JP5278760B2 - Beverage container wash water treatment method - Google Patents
Beverage container wash water treatment method Download PDFInfo
- Publication number
- JP5278760B2 JP5278760B2 JP2009135704A JP2009135704A JP5278760B2 JP 5278760 B2 JP5278760 B2 JP 5278760B2 JP 2009135704 A JP2009135704 A JP 2009135704A JP 2009135704 A JP2009135704 A JP 2009135704A JP 5278760 B2 JP5278760 B2 JP 5278760B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- wavelength
- ultraviolet light
- cleaning water
- ultraviolet rays
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
本発明は、飲料水などを入れる瓶や、各種の缶詰に用いる缶など、食品用容器類の洗浄に使用する洗浄用水の処理方法に関する。 The present invention relates to a method for treating washing water used for washing food containers such as bottles for drinking water and cans used for various cans.
食品工場等において、飲料水その他の飲み物を入れるペットボトル、瓶や、魚、肉類、果菜類等の加工品の充填用容器(トレー等)など、食品用容器類の洗浄には、通常、次亜塩素酸ナトリウムにより殺菌処理された水道水が使用されている。清浄な地下水や河川水が得られる地域では、それら地下水や河川水に殺菌剤としての次亜塩素酸ナトリウムを加えた水が洗浄用水として使用される場合もある。 In food factories, etc., washing of food containers such as plastic bottles and bottles for drinking water and other drinks, and containers for filling processed products such as fish, meat, fruit vegetables etc. Tap water sterilized with sodium chlorite is used. In areas where clean groundwater or river water can be obtained, water obtained by adding sodium hypochlorite as a disinfectant to the groundwater or river water may be used as cleaning water.
また、食品加工工場内に、瓶などの容器類の洗浄ラインを設け、次亜塩素酸ナトリウムによる殺菌に加え、逆浸透膜やマイクロフィルター等を用いた膜分離処理を施して細菌類の死骸など、微細成分を除去した水を洗浄用水として使用に供することも行われている。この場合、使用済みの洗浄用水は回収され、再度処理を施された後、循環使用される。 In addition, in the food processing factory, a washing line for containers such as bottles is set up, and in addition to sterilization with sodium hypochlorite, membrane separation treatment using reverse osmosis membranes and microfilters is performed to make dead bodies of bacteria The water from which fine components have been removed is also used as cleaning water. In this case, the used cleaning water is collected, treated again, and then recycled.
一方、紫外線のもつ酸化作用、殺菌作用を利用して用水や排水中に含まれる有機物を除去する水の浄化方法が知られており、従来から多くの研究、開発がなされてきた。例えば、特許文献1には、アンモニア性窒素並びに鉄イオン、マンガンイオンを含む、例えば地下水の浄水処理において、アンモニア性窒素を紫外線照射により光酸化する方法が記載されている。 On the other hand, water purification methods for removing organic substances contained in irrigation water and wastewater using the oxidizing action and sterilizing action of ultraviolet rays are known, and many researches and developments have been made. For example, Patent Document 1 describes a method of photooxidizing ammonia nitrogen by ultraviolet irradiation in water purification treatment of, for example, groundwater containing ammonia nitrogen and iron ions and manganese ions.
また、特許文献2には、半導体素子製造の際に、半導体基板の洗浄等を行うために使用する用水の処理において、微細な有機物を処理するために所定の波長を有する紫外線を用水に照射する方法が記載されている。
Further, in
しかし、従来、食品工場等において、食品や飲料水などを入れる各種の充填用容器の洗浄に使用する洗浄用水の処理に紫外線を照射する方法を適用した例は見られない。 However, conventionally, there has been no example in which a method of irradiating ultraviolet rays is applied to the treatment of washing water used for washing various filling containers for containing food, drinking water or the like in food factories.
本発明は、ペットボトル、瓶、缶など、食品用容器類の洗浄に使用する洗浄用水を処理するに際し、紫外線のもつ酸化作用、殺菌作用を最大限に利用して、前記洗浄用水の処理を効果的に行うことができる飲料用容器洗浄水の処理方法を提供することを目的としている。 The present invention treats the washing water by utilizing the oxidation and sterilization action of ultraviolet rays to the maximum when treating washing water used for washing food containers such as PET bottles, bottles and cans. It is an object of the present invention to provide a method for treating drinking water for beverage containers that can be effectively performed.
前述のように、食品や飲料水などを入れるペットボトル、瓶、缶など食品や飲料用容器類の洗浄に、次亜塩素酸ナトリウムにより殺菌処理された水道水が使用され、また、地域によっては、地下水や河川水に殺菌剤としての次亜塩素酸ナトリウムを加えた水が洗浄用水として使用されている。さらに、食品加工工場内に洗浄ラインを設け、洗浄用水を循環使用して瓶などの容器類の洗浄を行う場合にも、循環経路内での細菌(バチルス菌)の繁殖を防止するために、次亜塩素酸ナトリウムを1ppm程度加えている。 As mentioned above, tap water sterilized with sodium hypochlorite is used to wash food and beverage containers such as PET bottles, bottles and cans that contain food and drinking water. Water obtained by adding sodium hypochlorite as a disinfectant to groundwater or river water is used as cleaning water. Furthermore, in order to prevent the growth of bacteria (Bacillus bacteria) in the circulation path even when a cleaning line is provided in the food processing factory and the cleaning water is circulated and used to wash containers such as bottles, About 1 ppm of sodium hypochlorite is added.
このような実態を踏まえ、本発明者らは、食品用容器類の洗浄に使用する洗浄用水の処理に紫外線を照射する方法の適用に思い至った。 Based on such a situation, the present inventors have come up with the application of a method of irradiating ultraviolet rays for the treatment of washing water used for washing food containers.
洗浄用水に加えられた次亜塩素酸ナトリウムは、一部は洗浄用水中の微量の有機物等と反応して化合物を形成しているが、遊離塩素も含まれており、この遊離塩素と水が特定の波長の紫外線を照射することによりラジカル(遊離基)を生じ(すなわち、ラジカル化して)、遊離塩素のみが含まれる場合に比べて酸化力が著しく増大する。このように、洗浄用水中に存在(または残留)する遊離塩素と紫外線照射との相乗作用により、洗浄用水の酸化力、殺菌力を高め、洗浄用水中の有機物、特に細菌(バクテリヤ)類を完全に除去し、死滅させることが可能となる。 Sodium hypochlorite added to the cleaning water partially reacts with trace amounts of organic substances in the cleaning water to form a compound, but also contains free chlorine. Irradiation with ultraviolet rays of a specific wavelength generates radicals (free radicals) (that is, radicalization), and the oxidizing power is remarkably increased as compared with the case where only free chlorine is contained. In this way, the synergistic action of free chlorine existing (or remaining) in the cleaning water and UV irradiation enhances the oxidizing power and sterilizing power of the cleaning water, and completely removes organic substances, especially bacteria (bacteria), in the cleaning water. It can be removed and killed.
このような着想の下に検討を重ねた結果、後述する実施例に示すように、洗浄用水の殺菌力が飛躍的に増大することを確認した。この場合、殺菌力が強く、従来から一般的に使用されている波長が253.7nmの紫外線と、これより波長が短い184.9nmの波長の紫外線を洗浄用水に照射するが、波長が184.9nmの紫外線は波長が253.7nmの紫外線よりもエネルギーがはるかに大きく、遊離塩素をラジカル化して、細菌類を死滅させる(滅菌する)ことができる。 As a result of repeated studies based on such an idea, it was confirmed that the sterilizing power of the cleaning water greatly increases as shown in Examples described later. In this case, the sterilizing power is strong and the cleaning water is irradiated with ultraviolet light having a wavelength of 253.7 nm that has been generally used conventionally and ultraviolet light having a shorter wavelength of 184.9 nm. The 9 nm ultraviolet light has a much larger energy than the ultraviolet light with a wavelength of 253.7 nm, and can radicalize free chlorine to kill (sterilize) bacteria.
本発明は、このような着想ならびにそれに基づく検討の結果なされたもので、下記の飲料用容器洗浄水の処理方法を要旨とする。 This invention was made | formed as a result of such an idea and examination based on it, and makes it a summary to the processing method of the following container water for drinks.
すなわち、食品用容器洗浄水の処理方法であって、前記の容器洗浄水に対し、酸化剤の存在下で残留遊離塩素の濃度が1.0mg/L以下、0.5mg/L以上の条件で、波長が253.7nmの紫外線および184.9nmの紫外線を含む紫外線の照射量が40mJ/cm2以上で照射し、前記洗浄水中の細菌を死滅させることを特徴とする方法である。
That is, a method for treating food container washing water, wherein the concentration of residual free chlorine in the presence of an oxidizing agent is 1.0 mg / L or less and 0.5 mg / L or more with respect to the container washing water. In this method, irradiation with ultraviolet rays including ultraviolet rays having a wavelength of 253.7 nm and ultraviolet rays having a wavelength of 184.9 nm is performed at 40 mJ / cm 2 or more to kill bacteria in the washing water.
本発明で洗浄対象とする容器は、清涼飲料、アルコール飲料、乳製品、健康飲料、薬用飲料およびその他の飲料、並びにプリン、ゼリーおよびその他の食品の充填に用いられる容器とする。 The container to be cleaned in the present invention is a container used for filling soft drinks, alcoholic drinks, dairy products, health drinks, medicinal drinks and other drinks, and pudding, jelly and other foods.
本発明の飲料用容器洗浄水の処理方法において、前記酸化剤が、塩素系酸化剤のうちのいずれか1種以上であれば、従来、洗浄用水として使用されている水道水中の遊離塩素や、洗浄用水として使用される地下水、河川水等に殺菌剤として加えた塩素系酸化剤を酸化剤として活用できるので望ましい。 In the method for treating drinking water for beverage containers according to the present invention, if the oxidizing agent is any one or more of chlorinated oxidizing agents, free chlorine in tap water conventionally used as cleaning water, Chlorine oxidizer added as a bactericidal agent to groundwater, river water, etc. used as washing water is desirable because it can be used as an oxidizer.
本発明の飲料用容器洗浄水の処理方法において、前記酸化剤の含有量を1ppm(つまり、残留遊離塩素濃度を1.0mg/L)以下とする。 In the processing method of the beverage container washing water of the present invention, the 1ppm the content of the oxidizing agent (i.e., the residual free chlorine concentration 1.0 mg / L) shall be the following.
また、本発明の飲料用容器洗浄水の処理方法において、紫外線の照射量を40mJ/cm2以上とする。 Further, in the processing method of the beverage container washing water of the present invention shall be the irradiation amount of ultraviolet rays 40 mJ / cm 2 or more.
瓶や、缶など、食品用容器類の洗浄に使用する洗浄用水の処理に、本発明の飲料用容器洗浄水の処理方法を適用すれば、洗浄用水の酸化力、殺菌力および滅菌力を飛躍的に高め、洗浄用水中の有機物、特に細菌類を完全に除去し、死滅させることができる。 Applying the beverage container washing water treatment method of the present invention to the treatment of washing water used for washing food containers such as bottles and cans, the oxidizing power, sterilizing power and sterilizing power of washing water will be greatly improved. And organic substances, especially bacteria, in the washing water can be completely removed and killed.
本発明は、食品用容器洗浄水の処理方法であって、前記の容器洗浄水に対し、酸化剤の存在下で、波長が253.7nm(以下、「254nm」と記す)の紫外線および184.9nm(以下、「185nm」と記す)の紫外線を含む紫外線を照射し、前記洗浄水中の細菌を死滅させることを特徴とする飲料用容器洗浄水の処理方法である。 The present invention relates to a method for treating food container washing water, wherein the container washing water has a wavelength of 253.7 nm (hereinafter referred to as “254 nm”) in the presence of an oxidizing agent and 184. A method for treating washing water for beverage containers, wherein ultraviolet rays including ultraviolet rays of 9 nm (hereinafter referred to as “185 nm”) are irradiated to kill bacteria in the washing water.
上記のとおり、本発明は、食品用容器、すなわち飲料水その他の飲み物を入れるペットボトル、瓶や、魚、肉類、果菜類等の加工品の充填に用いる容器(トレー等)など、食品工場等において食品用および飲料用の容器類の洗浄に使用する洗浄用水を対象とする処理方法である。 As described above, the present invention relates to food factories, such as food containers, that is, plastic bottles and bottles for drinking water and other drinks, and containers (such as trays) used for filling processed products such as fish, meat and fruit vegetables. Is a treatment method for washing water used for washing food and beverage containers.
この洗浄用水に対して、波長が254nmの紫外線および185nmの紫外線を含む紫外線を照射するのは、前記両波長の紫外線のもつ殺菌力、酸化力を利用して洗浄用水中に含まれる有機物、特に、細菌類を除去し、死滅させるためである。 The cleaning water is irradiated with ultraviolet light including ultraviolet light having a wavelength of 254 nm and ultraviolet light having a wavelength of 185 nm because organic substances contained in the cleaning water, particularly by utilizing the bactericidal and oxidizing powers of the ultraviolet light having both wavelengths, This is to remove bacteria and kill them.
紫外線の照射には、排水処理等の分野で通常使用されている紫外線ランプ等を使用すればよい。254nmの波長域の紫外線を照射できるものと、185nmの波長域の紫外線を照射できるものを併せて用いてもよいし、これら両波長域の紫外線を含むスペクトルの紫外線を照射できるものを用いてもよい。この二種類の波長域の紫外線を照射するのは、後に詳述するが、洗浄用水の殺菌力および滅菌力を飛躍的に高めるためである。 For irradiation with ultraviolet rays, an ultraviolet lamp or the like usually used in the field of wastewater treatment or the like may be used. Those that can irradiate ultraviolet rays in the wavelength region of 254 nm and those that can irradiate ultraviolet rays in the wavelength region of 185 nm may be used in combination, or those that can irradiate ultraviolet rays having a spectrum including ultraviolet rays in both wavelength regions may be used. Good. The reason for irradiating ultraviolet rays in these two types of wavelength ranges is to dramatically increase the sterilizing power and sterilizing power of cleaning water, as will be described in detail later.
また、洗浄用水中に酸化剤を存在させるのは、その酸化力によって有機物を分解除去するためであるが、この酸化剤に波長が185nmの紫外線を照射することによりラジカル(遊離基)を生成させ、酸化剤の酸化力、滅菌力を著しく高めることができるからである。 The reason why the oxidizing agent is present in the cleaning water is to decompose and remove organic substances by its oxidizing power, but by irradiating the oxidizing agent with ultraviolet rays having a wavelength of 185 nm, radicals (free radicals) are generated. This is because the oxidizing power and sterilizing power of the oxidizing agent can be remarkably enhanced.
酸化剤としては、塩素、次亜塩素酸、次亜塩素酸塩(例えば、次亜塩素酸ナトリウムなど)等の塩素系酸化剤、過酸化水素、オゾン等が利用可能である。 As the oxidizing agent, chlorine-based oxidizing agents such as chlorine, hypochlorous acid, hypochlorite (for example, sodium hypochlorite), hydrogen peroxide, ozone, and the like can be used.
しかし、本発明の方法で処理した洗浄用水による洗浄の対象が食品用容器であることを考慮すると、洗浄用水中に存在する酸化剤としては、水道水の殺菌に広く使用されている次亜塩素酸ナトリウムが望ましい。従来、食品用および飲料用の容器類の洗浄用水としては水道水が使用されており、しかも、水道水中の残留塩素や、洗浄用水として使用される地下水、河川水等に殺菌剤として加えた次亜塩素酸ナトリウムをそのまま利用できるので、この点からも次亜塩素酸ナトリウムは望ましい酸化剤である。また、その他の次亜塩素酸塩も、取り扱いが比較的容易であり、望ましい。これらの酸化剤は、1種または2種以上を同時に用いてもよい。 However, considering that the object of washing with the washing water treated by the method of the present invention is a food container, as an oxidizing agent present in the washing water, hypochlorite widely used for sterilization of tap water Sodium acid is desirable. Conventionally, tap water has been used as cleaning water for food and beverage containers, and in addition to residual chlorine in tap water, groundwater used as cleaning water, river water, etc., as a disinfectant Since sodium chlorite can be used as it is, sodium hypochlorite is also a desirable oxidizing agent in this respect. Other hypochlorites are also desirable because they are relatively easy to handle. These oxidizing agents may be used alone or in combination of two or more.
食品用容器の洗浄用水に対して、酸化剤の存在下で、波長が254nmの紫外線および185nmの紫外線を照射することにより洗浄用水の殺菌力および滅菌力が著しく高められる理由を以下に説明する。 The reason why the sterilizing power and sterilizing power of the cleaning water can be remarkably enhanced by irradiating the cleaning water of the food container with ultraviolet rays having a wavelength of 254 nm and 185 nm in the presence of an oxidizing agent will be described below.
図1は、本発明の飲料用容器洗浄水の処理方法を適用した場合における殺菌および滅菌の原理を説明する図である。図1に示すように、細菌(例えば、レジオネラ属菌)1は、模式的に示すと、DNA(デオキシリボ核酸)2と、その周囲を取り囲む細胞膜3およびその外側の細胞壁4とを主要構成要素として有している。 FIG. 1 is a diagram for explaining the principle of sterilization and sterilization when the method for treating washing water for beverage containers of the present invention is applied. As shown in FIG. 1, a bacterium (for example, Legionella spp.) 1 schematically includes a DNA (deoxyribonucleic acid) 2, a cell membrane 3 surrounding the periphery thereof, and an outer cell wall 4 as main components. Have.
このような細菌類が含まれた洗浄用水に対し、酸化剤として例えば塩素系酸化剤が存在する条件下で波長が254nmの紫外線(図1では、「紫外線254nm」と表示)および波長が185nmの紫外線(同じく、「紫外線185nm」と表示)を照射すると、紫外線254nmは、細胞壁4および細胞膜3を通過してDNA(符号2)に直接作用し、DNAの結合を破壊してDNAを不活性化(つまり、増殖不可能な状態に)させる。いわゆる「殺菌」作用である。この作用を、図1では符号(i)を付して示している。 For such cleaning water containing bacteria, ultraviolet light having a wavelength of 254 nm (indicated as “ultraviolet light 254 nm” in FIG. 1) and a wavelength of 185 nm under the condition that, for example, a chlorine-based oxidizing agent is present as an oxidizing agent. When irradiated with ultraviolet rays (also indicated as “ultraviolet ray 185 nm”), ultraviolet rays 254 nm pass through the cell wall 4 and the cell membrane 3 and directly act on DNA (reference numeral 2) to break DNA binding and inactivate DNA. (In other words, make it impossible to multiply). This is a so-called “bactericidal” action. This action is shown in FIG. 1 with reference (i).
