JP5277848B2 - Method for forming photoexcitable substance - Google Patents

Method for forming photoexcitable substance Download PDF

Info

Publication number
JP5277848B2
JP5277848B2 JP2008257366A JP2008257366A JP5277848B2 JP 5277848 B2 JP5277848 B2 JP 5277848B2 JP 2008257366 A JP2008257366 A JP 2008257366A JP 2008257366 A JP2008257366 A JP 2008257366A JP 5277848 B2 JP5277848 B2 JP 5277848B2
Authority
JP
Japan
Prior art keywords
tin oxide
oxide film
film
substrate
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008257366A
Other languages
Japanese (ja)
Other versions
JP2010084218A (en
Inventor
誠二 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2008257366A priority Critical patent/JP5277848B2/en
Publication of JP2010084218A publication Critical patent/JP2010084218A/en
Application granted granted Critical
Publication of JP5277848B2 publication Critical patent/JP5277848B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、酸化錫を、気相化学成長反応を利用して形成する方法に関する。   The present invention relates to a method for forming tin oxide using a vapor phase chemical growth reaction.

酸化錫は透明性、電気伝導性、化学的耐久性に優れており、太陽電池用の透明導電膜をはじめ様々な用途で利用されている。太陽電池用の透明導電膜として酸化錫膜を使用する場合、ガラスなどの透明基体上に気相化学成長反応(以下CVD法とする)、スパッタリング法、スプレー法などを利用して酸化錫を形成するのが一般的である。この内CVD法は大気圧での成膜が可能なため生産コストが低く、製造条件を工夫することで様々な表面形状を作ることができるなどの利点を持ち、大面積の成膜に適した成膜プロセスである。   Tin oxide is excellent in transparency, electrical conductivity, and chemical durability, and is used in various applications including transparent conductive films for solar cells. When a tin oxide film is used as a transparent conductive film for solar cells, tin oxide is formed on a transparent substrate such as glass by vapor phase chemical growth reaction (hereinafter referred to as CVD method), sputtering method, spray method, etc. It is common to do. Among these, CVD is capable of film formation at atmospheric pressure, so production costs are low, and various surface shapes can be created by devising manufacturing conditions, making it suitable for film formation over a large area. It is a film forming process.

酸化錫膜の導電性を上げるためには結晶性を高め、結晶粒界を少なくすることが有効である。特にガラス上に成膜した場合、特許文献1に、(200)面の結晶配向性をあげることが有効であると記載されている。   In order to increase the conductivity of the tin oxide film, it is effective to increase crystallinity and reduce crystal grain boundaries. In particular, when a film is formed on glass, Patent Document 1 describes that it is effective to increase the crystal orientation of the (200) plane.

また、太陽電池基体として酸化錫膜をガラス上に形成する場合、(200)面とともに(100)面の配向性を結晶強度比で100対20〜120にすることが良好な電池特性を発揮しやすいことが、特許文献2で記載されている。この場合も結晶性は高いほど好ましいことが記載されている。このように酸化錫膜を電気導電性膜として利用する場合、一般に結晶性は高いほど好ましい。   In addition, when a tin oxide film is formed on a glass as a solar cell substrate, it is possible to achieve good battery characteristics by setting the orientation of the (100) plane together with the (200) plane to a crystal strength ratio of 100 to 20 to 120. It is described in Patent Document 2 that it is easy. Also in this case, it is described that higher crystallinity is preferable. Thus, when utilizing a tin oxide film as an electrically conductive film, the higher the crystallinity, the better.

一方、酸化錫膜を生産するには、生産性を向上させることも重要である。酸化錫膜の生産性を向上させる方法の1つは、成膜速度を上げることである。CVD法で成膜速度を上げるには、供給する原料の濃度を上げることが有効である。しかし、原料濃度を上げると結晶性が低くなる傾向があり、結晶性の向上と成膜速度向上は両立しない問題があった。成膜速度を上げる方法としては、成膜温度を上げる方法も有効であることはよく知られている。しかしながら、ガラスなどの低融点材料の場合、成膜温度を上げると基体が熱変形を起こす。ガラス中のナトリウムなどの拡散しやすい成分が膜中に混入し酸化錫の導電性を著しく劣化させるなどの問題がある。   On the other hand, to produce a tin oxide film, it is also important to improve productivity. One method for improving the productivity of the tin oxide film is to increase the deposition rate. In order to increase the film formation rate by the CVD method, it is effective to increase the concentration of the raw material to be supplied. However, when the raw material concentration is increased, the crystallinity tends to be low, and there is a problem that the improvement of the crystallinity and the improvement of the film forming speed are not compatible. As a method for increasing the film formation rate, it is well known that a method for increasing the film formation temperature is also effective. However, in the case of a low melting point material such as glass, the substrate is thermally deformed when the film forming temperature is raised. There is a problem that easily diffusing components such as sodium in the glass are mixed in the film and the conductivity of the tin oxide is remarkably deteriorated.

特許文献3では、真空紫外光による処理として、CVDで酸化膜を成膜する際に紫外線を当てるという記載がある。また、実施例には、有機系酸化錫原料(TEOS)の成膜時に紫外線(キセノンエキシマランプ:12mW/cm)を照射して、成膜速度が増大するという記載がある。気相中で材料ガスの分子結合が光子エネルギーにより切断され、ウエハ表面に吸着されて酸化物となるとの記載(段落0007)のように、気相中のガスを紫外線で分解するメカニズムとなっている。そして、気相中でガスを分解するために例えばキセノンエキシマランプというピーク波長が200nm未満(具体的にはピーク波長126、135、146、165、172nmなど)の強い紫外線を発光する高価な紫外線発生装置で、12mW/cmという非常に強い紫外線照射強度が必要となる。 In Patent Document 3, there is a description that ultraviolet rays are applied when an oxide film is formed by CVD as a process using vacuum ultraviolet light. In addition, in the examples, there is a description that the film formation rate is increased by irradiating ultraviolet rays (xenon excimer lamp: 12 mW / cm 2 ) when forming an organic tin oxide raw material (TEOS). As described in the paragraph (paragraph 0007) that the molecular bond of the material gas is broken by photon energy in the gas phase and adsorbed on the wafer surface to become an oxide (paragraph 0007), it becomes a mechanism for decomposing the gas in the gas phase with ultraviolet rays. Yes. Then, in order to decompose the gas in the gas phase, for example, a xenon excimer lamp is used to generate an expensive ultraviolet ray that emits strong ultraviolet rays having a peak wavelength of less than 200 nm (specifically, peak wavelengths of 126, 135, 146, 165, 172 nm, etc.) The apparatus requires a very strong ultraviolet irradiation intensity of 12 mW / cm 2 .

特許文献4では、「空間の原料ガスに光分解反応を起こさせ前記基体上に前記原料ガスの光分解生成物を薄膜形成させる」と記載(請求項1)がある。実施例には、紫外線の条件として、低圧水銀灯で紫外光(ピーク波長184.9、253.7nm)を、原料ガスであるSn(CHに照射して1時間掛けて470.0nmのSnO膜を成膜した記載がある。紫外線の強度は明細書内に最低0.34W/cmは必要と記載がある。 Patent Document 4 states that “a photodecomposition reaction is caused to a source gas in a space to form a thin film of a photodecomposition product of the source gas on the substrate” (Claim 1). In the example, as a condition for ultraviolet rays, ultraviolet light (peak wavelengths 184.9, 253.7 nm) was irradiated to the source gas Sn (CH 3 ) 4 with a low-pressure mercury lamp, and the irradiation gas was 470.0 nm over 1 hour. There is a description of forming a SnO 2 film. There is a description in the specification that the intensity of ultraviolet rays needs to be at least 0.34 W / cm 2 .

非特許文献では、原料ガスとしてTTIP+TEOS原料を紫外線(222nm、20mW/cm)でTiSiOx膜を形成している。紫外線照射強度の強い紫外線を使用する記載はありますが、紫外線の効果についてはTTIPの分解を促進するとの記述があるだけで、Ti以外の原料、特に酸化錫に関する記述はありません。 In non-patent literature, a TiSiOx film is formed by using TTIP + TEOS raw material as a raw material gas with ultraviolet rays (222 nm, 20 mW / cm 2 ). Although there is a description that uses ultraviolet rays with strong ultraviolet irradiation intensity, there is only a description that the effect of ultraviolet rays accelerates the decomposition of TTIP, there is no description about raw materials other than Ti, especially tin oxide.

特開昭61−227945号公報JP-A 61-227945 特開平5−67797号公報JP-A-5-67797 特開2001−274156号公報JP 2001-274156 A 特開昭62−74081号公報JP-A-62-74081 Thin Solid Films 453 .454 (2004) 167.171Thin Solid Films 453. 454 (2004) 167.171

成膜速度を変えずに結晶性を向上させるCVD法による酸化錫の成膜方法を提供する。   Provided is a method for forming a tin oxide film by a CVD method which improves crystallinity without changing the film formation rate.

気相化学成長反応を利用して酸化錫膜を基体上に形成する薄膜形成方法であって、前記形成中に基体を加熱すると同時に、紫外線照射強度が0.03mW/cm以上1mW/cm以下の紫外線を基体に照射することを特徴とする薄膜形成方法を提供する。 A thin film forming method using a chemical vapor deposition reaction to form a tin oxide film on a substrate, and at the same time heating the substrate during the formation, ultraviolet irradiation intensity 0.03 mW / cm 2 or more 1 mW / cm 2 Provided is a thin film forming method characterized by irradiating a substrate with the following ultraviolet rays.

成膜中に基体を加熱すると同時に紫外線を照射することにより、形成された膜の成膜速度を落とすことなしに結晶性を上げることができる。   By heating the substrate during film formation and irradiating ultraviolet rays at the same time, the crystallinity can be increased without reducing the film formation rate of the formed film.

また、結晶性が上がるために、抵抗が下がり、太陽電池の電極として使用したとき、太陽電池の電気的ロスを減らすことができる。もしくは、従来と同じ抵抗値のものを作る場合は、薄い透明導電膜で済むために原料の低コスト化、膜自身が薄いことによる高透過化が期待できる。   Further, since the crystallinity is increased, the resistance is lowered, and when used as an electrode of a solar cell, the electrical loss of the solar cell can be reduced. Alternatively, when a material having the same resistance value as in the prior art is used, a thin transparent conductive film can be used, so that the cost of the raw material can be reduced, and the high transmittance due to the thin film itself can be expected.

また、結晶性が上がるために、ヘイズ率が上がり、太陽電池に用いた場合に発電効率が上がることが期待できる。   Further, since the crystallinity is increased, the haze ratio is increased, and it can be expected that the power generation efficiency is increased when used in a solar cell.

本発明はCVD法を利用して酸化錫膜を基体上に形成する形成方法を提供する。
ここで酸化錫膜とは、後述する光活性効果があれば不純物を含んでもよい。導電性を発現させるために、フッ素やアンチモンを含んでもよい。
The present invention provides a forming method for forming a tin oxide film on a substrate using a CVD method.
Here, the tin oxide film may contain impurities as long as it has a photoactive effect described later. In order to develop conductivity, fluorine or antimony may be included.

