JP5280008B2 - SOFT MAGNETIC MATERIAL, PROCESS FOR PRODUCING THE SAME, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL - Google Patents

SOFT MAGNETIC MATERIAL, PROCESS FOR PRODUCING THE SAME, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL Download PDF

Info

Publication number
JP5280008B2
JP5280008B2 JP2007025954A JP2007025954A JP5280008B2 JP 5280008 B2 JP5280008 B2 JP 5280008B2 JP 2007025954 A JP2007025954 A JP 2007025954A JP 2007025954 A JP2007025954 A JP 2007025954A JP 5280008 B2 JP5280008 B2 JP 5280008B2
Authority
JP
Japan
Prior art keywords
soft magnetic
powder
magnetic material
organic compound
based organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007025954A
Other languages
Japanese (ja)
Other versions
JP2008192843A (en
Inventor
俊之 博多
正彦 榊原
正義 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2007025954A priority Critical patent/JP5280008B2/en
Publication of JP2008192843A publication Critical patent/JP2008192843A/en
Application granted granted Critical
Publication of JP5280008B2 publication Critical patent/JP5280008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、成形時に発生した歪み開放のために高温で焼鈍した場合においても成形体の体積固有抵抗値や強度劣化しない軟磁性材料からなる圧粉磁心を提供する。   The present invention provides a dust core made of a soft magnetic material that does not deteriorate the volume resistivity or strength of a molded body even when annealed at a high temperature to release strain generated during molding.

近年、家電、電子機器及び自動車の省エネルギー化及び小型化に伴い、これらに使用される磁心材料に対しても、小型で高出力、且つ電力変換効率の高効率化の要求が強まっている。機器サイズの小型化、高出力化及び電力変換効率の高効率化には動作周波数の高周波化が有効であることが知られており、高周波領域においても高い磁束密度と透磁率及び低鉄損を有する磁心材料が強く求められている。   In recent years, with energy saving and miniaturization of home appliances, electronic devices, and automobiles, there is an increasing demand for miniaturization, high output, and high power conversion efficiency for magnetic core materials used for these. Higher operating frequency is known to be effective in reducing the size of equipment, increasing output, and increasing power conversion efficiency. Even in the high frequency range, high magnetic flux density, magnetic permeability, and low iron loss. There is a strong need for magnetic core materials.

従来、このような磁心材料としては、ケイ素鋼板を用いた積層型磁心などが使用されているが、積層型磁心は、動作周波数が高くなるに従って磁心内部で発生する渦電流損失が増大するという欠点を有している。   Conventionally, laminated magnetic cores using silicon steel sheets have been used as such magnetic core materials. However, laminated magnetic cores have a drawback that eddy current loss generated inside the magnetic core increases as the operating frequency increases. have.

そのため、近年では、積層型磁心に比べて高周波領域での鉄損が低いと共に、立体形状の成形性に優れた、鉄系金属軟磁性粉末をフェノール樹脂やエポキシ樹脂などの絶縁樹脂で被覆し圧縮成形した複合材料から構成された磁心が積層型磁心の代替品として広く用いられている。   For this reason, in recent years, iron-based metal soft magnetic powder, which has low iron loss in the high-frequency region and superior in three-dimensional formability compared to laminated magnetic cores, is covered with an insulating resin such as phenol resin or epoxy resin and compressed. A magnetic core made of a molded composite material is widely used as an alternative to a laminated magnetic core.

一方、圧粉磁心に対して、更なる小型化及び高性能化、即ち、高磁束密度化が望まれており、このような高磁束密度化のために、軟磁性粉末の充填密度を増大させることが行われている。   On the other hand, further miniaturization and higher performance, that is, higher magnetic flux density is desired for the powder magnetic core. For such higher magnetic flux density, the packing density of the soft magnetic powder is increased. Things have been done.

しかしながら、軟磁性粉末を高充填するために金属粉末の塑性変形が起こるような高い圧力で圧縮成形を行うため、軟磁性粉末には歪みが残り、ヒステリシス損失の増大を招くことが知られている。そのため、歪みによるヒステリシス損失を低減するために、通常、成形品に対して焼鈍が行われている。   However, since compression molding is performed at such a high pressure that plastic deformation of the metal powder occurs in order to highly fill the soft magnetic powder, it is known that the soft magnetic powder remains strained and increases hysteresis loss. . Therefore, in order to reduce hysteresis loss due to strain, the molded product is usually annealed.

ところで、一般に、圧粉磁心の鉄損の主要因として、ヒステリシス損失と渦電流損失が知られている。ヒステリシス損失の低減方法としては、先に述べた通り、焼鈍による歪みの除去が有効であることが知られている。一方、渦電流損失の低減方法としては、粒子間を絶縁性樹脂などで絶縁することにより行われている。   By the way, in general, hysteresis loss and eddy current loss are known as main causes of iron loss of a dust core. As described above, it is known that the removal of strain by annealing is effective as a method for reducing hysteresis loss. On the other hand, as a method for reducing eddy current loss, particles are insulated with an insulating resin or the like.

焼鈍は、一般には500℃以上、好ましくは600℃、もしくはそれ以上の温度が効果的であるとされている。しかし、軟磁性粒子粉末のバインダーとしての結合樹脂や上記粒子間の絶縁のために絶縁性樹脂を使用した場合、高温で焼鈍を行うと、樹脂が分解して成形体が脆くなるような強度劣化や、絶縁性が低下してしまうため、高温での焼鈍は困難となる。従って、ヒステリシス損失と渦電流損失の両方を同時に低減することは、従来検討されてきた樹脂では困難であった。   In general, annealing is considered to be effective at a temperature of 500 ° C. or higher, preferably 600 ° C. or higher. However, when a binding resin as a binder of soft magnetic particle powder or an insulating resin is used for insulation between the above particles, strength deterioration such that when the annealing is performed at a high temperature, the resin decomposes and the molded body becomes brittle. In addition, since the insulating property is lowered, annealing at a high temperature becomes difficult. Therefore, it has been difficult to reduce both hysteresis loss and eddy current loss at the same time with resins that have been studied in the past.

これまで、軟磁性金属粉末の表面に、リン酸塩の被膜及びポリイミド樹脂の被膜を形成した軟磁性金属粉末(特許文献1)又は、磁性粉表面をポリイミド樹脂やポリテトラフルオロエチレン樹脂で被覆した磁性粉(特許文献2)を圧粉磁心用粉末として用いる技術が開示されている。   Up to now, the surface of soft magnetic metal powder is a soft magnetic metal powder (Patent Document 1) in which a phosphate film and a polyimide resin film are formed, or the magnetic powder surface is coated with polyimide resin or polytetrafluoroethylene resin. A technique using magnetic powder (Patent Document 2) as a powder for a powder magnetic core is disclosed.