一方、紫外線185nmは、波長が254nmの紫外線よりもエネルギーがはるかに大きく、洗浄用水中で遊離塩素として存在している塩素系酸化剤に作用してラジカル(遊離基)を生成させる。このようにして生じたラジカルは極めて強い酸化力を有しており、細胞壁4および細胞膜3を損傷し、細菌1そのものを死滅させる(同じく、符号(ii)と表示)。すなわち、このラジカルには、細菌類を死滅させる強い「滅菌」作用がある。塩素系酸化剤自体にも滅菌効果はあるが(同じく、符号(iii)と表示)、波長が185nmの紫外線照射により生成した前記ラジカルの滅菌効果は塩素系酸化剤が単独で存在する場合の滅菌効果よりもはるかに大きい。 On the other hand, the ultraviolet ray 185 nm has a much larger energy than the ultraviolet ray having a wavelength of 254 nm, and acts on a chlorine-based oxidizing agent existing as free chlorine in the cleaning water to generate radicals (free radicals). The radicals generated in this manner have an extremely strong oxidizing power, damage the cell wall 4 and the cell membrane 3, and kill the bacteria 1 itself (also indicated by symbol (ii)). That is, this radical has a strong “sterilization” action that kills bacteria. Although the chlorinated oxidant itself also has a sterilizing effect (similarly indicated by the symbol (iii)), the sterilizing effect of the radical generated by irradiation with ultraviolet rays having a wavelength of 185 nm is sterilized when the chlorinated oxidant is present alone. Much bigger than the effect.
すなわち、食品用容器の洗浄用水を塩素系酸化剤で殺菌する場合は、図1の符号(iii)の効果のみであるが、さらに、波長が254nmの紫外線および波長が185nmの紫外線を照射することにより、符号(i)の効果および符号(ii)の効果が加わり、殺菌、滅菌効果が飛躍的に増大する。 That is, when sterilizing cleaning water for food containers with a chlorine-based oxidant, only the effect of symbol (iii) in FIG. 1 is obtained, but further, irradiation with ultraviolet light having a wavelength of 254 nm and ultraviolet light having a wavelength of 185 nm is performed. Thus, the effect of the sign (i) and the effect of the sign (ii) are added, and the sterilization and sterilization effects are dramatically increased.
本発明の飲料用容器洗浄水の処理方法において、酸化剤(例えば、塩素系酸化剤)の含有量を1ppm(つまり、残留遊離塩素濃度を1.0mg/L)以下と規定する。遊離塩素が僅かでも残留していれば、紫外線の照射により残留する遊離塩素量に見合うだけのラジカルが生成し、滅菌効果を発揮するからである。 In the beverage container washing water treatment method of the present invention, the content of an oxidizing agent (for example, a chlorine-based oxidizing agent) is defined as 1 ppm (that is, the residual free chlorine concentration is 1.0 mg / L) or less . If free chlorine if remains even a little, to generate only radicals commensurate with the free chlorine amount of the residual by irradiation of ultraviolet rays, Ru der from exerting a sterilizing effect.
また、本発明の飲料用容器洗浄水の処理方法においては、紫外線の照射量についても限定はない。照射量が僅少であっても、その照射に応じた効果が得られるからである。しかし、後述する実施例から推察すると、紫外線の照射量が40mJ/cm2以上であれば、顕著な効果が期待できる。 Moreover, in the processing method of the washing water for drink containers of this invention, there is no limitation also about the irradiation amount of an ultraviolet-ray. This is because even if the irradiation amount is small, an effect corresponding to the irradiation can be obtained. However, when deduced from the examples described later, if the irradiation amount of ultraviolet rays is 40 mJ / cm 2 or more, remarkable effect can be expected.
この場合、波長が254nmの紫外線および185nmの紫外線の照射量の比率についても何ら規定はない。前述のように、波長が254nmの紫外線はDNAを不活性化させる殺菌効果があり、波長が185nmの紫外線は酸化剤のラジカル(遊離基)を生成させることにより酸化剤の滅菌作用を飛躍的に高める滅菌効果を有しており、前記いずれの波長の紫外線も、それが含まれておりさえすれば、それに応じた効果が認められるからである。 In this case, there is no provision for the ratio of the irradiation amount of ultraviolet light having a wavelength of 254 nm and ultraviolet light having a wavelength of 185 nm. As described above, ultraviolet light having a wavelength of 254 nm has a bactericidal effect to inactivate DNA, and ultraviolet light having a wavelength of 185 nm dramatically improves the sterilizing action of the oxidizing agent by generating radicals (free radicals) of the oxidizing agent. This is because it has a sterilizing effect to be enhanced, and as long as ultraviolet rays having any wavelength are included, the corresponding effect is recognized.
以上述べた本発明の飲料用容器洗浄水の処理方法によれば、瓶や、缶など、食品用容器類の洗浄に使用する洗浄用水の酸化力、殺菌力および滅菌力を飛躍的に高め、洗浄用水中の有機物、特に細菌類を完全に除去し、死滅させることができる。 According to the beverage container washing water treatment method of the present invention described above, the oxidizing power, sterilizing power and sterilizing power of washing water used for washing food containers, such as bottles and cans, are dramatically increased, Organic substances, particularly bacteria, in the washing water can be completely removed and killed.
細菌類が含まれる水に対して本発明の飲料用容器洗浄水の処理方法を適用し、殺菌、滅菌効果を調査した。 The method for treating the washing water for beverage containers of the present invention was applied to water containing bacteria, and the sterilization and sterilization effects were investigated.
試験菌としては、バチルス(Bacillus)属(芽胞):環境分離株 を使用した。なお、試験には調整済み芽胞液を用いた。 As a test bacterium, Bacillus genus (spore): environmental isolate was used. An adjusted spore solution was used for the test.
試験においては、円筒形の反応槽と、前記反応槽内の軸心に沿って配置された紫外線ランプ(石英ジャケットにより保護されている)と、前記反応槽内に供給する試験水を溜めるタンクを有するテスト装置(ヒカリ・エンジニアリング社製)を使用した。主要部の諸元は次のとおりである。 In the test, a cylindrical reaction vessel, an ultraviolet lamp (protected by a quartz jacket) arranged along the axial center in the reaction vessel, and a tank for storing test water supplied to the reaction vessel are provided. The test device (made by Hikari Engineering Co., Ltd.) was used. The specifications of the main part are as follows.
反応槽 :内径100mm
石英ジャケット :外径32mm
高出力紫外線ランプ:低圧水銀ランプを使用
波長域 185nm、254nm
発光長 110cm
出力 110W
Reaction tank: Inner diameter 100 mm
Quartz jacket: 32mm outer diameter
High power UV lamp: Low pressure mercury lamp used
Wavelength range 185nm, 254nm
Luminous length 110cm
Output 110W
〔遊離塩素濃度および菌数の測定方法〕
1)遊離塩素濃度
ADVANTEC社製の残留塩素比色測定器を用い、DPD試薬にて測定を行った。
[Method of measuring free chlorine concentration and number of bacteria]
1) Free chlorine concentration Using a residual chlorine colorimeter manufactured by ADVANTEC, measurement was performed with a DPD reagent.
2)試験菌の菌数測定
試験水に菌液を投入し、3分間ポンプ稼働により混合した後にサンプリングを行い、適宜希釈してスパイラルプレーターにて塗抹(サンプル1mL)、30℃で48±3時間培養した後、形成したコロニー数より算出した。
2) Measurement of the number of test bacteria The test solution is poured into test water, mixed for 3 minutes by pump operation, sampled, diluted appropriately and smeared with a spiral plater (sample 1 mL), 48 ± 3 at 30 ° C. After culturing for a time, the number of colonies formed was calculated.
3)処理水の菌数測定
装置内でサンプル液を調整し、ポンプを停止して紫外線ランプ(UV灯)を予備点灯(3分間)した後、ポンプを稼働して50秒または30秒後に処理液を採取した。採取した液の菌数は、スパイラルプレーター法または表面塗抹法(サンプル1mL)により、培地に塗抹し、30℃で1週間培養した後、形成したコロニー数より算出した。
3) Measurement of the number of bacteria in the treated water After adjusting the sample solution in the device, stopping the pump and preliminarily turning on the ultraviolet lamp (UV lamp) (3 minutes), the pump is turned on and treated 50 or 30 seconds later. The liquid was collected. The number of bacteria in the collected liquid was calculated from the number of colonies formed after smearing on the medium by spiral plater method or surface smearing method (sample 1 mL) and culturing at 30 ° C. for 1 week.
〔試験手順〕
1)タンクに20リットル(L)の水道水を溜める。
2)UV灯点灯状態でポンプを稼働させ、残留遊離塩素を飛ばす。なお、遊離塩素併用時はこの作業は省き、次亜塩素酸ナトリウムを添加してポンプのみ稼働し、目標の残留遊離塩素濃度に調整する。
3)UV灯を消灯し、DPD試薬で残留遊離塩素濃度を確認する。
4)菌液を添加し、3分間ポンプを稼働させて菌液が均一になるように混合する。
5)処理前の試験菌液としてサンプルを採取する。
6)ポンプを止め、UV灯を3分間点灯(UV照度が最高に達するまでの予備点灯)する。
7)ポンプを稼働させ、処理水をサンプリングする。サンプリングは、照射量を171.6mJ/cm2としたときには50秒後に、照射量を52.7mJ/cm2または43.4mJ/cm2としたときには30秒後に行う。
〔Test procedure〕
1) Accumulate 20 liters (L) of tap water in the tank.
2) Operate the pump while the UV lamp is lit to drive off residual free chlorine. In addition, when using free chlorine, omit this work, add sodium hypochlorite, operate only the pump, and adjust to the target residual free chlorine concentration.
3) Turn off the UV lamp and check the residual free chlorine concentration with the DPD reagent.
