand, the term “no resonance” in the present embodiment means that the natural frequency of the member (eg, the overhang portions 16 and 42) excited by the vibration A is out of the dominant frequency band of the vibration A, and the amplitude is remarkably large. It is not amplified.

また、張出し部16、42を補剛するトラス構造は上記したもの限らず、必要に応じて適宜変更可能である。また、トラス構造は、張出し部16、42の一部に適用しても良いし、全てに適用しても良い。鋼製耐震壁60、80についても同様である。   Further, the truss structure for stiffening the overhang portions 16 and 42 is not limited to that described above, and can be changed as appropriate. Further, the truss structure may be applied to a part of the overhang portions 16 and 42 or may be applied to all of them. The same applies to the steel shear walls 60 and 80.

また、上記第1、第2実施形態は、鉄骨造、鉄筋コンクリート造、鉄骨鉄筋コンクリート造、プレストレスコンクリート造等の種々の構造の建物に適用することができる。更に、施設室14は、建物10、40の下層部に限らず、建物10、40の中層部や地下に設けることができる。   The first and second embodiments can be applied to buildings having various structures such as a steel structure, a reinforced concrete structure, a steel reinforced concrete structure, and a prestressed concrete structure. Furthermore, the facility room 14 can be provided not only in the lower layer of the buildings 10 and 40 but also in the middle layer or the basement of the buildings 10 and 40.

以上、本発明の第1、第2実施形態について説明したが、本発明はこうした実施形態に限定されるものでなく、第1、第2実施形態を組み合わせて用いてもよいし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   The first and second embodiments of the present invention have been described above. However, the present invention is not limited to such embodiments, and the first and second embodiments may be used in combination. Needless to say, the present invention can be implemented in various forms without departing from the scope of the invention.

10 建物
12 構造体
14 施設室
16 張出し部
26 天井部材
40 建物
42 張出し部
46 張出し部
48 張出し部
50 張出し部
60 鋼製耐震壁
80 鋼製耐震壁
A 振動
DESCRIPTION OF SYMBOLS 10 Building 12 Structure 14 Facility room 16 Overhang part 26 Ceiling member 40 Building 42 Overhang part 46 Overhang part 48 Overhang part 50 Overhang part 60 Steel earthquake-resistant wall 80 Steel earthquake-resistant wall A Vibration

Claims (6)

構造体と、
前記構造体に隣接して設けられた施設室と、
前記構造体から前記施設室の上方へ張り出すと共に、前記施設室の天井部材とは該天井部材の端部以外では連結されておらず縁が切られた張出し部と、
を備える建物。
A structure,
A facility room provided adjacent to the structure;
With protruding upward of the facility chamber from said structure, a ceiling member of the facility chamber and overhangs the edge not connected is turned off except in the ends of the ceiling member,
Building with.
構造体と、A structure,
前記構造体に隣接して設けられ、該構造体と一体化された施設室と、A facility room provided adjacent to the structure and integrated with the structure;
前記構造体から前記施設室の上方へ張り出すと共に、該施設室の天井部材と縁が切られた張出し部と、Overhanging the structure room from above the facility room, and the overhang part with the edge of the ceiling of the facility room cut,
を備える建物。Building with.
前記張出し部が、前記施設室に存在する振動源から発生する振動と共振しない請求項1または請求項2に記載の建物。The building according to claim 1 or 2, wherein the projecting portion does not resonate with vibration generated from a vibration source existing in the facility room. 前記天井部材の固有振動数が前記張出し部の固有振動数よりも小さくされ、The natural frequency of the ceiling member is smaller than the natural frequency of the overhanging portion,
前記天井部材が、前記振動源から発生する振動と共振する請求項3に記載の建物。The building according to claim 3, wherein the ceiling member resonates with vibration generated from the vibration source.
前記張出し部が、トラス構造を備えている請求項3又は請求項4に記載の建物。The building according to claim 3 or 4, wherein the projecting portion includes a truss structure. 前記張出し部が、鋼製耐震壁を備えている請求項3〜5の何れか1項に記載の建物。The building according to any one of claims 3 to 5, wherein the overhang portion includes a steel earthquake resistant wall.
JP2009124103A 2009-05-22 2009-05-22 building Expired - Fee Related JP5280939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009124103A JP5280939B2 (en) 2009-05-22 2009-05-22 building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009124103A JP5280939B2 (en) 2009-05-22 2009-05-22 building

Publications (2)

Publication Number Publication Date
JP2010270522A JP2010270522A (en) 2010-12-02
JP5280939B2 true JP5280939B2 (en) 2013-09-04

Family

ID=43418761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009124103A Expired - Fee Related JP5280939B2 (en) 2009-05-22 2009-05-22 building

Country Status (1)

Country Link
JP (1) JP5280939B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7373411B2 (en) 2020-01-16 2023-11-02 株式会社竹中工務店 Transportation facility extension structure
JP7373410B2 (en) 2020-01-16 2023-11-02 株式会社竹中工務店 Transportation facility extension structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852195B2 (en) * 1997-12-25 2006-11-29 Jfeスチール株式会社 Steel shear wall
JP3981327B2 (en) * 2002-12-27 2007-09-26 テクノシステム株式会社 Three-dimensional truss extrusion structure and three-dimensional truss structure using the same
JP2008057121A (en) * 2006-08-29 2008-03-13 Takenaka Komuten Co Ltd Vibration isolation structure of building

Also Published As

Publication number Publication date
JP2010270522A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
JP5885950B2 (en) Seismic control wall frame structure
JP5383166B2 (en) Corrugated steel earthquake resistant wall, corrugated steel earthquake resistant wall design method, and building
JP5601882B2 (en) Steel seismic wall and building with the same
JP2006342510A (en) Multi-story shear wall
KR101301143B1 (en) Seismic retrofit structure of pilotiies construction
JP5280939B2 (en) building
JP2010216611A (en) Seismic response control metallic plate
JP5917838B2 (en) Corrugated steel shear wall and calculation method of initial shear stiffness
JP4414833B2 (en) Seismic walls using corrugated steel
JP2006037585A (en) Earthquake-resisting wall using corrugated steel plate with opening
JP2003247294A (en) Sound-insulated floor structure
JP2010133187A (en) Earthquake-resistant structure, building with earthquake-resistant structure, and repair method
JP2017101516A (en) Structure combining base isolation with vibration control
JP5429538B2 (en) Boundary beam viscoelastic damper
JP6547519B2 (en) Wood steel composite floor structure
JP6947496B2 (en) Stair damping metal fittings and stair damping structure
JP7363000B2 (en) building
JP2005090101A (en) Seismic response control structure
JP5620883B2 (en) Damping structure
JP5861886B2 (en) Wall-type mixed beam structure
JP6143055B2 (en) Damping structure
JP2011149153A (en) Vibration control structure
JP6366992B2 (en) Building structure
JP2011006987A (en) Unit building
JP6683037B2 (en) Wood steel composite floor structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5280939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees