JP5277788B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5277788B2
JP5277788B2 JP2008208825A JP2008208825A JP5277788B2 JP 5277788 B2 JP5277788 B2 JP 5277788B2 JP 2008208825 A JP2008208825 A JP 2008208825A JP 2008208825 A JP2008208825 A JP 2008208825A JP 5277788 B2 JP5277788 B2 JP 5277788B2
Authority
JP
Japan
Prior art keywords
film
insulating film
copper
electrode
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008208825A
Other languages
Japanese (ja)
Other versions
JP2010045234A (en
Inventor
勝 川上
哲理 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2008208825A priority Critical patent/JP5277788B2/en
Publication of JP2010045234A publication Critical patent/JP2010045234A/en
Application granted granted Critical
Publication of JP5277788B2 publication Critical patent/JP5277788B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10122Auxiliary members for bump connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/10125Reinforcing structures
    • H01L2224/10126Bump collar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13012Shape in top view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/1605Shape
    • H01L2224/16057Shape in side view
    • H01L2224/16058Shape in side view being non uniform along the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate a connection failure in flip chip connection by forming a large number of bumps by aligning heights. <P>SOLUTION: This semiconductor device has a semiconductor chip 10, a plurality of electrode pads 11 formed on a main surface 10S of the semiconductor chip, an insulating film 21 formed on the main surface 10S of the semiconductor chip and covering the respective electrode pads 11, openings 24 formed at the insulating film 21 on the respective electrode pads 11, and the bumps 12 connected to the respective electrode pads 11 via the respective openings 24 in the insulating film 21. The bumps 12 have copper electrodes 13 connected to the electrode pads 11 via the openings 24, metallic connecting layers 14 formed on surfaces of the copper electrodes 13, and barrier layers 15 formed at sides of the copper electrodes 13 and the metallic connecting layers 14 and at inner surfaces of the openings 24, and the respective copper electrodes 13 are formed equal in height, and the respective metallic connecting layers 14 are formed equal in thickness. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、半導体装置およびその製造方法に関し、特にはチップオンチップ接続のバンプを備えた半導体装置およびその製造方法に関するものである。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having bumps for chip-on-chip connection and a manufacturing method thereof.

携帯機器の小型化、低消費電力化、低コスト化のために、複数チップを一つのパッケージに搭載したSiP(System in package)が広く用いられている。チップの接続方式には、従来より、ワイヤ接続、フリップチップ接続が用いられているが、チップ間の伝送速度の点でSoC(System on chip)より劣ることがデメリットとして挙げられる。   In order to reduce the size, power consumption, and cost of portable devices, SiP (System in package) in which a plurality of chips are mounted in one package is widely used. Conventionally, wire connection and flip chip connection are used as chip connection methods. However, the chip connection method is inferior to SoC (System on chip) in terms of transmission speed between chips.

フリップチップ接続方式では、チップに接続用バンプを形成し、基板もしくは他のチップとバンプを介して物理的かつ電気的に接続させる。
特に、図7に示すように、上側チップ101と下側チップ102同士を接続させるCoC(Chip on Chip)接続では、基板配線を介さずに上側チップ101と下側チップ102間を電気的に接続するため、配線長、容量の低減が可能である。
加えて、上側チップ101、下側チップ102のそれぞれに、数千個の径が数十μmのバンプ111、112を配置し、対向するバンプ111、112同士を接続している。このため、基板接続型のフリップチップ接続と比較して、バンド幅を飛躍的に増加させることが可能となる。この結果、CoC接続は伝送速度向上が可能となり、従来のSiPのデメリットを克服できる。
また、上側チップ101、下側チップ102間には封止樹脂121が充填されている。
In the flip chip connection method, bumps for connection are formed on a chip and are physically and electrically connected to a substrate or another chip via the bumps.
In particular, as shown in FIG. 7, in the CoC (Chip on Chip) connection in which the upper chip 101 and the lower chip 102 are connected to each other, the upper chip 101 and the lower chip 102 are electrically connected without passing through the substrate wiring. Therefore, the wiring length and capacity can be reduced.
In addition, thousands of bumps 111 and 112 having a diameter of several tens of μm are arranged on each of the upper chip 101 and the lower chip 102, and the bumps 111 and 112 facing each other are connected to each other. Therefore, it is possible to dramatically increase the bandwidth as compared with the substrate connection type flip chip connection. As a result, the CoC connection can improve the transmission speed and overcome the disadvantages of the conventional SiP.
A sealing resin 121 is filled between the upper chip 101 and the lower chip 102.

上記フリップチップ接続のバンプ材料には、スズ(Sn)、金(Au)、銅(Cu)などが用いられており、バンプ形成プロセスは主にセミアディティブ法が主流である。
このセミアディティブ法は、シード層を形成した後、このシード層上にレジスト膜を形成する。そして、バンプ形成位置のレジスト膜に開口部を形成するパターニングを行う。次いで、開口部内のシード層上に、電気めっき(電解めっき)法で金属層とはんだ層を形成した後、レジスト膜を除去する。さらに、余剰なシード層を除去するという工程を順に行い、金属層とはんだ層からなるバンプを形成する方法である(例えば、特許文献1、非特許文献1参照。)。
Tin (Sn), gold (Au), copper (Cu), etc. are used as the bump material for the flip chip connection, and the semi-additive method is mainly used as the bump forming process.
In this semi-additive method, after forming a seed layer, a resist film is formed on the seed layer. Then, patterning for forming an opening in the resist film at the bump forming position is performed. Next, after forming a metal layer and a solder layer on the seed layer in the opening by an electroplating (electrolytic plating) method, the resist film is removed. Further, a process of removing an excessive seed layer is performed in order to form a bump made of a metal layer and a solder layer (see, for example, Patent Document 1 and Non-Patent Document 1).

しかし、電解めっきで、数千個ものバンプとなるめっき層を形成しているため、めっき形成領域の全域の電流密度を均一にすることは困難である。そのため、めっき形成領域の電流密度が不均一になって、バンプの高さにばらつきを生じていた。このバンプの高さばらつきは、例えば2.5μm程度になっていた。
また、上記プロセスでは、余剰なシード層を除去した後、各金属層とはんだ層をフラックス層で被覆してはんだ層のリフロー処理を行い、はんだ層表面を曲面に形成している。このリフロー処理を行っても、初めに形成された金属層とはんだ層の高さが部分的に異なっているため、リフロー後の金属層とはんだ層を合わせたバンプの高さにばらつきを生じていた。
However, since a plating layer that becomes thousands of bumps is formed by electrolytic plating, it is difficult to make the current density in the entire plating formation region uniform. For this reason, the current density in the plating formation region becomes non-uniform, resulting in variations in bump height. The bump height variation was, for example, about 2.5 μm.
In the above process, after removing the excess seed layer, each metal layer and the solder layer are covered with a flux layer, and the solder layer is reflowed to form a curved solder surface. Even when this reflow treatment is performed, the height of the bump formed by combining the metal layer and the solder layer after reflowing varies because the height of the metal layer and the solder layer formed at the beginning are partially different. It was.