4) Add the bacterial solution and operate the pump for 3 minutes to mix the bacterial solution uniformly.
5) Collect a sample as a test bacterial solution before treatment.
6) Stop the pump and turn on the UV lamp for 3 minutes (preliminary lighting until the UV illuminance reaches the maximum).
7) Operate the pump and sample the treated water. Sampling after 50 seconds when the amount of irradiation and 171.6mJ / cm 2, performed after 30 seconds when the amount of irradiation was 52.7mJ / cm 2 or 43.4mJ / cm 2.
殺菌効果の調査結果を表1に示す。表1において、「照射量」は、照射した紫外線がすべて波長254nmの紫外線であるとして求めた値である。また、照射量が43.4mJ/cm2の試験における試験データは、それぞれ試験回数2回の平均値である。 Table 1 shows the results of the sterilization effect. In Table 1, “irradiation amount” is a value obtained by assuming that all irradiated ultraviolet rays are ultraviolet rays having a wavelength of 254 nm. Moreover, the test data in a test with an irradiation dose of 43.4 mJ / cm 2 is an average value of the number of tests twice.
表1に示すように、照射量が171.6mJ/cm2の場合、残留遊離塩素濃度に関わらず、殺菌率は99.999%以上(ファイブナイン以上)となった。処理後の試験水菌数は、残留遊離塩素濃度が0.5mg/L以上であれば、0cfu/mLとなった。 As shown in Table 1, when the irradiation dose was 171.6 mJ / cm 2 , the sterilization rate was 99.999% or more (five nines or more) regardless of the residual free chlorine concentration. The number of test water bacteria after the treatment was 0 cfu / mL when the residual free chlorine concentration was 0.5 mg / L or more.
照射量が52.7mJ/cm2の場合は、残留遊離塩素濃度が0mg/L、0.5mg/Lで、殺菌率は99.99%以上(フォーナイン以上)、残留遊離塩素濃度が1mg/Lで、殺菌率は99.999%以上(ファイブナイン以上)であった。 When the irradiation dose is 52.7 mJ / cm 2 , the residual free chlorine concentration is 0 mg / L, 0.5 mg / L, the bactericidal rate is 99.99% or more (four nines or more), and the residual free chlorine concentration is 1 mg / L. At L, the bactericidal rate was 99.999% or more (five nines or more).
また、照射量が43.4mJ/cm2の場合は、残留遊離塩素濃度が0mg/Lで、殺菌率は99.9%以上(スリーナイン以上)、残留遊離塩素濃度が0.5mg/L、1mg/Lで、殺菌率は99.99%以上(フォーナイン以上)であった。 When the irradiation dose is 43.4 mJ / cm 2 , the residual free chlorine concentration is 0 mg / L, the bactericidal rate is 99.9% or more (three nines or more), the residual free chlorine concentration is 0.5 mg / L, 1 mg. / L, the sterilization rate was 99.99% or more (four nines or more).
この結果によれば、残留遊離塩素濃度が0mg/Lでも高い殺菌率が得られているが、食品用容器類の洗浄に使用する洗浄用水の処理においては、処理後の試験水菌数が0cfu/mLであることが理想であり、この状態は、残留遊離塩素濃度が0mg/Lでは、照射量を高めても達成できない。 According to this result, a high sterilization rate is obtained even when the residual free chlorine concentration is 0 mg / L. However, in the treatment of washing water used for washing food containers, the number of test water bacteria after treatment is 0 cfu. Ideally, this state cannot be achieved even when the irradiation dose is increased when the residual free chlorine concentration is 0 mg / L.
表1の結果から判断すると、紫外線の照射量が40mJ/cm2以上であれば、残留遊離塩素濃度を0.5mg/L以上とすることにより、処理後の試験水菌数を数十cfu/mLのオーダーまで減少させることができる。
Judging from the results in Table 1, when the irradiation amount of ultraviolet rays is 40 mJ / cm 2 or more, the residual free chlorine concentration is set to 0.5 mg / L or more, so that the number of test water bacteria after treatment is several tens of cfu / Ru can be reduced to mL of order.
上記の調査により、本発明の飲料用容器洗浄水の処理方法が食品用容器類の洗浄に使用する洗浄用水の処理方法として極めて有効であることが確認できた。 From the above investigation, it was confirmed that the method for treating washing water for beverage containers according to the present invention is extremely effective as a treatment method for washing water used for washing food containers.
本発明の飲料用容器洗浄水の処理方法は、食品用容器の洗浄用水に対して、残留遊離塩素などの酸化剤の存在下で、波長が254nmおよび185nmの紫外線を照射する方法であり、洗浄用水の酸化力、殺菌力および滅菌力を飛躍的に高め、洗浄用水中の有機物、特に細菌類を完全に除去し、死滅させることができる。 The method for treating drinking water for beverage containers according to the present invention is a method for irradiating washing water for food containers with ultraviolet rays having wavelengths of 254 nm and 185 nm in the presence of an oxidizing agent such as residual free chlorine. Oxidizing power, sterilizing power and sterilizing power of water can be dramatically increased, and organic substances, particularly bacteria, in the water for cleaning can be completely removed and killed.