また、エポキシ樹脂とアルミナ含有シリカを含む被膜で被覆された鉄系粉末を圧粉磁心用粉末として用いる技術が開示されている(特許文献3)。   Moreover, the technique which uses the iron-type powder coat | covered with the film containing an epoxy resin and an alumina containing silica as powder for powder magnetic cores is disclosed (patent document 3).

また、鉄粉、又はリン酸化合物被膜を表面に施した鉄粉を樹脂で結合した圧粉磁心が開示されている(特許文献4)。   Moreover, the powder magnetic core which combined the iron powder which gave the iron powder or the phosphate compound film on the surface with resin was disclosed (patent document 4).

また、磁性粉末粒子間に、シリコーン骨格と顔料を含有する絶縁層を有する圧粉磁心が開示されている(特許文献5)。   Further, a dust core having an insulating layer containing a silicone skeleton and a pigment between magnetic powder particles is disclosed (Patent Document 5).

また、軟磁性粉末の表面に、シリコーン樹脂で被覆した後、高級脂肪酸潤滑剤を被覆することが開示されている(特許文献6)。   Further, it is disclosed that the surface of the soft magnetic powder is coated with a silicone resin and then coated with a higher fatty acid lubricant (Patent Document 6).

一方、圧粉磁心の体積固有抵抗値は高い方が好ましく、圧粉磁心の体積固有抵抗値が高ければ、高い周波数領域でも透磁率はほとんど変化しないが、体積固有抵抗値が低ければ、高い周波数領域では透磁率が急激に低下する傾向にある。   On the other hand, it is preferable that the volume resistivity of the dust core is high. If the volume resistivity of the dust core is high, the permeability hardly changes even in a high frequency range, but if the volume resistivity is low, the frequency is high. In the region, the magnetic permeability tends to decrease rapidly.

体積固有抵抗値を高める手段として、軟磁性金属の粉末にリン酸塩処理を施してリン酸塩の被膜を形成した軟磁性粉末が開示されている(特許文献7乃至8)。   As means for increasing the volume resistivity, soft magnetic powders in which a soft magnetic metal powder is subjected to a phosphate treatment to form a phosphate coating are disclosed (Patent Documents 7 to 8).

特開2005−317937号公報JP 2005-317937 A 特開2004−146804号公報JP 2004-146804 A 特開2003−166004号公報JP 2003-166004 A 特開2002−246219号公報JP 2002-246219 A 特開2002−343657号公報JP 2002-343657 A 特開2000−223308号公報JP 2000-223308 A 特開昭62−22410号公報JP-A-62-222410 特開昭63−70504号公報JP-A-63-70504

高温で焼鈍した場合においても体積固有抵抗値の変化が少なく、強度低下の少ない圧粉磁心軟磁性材料は、現在最も要求されているところであるが、未だ得られていない。   Even when annealed at a high temperature, a dust core soft magnetic material having a small change in volume resistivity and a small decrease in strength is currently most demanded, but has not yet been obtained.

即ち、特許文献1乃至2には、軟磁性金属粉末の表面に、リン酸塩の被膜及びポリイミド樹脂の被膜、又は、ポリテトラフルオロエチレン樹脂の被膜を形成した軟磁性金属粉末磁性粉を圧粉磁心用粉末として用いることが記載されている。焼鈍処理が可能温度として最高550℃である。   That is, in Patent Documents 1 and 2, a soft magnetic metal powder magnetic powder in which a phosphate film and a polyimide resin film or a polytetrafluoroethylene resin film are formed on the surface of the soft magnetic metal powder is compacted. It is described that it is used as a magnetic core powder. The maximum possible annealing temperature is 550 ° C.

また、特許文献3には、エポキシ樹脂とアルミナ含有シリカを含む被膜で被覆された鉄系粉末を圧粉磁心用粉末として用いることが記載されており、特許文献4には、鉄粉、又はリン酸化合物被膜を表面に施した鉄粉を樹脂で結合した圧粉磁心が記載されているが、加圧成形体の焼鈍前後の体積固有抵抗値の変化率は、10〜94%と、いずれも高いものとなっている。   Patent Document 3 describes that an iron-based powder coated with a coating containing an epoxy resin and alumina-containing silica is used as a powder for a powder magnetic core, and Patent Document 4 describes iron powder or phosphorus. Although the powder magnetic core which combined the iron powder which gave the acid compound film on the surface with the resin is described, the rate of change of the volume resistivity value before and after annealing of the pressure-molded body is 10 to 94%, both It is expensive.

特許文献5には、磁性粉末粒子間に、シリコーン骨格と顔料を含有する絶縁層を有する圧粉磁心が記載されているが、絶縁層にシリコーン樹脂が用いられているために、圧力に応じて圧縮される。そのため、圧縮性を示す圧縮密度の変化率は高いものとなり、加圧成形時に磁性粒子の歪みが残りやすくなる。   Patent Document 5 describes a dust core having an insulating layer containing a silicone skeleton and a pigment between magnetic powder particles. However, since a silicone resin is used for the insulating layer, depending on the pressure, Compressed. For this reason, the rate of change in compression density showing compressibility is high, and distortion of the magnetic particles tends to remain during pressure molding.

また、特許文献6には、軟磁性粒子粉末をシリコーン樹脂で被覆することが記載されているが、実施例に用いられている樹脂は炭素−炭素多重結合を有しておらず、耐熱性に優れた軟磁性材料を得ることが困難である。   Patent Document 6 describes that a soft magnetic particle powder is coated with a silicone resin, but the resin used in the examples does not have a carbon-carbon multiple bond and is resistant to heat. It is difficult to obtain an excellent soft magnetic material.

特許文献7乃至8には、リン酸亜鉛、リン酸マグネシウム、リン酸カルシウム、リン酸鉄等のリン酸塩被膜を形成した非晶質磁性合金粉末が記載されているが、これらの処理法によるリン酸塩被膜は焼鈍のための処理可能な耐熱温度が500℃程度であり、それ以上の温度で焼鈍を行うと、絶縁性を維持することが困難である。   Patent Documents 7 to 8 describe amorphous magnetic alloy powders in which a phosphate coating such as zinc phosphate, magnesium phosphate, calcium phosphate, and iron phosphate is formed. The heat resistance temperature that can be processed for annealing is about 500 ° C., and if the salt coating is annealed at a temperature higher than that, it is difficult to maintain the insulating properties.

そこで、本発明は、700℃なる高温で焼鈍した場合においても体積固有抵抗値の変化や強度の低下の少ない軟磁性材料を得ることを技術的課題とする。   Therefore, the present invention has a technical problem to obtain a soft magnetic material with little change in volume resistivity and lower strength even when annealed at a high temperature of 700 ° C.