特開2005−51128号公報JP 2005-51128 A Takayuki Ezaki, Kazuhiro Kondo, Hiroshi Ozaki, Naoto Sasaki,Hitoshi Yonenura, Masaki Kitano, Shuji Tanaka, Teruo Hirayama著 「A 160Gb/s Interface Design Configuration for Multichips LSI」2004 IEEE International Solid-State Circuits Conference 2004年Takayuki Ezaki, Kazuhiro Kondo, Hiroshi Ozaki, Naoto Sasaki, Hitoshi Yonenura, Masaki Kitano, Shuji Tanaka, Teruo Hirayama "A 160Gb / s Interface Design Configuration for Multichips LSI" 2004 IEEE International Solid-State Circuits Conference 2004

解決しようとする問題点は、電解めっきで多数のバンプを形成したとき、バンプの高さがばらついていたため、フリップチップ接続させた場合、接続が不完全なバンプが生じて、接続不良が発生していた点である。   The problem to be solved is that when a large number of bumps were formed by electrolytic plating, the bump heights varied, so when flip chip connection was made, bumps that were incompletely connected resulted in poor connection. It was a point.

本発明は、高さをそろえて多数のバンプを形成することを可能とし、フリップチップ接続での接続不良を解消することを可能にする。   The present invention makes it possible to form a large number of bumps with the same height, and to eliminate connection failure in flip chip connection.

本発明の半導体装置は、半導体チップと、前記半導体チップの主面に形成された複数の電極パッドと、前記半導体チップの主面に形成されていて前記各電極パッドを被覆する絶縁膜と、前記各電極パッド上の前記絶縁膜に形成された開口部と、前記絶縁膜上に前記各
開口部を通じて前記各電極パッドに接続されたバンプを有し、前記バンプは、前記開口部内に埋め込まれるとともに外周部が前記絶縁膜上に形成された銅電極と、前記銅電極上面に形成された金属接続層と、前記銅電極の側部から前記開口部の側壁を含む内面にかけて連続的に形成されたバリア層を有し、前記各銅電極は同等の高さに形成され、前記各金属接続層は同等の厚さに形成されている。
The semiconductor device of the present invention includes a semiconductor chip, a plurality of electrode pads formed on the main surface of the semiconductor chip, an insulating film formed on the main surface of the semiconductor chip and covering the electrode pads, An opening formed in the insulating film on each electrode pad, and a bump connected to the electrode pad through the opening on the insulating film, the bump being embedded in the opening copper electrode outer peripheral portion is formed on the insulating film, and a metal connection layer formed on the copper electrode top surface, successively formed from the side of the copper electrode over the inner surface including a side wall of the opening The copper electrodes are formed to have the same height, and the metal connection layers are formed to have the same thickness.

本発明の半導体装置では、バンプを形成する銅電極は同等の高さに形成され、またバンプを形成する金属接続層は同等の厚さに形成されていることから、各バンプは同等の高さに形成されている。また銅電極および金属接続層の側部にバリア層が形成されていることから、たとえ金属接続層を形成した後に金属接続層をリフロー処理することがあっても、バリア層によって金属接続層の流れ出しが抑えられる。このため、金属接続層を含む各バンプの高さは、同等な高さとなっている。   In the semiconductor device according to the present invention, the copper electrodes for forming the bumps are formed at the same height, and the metal connection layers for forming the bumps are formed at the same thickness, so that each bump has the same height. Is formed. In addition, since the barrier layer is formed on the sides of the copper electrode and the metal connection layer, even if the metal connection layer is reflowed after the metal connection layer is formed, the barrier layer causes the metal connection layer to flow out. Is suppressed. For this reason, the height of each bump including the metal connection layer is equivalent.

本発明の半導体装置の製造方法は、半導体チップの主面に複数の電極パッドを形成する工程と、前記半導体チップの主面に前記各電極パッドを被覆する第1絶縁膜を形成する工程と、前記電極パッド上の前記第1絶縁膜に第1開口部を形成する工程と、前記第1絶縁膜の表面に前記各第1開口部が埋め込まれる第2絶縁膜を形成する工程と、前記電極パッド上の前記第2絶縁膜に前記第1開口部よりも大きい第2開口部を形成し、該第2開口部の下部に連続する前記第1開口部を再び開口する工程と、前記第1、第2開口部の側壁を含む内面および前記第2絶縁膜の表面にバリア層を形成する工程と、前記バリア層を介して前記第1、第2開口部の内部が埋め込まれる銅膜を形成する工程と、化学的機械研磨によって前記第2絶縁膜上の前記銅膜および前記バリア層を除去して、前記第1、第2開口部内に前記バリア層を介して前記銅膜からなる銅電極を形成する工程と、前記第2絶縁膜を除去する工程と、無電解めっきによって前記銅電極上に金属接続層を形成する工程を有する。 The method for manufacturing a semiconductor device of the present invention includes a step of forming a plurality of electrode pads on a main surface of a semiconductor chip, a step of forming a first insulating film covering the electrode pads on the main surface of the semiconductor chip, Forming a first opening in the first insulating film on the electrode pad; forming a second insulating film in which the first opening is embedded in a surface of the first insulating film; and the electrode Forming a second opening larger than the first opening in the second insulating film on the pad, and re-opening the first opening continuously below the second opening; Forming a barrier layer on the inner surface including the sidewall of the second opening and the surface of the second insulating film, and forming a copper film in which the inside of the first and second openings is embedded via the barrier layer And performing the chemical mechanical polishing on the second insulating film Removing the film and the barrier layer to form a copper electrode made of the copper film in the first and second openings via the barrier layer; removing the second insulating film; Forming a metal connection layer on the copper electrode by electrolytic plating;

本発明の半導体装置の製造方法では、第1、第2開口部内を埋め込むように銅膜を形成した後、化学的機械研磨によって第2絶縁膜上の銅膜およびバリア層を除去して、第1、第2開口部内にバリア層を介して銅膜からなる銅電極が形成される。したがって、各銅電極は、第1、第2開口部内を満たすように、表面が平坦な、均一な高さに形成される。
また、無電解めっきによって、各銅電極上に金属接続層を形成しているため、金属接続層は均一な厚さに形成される。通常、無電解めっきは、電解めっきのように電流密度の差が生じることがないので、めっき成長が、半導体チップの全域において均一になる。
たとえ金属接続層を形成した後に金属接続層をリフロー処理することがあっても、バリア層によって金属接続層の流れ出しが抑えられるので、金属接続層を含む各バンプの高さは、同等な高さが維持される。
よって、銅電極および金属接続層で形成される複数のバンプは、高さが同等なものに形成される。
In the semiconductor device manufacturing method of the present invention, after forming the copper film so as to fill the first and second openings, the copper film and the barrier layer on the second insulating film are removed by chemical mechanical polishing, 1. A copper electrode made of a copper film is formed in the second opening through a barrier layer. Therefore, each copper electrode is formed in a uniform height with a flat surface so as to fill the first and second openings.
Moreover, since the metal connection layer is formed on each copper electrode by electroless plating, the metal connection layer is formed with a uniform thickness. Normally, electroless plating does not cause a difference in current density unlike electrolytic plating, so that plating growth is uniform over the entire area of the semiconductor chip.
Even if the metal connection layer may be reflowed after the metal connection layer is formed, the flow of the metal connection layer is suppressed by the barrier layer, so the height of each bump including the metal connection layer is the same height. Is maintained.
Therefore, the plurality of bumps formed of the copper electrode and the metal connection layer are formed to have the same height.

本発明の半導体装置は、複数のバンプの全ては高さが同等なものに形成されているため、別の半導体装置に形成されたバンプとフリップチップ接続させた場合に全てのバンプで確実に接続ができるので、接続不良が発生しなくなるという利点がある。
よって、フリップチップ接続における歩留まりの向上、信頼性の向上が図れる。
In the semiconductor device of the present invention, all of the plurality of bumps are formed to have the same height. Therefore, when the bump formed on another semiconductor device is flip-chip connected, all the bumps are securely connected. Therefore, there is an advantage that connection failure does not occur.
Therefore, it is possible to improve yield and reliability in flip chip connection.

本発明の半導体装置の製造方法は、全バンプの高さが同等なものに形成されるため、別の半導体装置に形成されたバンプとフリップチップ接続させた場合に全てのバンプで確実に接続ができるので、接続不良が発生しなくなるという利点がある。
よって、フリップチップ接続における歩留まりの向上、信頼性の向上が図れる半導体装置を製造できる。
Since the semiconductor device manufacturing method of the present invention is formed so that all bumps have the same height, all bumps can be securely connected when flip-chip connected to bumps formed on another semiconductor device. Therefore, there is an advantage that connection failure does not occur.
Therefore, it is possible to manufacture a semiconductor device that can improve yield and reliability in flip-chip connection.

本発明の半導体装置に係る一実施の形態を、図1に示したバンプ部平面図およびバンプおよびその周辺部の縦断面図によって説明する。   One embodiment of a semiconductor device according to the present invention will be described with reference to a plan view of a bump portion shown in FIG. 1 and a longitudinal sectional view of the bump and its peripheral portion.

図1に示すように、半導体チップ10を有する。この半導体チップ10は、詳細は図示していないが、通常の半導体チップであり、例えば、半導体基板に集積回路素子およびこの集積回路素子に接続する配線が形成され、絶縁膜からなる保護膜により被覆されたものである。
この半導体チップ10の主面10Sには、上記集積回路素子(図示せず)、上記配線(図示せず)等に接続された、複数の電極パッド11が形成されている。
図面では、代表して一つの電極パッド11を示したが、本発明の半導体装置1では、半導体チップ10の主面10Sに例えば数千個の上記電極パッド11が形成されている。
上記電極パッド11は、例えばアルミニウム電極で形成されている。もちろん、アルミニウム以外の金属電極、例えば、銅電極、銅合金電極、アルミニウム合金電極等であってもよい。
As shown in FIG. 1, a semiconductor chip 10 is provided. Although not shown in detail, the semiconductor chip 10 is a normal semiconductor chip. For example, an integrated circuit element and wiring connected to the integrated circuit element are formed on a semiconductor substrate and covered with a protective film made of an insulating film. It has been done.
A plurality of electrode pads 11 connected to the integrated circuit element (not shown), the wiring (not shown) and the like are formed on the main surface 10S of the semiconductor chip 10.
In the drawing, one electrode pad 11 is shown as a representative, but in the semiconductor device 1 of the present invention, for example, several thousand electrode pads 11 are formed on the main surface 10S of the semiconductor chip 10.
The electrode pad 11 is made of, for example, an aluminum electrode. Of course, a metal electrode other than aluminum, for example, a copper electrode, a copper alloy electrode, an aluminum alloy electrode, or the like may be used.

上記半導体チップ10の主面10Sには、上記各電極パッド11を被覆する絶縁膜21が形成されている。この絶縁膜21は、例えば、下層に形成された酸化シリコン膜22と、その酸化シリコン膜22上に形成された窒化シリコン膜23とからなる。
上記各電極パッド11上の上記絶縁膜21には、開口部24が形成されている。
On the main surface 10S of the semiconductor chip 10, an insulating film 21 that covers the electrode pads 11 is formed. The insulating film 21 includes, for example, a silicon oxide film 22 formed in a lower layer and a silicon nitride film 23 formed on the silicon oxide film 22.
Openings 24 are formed in the insulating film 21 on the electrode pads 11.

上記絶縁膜21には、上記各開口部24を通じて上記各電極パッド11に接続されたバンプ12が形成されている。
上記バンプ12は、上記開口部24を通じて上記電極パッド11に接続する銅電極13と、この銅電極13表面に形成された金属接続層14と、上記銅電極13および上記金属接続層14の側部および上記開口部24の内面に形成されたバリア層15を有する。
上記金属接続層14は、スズ、金、ニッケルのいずれかで形成されている。
上記バリア層15は、例えば、チタン膜、窒化チタン膜、タンタル膜、窒化タンタル膜の少なくとも1種で形成されている。例えば、絶縁膜21との密着性をよくするためのチタン膜と、このチタン膜表面に形成されたタンタル膜もしくは窒化タンタル膜との積層膜で形成することもできる。この場合、タンタル膜、窒化タンタル膜が主としてバリア層の機能を有する。このバリア層の機能としては、絶縁膜21中の酸素が銅電極13中に拡散して銅電極13が酸化されるのを防止するとともに、銅電極13の銅が絶縁膜21中に拡散するのを防止する。
そして、上記各銅電極13は同等の高さに形成されていて、上記各金属接続層14は同等の厚さに形成されている。
上記のように半導体装置1が構成されている。
Bumps 12 connected to the electrode pads 11 through the openings 24 are formed on the insulating film 21.
The bump 12 includes a copper electrode 13 connected to the electrode pad 11 through the opening 24, a metal connection layer 14 formed on the surface of the copper electrode 13, and side portions of the copper electrode 13 and the metal connection layer 14. And a barrier layer 15 formed on the inner surface of the opening 24.
The metal connection layer 14 is formed of any one of tin, gold, and nickel.
The barrier layer 15 is formed of, for example, at least one of a titanium film, a titanium nitride film, a tantalum film, and a tantalum nitride film. For example, it can be formed of a laminated film of a titanium film for improving adhesion to the insulating film 21 and a tantalum film or a tantalum nitride film formed on the surface of the titanium film. In this case, the tantalum film and the tantalum nitride film mainly function as a barrier layer. As a function of this barrier layer, oxygen in the insulating film 21 is prevented from diffusing into the copper electrode 13 to oxidize the copper electrode 13, and copper in the copper electrode 13 is diffused into the insulating film 21. To prevent.
The copper electrodes 13 are formed with the same height, and the metal connection layers 14 are formed with the same thickness.
The semiconductor device 1 is configured as described above.

本発明の半導体装置1では、各バンプ12を形成する銅電極13は同等の高さに形成され、また各バンプ12を形成する金属接続層14は同等の厚さに形成されていることから、各バンプ12は同等の高さに形成されている。また銅電極13および金属接続層14の側部にバリア層15が形成されていることから、たとえ金属接続層14を形成した後に金属接続層14をリフロー処理しても、バリア層15によって金属接続層14の流れ出しが抑えられる。このため、金属接続層14を含む各バンプ12の高さは、同等な高さとなっている。   In the semiconductor device 1 of the present invention, the copper electrodes 13 that form the bumps 12 are formed to have the same height, and the metal connection layers 14 that form the bumps 12 are formed to have the same thickness. Each bump 12 is formed at the same height. Further, since the barrier layer 15 is formed on the sides of the copper electrode 13 and the metal connection layer 14, even if the metal connection layer 14 is reflowed after the metal connection layer 14 is formed, the metal connection is performed by the barrier layer 15. The outflow of the layer 14 is suppressed. For this reason, the height of each bump 12 including the metal connection layer 14 is equivalent.

次に、上記半導体装置1を用いたフリップチップ接続の一例を以下に説明する。
図2に示すように、上記半導体装置1に形成されたバンプ12(12−1)と、本発明の構成を有する上記半導体装置1とは別の半導体装置2に形成されたバンプ12(12−2)とを対向させる。そして、一方の半導体装置、例えば半導体装置2を矢印方向にフェースダウンしてバンプ12−1、12−2同士を接続させる。なお、図面では、フェースダウンする状態を示した。
この場合、バンプ12(12−1)は全て高さが同等であり、バンプ12(12−2)も全て高さが同等であるから、全ての対向するバンプ12−1、12−2同士の接続が確実にできる。
したがって、接続不良が発生しなくなるという利点がある。
よって、フリップチップ接続における歩留まりの向上、信頼性の向上が図れる。
また図示はしていないが、半導体装置1、2間には封止樹脂が充填される。
Next, an example of flip chip connection using the semiconductor device 1 will be described below.
As shown in FIG. 2, bumps 12 (12-1) formed on the semiconductor device 1 and bumps 12 (12-) formed on a semiconductor device 2 different from the semiconductor device 1 having the configuration of the present invention. 2). Then, one of the semiconductor devices, for example, the semiconductor device 2 is faced down in the direction of the arrow to connect the bumps 12-1 and 12-2. In the drawing, the face-down state is shown.
In this case, all the bumps 12 (12-1) have the same height, and all the bumps 12 (12-2) have the same height. Connection can be made reliably.
Therefore, there is an advantage that connection failure does not occur.
Therefore, it is possible to improve yield and reliability in flip chip connection.
Although not shown, a sealing resin is filled between the semiconductor devices 1 and 2.

上記接続例では、半導体装置1、2間の接続を示したが、上記半導体装置1と回路基板のバンプ(図示せず)との接続であっても同様な効果が期待できる。   In the above connection example, the connection between the semiconductor devices 1 and 2 is shown, but the same effect can be expected even when the semiconductor device 1 is connected to a bump (not shown) of the circuit board.

次に、本発明の半導体装置の製造方法に係る一実施の形態を、図3に示したフローチャートおよび図4〜図6に示したバンプおよびその周辺部の製造工程断面図によって説明する。この製造方法は、前記図1を参照して説明した半導体装置1を製造する工程の一例である。   Next, an embodiment of the method for manufacturing a semiconductor device according to the present invention will be described with reference to a flowchart shown in FIG. 3 and bumps shown in FIG. 4 to FIG. This manufacturing method is an example of a process for manufacturing the semiconductor device 1 described with reference to FIG.

図3に示すように、「始め:前工程完成ウエハの用意」S1で、前工程を終了した完成ウエハを用意する。図4〜図6では、一例として、一つのバンプの形成領域に着目して、その断面を示す。
また図示はしていないが、ウエハに形成された半導体チップは、通常の半導体チップであり、例えば、半導体基板に集積回路素子およびこの集積回路素子に接続する配線が形成され、保護膜により被覆されたものである。
As shown in FIG. 3, in “Start: Preparation of Completed Previous Process Wafer” S <b> 1, a completed wafer that has completed the previous process is prepared. In FIGS. 4 to 6, as an example, a cross section is shown focusing on one bump formation region.
Although not shown, the semiconductor chip formed on the wafer is a normal semiconductor chip. For example, an integrated circuit element and wiring connected to the integrated circuit element are formed on a semiconductor substrate and covered with a protective film. It is a thing.

図4(1)に示すように、上記半導体チップ10の主面10Sには、上記集積回路素子(図示せず)、上記配線(図示せず)等に接続された、複数の電極パッド11が形成されている。
図面では、代表して一つの電極パッド11を示したが、上記半導体チップ10の主面10Sに、例えば数百個ないし数千個の上記電極パッド11が形成されている。
上記電極パッド11は、例えばアルミニウム電極で形成されている。もちろん、アルミニウム以外の金属電極、例えば、銅電極、銅合金電極、アルミニウム合金電極等であってもよい。
As shown in FIG. 4A, the main surface 10S of the semiconductor chip 10 has a plurality of electrode pads 11 connected to the integrated circuit element (not shown), the wiring (not shown), and the like. Is formed.
In the drawing, one electrode pad 11 is shown as a representative, but for example, hundreds to thousands of the electrode pads 11 are formed on the main surface 10S of the semiconductor chip 10.
The electrode pad 11 is made of, for example, an aluminum electrode. Of course, a metal electrode other than aluminum, for example, a copper electrode, a copper alloy electrode, an aluminum alloy electrode, or the like may be used.

次に、上記半導体チップ10の表面に上記各電極パッド11を被覆する第1絶縁膜21(前記図1を参照して説明した絶縁膜21に相当するため、同一符号付与した。)を形成する。この第1絶縁膜21は、以下のように形成する。例えば、酸化シリコン膜22を形成した後、その酸化シリコン膜22上に窒化シリコン膜23を形成する。この窒化シリコン膜23は、後の工程での酸化シリコン膜のエッチング時のエッチングストッパとしても機能する。また上記酸化シリコン膜22は、上記窒化シリコン膜23の応力を緩和する。   Next, a first insulating film 21 (corresponding to the insulating film 21 described with reference to FIG. 1 is given the same reference numeral) is formed on the surface of the semiconductor chip 10 so as to cover the electrode pads 11. . The first insulating film 21 is formed as follows. For example, after the silicon oxide film 22 is formed, a silicon nitride film 23 is formed on the silicon oxide film 22. The silicon nitride film 23 also functions as an etching stopper when the silicon oxide film is etched in a later process. The silicon oxide film 22 relieves stress on the silicon nitride film 23.

次いで、通常のレジスト塗布技術およびリソグラフィ技術等によって、上記電極パッド11上に開口部を有するレジストマスク(図示せず)を上記第1絶縁膜21上に形成した後、それをエッチングマスクに用いて、上記第1絶縁膜21をエッチングする。その結果、上記電極パッド11上の上記第1絶縁膜21に第1開口部24(前記図1を参照して説明した開口部24に相当するため、同一符号付与した。)が形成される。
上記エッチング後に上記レジストマスクを除去する。
Next, a resist mask (not shown) having an opening on the electrode pad 11 is formed on the first insulating film 21 by a normal resist coating technique and a lithography technique, and then used as an etching mask. Then, the first insulating film 21 is etched. As a result, a first opening 24 (corresponding to the opening 24 described with reference to FIG. 1 is given the same reference numeral) is formed in the first insulating film 21 on the electrode pad 11.
The resist mask is removed after the etching.

次に、図3に示すように、「絶縁膜の形成」工程S2を行う。
この工程では、図4(2)に示すように、上記第1絶縁膜21上に、上記各第1開口部24が埋め込まれる第2絶縁膜25を形成する。
上記第2絶縁膜25は、その後に形成されるバンプの高さと同一の膜厚、もしくは、それより厚い膜厚とする。上記第2絶縁膜25は次工程以降のめっき、化学的機械研磨(CMP)後に除去できる材料で形成する。そのような材料は、例えば酸化シリコン膜がある。
Next, as shown in FIG. 3, an “insulating film formation” step S2 is performed.
In this step, as shown in FIG. 4B, a second insulating film 25 in which the first openings 24 are embedded is formed on the first insulating film 21.
The second insulating film 25 has the same film thickness as the bump formed later or a film thickness larger than that. The second insulating film 25 is formed of a material that can be removed after plating and chemical mechanical polishing (CMP) in the subsequent steps. An example of such a material is a silicon oxide film.

次に、図3に示すように、「レジストマスクの形成」工程S3を行う。
この工程では、図4(3)に示すように、上記第2絶縁膜25上にレジスト塗布技術によりレジスト膜41を形成する。次いで、リソグラフィ技術(例えば露出、現像、ベーキング等)によって、上記第1開口部24上方に、例えば第1開口部24より大きい口径のレジスト開口部42を形成する。
Next, as shown in FIG. 3, a “resist mask formation” step S3 is performed.
In this step, as shown in FIG. 4C, a resist film 41 is formed on the second insulating film 25 by a resist coating technique. Next, a resist opening 42 having a larger diameter than, for example, the first opening 24 is formed above the first opening 24 by a lithography technique (for example, exposure, development, baking, etc.).

次に、図3に示すように、「第2開口部の形成」工程S4を行う。
この工程では、図5(4)に示すように、上記レジスト膜41をエッチングマスクに用いて、上記第2絶縁膜25に第2開口部26を形成する。このとき、第2絶縁膜25に埋め込まれた上記第1開口部24も再び開口される。したがって、上記第2開口部26の下部に連続して上記第1開口部24が形成される。
なお、図面は、第2開口部26を形成し、第1開口部24を再び開口している途中の状態を示している。
Next, as shown in FIG. 3, a “second opening formation” step S <b> 4 is performed.
In this step, as shown in FIG. 5D, the second opening 26 is formed in the second insulating film 25 using the resist film 41 as an etching mask. At this time, the first opening 24 embedded in the second insulating film 25 is also opened again. Accordingly, the first opening 24 is formed continuously below the second opening 26.
The drawing shows a state in which the second opening 26 is formed and the first opening 24 is being opened again.

次に、図3に示すように、「バリア層・シード層の形成」工程S5を行う。
この工程では、図5(5)に示すように、上記第1、第2開口部24、26の内面および上記第2絶縁膜25の表面にバリア層15を形成する。
上記バリア層15は、例えば、チタン膜、窒化チタン膜、タンタル膜、窒化タンタル膜の少なくとも1種で形成される。例えば、絶縁膜21との密着性をよくするためのチタン膜と、このチタン膜表面に形成されたタンタル膜もしくは窒化タンタル膜との積層膜で形成することもできる。この場合、タンタル膜、窒化タンタル膜が主としてバリア層の機能を有する。このバリア層の機能としては、絶縁膜21中の酸素が後に形成される銅電極中に拡散して銅電極が酸化されるのを防止するとともに、後に形成される銅電極の銅が絶縁膜21、半導体チップ10等に拡散するのを防止する。
さらに、上記バリア層15の表面にめっきのシード層(図示せず)を形成する。このシード層には、例えば銅を用いる。
上記密着層、バリア層15、シード層等の成膜は、例えば化学気相成長(CVD)法、スパッタ法等のステップカバレッジに優れた成膜方法で行うことが好ましい。
Next, as shown in FIG. 3, a “barrier layer / seed layer formation” step S5 is performed.
In this step, as shown in FIG. 5 (5), the barrier layer 15 is formed on the inner surfaces of the first and second openings 24 and 26 and the surface of the second insulating film 25.
The barrier layer 15 is formed of at least one of a titanium film, a titanium nitride film, a tantalum film, and a tantalum nitride film, for example. For example, it can be formed of a laminated film of a titanium film for improving adhesion to the insulating film 21 and a tantalum film or a tantalum nitride film formed on the surface of the titanium film. In this case, the tantalum film and the tantalum nitride film mainly function as a barrier layer. As a function of the barrier layer, oxygen in the insulating film 21 is prevented from diffusing into a copper electrode to be formed later to oxidize the copper electrode, and copper in the copper electrode to be formed later is used as the insulating film 21. The diffusion to the semiconductor chip 10 or the like is prevented.
Further, a plating seed layer (not shown) is formed on the surface of the barrier layer 15. For example, copper is used for the seed layer.
The adhesion layer, the barrier layer 15, the seed layer, and the like are preferably formed by a film formation method having excellent step coverage such as a chemical vapor deposition (CVD) method or a sputtering method.

次に、図3に示すように、「銅膜の形成」工程S6を行う。
この工程では、図5(6)に示すように、上記バリア層15を介して上記第1、第2開口部24、26の内部が埋め込まれる銅膜16を形成する。この銅膜16は、例えば上記銅のシード層をめっき種として電解めっきにより形成する。ここでは、電解めっきを用いることができる。それは、各第2開口部26において、めっき膜の膜厚にばらつきが生じてもかまわないからである。要するに、上記第1、第2開口部24、26の内部を完全に埋め込むことができればよい。もちろん、他の成膜方法によって、銅膜16を形成することも可能である。
Next, as shown in FIG. 3, a “copper film formation” step S6 is performed.
In this step, as shown in FIG. 5 (6), the copper film 16 in which the insides of the first and second openings 24 and 26 are embedded via the barrier layer 15 is formed. The copper film 16 is formed, for example, by electrolytic plating using the copper seed layer as a plating seed. Here, electrolytic plating can be used. This is because the thickness of the plating film may vary in each second opening 26. In short, it is only necessary that the inside of the first and second openings 24 and 26 can be completely embedded. Of course, the copper film 16 can also be formed by other film forming methods.

次に、図3に示すように、「平坦化」工程S7を行う。
この工程では、図6(7)に示すように、化学的機械研磨(CMP)によって上記第2絶縁膜25上の上記銅膜16(シード層も含む)および上記バリア層15を除去して、上記第1、第2開口部24、26内に上記バリア層15を介して上記銅膜16(上記銅のシード層も含む)からなる銅電極13を形成する。
なお、図面は、銅膜16を研磨していく途中の状態を示した。
Next, as shown in FIG. 3, a “flattening” step S7 is performed.
In this step, as shown in FIG. 6 (7), the copper film 16 (including the seed layer) and the barrier layer 15 on the second insulating film 25 are removed by chemical mechanical polishing (CMP). A copper electrode 13 made of the copper film 16 (including the copper seed layer) is formed in the first and second openings 24 and 26 via the barrier layer 15.
The drawing shows a state where the copper film 16 is being polished.

例えば上記銅膜16のCMP条件は、一例として、研磨パッドに発泡ポリウレタン樹脂パッドを用い、スラリーに過酸化水素(H2 2 )が添加されたシリカ含有スラリーを用いる。また、研磨圧力を210g/cm2 、研磨定盤の回転数を30rpm、研磨ヘッドの回転数を30rpm、スラリーの供給流量を200cc/min、研磨液の温度を25℃〜30℃に設定した。 For example, as the CMP conditions for the copper film 16, for example, a foamed polyurethane resin pad is used as a polishing pad and a silica-containing slurry to which hydrogen peroxide (H 2 O 2 ) is added is used as a slurry. The polishing pressure was set to 210 g / cm 2 , the polishing platen rotation speed was set to 30 rpm, the polishing head rotation speed was set to 30 rpm, the slurry supply flow rate was set to 200 cc / min, and the polishing liquid temperature was set to 25 ° C. to 30 ° C.

また、例えばタンタル膜、窒化チタン膜、窒化タンタル膜等からなるバリア層15のCMP条件は、一例として、研磨パッドに発泡ポリウレタン樹脂パッドを用い、スラリーに過酸化水素(H2 2 )が添加されたシリカ含有スラリーを用い、研磨圧力を140g/cm2 、研磨定盤の回転数を30rpm、研磨ヘッドの回転数を30rpm、スラリーの供給流量を200cc/min、研磨液の温度を25℃〜30℃に設定した。 For example, the CMP conditions of the barrier layer 15 made of, for example, a tantalum film, a titanium nitride film, a tantalum nitride film, etc., use a foamed polyurethane resin pad as the polishing pad and add hydrogen peroxide (H 2 O 2 ) to the slurry. Using the silica-containing slurry thus prepared, the polishing pressure was 140 g / cm 2 , the polishing plate rotation speed was 30 rpm, the polishing head rotation speed was 30 rpm, the slurry supply flow rate was 200 cc / min, and the polishing liquid temperature was 25 ° C. Set to 30 ° C.

このようにして、図6(8)に示すように、上記第1、第2開口部24、26内に銅電極13が形成されるので、銅電極13表面を含む上記第2絶縁膜25表面は平坦化されるため、各銅電極13の高さを均一にすることができる。すなわち、各銅電極13の高さは銅膜16(前記図5(6)、図6(7)等を参照)を形成するめっき膜厚のばらつきの影響を受けない。また銅電極13は、CMP時のディッシング等の影響を受けたとしても、高さ数十nmの範囲でのばらつきに抑えることが可能であり、従来のようなμm単位のばらつきにはならない。したがって、銅電極13の高さばらつきの大幅な改善が得られる。   In this way, as shown in FIG. 6 (8), since the copper electrode 13 is formed in the first and second openings 24 and 26, the surface of the second insulating film 25 including the surface of the copper electrode 13 Is flattened, the height of each copper electrode 13 can be made uniform. That is, the height of each copper electrode 13 is not affected by variations in the plating film thickness for forming the copper film 16 (see FIGS. 5 (6), 6 (7), etc.). Further, even if the copper electrode 13 is affected by dishing or the like during CMP, it can be suppressed to variations within a range of several tens of nanometers in height. Accordingly, a significant improvement in the height variation of the copper electrode 13 can be obtained.

次に、図3に示すように、「第2絶縁膜の除去」工程S8を行う。
この工程では、上記図6(8)に示すように、第2絶縁膜25を除去する。第2絶縁膜25が酸化シリコン膜の場合、フッ酸系薬液を使用し、ウエットエッチングにより除去する。その場合、第1絶縁膜21の窒化シリコン膜23がエッチングストッパ膜となる。
なお、図面は、第2絶縁膜25をエッチングする直前の状態を示した。
Next, as shown in FIG. 3, a “removal of the second insulating film” step S8 is performed.
In this step, as shown in FIG. 6 (8), the second insulating film 25 is removed. When the second insulating film 25 is a silicon oxide film, a hydrofluoric acid chemical solution is used and removed by wet etching. In that case, the silicon nitride film 23 of the first insulating film 21 becomes an etching stopper film.
The drawing shows a state immediately before the second insulating film 25 is etched.

次に、図3に示すように、「無電解めっきによって金属接続層の形成」工程S9を行う。
この工程では、図6(9)に示すように、上記銅電極13の銅を無電解めっき(例えば置換めっき、もしくは化学めっき)によって、上記銅電極13の上層部に金属接続層14を形成する。
上記金属接続層14は、スズ、金、ニッケルのいずれかで形成する。
なお、金(Au)、ニッケル(Ni)を形成する場合、さらに、上記銅電極13の表面の酸化防止のために、めっき液中に防食剤もしくは酸化防止剤を添加しても良い。
また、上記金属接続層14は、無電解めっきによって、スズ鉛合金、スズ銀合金等のはんだで形成することもできる。
以上のようにして、各電極パッド11上に接続するバンプ12が形成される。
Next, as shown in FIG. 3, a “metal connection layer formation by electroless plating” step S9 is performed.
In this step, as shown in FIG. 6 (9), a metal connection layer 14 is formed on the upper layer of the copper electrode 13 by electroless plating (for example, displacement plating or chemical plating) of the copper electrode 13. .
The metal connection layer 14 is made of tin, gold, or nickel.
When gold (Au) or nickel (Ni) is formed, an anticorrosive or antioxidant may be added to the plating solution to prevent oxidation of the surface of the copper electrode 13.
Further, the metal connection layer 14 can also be formed with a solder such as a tin lead alloy or a tin silver alloy by electroless plating.
As described above, bumps 12 connected to each electrode pad 11 are formed.

以上のプロセスを行うことによって、図3に示す「バンプの完成により終了」工程S10によって、上記バンプ形成プロセスが終了する。   By performing the above process, the above bump forming process is completed in the “finished upon completion of bump” step S10 shown in FIG.

さらに、上記の製造工程により形成したバンプを有する半導体装置同士を、例えば前記図2によって説明したように、フリップチップ接続することで、チップオンチップ(CoC)構造が完成となる。   Furthermore, the chip-on-chip (CoC) structure is completed by flip-chip connecting the semiconductor devices having bumps formed by the above manufacturing process, as described with reference to FIG.

本発明の半導体装置の製造方法では、第1、第2開口部24、26内を埋め込むように銅膜16を形成した後、化学的機械研磨によって第2絶縁膜26上の銅膜16およびバリア層15を除去する。これによって、第1、第2開口部24、26内にバリア層15を介して銅膜16からなる銅電極13が形成される。したがって、各銅電極13は、第1、第2開口部24、26部内を満たすように、表面が平坦な、均一な高さに形成される。
また、無電解めっきによって、各銅電極13の上層部に金属接続層14を形成しているため、金属接続層は均一な厚さに形成される。通常、無電解めっきは、電解めっきのように電流密度の差が生じることがないので、めっき成長が、半導体チップ10の全域において均一になる。
In the method of manufacturing a semiconductor device according to the present invention, after the copper film 16 is formed so as to fill the first and second openings 24 and 26, the copper film 16 and the barrier on the second insulating film 26 are formed by chemical mechanical polishing. Layer 15 is removed. As a result, the copper electrode 13 made of the copper film 16 is formed in the first and second openings 24 and 26 via the barrier layer 15. Accordingly, each copper electrode 13 is formed to have a flat and uniform height so as to fill the first and second openings 24 and 26.
Moreover, since the metal connection layer 14 is formed in the upper layer part of each copper electrode 13 by electroless plating, the metal connection layer is formed in a uniform thickness. Normally, electroless plating does not cause a difference in current density unlike electrolytic plating, so that plating growth is uniform over the entire area of the semiconductor chip 10.

また、上記金属接続層14を上記はんだやスズで形成した場合に、金属接続層14を形成した後にリフロー処理しても、バリア層15によって金属接続層14の流れ出しが抑えられるので、金属接続層14を含む各バンプ12の高さは、同等な高さに維持される。これは、上記バリア層15に対して、はんだやスズの濡れ性がよくないため、リフロー時に外側に流れ出そうとするはんだやスズがバリア層15によって流れ出すのを阻止されるためである。
したがって、銅電極13および金属接続層14で形成される複数のバンプ12は、高さが同等なものに形成される。
Further, when the metal connection layer 14 is formed of the solder or tin, even if the metal connection layer 14 is formed and the reflow process is performed, the barrier layer 15 prevents the metal connection layer 14 from flowing out. The height of each bump 12 including 14 is maintained at an equivalent height. This is because the solder and tin wettability with respect to the barrier layer 15 is not good, and the barrier layer 15 prevents the solder and tin from flowing out during reflow.
Therefore, the plurality of bumps 12 formed by the copper electrode 13 and the metal connection layer 14 are formed to have the same height.

上記のように全バンプ12の高さが同等に形成されるため、本発明の製造方法により形成された別の半導体装置のバンプとフリップチップ接続させた場合に、全てのバンプで確実に接続できるので、接続不良が発生しなくなるという利点がある。
よって、フリップチップ接続における歩留まりの向上、信頼性の向上が図れる半導体装置を製造できる。
Since all the bumps 12 are formed with the same height as described above, all bumps can be reliably connected when flip-chip connected to bumps of another semiconductor device formed by the manufacturing method of the present invention. Therefore, there is an advantage that connection failure does not occur.
Therefore, it is possible to manufacture a semiconductor device that can improve yield and reliability in flip-chip connection.

また、従来技術ではウエットエッチングによりシード層を除去していたため、バンプの下部に形成されているシード層がサイドエッチングされることになる。一方、上記半導体装置1の製造方法では、CMP技術により、第2絶縁膜26上のシード層を銅膜16とともに除去するため、バンプ12の下部のシード層はエッチングされない。
特に、上記従来技術のサイドエッチングの問題から、従来技術では数十μm以下の微細バンプの形成が困難であった。しかしながら、本発明では、現状技術の流用でサブミクロンオーダー、またはそれ以下の径のバンプ12の形成が可能となる。
Further, since the seed layer is removed by wet etching in the conventional technique, the seed layer formed under the bump is side-etched. On the other hand, in the method for manufacturing the semiconductor device 1, the seed layer on the second insulating film 26 is removed together with the copper film 16 by the CMP technique, so the seed layer below the bump 12 is not etched.
In particular, due to the problem of side etching in the prior art, it has been difficult to form fine bumps of several tens of μm or less in the prior art. However, in the present invention, it is possible to form bumps 12 having a diameter of submicron order or less by utilizing the state of the art.

本発明の半導体装置に係る一実施の形態を示したバンプの要部平面図およびバンプおよびその周辺部の縦断面図である。It is the principal part top view of the bump which showed one Embodiment concerning the semiconductor device of this invention, and the longitudinal cross-sectional view of a bump and its peripheral part. 本発明の半導体装置のフリップチップ接続の一例を示した概略構成断面図である。1 is a schematic cross-sectional view showing an example of flip-chip connection of a semiconductor device of the present invention. 本発明の半導体装置の製造方法に係る一実施の形態を示したフローチャートである。3 is a flowchart showing an embodiment of the method for manufacturing a semiconductor device of the present invention. 本発明の半導体装置の製造方法に係る一実施の形態を示したバンプおよびその周辺部の製造工程断面図である。It is manufacturing process sectional drawing of the bump which showed one Embodiment which concerns on the manufacturing method of the semiconductor device of this invention, and its peripheral part. 本発明の半導体装置の製造方法に係る一実施の形態を示したバンプおよびその周辺部の製造工程断面図である。It is manufacturing process sectional drawing of the bump which showed one Embodiment which concerns on the manufacturing method of the semiconductor device of this invention, and its peripheral part. 本発明の半導体装置の製造方法に係る一実施の形態を示したバンプおよびその周辺部の製造工程断面図である。It is manufacturing process sectional drawing of the bump which showed one Embodiment which concerns on the manufacturing method of the semiconductor device of this invention, and its peripheral part. 従来のチップオンチップ接続の一例を示した概略構成断面図である。It is schematic structure sectional drawing which showed an example of the conventional chip-on-chip connection.

符号の説明Explanation of symbols

1…半導体装置、10…半導体チップ、10S…半導体チップの主面、11…電極パッド、12…バンプ、13…銅電極、14…金属接続層、15…バリア層、21…絶縁膜、24…開口部   DESCRIPTION OF SYMBOLS 1 ... Semiconductor device, 10 ... Semiconductor chip, 10S ... Main surface of semiconductor chip, 11 ... Electrode pad, 12 ... Bump, 13 ... Copper electrode, 14 ... Metal connection layer, 15 ... Barrier layer, 21 ... Insulating film, 24 ... Aperture

Claims (6)

半導体チップと、
前記半導体チップの主面に形成された複数の電極パッドと、
前記半導体チップの主面に形成されていて前記各電極パッドを被覆する絶縁膜と、
前記各電極パッド上の前記絶縁膜に形成された開口部と、
前記絶縁膜上に前記各開口部を通じて前記各電極パッドに接続されたバンプを有し、
前記バンプは、
前記開口部内に埋め込まれるとともに外周部が前記絶縁膜上に形成された銅電極と、
前記銅電極上面に形成された金属接続層と、
前記銅電極の側部から前記開口部の側壁を含む内面にかけて連続的に形成されたバリア層を有し、
前記各銅電極は同等の高さに形成され、
前記各金属接続層は同等の厚さに形成されている
半導体装置。
A semiconductor chip;
A plurality of electrode pads formed on the main surface of the semiconductor chip;
An insulating film formed on the main surface of the semiconductor chip and covering the electrode pads;
An opening formed in the insulating film on each electrode pad;
Bumps connected to the electrode pads through the openings on the insulating film,
The bump is
A copper electrode embedded in the opening and having an outer peripheral portion formed on the insulating film;
A metal connection layer formed on the upper surface of the copper electrode;
Has a barrier layer which is continuously formed from the side of the copper electrode over the inner surface including a side wall of said opening,
Each copper electrode is formed to an equivalent height,
Each said metal connection layer is formed in the equivalent thickness. Semiconductor device.
前記バリア層は、チタン膜、窒化チタン膜、タンタル膜、窒化タンタル膜の少なくとも1種で形成されている
請求項1記載の半導体装置。
The semiconductor device according to claim 1, wherein the barrier layer is formed of at least one of a titanium film, a titanium nitride film, a tantalum film, and a tantalum nitride film.
前記金属接続層は、スズ、金、ニッケルのいずれかで形成されている
請求項1記載の半導体装置。
The semiconductor device according to claim 1, wherein the metal connection layer is formed of any one of tin, gold, and nickel.
半導体チップの主面に複数の電極パッドを形成する工程と、
前記半導体チップの主面に前記各電極パッドを被覆する第1絶縁膜を形成する工程と、
前記電極パッド上の前記第1絶縁膜に第1開口部を形成する工程と、
前記第1絶縁膜の表面に前記各第1開口部が埋め込まれる第2絶縁膜を形成する工程と、
前記電極パッド上の前記第2絶縁膜に前記第1開口部よりも大きい第2開口部を形成し、該第2開口部の下部に連続する前記第1開口部を再び開口する工程と、
前記第1、第2開口部の側壁を含む内面および前記第2絶縁膜の表面にバリア層を形成する工程と、
前記バリア層を介して前記第1、第2開口部の内部が埋め込まれる銅膜を形成する工程と、
化学的機械研磨によって前記第2絶縁膜上の前記銅膜および前記バリア層を除去して、前記第1、第2開口部内に前記バリア層を介して前記銅膜からなる銅電極を形成する工程と、
前記第2絶縁膜を除去する工程と、
無電解めっきによって前記銅電極上に金属接続層を形成する工程を有する
半導体装置の製造方法。
Forming a plurality of electrode pads on the main surface of the semiconductor chip;
Forming a first insulating film covering each electrode pad on the main surface of the semiconductor chip;
Forming a first opening in the first insulating film on the electrode pad;
Forming a second insulating film in which each of the first openings is embedded in a surface of the first insulating film;
Forming a second opening larger than the first opening in the second insulating film on the electrode pad, and reopening the first opening continuous to the lower portion of the second opening;
Forming a barrier layer on the inner surface including the side walls of the first and second openings and the surface of the second insulating film;
Forming a copper film in which the inside of the first and second openings is embedded via the barrier layer;
Removing the copper film and the barrier layer on the second insulating film by chemical mechanical polishing to form a copper electrode made of the copper film in the first and second openings via the barrier layer; When,
Removing the second insulating film;
A method for manufacturing a semiconductor device, comprising: forming a metal connection layer on the copper electrode by electroless plating.
前記バリア層は、チタン膜、窒化チタン膜、タンタル膜、窒化タンタル膜の少なくとも
1種で形成する
請求項4記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 4, wherein the barrier layer is formed of at least one of a titanium film, a titanium nitride film, a tantalum film, and a tantalum nitride film.
前記金属接続層は、スズ、金、ニッケルのいずれかで形成する
請求項4記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 4, wherein the metal connection layer is formed of any one of tin, gold, and nickel.
JP2008208825A 2008-08-14 2008-08-14 Semiconductor device and manufacturing method thereof Expired - Fee Related JP5277788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008208825A JP5277788B2 (en) 2008-08-14 2008-08-14 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008208825A JP5277788B2 (en) 2008-08-14 2008-08-14 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010045234A JP2010045234A (en) 2010-02-25
JP5277788B2 true JP5277788B2 (en) 2013-08-28

Family

ID=42016373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008208825A Expired - Fee Related JP5277788B2 (en) 2008-08-14 2008-08-14 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5277788B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012116880A (en) * 2010-11-29 2012-06-21 Henkel Japan Ltd Urethane adhesive for outdoor use
KR101167805B1 (en) * 2011-04-25 2012-07-25 삼성전기주식회사 Package substrate and fabricating method of the same
US8779604B1 (en) * 2013-11-06 2014-07-15 Chipmos Technologies Inc. Semiconductor structure and manufacturing method thereof
JP6702108B2 (en) * 2016-09-14 2020-05-27 富士通株式会社 Terminal structure, semiconductor device, electronic device, and method for forming terminal

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294585A (en) * 1999-04-01 2000-10-20 Nec Corp Bump structure and method of forming the same
US6732908B2 (en) * 2002-01-18 2004-05-11 International Business Machines Corporation High density raised stud microjoining system and methods of fabricating the same
JP2004193517A (en) * 2002-12-13 2004-07-08 Seiko Epson Corp Semiconductor chip, manufacturing method therefor, semiconductor mounted board, electronic device and electronic apparatus
JP2006245289A (en) * 2005-03-03 2006-09-14 Casio Micronics Co Ltd Semiconductor device and packaging structure
JP2006279062A (en) * 2006-05-25 2006-10-12 Nec Corp Semiconductor element and semiconductor device
JP4765947B2 (en) * 2007-01-25 2011-09-07 カシオ計算機株式会社 Semiconductor device and manufacturing method thereof
JP2008004967A (en) * 2007-09-25 2008-01-10 Seiko Epson Corp Terminal electrode, semiconductor device and module

Also Published As

Publication number Publication date
JP2010045234A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
US7323406B2 (en) Elevated bond-pad structure for high-density flip-clip packaging and a method of fabricating the structures
US20200350280A1 (en) Protective layer for contact pads in fan-out interconnect structure and method of forming same
US6727590B2 (en) Semiconductor device with internal bonding pad
TWI582937B (en) Package structure
US9318455B2 (en) Method of forming a plurality of bumps on a substrate and method of forming a chip package
US9048225B2 (en) Semiconductor device and method for manufacturing semiconductor device
TWI442524B (en) Flip chip package and semiconductor die
CN102222647B (en) Semiconductor die and method of manufacturing semiconductor feature
US10163862B2 (en) Package structure and method for forming same
TWI607495B (en) Semiconductor device structure and method for forming the same
US20070087544A1 (en) Method for forming improved bump structure
US20060214296A1 (en) Semiconductor device and semiconductor-device manufacturing method
TW201724192A (en) Integrated circuit structure and method for manufacturing the same
TW201608651A (en) Semiconductor packages and methods of forming the same
CN109786264A (en) The technology controlling and process formed for packaging part
JP6547745B2 (en) Semiconductor device and method of manufacturing the same
US20060160346A1 (en) Substrate bump formation
KR102578794B1 (en) Semiconductor device and method for manufacturing the same
US20230091513A1 (en) Wafer-level chip structure, multiple-chip stacked and interconnected structure and fabricating method thereof
TW201820464A (en) Manufacturing method of semiconductor device
JP5277788B2 (en) Semiconductor device and manufacturing method thereof
JP3735547B2 (en) Semiconductor device and manufacturing method thereof
JP3923440B2 (en) Semiconductor device having reinforcing structure under bonding pad and manufacturing method thereof
TWI715211B (en) Semiconductor device and method of forming the same
JP4342892B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

LAPS Cancellation because of no payment of annual fees