ここで、基体上と酸化錫膜の間に、光学特性を改善する薄膜を設置してもよい。例えば基体側から光が入射する際に光の反射を低減する目的で、基体上に高屈折率膜、低屈折率膜、酸化錫膜の順に隣接させて膜を設置するのが好ましい。高屈折率膜としては屈折率が2.0以上の材質からなる透明材料でその中でも酸化チタン(TiO)が特に好ましい。低屈折率膜としては酸化錫膜より屈折率が小さい材料で、特に好ましいのは酸化シリコン(SiO)である。 Here, a thin film for improving optical characteristics may be provided between the substrate and the tin oxide film. For example, for the purpose of reducing the reflection of light when light enters from the substrate side, it is preferable to dispose a film on the substrate in the order of a high refractive index film, a low refractive index film, and a tin oxide film. The high refractive index film is a transparent material made of a material having a refractive index of 2.0 or more. Among them, titanium oxide (TiO 2 ) is particularly preferable. The low refractive index film is a material having a refractive index smaller than that of the tin oxide film, and silicon oxide (SiO 2 ) is particularly preferable.

また、太陽電池の発電効率を改善するためには、酸化錫の表面に凹凸を形成することが必要である。凹凸として例えば、高低差0.2〜0.5μm、凸部のピッチが0.3〜0.75μmであると、酸化錫の上に設置された太陽電池へ可視光線を適度に散乱し発電効率が改善することが知られている。   In order to improve the power generation efficiency of the solar cell, it is necessary to form irregularities on the surface of the tin oxide. As unevenness, for example, when the height difference is 0.2 to 0.5 μm and the convex pitch is 0.3 to 0.75 μm, the visible light is appropriately scattered to the solar cell installed on the tin oxide and the power generation efficiency Is known to improve.

CVD法による金属酸化物の成膜では、原料となる金属化合物を気化し、気化した原料ガスに何らかのエネルギーを与え基体上で金属化合物を分解、酸化させることにより形成する方法が一般的である。原料ガスに加えるエネルギーとしては、基体を高温に加熱する熱CVD法、原料ガスをプラズマで活性化するプラズマCVD法があるが、熱CVD法は装置が簡便で均一な成膜を行いやすいなどのメリットがある。しかし、熱CVD法は基体全体を均一に加熱する方式であるため、結晶粒に選択的にエネルギーを供給することができず、結晶化を効率的に促進することができない。   In the metal oxide film formation by the CVD method, a method is generally used in which a metal compound as a raw material is vaporized, and some energy is given to the vaporized raw material gas to decompose and oxidize the metal compound on the substrate. As the energy added to the source gas, there are a thermal CVD method for heating the substrate to a high temperature and a plasma CVD method for activating the source gas with plasma. The thermal CVD method is easy to perform uniform film formation with a simple apparatus. There are benefits. However, since the thermal CVD method is a method for uniformly heating the entire substrate, energy cannot be selectively supplied to the crystal grains, and crystallization cannot be promoted efficiently.

これに対して、発明者らは酸化錫膜の成膜に関する研究を鋭意努力して研究した結果、酸化錫膜の成膜時に基体を加熱すると同時に紫外線を照射することにより酸化錫膜の結晶化を効率的に促進する方法を見いだした。これは、酸化錫膜は紫外線に対して光活性効果をもつためである。成膜中に紫外線を照射した場合、酸化錫膜の光活性効果で酸化錫膜表面が選択的に活性化され、原料ガスの分解が酸化錫膜表面で行われ、酸化反応が促進されるためであると考えられる。なお、本発明では光活性効果とは、光触媒効果を含む現象であります。   On the other hand, the inventors have intensively studied the film formation of the tin oxide film. As a result, the substrate was heated at the same time as the tin oxide film was formed and simultaneously irradiated with ultraviolet rays to crystallize the tin oxide film. I found a way to promote it efficiently. This is because the tin oxide film has a photoactive effect on ultraviolet rays. When ultraviolet rays are irradiated during film formation, the surface of the tin oxide film is selectively activated by the photoactive effect of the tin oxide film, and the source gas is decomposed on the surface of the tin oxide film, thereby promoting the oxidation reaction. It is thought that. In the present invention, the photoactive effect is a phenomenon including a photocatalytic effect.

特許文献3では、気相中でガスを分解するために、キセノンエキシマランプ(ピーク波長が200nm未満)と強力な光子エネルギーの紫外線でかつ、12mW/cmという非常に強い紫外線照射強度が必要となる。また、特許文献3では、気相中のガスを紫外線で分解するメカニズムであり、本発明では酸化錫膜の光活性効果による酸化錫膜表面での反応と異なります。 In Patent Document 3, in order to decompose a gas in a gas phase, a xenon excimer lamp (peak wavelength is less than 200 nm) and ultraviolet light having a strong photon energy and a very strong ultraviolet irradiation intensity of 12 mW / cm 2 are required. Become. Patent Document 3 describes a mechanism for decomposing gas in the gas phase with ultraviolet rays. In the present invention, the reaction is different from the reaction on the surface of the tin oxide film due to the photoactive effect of the tin oxide film.

特許文献4では紫外線照射の効果として、空間中の酸素ガスを励起することが記載されており、このとき必要な紫外線照射強度としては最低でも0.34W/cmという非常に強い紫外線照射強度が必要であることが述べられている。特許文献4は紫外線の効果は酸素を分解し成膜速度を増加せることであるが、本発明では酸化錫膜の光活性効果による酸化錫膜表面での反応と異なります。 Patent Document 4 describes that oxygen gas in space is excited as an effect of ultraviolet irradiation, and the necessary ultraviolet irradiation intensity required at this time is a very strong ultraviolet irradiation intensity of 0.34 W / cm 2 at a minimum. It is stated that it is necessary. In Patent Document 4, the effect of ultraviolet rays is to decompose oxygen and increase the deposition rate, but in the present invention, it differs from the reaction on the tin oxide film surface due to the photoactive effect of the tin oxide film.

酸化錫膜による光活性効果は酸化錫膜の非結晶の部位より、酸化錫膜の結晶部位の方が大きい。このため、結晶化された酸化錫膜の表面で原料ガスの分解、酸化反応が促進され、紫外線照射強度の小さい紫外線の照射で効果が発現する。   The photoactive effect of the tin oxide film is greater in the crystalline portion of the tin oxide film than in the non-crystalline portion of the tin oxide film. For this reason, the decomposition of the source gas and the oxidation reaction are promoted on the surface of the crystallized tin oxide film, and the effect is manifested by irradiation with ultraviolet rays having a low ultraviolet irradiation intensity.

ピーク波長220〜400nmの紫外線を照射する光源としては、ブラックライト(ピーク波長365nm)、低圧水銀ランプ(ピーク波長254nm)、高圧水銀ランプ(ピーク波長250〜320nm、365nm)、エキシマランプ(ピーク波長172nm, 222nm,308nmなど)などがあり、これらを単独で用いても、複数種類を組み合わせてもよい。なお、ここでは、特許文献3に記載されていたキセノンエキシマランプ(ピーク波長200nm未満)と、ピーク波長222nm,308nmのエキシマランプと区別するために、前者をキセノンエキシマランプ、後者を単にエキシマランプと呼ぶ。なお、紫外線の波長は短くなるほど高いエネルギーを持つ。   As a light source for irradiating ultraviolet light having a peak wavelength of 220 to 400 nm, black light (peak wavelength 365 nm), low pressure mercury lamp (peak wavelength 254 nm), high pressure mercury lamp (peak wavelengths 250 to 320 nm, 365 nm), excimer lamp (peak wavelength 172 nm). , 222 nm, 308 nm, etc.), and these may be used alone or in combination. Here, in order to distinguish the xenon excimer lamp (peak wavelength less than 200 nm) described in Patent Document 3 from the excimer lamps having peak wavelengths of 222 nm and 308 nm, the former is a xenon excimer lamp and the latter is simply an excimer lamp. Call. Note that the shorter the wavelength of ultraviolet light, the higher the energy.

酸化錫の励起波長は326nmであるから326nm以下の光をあてると表面が効率よく活性化できる。このため、使用する光源としては波長326nm以下の光を発生するランプが好ましく、ランプ寿命や装置のコストなどを考慮すると、低圧水銀ランプならびに高圧水銀ランプを使用することが好ましい。ピーク波長は220nm〜400nmであり、220〜365nmであることがより好ましい。ピーク波長が200nm未満のみの紫外線を出す光源は、紫外線発光装置自身が高額になることや、酸化錫の励起波長に対して不必要に高いエネルギーであるために好ましくない。   Since the excitation wavelength of tin oxide is 326 nm, the surface can be activated efficiently by applying light of 326 nm or less. For this reason, a lamp that generates light having a wavelength of 326 nm or less is preferable as the light source to be used, and it is preferable to use a low-pressure mercury lamp and a high-pressure mercury lamp in consideration of the lamp life and the cost of the apparatus. The peak wavelength is 220 nm to 400 nm, and more preferably 220 to 365 nm. A light source that emits ultraviolet light having a peak wavelength of less than 200 nm is not preferable because the ultraviolet light emitting device itself is expensive and has an unnecessarily high energy with respect to the excitation wavelength of tin oxide.

酸化錫の励起波長は、前記の通り326nmであるが、ピーク波長が326nm以上の紫外線を用いた場合でも、ピーク波長から短波長側のすその部分の波長帯で酸化錫が十分に紫外線を吸収すれば光励起効果は発現する。   The excitation wavelength of tin oxide is 326 nm as described above. Even when ultraviolet light having a peak wavelength of 326 nm or more is used, tin oxide sufficiently absorbs ultraviolet light in the wavelength band of the short wavelength side from the peak wavelength. Then, the photoexcitation effect appears.

本発明では基体を加熱するために、基体はガラスであることが好ましい。ガラスの種類としては特に限定されず、例えば、無色透明なソーダライムシリケートガラス、アルミノシリケートガラス、ボレートガラス、リチウムアルミノシリケートガラス、石英ガラス、ホウ珪酸ガラス、無アルカリガラス、その他の各種ガラスからなる透明ガラス板等を使用することができる。   In the present invention, the substrate is preferably glass in order to heat the substrate. There are no particular restrictions on the type of glass, for example, colorless and transparent soda lime silicate glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, quartz glass, borosilicate glass, alkali-free glass, and other transparent glasses A glass plate or the like can be used.

これらのうち、本発明の価格が安いという観点から、ソーダライムシリケートガラスを使用するのが好ましい。また、ソーダライムシリケートガラスを使用する際には、フロート法での製造工程のガラスリボン上で、本発明の方法で薄膜を形成すると、加熱のために新たな設備費が不要で、製造コストを安くすることができる。   Among these, it is preferable to use soda lime silicate glass from the viewpoint that the price of the present invention is low. In addition, when using soda lime silicate glass, if a thin film is formed by the method of the present invention on the glass ribbon of the manufacturing process by the float method, no new equipment cost is required for heating, and the manufacturing cost is reduced. Can be cheap.

また、例えば、ソーダライムシリケートガラスを使用する場合はガラス中のナトリウムなどアルカリ金属イオンが酸化錫膜へ拡散する問題がある。このためガラスと酸化錫膜の間に前記酸化錫膜と異なる材料からなる薄膜(以下、ナトリウム防止層という)を設置することが特に好ましい。ナトリウム防止層としてはシリコンの酸化物が特に好適であるが、目的を達成するものならば薄膜の組成、薄膜の総数、薄膜の厚さは適宜選ばれるものである。また、前述の光学特性を改善する薄膜をナトリウム防止層としても構わない。   Further, for example, when using soda lime silicate glass, there is a problem that alkali metal ions such as sodium in the glass diffuse into the tin oxide film. Therefore, it is particularly preferable to install a thin film (hereinafter referred to as a sodium prevention layer) made of a material different from that of the tin oxide film between the glass and the tin oxide film. As the sodium prevention layer, silicon oxide is particularly suitable. However, the composition of the thin film, the total number of thin films, and the thickness of the thin film are appropriately selected as long as the purpose is achieved. Further, the above-described thin film for improving optical characteristics may be used as the sodium prevention layer.

本発明における成膜時の基体温度は450℃以上であることが好ましい。450℃より基体温度が低いと成膜速度が遅くなり、生産性が劣化するためであり、基体温度は500℃以上であることが成膜速度の面からより好ましい。基体加熱温度の上限は成膜の観点からは特にないが、ガラス基体の場合、熱変形を起こさないようにするために750℃以下であることが好ましい。   In the present invention, the substrate temperature during film formation is preferably 450 ° C. or higher. This is because when the substrate temperature is lower than 450 ° C., the film formation rate becomes slow and the productivity deteriorates, and the substrate temperature is more preferably 500 ° C. or more from the viewpoint of the film formation rate. The upper limit of the substrate heating temperature is not particularly limited from the viewpoint of film formation, but in the case of a glass substrate, it is preferably 750 ° C. or lower so as not to cause thermal deformation.

紫外線照射強度は、成膜位置(酸化錫が成膜される面)で紫外線照射強度測定器を用いて測定する。波長220nm〜400nmの強度測定では、通常254nmに感度を持つセンサーと365nmに感度を持つセンサーの2つを組み合わせて測定する。本発明で記載する紫外線照射強度とは、両センサーの合計値である。紫外線照射強度は0.03mW/cm以上であることが必須である。0.03mW/cmより紫外線照射強度が低い場合、十分な結晶性が得られないからである。紫外線照射強度と結晶性の関係は、0.03mW/cm以上でほぼ平行に達すると考えられる。このため、紫外線照射強度の上限は、紫外線照射機器の価格や寿命を考慮すると1mW/cm以下であることが好ましい。紫外線照射強度が0.05mW/cm〜0.3mW/cmが特に好ましい。 The ultraviolet irradiation intensity is measured using an ultraviolet irradiation intensity measuring device at a film forming position (surface on which tin oxide is formed). In intensity measurements at wavelengths of 220 nm to 400 nm, measurement is usually performed by combining a sensor having sensitivity at 254 nm and a sensor having sensitivity at 365 nm. The ultraviolet irradiation intensity described in the present invention is the total value of both sensors. It is essential that the ultraviolet irradiation intensity is 0.03 mW / cm 2 or more. It is because sufficient crystallinity cannot be obtained when the ultraviolet irradiation intensity is lower than 0.03 mW / cm 2 . The relationship between the ultraviolet irradiation intensity and the crystallinity is considered to reach almost parallel at 0.03 mW / cm 2 or more. For this reason, the upper limit of the ultraviolet irradiation intensity is preferably 1 mW / cm 2 or less in consideration of the price and life of the ultraviolet irradiation device. The ultraviolet irradiation intensity is particularly preferably 0.05 mW / cm 2 to 0.3 mW / cm 2 .

紫外線を照射する光源の設置位置は、酸化錫膜が形成される基体位置を0.03mW/cm以上の強度で照射できれば特に制限はない。基体位置の直上または直下に光源ランプを設置するのが、装置が簡潔になり好ましい。光源から石英ファイバーなどの紫外線を透過できる光ファイバーを用いて照射してもよい。前記酸化錫膜が形成される際に、基体上堆積していく前記酸化錫膜に紫外線が照射されることで、前記酸化錫膜の表面が活性化され、酸化錫膜表面に接する原料ガスが分解、酸化が促進される。また、前記酸化錫膜が形成される基体位置で照射するとは、酸化錫膜の所定の厚さの一部を成膜した後に、成膜を行わないで紫外線を照射し、その後、光励起効果の持続している間に前記酸化錫膜を再度積み重ねても構わない。連続して成膜を行う際に紫外線を照射し続けても構わない。また、ガラス基体を透過して、膜の成膜する表面で紫外線照射強度が前述の強度を満たすことができれば、ガラス基体の裏面から照射してもよい。 The installation position of the light source for irradiating ultraviolet rays is not particularly limited as long as the substrate position on which the tin oxide film is formed can be irradiated with an intensity of 0.03 mW / cm 2 or more. It is preferable to install a light source lamp directly above or below the substrate position because the apparatus is simple. Irradiation may be performed using an optical fiber capable of transmitting ultraviolet light such as quartz fiber from a light source. When the tin oxide film is formed, the surface of the tin oxide film is activated by irradiating the tin oxide film deposited on the substrate with ultraviolet rays, and the source gas in contact with the surface of the tin oxide film is Decomposition and oxidation are promoted. In addition, irradiation at the substrate position where the tin oxide film is formed means that after a part of a predetermined thickness of the tin oxide film is formed, ultraviolet light is irradiated without forming the film, and then the photoexcitation effect is obtained. The tin oxide film may be stacked again while it continues. You may continue irradiating an ultraviolet-ray when forming into a film continuously. Moreover, if the ultraviolet irradiation intensity | strength can permeate | transmit a glass base | substrate and can satisfy | fill the above-mentioned intensity | strength on the surface which forms a film | membrane, you may irradiate from the back surface of a glass base | substrate.

また、本発明は酸化錫膜の光励起作用を利用して基体上で反応が進むことを特徴としている。このために、特許文献3,4のような気相中の原料ガスを励起し、励起された原料ガスが基体に堆積するものと比べると、本発明は基体上に紫外線を照射することで、その基体の表面のみで原料ガスは紫外線で励起され、膜が基体上のみに堆積する。これに対して、特許文献3,4のような気相中で原料ガスを励起した場合、最初に触れた表面に堆積する。不要な部分に付着した酸化錫膜は、定期的な清掃作業が必要になる。   Further, the present invention is characterized in that the reaction proceeds on the substrate using the photoexcitation action of the tin oxide film. For this reason, the present invention irradiates ultraviolet rays on the substrate by exciting the source gas in the gas phase as in Patent Documents 3 and 4 and comparing the excited source gas deposited on the substrate. The source gas is excited by ultraviolet rays only on the surface of the substrate, and the film is deposited only on the substrate. On the other hand, when the source gas is excited in the gas phase as in Patent Documents 3 and 4, it is deposited on the surface first touched. The tin oxide film adhering to unnecessary portions needs to be periodically cleaned.

本発明で使用できる錫原料としては、四塩化錫などの無機錫化合物、モノメチル錫クロライド、ジメチル錫クロライド、テトラメチル錫、モノブチル錫クロライド等の有機錫を使用することができる。この内、四塩化錫は有機錫のような環境に対する汚染懸念が小さく、結晶化しやすい、紫外線照射による結晶化促進効果が大きいなどの理由により、使用原料として好ましい。   As a tin raw material that can be used in the present invention, inorganic tin compounds such as tin tetrachloride, and organic tin such as monomethyltin chloride, dimethyltin chloride, tetramethyltin, and monobutyltin chloride can be used. Of these, tin tetrachloride is preferred as a raw material to be used because it is less likely to be polluted with respect to the environment like organotin, is easily crystallized, and has a large effect of promoting crystallization by ultraviolet irradiation.

以下、本発明の実施例を示す。   Examples of the present invention will be described below.

(実施例1)
図1のようなCVD装置を用いて行った。錫原料として無水の四塩化錫を用いた。原料の四塩化錫をシリンジ1に入れ、これをシリンジポンプ2で1.2cc/hrの速度で気化器3へ導入した。導入された四塩化錫は150℃に加熱された気化器で気化され、搬送用窒素ライン4より窒素ガス2.5NL/minを加えCVD反応器へ導入した。CVD反応器には酸素ライン5から酸素ガス0.3NL/minが導入され、先の原料ラインと混合した後、大気圧下で直径3cmのヒーター6で550℃に加熱した2.5cm角の石英基体7上に1分間吹き付けた。紫外線は紫外線照射装置8(モリテックス社製MUV−250U−L:高圧水銀灯タイプ:ピーク波長250〜320nm、365nm)を用いて発生させ、石英ファイバー9を通して、成膜中に基体面に0.24mW/cmの強度で照射した。紫外線の強度は基体を加熱する前に、計測器(東京光学機械(株)製UVR−254ならびにUVR−365)を用い基体面で測定した。ヘイズ値はヘイズメーター(スガ試験機製HZ−2)で測定した。抵抗値は4端子法の測定器を用いて測定した。作成した酸化錫膜の物性値を表1〜3に示した。ここで、NL/minのNLとは標準状態でのリットル単位をあらわす。
Example 1
This was performed using a CVD apparatus as shown in FIG. Anhydrous tin tetrachloride was used as a tin raw material. The raw material tin tetrachloride was put into the syringe 1 and introduced into the vaporizer 3 by the syringe pump 2 at a rate of 1.2 cc / hr. The introduced tin tetrachloride was vaporized by a vaporizer heated to 150 ° C., and nitrogen gas 2.5 NL / min was added from the transfer nitrogen line 4 and introduced into the CVD reactor. Oxygen gas 0.3 NL / min was introduced into the CVD reactor from the oxygen line 5, mixed with the previous raw material line, and then heated to 550 ° C. with a heater 3 having a diameter of 3 cm under atmospheric pressure, and 2.5 cm square quartz. It sprayed on the base | substrate 7 for 1 minute. Ultraviolet rays are generated using an ultraviolet irradiation device 8 (MUV-250UL, manufactured by Moritex Corp .: high pressure mercury lamp type: peak wavelength 250 to 320 nm, 365 nm), and passed through quartz fiber 9 to form 0.24 mW / Irradiated with an intensity of cm 2 . The intensity of ultraviolet rays was measured on the substrate surface using a measuring instrument (UVR-254 and UVR-365 manufactured by Tokyo Optical Machinery Co., Ltd.) before heating the substrate. The haze value was measured with a haze meter (HZ-2 manufactured by Suga Test Instruments). The resistance value was measured using a four-terminal measuring instrument. The physical property values of the prepared tin oxide film are shown in Tables 1 to 3. Here, NL of NL / min represents a liter unit in a standard state.

(実施例2〜4)
紫外線照射強度を表1のように変化させた以外は、実施例1と同様に酸化錫膜を作成した。作成した酸化錫膜の物性値を表1〜3に示した。
(Examples 2 to 4)
A tin oxide film was prepared in the same manner as in Example 1 except that the ultraviolet irradiation intensity was changed as shown in Table 1. The physical property values of the prepared tin oxide film are shown in Tables 1 to 3.

(比較例1)
紫外線照射強度を0.01mW/cmとした以外は、実施例1と同様に酸化錫膜を作成した。作成した酸化錫膜の物性値を表1〜3に示した。
(Comparative Example 1)
A tin oxide film was prepared in the same manner as in Example 1 except that the ultraviolet irradiation intensity was 0.01 mW / cm 2 . The physical property values of the prepared tin oxide film are shown in Tables 1 to 3.

(比較例2)
紫外線を照射しない以外は、実施例1と同様に酸化錫膜を作成し、その物性値を表1〜3に示した。
(Comparative Example 2)
Except not irradiating with ultraviolet rays, a tin oxide film was prepared in the same manner as in Example 1, and the physical properties thereof are shown in Tables 1 to 3.

成膜された酸化錫膜の膜厚をビーコ社製触針式膜厚計DEKTAKで測定したところ、いずれの場合も膜厚は300nm程度で顕著な変化は無かった。膜の結晶性は薄膜X線回折装置(リガク社製RU200B)を使って測定した。成膜された酸化錫膜は表3に示すようにいずれも(200)面が主要ピークであったため、(200)面の積分強度を計算した。ここでは、(200)面の積分強度を結晶性とし、紫外線照射強度と結晶性を表1にまとめ、グラフを図2に示した。   When the film thickness of the formed tin oxide film was measured with a stylus-type film thickness meter DEKTAK manufactured by Beco, the film thickness was about 300 nm and there was no significant change. The crystallinity of the film was measured using a thin film X-ray diffractometer (RU200B manufactured by Rigaku Corporation). As shown in Table 3, since the (200) plane was the main peak in any of the formed tin oxide films, the integrated intensity of the (200) plane was calculated. Here, the integrated intensity of the (200) plane is defined as crystallinity, the ultraviolet irradiation intensity and crystallinity are summarized in Table 1, and the graph is shown in FIG.

表1では、紫外線照射強度が高くなると、成膜速度はほぼ変化無いが、(200)面の積分強度(結晶性)が増加することが分かった。図2より、(200)面の積分強度は紫外線照射強度が、特に0.03mW/cm以上の紫外線照射強度では、(200)面の積分強度はほぼ一定値になる。このために、0.03mW/cm以上の紫外線照射強度とした実施例1〜4は、酸化錫膜が十分に結晶化し、比較例に比べ結晶性が増すことが分かった。 In Table 1, it was found that as the ultraviolet irradiation intensity increases, the film formation rate does not substantially change, but the integrated intensity (crystallinity) of the (200) plane increases. From FIG. 2, the integrated intensity of the (200) plane has an almost constant value for the integrated intensity of the (200) plane, particularly at an ultraviolet irradiation intensity of 0.03 mW / cm 2 or more. For this reason, in Examples 1 to 4 having an ultraviolet irradiation intensity of 0.03 mW / cm 2 or more, it was found that the tin oxide film was sufficiently crystallized and the crystallinity was increased as compared with the comparative example.

また、従来の紫外線を照射しない方法では、成膜速度を遅くした場合に結晶性の高い酸化錫膜が得られることが分かっている。本発明では、従来の方法に比べ同程度の結晶性の酸化錫膜を、高い成膜速度で作成することができると考える。このことは、製造コストの減少となり、本発明により低コストの酸化錫膜を作ることができる。   In addition, it has been found that a conventional method that does not irradiate ultraviolet rays can obtain a highly crystalline tin oxide film when the film formation rate is slowed down. In the present invention, it is considered that a tin oxide film having the same degree of crystallinity as that of the conventional method can be formed at a high film formation rate. This results in a reduction in manufacturing cost, and a low-cost tin oxide film can be produced according to the present invention.

表2に実施例1〜4、比較例1、2の酸化錫膜付き基体の物性を測定した結果を示す。比較例2(紫外線をまったく照射しない例)のヘイズ率、シート抵抗を基準として規格化して表示した。また、表2の結果を図3にグラフで示す。ヘイズ率は紫外線照射強度の増加とともに上昇し、0.03mW/cm以上になるとほぼ一定値になる。また、シート抵抗値は紫外線照射強度の増加とともに減少し、0.03mW/cm以上になるとほぼ一定値になる。 Table 2 shows the measurement results of the physical properties of the substrates with tin oxide films of Examples 1 to 4 and Comparative Examples 1 and 2. The values were normalized and displayed based on the haze ratio and sheet resistance of Comparative Example 2 (an example in which no ultraviolet ray was irradiated). Moreover, the result of Table 2 is shown with a graph in FIG. The haze rate increases with an increase in ultraviolet irradiation intensity, and becomes substantially constant when 0.03 mW / cm 2 or more. Further, the sheet resistance value decreases as the ultraviolet irradiation intensity increases, and becomes substantially constant when 0.03 mW / cm 2 or more.

表1のように、同じ成膜速度で比較した場合、本発明の方法を用いると比較例に比べ、ヘイズ率の高い酸化錫膜が得られ、この基板を太陽電池へ適用した場合、発電効率を上昇させることができる。   As shown in Table 1, when compared at the same film formation rate, a tin oxide film having a higher haze ratio was obtained when the method of the present invention was used, and when this substrate was applied to a solar cell, the power generation efficiency was Can be raised.

また、同じ成膜速度で比較した場合、本発明の方法を用いると比較例に比べ、シート抵抗の低い酸化錫膜が得られ、この基板を太陽電池に適用した場合、発電効率を改善することができる。また、同じシート抵抗を得るには、成膜時間を短くすることができるために、酸化錫膜の成膜コストを低減できる。   In addition, when compared at the same film formation rate, a tin oxide film having a lower sheet resistance is obtained when the method of the present invention is used compared to the comparative example, and when this substrate is applied to a solar cell, the power generation efficiency is improved. Can do. Further, in order to obtain the same sheet resistance, the film formation time can be shortened, so that the film formation cost of the tin oxide film can be reduced.

Figure 0005277848
Figure 0005277848

Figure 0005277848
Figure 0005277848

Figure 0005277848
Figure 0005277848

酸化錫膜をガラス基体上に作る際、結晶性が良好な膜を成膜速度を速く作ることができ、酸化錫膜成膜プロセスの生産性を向上させることができる。   When a tin oxide film is formed on a glass substrate, a film having good crystallinity can be formed at a high film formation speed, and the productivity of the tin oxide film film formation process can be improved.

本発明を実施するCVD装置の概略図Schematic diagram of a CVD apparatus for carrying out the present invention 紫外線照射強度と(200)積分強度の関係Relationship between UV irradiation intensity and (200) integral intensity 紫外線照射強度と酸化錫膜のシート抵抗値、ヘイズ率の関係Relationship between UV irradiation intensity, sheet resistance value and haze ratio of tin oxide film

符号の説明Explanation of symbols

1 シリンジ
2 シリンジポンプ
3 原料気化器
4 搬送用窒素
5 酸素
6 基体加熱ヒーター
7 基体
8 紫外線照射器
9 石英ファイバー
10 排気ライン
11 CVD装置
DESCRIPTION OF SYMBOLS 1 Syringe 2 Syringe pump 3 Raw material vaporizer 4 Nitrogen for conveyance 5 Oxygen 6 Substrate heater 7 Base 8 Ultraviolet irradiator 9 Quartz fiber 10 Exhaust line 11 CVD apparatus

Claims (4)

気相化学成長反応を利用して酸化錫膜を基体上に形成する薄膜形成方法であって、
前記形成中に基体を加熱すると同時に、紫外線照射強度が0.03mW/cm以上1mW/cm以下の紫外線を基体に照射することを特徴とする薄膜形成方法。
A thin film forming method for forming a tin oxide film on a substrate using vapor phase chemical growth reaction,
Simultaneously heating the substrate during the formation, a thin film forming method characterized in that ultraviolet radiation intensity is irradiated with 0.03 mW / cm 2 or more 1 mW / cm 2 or less of ultraviolet substrate.
前記加熱の基体加熱温度が450℃以上であることを特徴とする請求項1に記載の薄膜形成方法。   The thin film forming method according to claim 1, wherein the heating temperature of the substrate for heating is 450 ° C. or higher. 前記紫外線がピーク波長220nm〜400nmの紫外線であることを特徴とする請求項1または2に記載の薄膜形成方法。   The method for forming a thin film according to claim 1 or 2, wherein the ultraviolet rays are ultraviolet rays having a peak wavelength of 220 nm to 400 nm. 前記酸化錫膜の主原料の錫原料が四塩化錫であることを特徴とする請求項1〜3いずれかに記載の薄膜形成方法。   The thin film forming method according to claim 1, wherein a tin raw material as a main raw material of the tin oxide film is tin tetrachloride.
JP2008257366A 2008-10-02 2008-10-02 Method for forming photoexcitable substance Expired - Fee Related JP5277848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008257366A JP5277848B2 (en) 2008-10-02 2008-10-02 Method for forming photoexcitable substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008257366A JP5277848B2 (en) 2008-10-02 2008-10-02 Method for forming photoexcitable substance

Publications (2)

Publication Number Publication Date
JP2010084218A JP2010084218A (en) 2010-04-15
JP5277848B2 true JP5277848B2 (en) 2013-08-28

Family

ID=42248463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008257366A Expired - Fee Related JP5277848B2 (en) 2008-10-02 2008-10-02 Method for forming photoexcitable substance

Country Status (1)

Country Link
JP (1) JP5277848B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138073A (en) * 1983-12-26 1985-07-22 Semiconductor Energy Lab Co Ltd Manufacture of electrically conductive transparent film
JPS59140368A (en) * 1983-12-27 1984-08-11 Agency Of Ind Science & Technol Method and device for producing thin film
JPS6274081A (en) * 1985-09-28 1987-04-04 Agency Of Ind Science & Technol Method and apparatus for producing thin film
JPS6289873A (en) * 1985-10-14 1987-04-24 Semiconductor Energy Lab Co Ltd Formation of transparent conductive film
JPS62142781A (en) * 1985-12-17 1987-06-26 Semiconductor Energy Lab Co Ltd Ultraviolet light source and photochemical reaction process
JPH05347108A (en) * 1991-10-07 1993-12-27 Tokai Univ Transparent conductive film and its manufacture
JP2000309885A (en) * 1999-04-23 2000-11-07 Sekisui Chem Co Ltd Production of gradient functional material
JP3409082B2 (en) * 2000-09-27 2003-05-19 独立行政法人産業技術総合研究所 Method for producing negative electrode material for lithium secondary battery and lithium secondary battery
JP4709662B2 (en) * 2006-02-28 2011-06-22 三菱重工業株式会社 Method for forming transparent electrode film and method for manufacturing solar cell

Also Published As

Publication number Publication date
JP2010084218A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP3227449B2 (en) Substrate for photoelectric conversion device, method for manufacturing the same, and photoelectric conversion device using the same
CN105658592A (en) Method for producing a substrate coated with a stack including a conductive transparent oxide film
US20070082205A1 (en) Photocatalytic member
JPH04280975A (en) Production of zno transparent conductive film
NO144140B (en) PROCEDURE FOR PREPARING TRANSPARENT FILM TINNOXY MOVIES
EP1471541B1 (en) Glass substrate coated with a transparent conductive film and photoelectric conversion device including said glass substrate
JPWO2005056870A1 (en) Ti oxide film having photocatalytic activity in visible light and method for producing the same
JP6039402B2 (en) Method for making zinc oxide coated article
US20150246845A1 (en) Method for forming thin film
JP5277848B2 (en) Method for forming photoexcitable substance
JP6295957B2 (en) Method for producing glass substrate with conductive thin film
KR20140063682A (en) Photocatalytic material and glazing or photovoltaic cell comprising said material
JP4322596B2 (en) Manufacturing method of glass with thin film
JP5599823B2 (en) Method for depositing conductive titanium oxide coating
CN1625534A (en) Method for forming transparent thin film, transparent thin film formed by the method and transparent substrate with transparent thin film
JP2004362842A (en) Transparent base substrate with transparent conductive film, its manufacturing method, photoelectric conversion device and substrate therefor
JP2001035262A (en) Glass plate with conductive film, its manufacture and photoelectric transfer device using the same
JP2001039738A (en) Glass plate having conductive film, its production and photo-electric transfer device using the glass plate
JP2005029464A (en) Glass plate with thin film, its production method, and photoelectric conversion device using the glass plate
JP2017001924A (en) Coating film-fitted glass plate
JP2001177127A (en) Board for photoelectric conversion device
JP2006016273A (en) Film deposition system based on spray pyrolysis method
JP2007234866A (en) Transparent electrically conductive substrate for solar cell and its manufacturing method
JP2020532486A (en) Coated glass articles, methods of making them, and photovoltaic cells made from them
WO2022114027A1 (en) Film-attached glass substrate, and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

LAPS Cancellation because of no payment of annual fees