本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、軟磁性粒子粉末の表面に耐熱性が極めて高いSi系有機化合物を被覆した成形体が、高温で焼鈍した場合においても体積固有抵抗値の変化が少なく、強度の減少変化が少なく、圧粉磁心用軟磁性材料として用いることにより、高い体積固有抵抗値を有する圧粉磁心が得られることを見いだし、本発明をなすに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention have a volume even when the molded body in which the surface of the soft magnetic particle powder is coated with a Si-based organic compound having extremely high heat resistance is annealed at a high temperature. It has been found that a powder magnetic core having a high volume resistivity can be obtained by using it as a soft magnetic material for a powder magnetic core with little change in specific resistance value and little decrease in strength. It was.

即ち、本発明は、軟磁性粒子粉末の粒子表面にSi系有機化合物が付着もしくは被覆している複合粒子粉末からなる軟磁性材料であって、前記Si系有機化合物が、分子内にSi−H結合と炭素−炭素多重結合を含有するものであることを特徴とする軟磁性材料である(本発明1)。   That is, the present invention is a soft magnetic material comprising a composite particle powder in which a Si-based organic compound is adhered or coated on the surface of the soft magnetic particle powder, and the Si-based organic compound is Si—H in the molecule. A soft magnetic material containing a bond and a carbon-carbon multiple bond (Invention 1).

また、本発明は、軟磁性粒子粉末と所定量の有機溶剤に溶かした上記Si系有機化合物溶液を回転混合しながら被覆処理を行なった後、60〜120℃で乾燥させることを特徴とする請求項1記載の軟磁性材料の製造法である(本発明2)。   Further, the present invention is characterized in that the Si-based organic compound solution dissolved in a soft magnetic particle powder and a predetermined amount of an organic solvent is subjected to coating treatment while being rotationally mixed, and then dried at 60 to 120 ° C. Item 2. A method for producing a soft magnetic material according to Item 1 (Invention 2).

また、本発明は、前記軟磁性材料を圧縮成形してなる圧粉磁心である(本発明3)。   Moreover, this invention is a powder magnetic core formed by compression-molding the said soft-magnetic material (this invention 3).

本発明に係る軟磁性材料を用いた圧粉磁心は、700℃なる高温で焼鈍した場合においても体積固有抵抗値や強度の変化が少ないので圧粉磁心用軟磁性材料として好適である。   A dust core using the soft magnetic material according to the present invention is suitable as a soft magnetic material for a dust core because the volume resistivity and strength change are small even when annealed at a high temperature of 700 ° C.

本発明に係る圧粉磁心は、前記軟磁性材料を用いたことにより、さらに体積固有抵抗値が高く、且つ、強度にも優れ、700℃なる高温で焼鈍した場合においても体積固有抵抗値や強度の変化が少ないので、高周波で使用する高性能圧粉磁心としても好適である   By using the soft magnetic material, the dust core according to the present invention has a higher volume resistivity and strength, and even when annealed at a high temperature of 700 ° C., the volume resistivity and strength. Is suitable as a high-performance dust core for use at high frequencies.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係る軟磁性材料について述べる。   First, the soft magnetic material according to the present invention will be described.

本発明に係る軟磁性材料は、軟磁性粒子粉末の粒子表面に、Si系有機化合物が付着もしくは被覆している複合粒子粉末からなる。   The soft magnetic material according to the present invention is composed of composite particle powder in which a Si-based organic compound is attached or coated on the surface of the soft magnetic particle powder.

本発明に係る軟磁性材料のSi系有機化合物の被覆量は、有機化合物換算で0.01〜10重量%が好ましい。0.01重量%未満の場合には、本発明の効果は得られない。0.01〜10重量%の添加量により、本発明の効果が十分に得られるので、10重量%を超えて必要以上に添加する意味がない。得られる軟磁性材料の電気抵抗値及び強度を考慮した場合、0.02〜5重量%がより好ましく、更により好ましくは0.05〜2重量%である。   The coverage of the Si-based organic compound of the soft magnetic material according to the present invention is preferably 0.01 to 10% by weight in terms of organic compound. If it is less than 0.01% by weight, the effect of the present invention cannot be obtained. Since the effect of the present invention can be sufficiently obtained by the addition amount of 0.01 to 10% by weight, it is meaningless to add more than necessary beyond 10% by weight. Considering the electric resistance value and strength of the obtained soft magnetic material, 0.02 to 5% by weight is more preferable, and still more preferably 0.05 to 2% by weight.

本発明に係る軟磁性材料の平均粒子径は、用途や特性に応じて選べばよいが、1.0〜500.0μmの範囲が好ましい。平均粒子径が500.0μm以上の場合には、粒子径が大きすぎ、圧粉磁心に用いた場合、充填密度が下がるため好ましくない。平均粒子径が1.0μm以下の場合には、粒子径が小さすぎ、成形性が低下するため好ましくない。より好ましくは5.0〜400.0μm、更により好ましくは10.0〜300.0μmである。   The average particle size of the soft magnetic material according to the present invention may be selected according to the application and characteristics, but is preferably in the range of 1.0 to 500.0 μm. When the average particle size is 500.0 μm or more, the particle size is too large, and when used in a dust core, the packing density is lowered, which is not preferable. An average particle size of 1.0 μm or less is not preferable because the particle size is too small and moldability deteriorates. More preferably, it is 5.0-400.0 micrometers, More preferably, it is 10.0-300.0 micrometers.

本発明に係る軟磁性材料の体積固有抵抗値は、50mΩ・cm以上であることが好ましく、より好ましくは100mΩ・cm以上である。また、窒素やArガスなど不活性ガス雰囲気中で700℃×30分加熱前後の体積固有抵抗値の変化は、熱処理後減少することがないことが、好ましい。すなわち、圧粉磁心の体積固有抵抗値が焼鈍によって低下しやすいことは、好ましくない。   The volume specific resistance value of the soft magnetic material according to the present invention is preferably 50 mΩ · cm or more, more preferably 100 mΩ · cm or more. Further, it is preferable that the change in the volume resistivity value before and after heating at 700 ° C. for 30 minutes in an inert gas atmosphere such as nitrogen or Ar gas does not decrease after the heat treatment. That is, it is not preferable that the volume specific resistance value of the dust core is easily lowered by annealing.

本発明に係る軟磁性材料による圧粉磁心の強度は、焼鈍(窒素ガス、Arガスなどの不活性ガス中、700℃で30分処理)によっても低下することなく保たれることが確保される必要性がある。   It is ensured that the strength of the powder magnetic core by the soft magnetic material according to the present invention can be maintained without being lowered even by annealing (treatment at 700 ° C. for 30 minutes in an inert gas such as nitrogen gas or Ar gas). There is a need.

次に、本発明に係る軟磁性材料の製造法について述べる。   Next, a method for producing a soft magnetic material according to the present invention will be described.

本発明に係る軟磁性材料は、被処理粒子粉末である軟磁性粒子粉末を回転混合しながら、トルエンなどの有機溶剤に溶解させたSi系有機化合物溶液を被覆処理した後、60〜120℃で乾燥させることにより得ることができる。   The soft magnetic material according to the present invention is obtained by coating a Si-based organic compound solution dissolved in an organic solvent such as toluene while rotating and mixing the soft magnetic particle powder, which is a particle to be processed, at 60 to 120 ° C. It can be obtained by drying.

本発明における軟磁性粒子粉末としては、アトマイズ鉄粉、還元鉄粉、カルボニル鉄粉等の各種製法による鉄粉、珪素鋼粉、センダスト粉、パーマロイ粉、パーメンダー粉等を用いることができる。得られる圧粉磁心の磁束密度を考慮すれば、鉄粉やパーメンダー粉が好ましい。軟磁性粒子粉末の平均粒子径は1.0〜500.0μmが好ましく、より好ましくは5.0〜400.0μm、更により好ましくは10.0〜300.0μmである。   As the soft magnetic particle powder in the present invention, iron powder, silicon steel powder, sendust powder, permalloy powder, permender powder and the like by various production methods such as atomized iron powder, reduced iron powder, and carbonyl iron powder can be used. Considering the magnetic flux density of the obtained dust core, iron powder and permender powder are preferable. The average particle size of the soft magnetic particle powder is preferably 1.0 to 500.0 μm, more preferably 5.0 to 400.0 μm, and still more preferably 10.0 to 300.0 μm.

本発明における軟磁性粒子粉末の体積固有抵抗値は、通常、100mΩ・cm以上であることが好ましく、より好ましくは200mΩ・cm以上である。また、不活性ガス中、700℃で30分加熱後の体積固有抵抗値は、加熱前の値より減少しないことが好ましい。   In general, the volume resistivity value of the soft magnetic particle powder in the present invention is preferably 100 mΩ · cm or more, and more preferably 200 mΩ · cm or more. Moreover, it is preferable that the volume specific resistance value after heating for 30 minutes at 700 ° C. in an inert gas does not decrease from the value before heating.

本発明に用いる有機溶剤としては、トルエン、ベンゼン、THF、NMPなどである。   Examples of the organic solvent used in the present invention include toluene, benzene, THF, NMP and the like.

本発明に用いるSi系有機化合物とは、繰り返し単位中に少なくとも1個のSi―H結合と、少なくとも1個の炭素−炭素多重結合を有する高分子であって、この繰り返し部分が少なくとも全高分子の1/3以上を占める。
なお、炭素−炭素多重結合としては、−C≡C−、−C=C−とが挙げられるが、−C≡C−がより望ましい。
The Si-based organic compound used in the present invention is a polymer having at least one Si—H bond and at least one carbon-carbon multiple bond in a repeating unit, and this repeating part is at least a whole polymer. Occupies 1/3 or more.
Examples of the carbon-carbon multiple bond include —C≡C— and —C═C—, and —C≡C— is more preferable.

具体例は、下記化1〜化5で表される繰り返し単位を有する化合物であればよい。(Itoh M.et al.,Polym.Sci.Part A:Polym.Chem.39,2658−2669(2001),Kobayashi T. et al.,“Thermal Stability of Octakis(silsesqioxane)−Based and Poly−(phenylenesilylen)−Based Polymers Containing Hydrosilyl Groups and Unsaturated Carbon―Carbon Bonds.”,Proceedings of the 5th European Technical Symposium on Polyimides High Performance Functional Polymers Montpellier (France)、3May 1999、Poreddy Narsi Roddy et al.,Chemistry Letters,254(2000)、Yamashita H.and Uchimaru Y.Chem.Commun.,1763(1999)   Specific examples may be compounds having repeating units represented by the following chemical formulas 1 to 5. (Itoh M. et al., Polym. Sci. Part A: Polym. Chem. 39, 2658-2669 (2001); ) -Based Polymers Containing Hydrophilic Groups and Unsufficient Carbon-Carbon Bonds. ", Processeds of the 5th European Technical Symptom s Montpellier (France), 3May 1999, Poreddy Narsi Roddy et al., Chemistry Letters, 254 (2000), Yamashita H.and Uchimaru Y.Chem.Commun., 1763 (1999)

Figure 0005280008
Figure 0005280008

Figure 0005280008
Figure 0005280008

Figure 0005280008
Figure 0005280008

Figure 0005280008
Figure 0005280008

Figure 0005280008
Figure 0005280008

ここで、式中R、R、R、Rは、それぞれ独立に水素原子、炭素数1〜30のアルキル基、アルケニル基、アルキニル基、フェニル基やナフチル基等の芳香族基から選ばれる基である。なお、これらの基はハロゲン原子、水酸基、アミノ基、カルボキシル基から選ばれる置換基を含んでいてもよい。またxとyとは、ともに正の整数であって、x/yは、好ましくは0.01〜100、さらに好ましくは0.1〜10の範囲である。 Here, in the formula, R, R 1 , R 2 and R 3 are each independently selected from a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, an alkenyl group, an alkynyl group, an aromatic group such as a phenyl group and a naphthyl group. Group. These groups may contain a substituent selected from a halogen atom, a hydroxyl group, an amino group, and a carboxyl group. X and y are both positive integers, and x / y is preferably in the range of 0.01 to 100, more preferably 0.1 to 10.

即ち、上記Si系有機化合物のより具体的な例としては、繰り返し単位が、ポリ(メチルシリレンエチニレン−1,4−フェニレンエチニレン)、ポリ(メチルシリニレンエチニレン−1,2−フェニレンエチニレン)、ポリ(メチルシリレンエチニレン−1,3−フェニレンエチニレン)(化6参照)、ポリ(フェニルシリレンエチニレン−1,3−フェニレンエチニレン)(化7参照)、
ポリ(フェニルシリレンエチニレン−1,2−フェニレンエチニレン)、ポリ(フェニルシリレンエチニレン−1,4−フェニレンエチニレン)、
ポリ(フェニルシリレンエチニレン−1,2,3−フェニレンエチニレン)、ポリ(シリレンエチニレン−1,4−フェニレンエチニレン)、ポリ(シリレンエチニレン−1,2−フェニレンエチニレン)、ポリ(シリレンエチニレン−1,3−フェニレンエチニレン)(化8参照)、
ポリ(シリレンエチニレン)、
ポリ(フェニルシリレンエチニレン−1,2−フェニレンエチニレン)、ポリ(ヘキシルシリレンエチニレン−1,3−フェニレンエチニレン)、ポリ(ビニルシリレンエチニレン−1,3−フェニレンエチニレン)、
ポリ(フェニルシリレンエチニレン−1,4−フェニレンオキシ−1‘,4‘−フェニレンエチニレン)(化9参照)、
また、化10〜化13に示す化合物等である従来公知のものが挙げられる。
That is, as a more specific example of the Si-based organic compound, the repeating unit is poly (methylsilyleneethynylene-1,4-phenyleneethynylene), poly (methylsilinyleneethynylene-1,2-phenyleneethylene). Nylene), poly (methylsilyleneethynylene-1,3-phenyleneethynylene) (see Formula 6), poly (phenylsilyleneethynylene-1,3-phenyleneethynylene) (see Formula 7),
Poly (phenylsilyleneethynylene-1,2-phenyleneethynylene), poly (phenylsilyleneethynylene-1,4-phenyleneethynylene),
Poly (phenylsilyleneethynylene-1,2,3-phenyleneethynylene), poly (silyleneethynylene-1,4-phenyleneethynylene), poly (silyleneethynylene-1,2-phenyleneethynylene), poly ( Silyleneethynylene-1,3-phenyleneethynylene) (see Chemical Formula 8),
Poly (silylene ethynylene),
Poly (phenylsilyleneethynylene-1,2-phenyleneethynylene), poly (hexylsilyleneethynylene-1,3-phenyleneethynylene), poly (vinylsilyleneethynylene-1,3-phenyleneethynylene),
Poly (phenylsilyleneethynylene-1,4-phenyleneoxy-1 ′, 4′-phenyleneethynylene) (see Chemical Formula 9),
Moreover, the conventionally well-known thing etc. which are the compounds shown to Chemical formula 10-Chemical formula 13 etc. are mentioned.

なお、重量平均分子量については、特に制限はないが、好ましくは500〜500000である。これらのSi系有機化合物の形態は、常温で固体または液状であり、単独で、もしくは2種類以上を混合して用いることができる。   In addition, although there is no restriction | limiting in particular about a weight average molecular weight, Preferably it is 500-500000. The form of these Si-based organic compounds is solid or liquid at room temperature, and can be used alone or in admixture of two or more.

Figure 0005280008
Figure 0005280008

Figure 0005280008
Figure 0005280008

Figure 0005280008
Figure 0005280008

Figure 0005280008
Figure 0005280008

Figure 0005280008
Figure 0005280008

Figure 0005280008
Figure 0005280008

Figure 0005280008
Figure 0005280008

Figure 0005280008
Figure 0005280008

また、上記化1〜化5で表されるSi系有機化合物の製造方法としては、塩基性酸化物、金属水素化物、金属アルコキシドなどの金属化合物類を触媒としてジエチニル化合物とシラン化合物との脱水素共重合を行う方法(例えば、特開平7−090085号公報、特開平11−158187号公報)、塩基性酸化物を触媒としてエチニルシラン化合物の脱水素重合を行う方法(特開平9−143271号公報)、有機マグネシウム試薬とジクロロシラン類とを反応させる方法(特開平7−102069号公報)、塩化第一銅と三級アミンとを触媒としてジエチニル化合物とシラン化合物との脱水素共重合を行う方法(Hua Qin Liu and John F. Harrod,The Canadian Journal of Chemistry,Vol.68,1100−1105(1990))等の従来公知の製造方法が利用でき、特に限定されるものではない。   Moreover, as a manufacturing method of Si type organic compounds represented by the above chemical formulas 1 to 5, dehydrogenation of a diethynyl compound and a silane compound using a metal compound such as a basic oxide, a metal hydride, or a metal alkoxide as a catalyst. A method for carrying out copolymerization (for example, JP-A-7-090085, JP-A-11-158187), a method for carrying out dehydrogenation polymerization of an ethynylsilane compound using a basic oxide as a catalyst (JP-A-9-143271) ), A method of reacting an organomagnesium reagent and dichlorosilanes (Japanese Patent Laid-Open No. 7-102069), a method of dehydrogenating copolymerization of a diethynyl compound and a silane compound using cuprous chloride and a tertiary amine as a catalyst. (Hua Qin Liu and John F. Harrod, The Canadian Journal of Chem. stry, Vol.68,1100-1105 (1990)) can conventionally known production methods utilizing such, and is not particularly limited.

上記Si系有機化合物は、特開2004−162128号公報に詳細記載されているものである。   The Si-based organic compound is described in detail in JP-A No. 2004-162128.

また、上記Si系有機化合物は、より均一な皮膜処理を行うために、トルエンなど前述の有機溶剤に溶解させて用いることが好ましい。   The Si-based organic compound is preferably used after being dissolved in the above-mentioned organic solvent such as toluene in order to perform a more uniform film treatment.

Si系有機化合物の添加量は、軟磁性粒子粉末の比表面積によって異なるが、通常、軟磁性粒子粉末100重量部当たり、各元素換算で0.01〜10重量部である。0.01重量部未満の場合には、本発明の効果は得られない。10重量部の添加量により、本発明の効果が十分に得られるので、10重量部を超えて必要以上に添加する意味がない。得られる軟磁性材料の電気抵抗値及び強度を考慮した場合、0.02〜5重量部が好ましく、より好ましくは0.05〜2重量部である。   The addition amount of the Si-based organic compound varies depending on the specific surface area of the soft magnetic particle powder, but is usually 0.01 to 10 parts by weight in terms of each element per 100 parts by weight of the soft magnetic particle powder. When the amount is less than 0.01 parts by weight, the effect of the present invention cannot be obtained. Since the effect of the present invention is sufficiently obtained by the addition amount of 10 parts by weight, it is meaningless to add more than necessary beyond 10 parts by weight. In consideration of the electric resistance value and strength of the obtained soft magnetic material, 0.02 to 5 parts by weight is preferable, and 0.05 to 2 parts by weight is more preferable.

軟磁性粒子粉末とSi系有機化合物溶液とを混合するための機器としては、汎用のミキサー、具体的にはヘンシェルミキサー、万能攪拌機又はハイブリッドミキサー等を使用すればよい。   As a device for mixing the soft magnetic particle powder and the Si-based organic compound solution, a general-purpose mixer, specifically a Henschel mixer, a universal stirrer, a hybrid mixer, or the like may be used.

Si系有機化合物溶液を軟磁性粒子粉末に添加する場合は、均一付着のため、軟磁性粒子粉末を回転混合させながら、Si系有機化合物溶液をスプレーで極少量ずつ添加することが好ましい。   When the Si-based organic compound solution is added to the soft magnetic particle powder, it is preferable to add the Si-based organic compound solution by a small amount by spraying while rotating and mixing the soft magnetic particle powder for uniform adhesion.

得られた軟磁性粒子粉末は、被覆処理中の加熱により乾燥をさせた後、さらに60〜120℃の温度範囲で、1〜24時間乾燥させることにより得ることができる。   The obtained soft magnetic particle powder can be obtained by drying in the temperature range of 60 to 120 ° C. for 1 to 24 hours after drying by heating during coating treatment.

次に、本発明に係る圧粉磁心について述べる。   Next, the dust core according to the present invention will be described.

本発明に係る圧粉磁心は、本発明に係る軟磁性材料に、必要により、ステアリン酸亜鉛などの潤滑剤等の添加剤を混合し、該混合粒子粉末を圧縮成形した後、加熱処理することによって得ることができる。   The powder magnetic core according to the present invention is obtained by mixing the soft magnetic material according to the present invention with an additive such as a lubricant such as zinc stearate, if necessary, and compression-molding the mixed particle powder, followed by heat treatment. Can be obtained by:

圧縮成形は、通常行われている、金型を用いた圧縮成形法で行うことができる。なお、成形圧力は、用途に応じて適宜選べばよい。   The compression molding can be performed by a compression molding method using a mold that is usually performed. In addition, what is necessary is just to select a shaping | molding pressure suitably according to a use.

圧縮成形後の歪取りのための焼鈍温度は、磁性粒子自体が熱拡散による粒子成長が起こらない高温が望ましい。本検討においては、用いたSi系有機化合物が許容できる温度として700℃を採用した。   The annealing temperature for strain relief after compression molding is desirably a high temperature at which the magnetic particles themselves do not cause particle growth due to thermal diffusion. In this study, 700 ° C. was adopted as the temperature acceptable for the Si-based organic compound used.

本発明に係る圧粉磁心の体積固有抵抗値は、50mΩ・cm以上であり、より好ましくは100mΩ・cm以上である。また、熱処理前後の体積固有抵抗値の変化は、熱処理後増加することはあっても、減少しないことが好ましい。   The volume resistivity of the dust core according to the present invention is 50 mΩ · cm or more, and more preferably 100 mΩ · cm or more. Moreover, it is preferable that the change in the volume resistivity value before and after the heat treatment does not decrease even though it increases after the heat treatment.

<作用>
本発明における最も重要な点は、軟磁性粒子粉末の粒子表面にSi系有機化合物が付着もしくは被覆している複合粒子粉末からなる軟磁性材料を成形加工された圧粉磁心は、高温で焼鈍した場合においても体積固有抵抗値や強度が減少しないという事実である。
<Action>
The most important point in the present invention is that the powder magnetic core formed by molding a soft magnetic material composed of a composite particle powder having a Si-based organic compound attached or coated on the surface of the soft magnetic particle powder is annealed at a high temperature. Even in this case, it is a fact that the volume resistivity value and the strength do not decrease.

本発明に係る軟磁性材料の耐熱性が優れている理由として、利用したSi系有機化合物が分子内に炭素−炭素多重結合とSi−H結合を有しているため、熱処理温度が高温になるに伴い、SiC微粒子とアモルファス状カーボンからなる複合無機材料化するためと推定している。   The reason why the heat resistance of the soft magnetic material according to the present invention is excellent is that the Si-based organic compound used has a carbon-carbon multiple bond and a Si-H bond in the molecule, so that the heat treatment temperature becomes high. Accordingly, it is presumed to be a composite inorganic material composed of SiC fine particles and amorphous carbon.

本発明に係る軟磁性材料の体積固有抵抗値や強度が高温で焼鈍した場合でも減少しない理由として、本発明者は、軟磁性粒子粉末の粒子表面に付着もしくは被覆しているSi系有機化合物が上記理由による耐熱性に優れていることに、大いに関連しているものと推定している。   As the reason why the volume resistivity or strength of the soft magnetic material according to the present invention does not decrease even when annealed at a high temperature, the present inventor is that the Si-based organic compound adhered or coated on the particle surface of the soft magnetic particle powder is It is presumed to be highly related to the excellent heat resistance for the above reasons.

また、本発明に係る軟磁性材料を用いて得られた圧粉磁心は、高い体積固有抵抗値を有するという事実である。   Moreover, it is a fact that the dust core obtained by using the soft magnetic material according to the present invention has a high volume resistivity.

本発明に係る圧粉磁心が高い体積固有抵抗値を有する理由として、絶縁性の優れた樹脂を絶縁被覆材料用いた点にある。   The reason why the dust core according to the present invention has a high volume resistivity value is that an insulating coating material is used for the resin having excellent insulating properties.

以下、本発明における実施例を示し、本発明を具体的に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

各成形体の体積固有抵抗値は、外径14mm、内径10mmのリング成形金型を用いてまず、粒子粉末1.0gを測り取り、10トンプレスにて成形圧力700MPaで加圧成形を行い、リングの被測定試料を作製した。   The volume resistivity value of each molded body is as follows. First, 1.0 g of particle powder is measured using a ring molding die having an outer diameter of 14 mm and an inner diameter of 10 mm, and pressure molding is performed with a molding pressure of 700 MPa using a 10-ton press, A sample to be measured for the ring was produced.

次いで、この被測定試料のプレス面を1mmピッチの4端子電気抵抗測定装置(ロレスタGP/MCP−T600、三菱化成製)で10Vの電圧を印加して体積固有抵抗値R(Ωcm)を測定した。   Next, a volume specific resistance value R (Ωcm) was measured by applying a voltage of 10 V on the pressed surface of the sample to be measured with a 4-terminal electrical resistance measuring device (Loresta GP / MCP-T600, manufactured by Mitsubishi Kasei) having a 1 mm pitch. .

各粒子粉末より作製した成形体(リング試料)の強度評価として、700℃熱処理前後におけるリング自体の圧環強度比較を行った。
測定はリングを立てた状態で、圧縮試験機(デジタル・フォース・ゲージ/ZP−500N、今田製作所製)を用いて破壊発生時の圧力を求めた。バラツキを鑑み10個のリング試料より求めた平均値を採取した。
As the strength evaluation of the molded body (ring sample) produced from each particle powder, the crushing strength of the ring itself before and after 700 ° C. heat treatment was compared.
In the measurement, the pressure at the time of occurrence of fracture was obtained using a compression tester (Digital Force Gauge / ZP-500N, Imada Seisakusho) with the ring raised. An average value obtained from 10 ring samples in consideration of variation was collected.

<実施例>
<軟磁性材料の製造>
3.5wt%Si含有珪素鋼粉末(粒子形状:粒状、平均粒子径100μm、ガスアトマイズ粉)100gを混合機を用いて回転混合させながら、別途、トルエン中にポリ(フェニルシリレンエチニレン−1,3−フェニレンエチニレン)なるSi系有機化合物を2wt%溶解した溶液から計量して、所定量の溶液を噴霧添加した。
<Example>
<Manufacture of soft magnetic materials>
Separately, 100 g of silicon steel powder containing 3.5 wt% Si (particle shape: granular, average particle diameter of 100 μm, gas atomized powder) is separately mixed with poly (phenylsilylene ethynylene-1,3 in toluene while rotating and mixing using a mixer. -Phenyleneethynylene) Weighed from a solution in which 2 wt% of an Si-based organic compound was dissolved, a predetermined amount of the solution was sprayed and added.

次に、約60分間被覆処理を行い、トルエンを乾燥させた。   Next, the coating process was performed for about 60 minutes, and toluene was dried.

得られた樹脂被覆の珪素鋼粉末を、通風乾燥機を用いて80℃で約12時間乾燥を行い、軟磁性材料を得た。   The obtained resin-coated silicon steel powder was dried at 80 ° C. for about 12 hours using an air dryer to obtain a soft magnetic material.

<圧粉磁心の製造>
前記軟磁性材料1.0gを秤量し、ステアリン酸亜鉛を塗布した金型を用い、成形圧力700MPaでリング状(φ14×φ10×2mm)に圧縮成形し、圧粉磁心を得た。
<Manufacture of dust core>
1.0 g of the soft magnetic material was weighed and compression-molded into a ring shape (φ14 × φ10 × 2 mm) at a molding pressure of 700 MPa using a die coated with zinc stearate to obtain a dust core.

上記で作製した圧粉磁心の耐熱性評価として熱処理前後の体積固有抵抗値、強度評価として圧環強度値を測定した。なお、熱処理は窒素ガス中で700℃前後30分間処理した。   The volume resistivity value before and after the heat treatment was measured as the heat resistance evaluation of the dust core produced above, and the pressure ring strength value was measured as the strength evaluation. The heat treatment was performed in nitrogen gas at around 700 ° C. for 30 minutes.

前記実施例と同様にして、Si系有機化合物の被覆量を種々変化させて、圧粉磁心を作製した。以下に圧粉磁心の耐熱性評価結果を示す。   In the same manner as in the above example, dust cores were produced by varying the coating amount of the Si-based organic compound. The heat resistance evaluation results of the dust core are shown below.

表1及び図1に、3.5wt%Si含有Fe合金粉末にSi系有機化合物を1および2wt%被着させた軟磁性粒子を用いて作製した圧粉磁心を焼鈍したときの、熱処理した温度と体積固有抵抗値との関連を示す。比較例として特許文献1乃至2に記載された耐熱性に優れると知られているポリイミド(略称イミド)樹脂2wt%含有の圧粉磁心の評価結果も示す。   Table 1 and FIG. 1 show the temperature at which heat treatment was performed when a powder magnetic core produced using soft magnetic particles obtained by depositing 1 wt% and 2 wt% Si-based organic compound on Fe alloy powder containing 3.5 wt% Si was annealed. And the volume resistivity value. As a comparative example, evaluation results of a powder magnetic core containing 2 wt% of a polyimide (abbreviated imide) resin known to be excellent in heat resistance described in Patent Documents 1 and 2 are also shown.

Figure 0005280008
Figure 0005280008

表1、図1より、本発明のSi系有機化合物を用いた圧粉磁心は、700℃の高温熱処理によっても、体積固有抵抗値は約1Ωcmが維持されている。一方の比較樹脂であるポリイミドでは、600℃の熱処理温度で体積固有抵抗値は約0.5mΩcmと大きく低下し、絶縁性が悪くなっていることが確認される。
なお、25℃は熱処理前を表現しているが、700℃まで1乃至2wt%添加の本発明のものは、体積固有抵抗値がむしろ増加していることが確認出来る。
From Table 1 and FIG. 1, the powder core using the Si-based organic compound of the present invention maintains a volume resistivity of about 1 Ωcm even when subjected to high-temperature heat treatment at 700 ° C. On the other hand, polyimide, which is a comparative resin, has a large volume resistivity value of about 0.5 mΩcm at a heat treatment temperature of 600 ° C., confirming that the insulating properties are poor.
In addition, although 25 degreeC represents before heat processing, it can confirm that the volume specific resistance value has increased rather the thing of this invention of 1 to 2 wt% addition to 700 degreeC.

さらに本発明のSi系有機化合物の樹脂含有量と圧粉磁心の体積固有抵抗値との関連を表2、図2に示す。同時に熱処理前(25℃)と熱処理後(700℃)の結果も併記する。   Furthermore, the relationship between the resin content of the Si-based organic compound of the present invention and the volume resistivity of the dust core is shown in Table 2 and FIG. At the same time, the results before heat treatment (25 ° C.) and after heat treatment (700 ° C.) are also shown.

Figure 0005280008
Figure 0005280008

表2、図2より樹脂含有量が減少するに伴い、体積固有抵抗値が熱処理前(25℃)熱処理後(700℃)ともに減少している。特に0.005wt%となると10mΩcm以下となり、絶縁性が極端に悪くなる。従って、実施例1で用いた軟磁性材料では、最適な含有量が0.05wt%以上であることが確認できる。   As Table 2 and FIG. 2 show, as the resin content decreases, the volume resistivity value decreases both before heat treatment (25 ° C.) and after heat treatment (700 ° C.). In particular, when it is 0.005 wt%, it becomes 10 mΩcm or less, and the insulating property is extremely deteriorated. Therefore, in the soft magnetic material used in Example 1, it can be confirmed that the optimum content is 0.05 wt% or more.

表3、図3には本発明のSi系有機化合物の含有量と圧環強度との関連を調査した結果を示す。熱処理前後(25℃と700℃)ならびに比較材料としてポリイミド樹脂についても(2wt%含有)、熱処理前後(25℃と600℃)の結果も併記する。   Table 3 and FIG. 3 show the results of investigating the relationship between the content of the Si-based organic compound of the present invention and the crushing strength. The results before and after the heat treatment (25 ° C. and 700 ° C.) and the polyimide resin as a comparative material (containing 2 wt%) and before and after the heat treatment (25 ° C. and 600 ° C.) are also shown.

Figure 0005280008
Figure 0005280008

表3、図3より樹脂含有量が減少するに伴い、圧環強度が減少していることが確認できる。体積固有抵抗値と同様の傾向があり、最適な含有量は0.05wt%以上である。また、比較材料の2wt%ポリイミド樹脂含有の圧粉磁心では、熱処理後(600℃)において、圧環強度が大きく低下している。なお、本発明に係る圧粉磁心では、700℃の熱処理により圧環強度が向上する。   From Table 3 and FIG. 3, it can be confirmed that the crushing strength decreases as the resin content decreases. There exists a tendency similar to a volume specific resistance value, and the optimal content is 0.05 wt% or more. Further, in the dust core containing 2 wt% polyimide resin as a comparative material, the crushing strength is greatly reduced after heat treatment (600 ° C.). In the dust core according to the present invention, the crushing strength is improved by heat treatment at 700 ° C.

本発明に係る軟磁性材料は、成形時の圧粉体の歪を解消するのに十分な高温700℃で焼鈍した場合においても電気抵抗値や強度の変化が少ないので圧粉磁心用軟磁性材料として好適である。   The soft magnetic material according to the present invention has a small change in electric resistance and strength even when annealed at a high temperature of 700 ° C. sufficient to eliminate the distortion of the green compact during molding. It is suitable as.

実施例の熱処理温度と体積固有抵抗値との関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature of an Example, and a volume specific resistance value. 実施例のSi系有機化合物の樹脂含有量と圧粉磁心の体積固有抵抗値との関係を示すグラフである。It is a graph which shows the relationship between the resin content of the Si type organic compound of an Example, and the volume specific resistance value of a dust core. 実施例のSi系有機化合物の含有量と圧環強度との関係を示すグラフである。It is a graph which shows the relationship between content of Si type organic compound of an Example, and crushing strength.

Claims (3)

軟磁性粒子粉末の粒子表面にSi系有機化合物が付着もしくは被覆している複合粒子粉末からなる軟磁性材料であって、Si系有機化合物が、分子内にSi−H結合と炭素−炭素多重結合を含有するものであることを特徴とする軟磁性材料。 A soft magnetic material comprising a composite particle powder in which a Si-based organic compound is adhered or coated on the surface of the soft-magnetic particle powder, and the Si-based organic compound has Si—H bonds and carbon-carbon multiple bonds in the molecule. A soft magnetic material comprising: 軟磁性粒子粉末と所定量の有機溶剤に溶かした上記Si系有機化合物溶液を回転混合しながら被覆処理を行なった後、60〜120℃で乾燥させることを特徴とする請求項1記載の軟磁性材料の製造法。 2. The soft magnetism according to claim 1, wherein the Si-based organic compound solution dissolved in the soft magnetic particle powder and a predetermined amount of the organic solvent is subjected to coating treatment while being rotationally mixed, and then dried at 60 to 120 [deg.] C. Material manufacturing method. 請求項1記載の軟磁性材料を圧縮成形してなる圧粉磁心。
A dust core formed by compression molding the soft magnetic material according to claim 1.
JP2007025954A 2007-02-05 2007-02-05 SOFT MAGNETIC MATERIAL, PROCESS FOR PRODUCING THE SAME, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL Active JP5280008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025954A JP5280008B2 (en) 2007-02-05 2007-02-05 SOFT MAGNETIC MATERIAL, PROCESS FOR PRODUCING THE SAME, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025954A JP5280008B2 (en) 2007-02-05 2007-02-05 SOFT MAGNETIC MATERIAL, PROCESS FOR PRODUCING THE SAME, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL

Publications (2)

Publication Number Publication Date
JP2008192843A JP2008192843A (en) 2008-08-21
JP5280008B2 true JP5280008B2 (en) 2013-09-04

Family

ID=39752657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025954A Active JP5280008B2 (en) 2007-02-05 2007-02-05 SOFT MAGNETIC MATERIAL, PROCESS FOR PRODUCING THE SAME, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL

Country Status (1)

Country Link
JP (1) JP5280008B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5310989B2 (en) * 2008-02-29 2013-10-09 戸田工業株式会社 SOFT MAGNETIC MATERIAL, PROCESS FOR PRODUCING THE SAME, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL
WO2013051229A1 (en) * 2011-10-03 2013-04-11 パナソニック株式会社 Powder magnetic core and production method for same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837107A (en) * 1994-07-22 1996-02-06 Tdk Corp Dust core
JPH08333458A (en) * 1995-06-08 1996-12-17 Mitsui Toatsu Chem Inc Siloxane polymer and its production
JP2001319807A (en) * 2000-03-01 2001-11-16 Mitsui Chemicals Inc Method of manufacturing magnetic core
JP2004143554A (en) * 2002-10-25 2004-05-20 Jfe Steel Kk Coated iron based powder

Also Published As

Publication number Publication date
JP2008192843A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP4706411B2 (en) Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
JP5133338B2 (en) Composite filler for resin mixing
US8568644B2 (en) Method for producing soft magnetic material and method for producing dust core
WO2009139368A1 (en) Powder magnetic core and choke
US20100079015A1 (en) Dust core, method for producing the same, electric motor, and reactor
JP5071671B2 (en) SOFT MAGNETIC PARTICLE POWDER AND PROCESS FOR PRODUCING THE SAME, DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC PARTICLE POWDER
JP2008063651A (en) Iron based soft magnetic powder for dust core, its production method, and dust core
US8999075B2 (en) Composite magnetic material and process for production
TW200832455A (en) Soft magnetic powder
TWI289487B (en) Iron based soft magnetic powder
WO2014157517A1 (en) Powder magnetic core for reactor
JP5881027B1 (en) Resin sheet, resin sheet manufacturing method, inductor component
JP5439888B2 (en) Composite magnetic material and method for producing the same
CN110911114A (en) Composite magnetic separation sheet for high-thermal-conductivity wireless charging receiving end and preparation method thereof
JP5280008B2 (en) SOFT MAGNETIC MATERIAL, PROCESS FOR PRODUCING THE SAME, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL
JP2016174142A (en) Resin sheet and inductor component
JP4803353B2 (en) SOFT MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL
JP7180071B2 (en) METHOD FOR MANUFACTURING METAL ELEMENT-CONTAINING POWDER, MOLDED BODY, AND METAL ELEMENT-CONTAINING POWDER
JP5513922B2 (en) Iron-based soft magnetic powder for dust core, method for producing iron-based soft magnetic powder for dust core, and dust core
JP2011222897A (en) Dust core, magnetic powder for dust core, and method for producing dust core
WO2022220295A1 (en) Magnetic powder, compound, molded body, bonded magnet, and powder magnetic core
JP2011129857A (en) Method of manufacturing dust core and dust core obtained by the method
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
CN108698124B (en) Novel compositions and methods
JP2011119385A (en) Iron-based magnet alloy powder containing rare earth element, method of manufacturing the same, resin composition for bonded magnet obtained, bonded magnet, and consolidated magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5280008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350