したがって、本発明の飲料用容器洗浄水の処理方法は、食品工業、その他食品用容器類の洗浄処理に関わる産業分野において、有効に利用することができる。 Therefore, the method for treating washing water for beverage containers of the present invention can be effectively used in the food industry and other industrial fields related to washing treatment of food containers.
1:細菌、 2:DNA、 3:細胞膜、 4:細胞壁 1: bacteria, 2: DNA, 3: cell membrane, 4: cell wall
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009135704A JP5278760B2 (en) | 2009-06-05 | 2009-06-05 | Beverage container wash water treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009135704A JP5278760B2 (en) | 2009-06-05 | 2009-06-05 | Beverage container wash water treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010279909A JP2010279909A (en) | 2010-12-16 |
JP5278760B2 true JP5278760B2 (en) | 2013-09-04 |
Family
ID=43537157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009135704A Expired - Fee Related JP5278760B2 (en) | 2009-06-05 | 2009-06-05 | Beverage container wash water treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5278760B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112624455A (en) * | 2020-12-18 | 2021-04-09 | 华东理工大学 | Method for disinfecting gram-negative superbacteria with antibiotic resistance in water |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2770791B2 (en) * | 1995-05-31 | 1998-07-02 | 東レ株式会社 | Water treatment method and water treatment device |
JP2002059173A (en) * | 2000-08-23 | 2002-02-26 | Nippon Steel Corp | Treatment method of raw water |
JP3566715B1 (en) * | 2003-04-18 | 2004-09-15 | 株式会社環境向学 | Water vending machine container cleaning apparatus and method |
JP4738942B2 (en) * | 2005-08-26 | 2011-08-03 | 日本錬水株式会社 | Rincer drainage collection system |
-
2009
- 2009-06-05 JP JP2009135704A patent/JP5278760B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010279909A (en) | 2010-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Luo et al. | Advances in application of ultraviolet irradiation for biofilm control in water and wastewater infrastructure | |
Malvestiti et al. | Disinfection of secondary effluents by O3, O3/H2O2 and UV/H2O2: Influence of carbonate, nitrate, industrial contaminants and regrowth | |
Karpova et al. | Performic acid for advanced wastewater disinfection | |
EP2838854B1 (en) | Water treatment | |
CN108423745A (en) | The method for treating water of microorganism and organic pollution in water removal is removed in a kind of sunlight and chlorine combination | |
KR20170141225A (en) | Liquid handling systems and methods | |
Moreno-Andrés et al. | Inactivation of the waterborne marine pathogen Vibrio alginolyticus by photo-chemical processes driven by UV-A, UV-B, or UV-C LED combined with H2O2 or HSO5− | |
Rizvi et al. | Disinfection of UASB-Treated Municipal Wastewater by H 2 O 2, UV, Ozone, PAA, H 2 O 2/Sunlight, and Advanced Oxidation Processes: Regrowth Potential of Pathogens. | |
Jonnalagadda et al. | Chlorine dioxide for bleaching, industrial applications and water treatment | |
Kizi et al. | Disinfection of water for drinking: ozone disinfection method | |
He et al. | Chlorine-resistant bacteria in drinking water: Generation, identification and inactivation using ozone-based technologies | |
CN102060370B (en) | Method for rapid disinfection of medical wastewater | |
AU2002304626B2 (en) | Sterilization of surfaces | |
Daneshvar et al. | Photocatalytic disinfection of water polluted by Pseudomonas aeruginosa | |
EP2653448B1 (en) | Water treatment | |
JP5278760B2 (en) | Beverage container wash water treatment method | |
Ramsay et al. | The synergistic effect of excimer and low-pressure mercury lamps on the disinfection of flowing water | |
KR100207095B1 (en) | Water purification system using ozone and ultra-violet light | |
Tawabini et al. | Reduction of Escherichia coli bacteria from contaminated water by combining hydrogen peroxide, ozone and ultraviolet light | |
Zorzi et al. | Combined effect of atmospheric gas plasma and UVA light: A sustainable and green alternative for chemical decontamination and microbial inactivation of fish processing water | |
CN214270333U (en) | Integrated wastewater disinfection device | |
Upadhyay et al. | Photocatalytic Water Disinfection | |
Wright | Is ozone the disinfectant of the future?: water | |
Zăbavă et al. | Advanced technologies for wastewater treatment by ozonation-a review. | |
Karel | Klebsiella pneumoniae disinfection with ultrasound and hydrogen peroxides. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110607 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120522 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120716 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130423 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130508 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |