JP5277393B2 - Strain-free laser bonding material manufacturing method, non-strained laser bonding structure forming method, and laser bonding material distortion occurrence prediction method - Google Patents

Strain-free laser bonding material manufacturing method, non-strained laser bonding structure forming method, and laser bonding material distortion occurrence prediction method Download PDF

Info

Publication number
JP5277393B2
JP5277393B2 JP2007077992A JP2007077992A JP5277393B2 JP 5277393 B2 JP5277393 B2 JP 5277393B2 JP 2007077992 A JP2007077992 A JP 2007077992A JP 2007077992 A JP2007077992 A JP 2007077992A JP 5277393 B2 JP5277393 B2 JP 5277393B2
Authority
JP
Japan
Prior art keywords
laser
distortion
welding
length
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007077992A
Other languages
Japanese (ja)
Other versions
JP2008238176A (en
Inventor
正司 佐々木
力 関口
大輔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU MIYOSHI INDUSTRY CO., LTD.
Original Assignee
TOHOKU MIYOSHI INDUSTRY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU MIYOSHI INDUSTRY CO., LTD. filed Critical TOHOKU MIYOSHI INDUSTRY CO., LTD.
Priority to JP2007077992A priority Critical patent/JP5277393B2/en
Publication of JP2008238176A publication Critical patent/JP2008238176A/en
Application granted granted Critical
Publication of JP5277393B2 publication Critical patent/JP5277393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser joining material free of thermal strain when iron-based metallic plates are continuously welded to each other, wherein each plate has a length of &ge;1 m along the welding direction, a width of 30-500 mm, and a thickness of 0.8-3 mm. <P>SOLUTION: When iron-based metallic plates are superimposed on each other, with the fillet continuously welded by laser; in a cross section vertical to the welding direction, fused end points A, B and deepest penetration point O in the thickness direction are connected to form and define a triangle AOB. Where x is the length of the side AB equivalent to a laser incident port, y, z are the length of other sides AO, BO respectively, and h is the length of a perpendicular from the point O to the side AB, laser joining is performed under the conditions; (x+y+z)/x multiplied by h/x, namely, the value of h(x+y+z)/x<SP>2</SP>&ge;2. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、レーザを用いて二の金属板を重ね合わせ溶接する場合において、歪みが無い状態として得られる、歪みの無いレーザ接合材製造方法、無歪みレーザ接合構造形成方法およびレーザ接合材の歪み発生有無予測方法に関する。特に本発明は、1m以上の長さの鉄系金属板を重ね合わせ、すみ肉をレーザ溶接してなるレーザ接合材に係るものである。
The present invention relates to a distortion-free laser bonding material manufacturing method, a distortion-free laser bonding structure forming method, and a distortion of a laser bonding material , which are obtained in a state where there is no distortion when two metal plates are welded together using a laser. The present invention relates to an occurrence prediction method . In particular, the present invention relates to a laser bonding material obtained by laminating iron metal plates having a length of 1 m or more and laser welding the fillet.

レーザ溶接は、レーザ光を被溶接物の溶接対象部位に集中させて照射し、レーザ光の有するエネルギーにより該溶接対象部位を瞬時に溶融して接合する溶接法である。一般的には、被溶接材を治具で固定して溶接中に歪みが生じても溶接点が移動しないようにレーザを照射し、照射点には酸化防止のためのシールドガスを吹き付けながら行う。   Laser welding is a welding method in which laser light is concentrated and irradiated on a welding target part of an object to be welded, and the welding target part is instantaneously melted and joined by the energy of the laser light. Generally, the work piece is fixed with a jig and a laser is irradiated so that the welding point does not move even if distortion occurs during welding, and a shielding gas for preventing oxidation is blown to the irradiation point. .

歪みは、溶融部の凝固収縮の他に、熱影響部における熱膨張により塑性変形領域まで伸ばされたときにより発生するが、実際の溶接はその影響を極力抑えるように行われる。具体的には、上述のように、被溶接物を治具で固定するのでほとんどの歪みはこの時点で抑えられ、しかも酸化防止のためにアルゴンや窒素などの非酸化性ガスを吹き付けることで冷却効果も加味される。しかも、溶接後平坦な地面に静置した際に材料の自重も加わるために、鉛直上方に反り上がろうとする力が下方向に抑えられることになるので、これも歪みを低下させる一因になる。しかし、それでも溶接条件が最適でなければ、溶接後、材料を治具からはずした際に歪みが残る。この歪みは治具で固定した際の力加減によっても異なり、定量的に表せないのが現状である。   The distortion occurs when the melted portion is stretched to the plastic deformation region by thermal expansion in the heat affected zone in addition to the solidification shrinkage of the melted portion, but actual welding is performed so as to suppress the influence as much as possible. Specifically, as described above, since the workpiece is fixed with a jig, most distortion is suppressed at this point, and cooling is performed by blowing a non-oxidizing gas such as argon or nitrogen to prevent oxidation. The effect is also taken into account. In addition, since the weight of the material is added when it is placed on a flat ground after welding, the force to warp upward in the vertical direction is suppressed downward, which also contributes to a reduction in distortion. Become. However, if the welding conditions are still not optimal, distortion remains when the material is removed from the jig after welding. This distortion varies depending on the force when the jig is fixed, and the current situation is that it cannot be expressed quantitatively.

鉄系金属の凝固収縮率は0.25%C鋼で3vol%(日本金属学会編 金属データブック改訂3版)であることはわかっているものの、溶けている箇所はレーザが照射されている一ポイントのみでそれ以外は固体であるために、その値を用いた歪みの計算はできず、しかも上述のように、溶接時は治具にて材料を押さえ付けて固定しているために、その押さえ付け加重や、前記自重による影響、シールドガスによる冷却速度等を考慮すると、理論的な計算は到底不可能となる。そのため、材料の形状、重さによりある程度試行錯誤の試験が必要であり、実験的な指標を設けるのが最も経済的、迅速、かつ簡便な方法となるのが現実である。   Although it is known that the solidification shrinkage rate of ferrous metals is 3 vol% for 0.25% C steel (Metal Data Book revised edition of the Japan Institute of Metals), the melted part is irradiated with laser. Since it is only a point and the others are solid, it is impossible to calculate the strain using that value, and as mentioned above, the material is pressed and fixed with a jig during welding, so that Considering the pressing weight, the influence of the dead weight, the cooling rate by the shield gas, etc., theoretical calculation is impossible. Therefore, a trial and error test is required to some extent depending on the shape and weight of the material, and it is the reality that providing an experimental index is the most economical, quick and simple method.

レーザ溶接はアーク溶接に比べれば溶ける領域が極めて少ないので、比較的歪みにくい施工方法である。しかし、レーザ溶接であっても歪みを全く無い状態にするには、その製品にあった技術開発が必要である。それゆえ、金属板を接合する際の歪みを低減させる方法が、それぞれの部品形状に合わせてこれまでも多く提言されている。   Laser welding is a construction method that is relatively difficult to distort because the melting area is very small compared to arc welding. However, even if laser welding is used, it is necessary to develop a technology suitable for the product in order to eliminate any distortion. Therefore, many methods have been proposed for reducing the distortion in joining metal plates in accordance with the shape of each part.

特開2002−79389「レーザ溶接方法およびレーザ溶接装置」(特許文献1)では、エンジンの吸気系に燃料を噴射するインジェクタにおいてノズルボディとインジェクタハウジングを重ね合わせレーザ接合する際の歪み防止方法として、レーザ照射角度を規定する方法が提案されており、当該技術は平面の被溶接部材にも適用可能な旨、主張されている(明細書、段落0021)。また、特開平7−116875「ビーム溶接方法」(特許文献2)では、自動車インナパネルとアウタパネルをレーザ溶接する際に、一方の板の端面にレーザを照射して溶融させ、外方に屈曲させて突出させたもう一方のパネル面に溶融物を付着させ、かつ空間部に流し込むことで熱影響部を抑え、歪みを低減する方法が提案されている。   In Japanese Patent Laid-Open No. 2002-79389 “Laser Welding Method and Laser Welding Apparatus” (Patent Document 1), as a method for preventing distortion when a nozzle body and an injector housing are overlapped and laser joined in an injector that injects fuel into an intake system of an engine, A method for defining the laser irradiation angle has been proposed, and it is claimed that the technique can be applied to a planar member to be welded (specification, paragraph 0021). Further, in Japanese Patent Laid-Open No. 7-116875 “Beam Welding Method” (Patent Document 2), when laser welding an automobile inner panel and an outer panel, the end surface of one plate is irradiated with a laser to be melted and bent outward. A method has been proposed in which a melt is attached to the other panel surface that has been protruded and poured into the space, thereby suppressing the heat-affected zone and reducing distortion.

特開平7−100676「流し台の製造方法」(特許文献3)、あるいは特開平7−16776「重ね継手部のレーザー溶接方法及び装置」(特許文献4)では、両板の接触面の延長方向またはその延長線に対し微小角を有する傾斜線方向からレーザを照射することで、不必要な箇所を溶融させず、接触面のみを溶融させて歪みを防ぐ技術が提案されている。具体的には、0〜5°(特許文献3明細書 段落0011)、あるいは10〜20°(特許文献4明細書 段落0013)の角度からレーザを入射させている。つまり、入射角度を特定の範囲に傾けたことが、これらの技術の特徴である。   In Japanese Patent Application Laid-Open No. 7-1000067 “Manufacturing Method of Sink” (Patent Document 3) or Japanese Patent Application Laid-Open No. 7-16776 “Laser Welding Method and Apparatus of Lap Joint” (Patent Document 4), There has been proposed a technique for preventing distortion by irradiating a laser from an inclined line direction having a minute angle with respect to the extension line, without melting unnecessary portions and melting only the contact surface. Specifically, the laser is incident from an angle of 0 to 5 ° (paragraph 0011 of Patent Document 3) or 10 to 20 ° (paragraph 0013 of Patent Document 4). That is, the feature of these techniques is that the incident angle is tilted to a specific range.

特開平6−328277「レーザ溶接方法」(特許文献5)では、間隔をおいてスポット的に照射し熱影響部を極力狭い範囲に抑えた方法が提案されている。また、特開2003−112525「自動車用ドアフレームの製造方法」(特許文献6)では、フィラーワイヤをレーザで溶かして溶接部に充填させることで熱影響部を抑える方法が提案されている。   Japanese Patent Laid-Open No. 6-328277 “Laser Welding Method” (Patent Document 5) proposes a method in which the heat-affected zone is suppressed to a narrow range as much as possible by spot irradiation at intervals. Japanese Patent Application Laid-Open No. 2003-112525 “Method for Manufacturing Automotive Door Frame” (Patent Document 6) proposes a method of suppressing a heat affected zone by melting a filler wire with a laser and filling a welded portion.

特開平6−297173「レーザー加工による金属の溶接方法」(特許文献7)では、溶接箇所にすばやく水やミスト、あるいはアルゴンガスや窒素ガスを噴射して溶接部を冷却し歪みを防ぐ方法が提案されている。   Japanese Patent Laid-Open No. 6-297173 “Metal Welding Method by Laser Processing” (Patent Document 7) proposes a method for preventing distortion by quickly injecting water, mist, or argon gas or nitrogen gas to the welded portion to cool the welded portion. Has been.

特開2002−79389「レーザ溶接方法およびレーザ溶接装置」Japanese Patent Application Laid-Open No. 2002-79389 “Laser Welding Method and Laser Welding Apparatus” 特開平7−116875「ビーム溶接方法」JP-A-7-116875 “Beam Welding Method” 特開平7−100676「流し台の製造方法」Japanese Patent Laid-Open No. 7-100676 “Manufacturing method of sink” 特開平7−16776「重ね継手部のレーザー溶接方法及び装置」JP-A-7-16776 "Laser Welding Method and Apparatus for Lap Joint" 特開平6−328277「レーザ溶接方法」Japanese Patent Laid-Open No. 6-328277 “Laser Welding Method” 特開2003−112525「自動車用ドアフレームの製造方法」Japanese Patent Application Laid-Open No. 2003-112525 “Method for Manufacturing Door Frame for Automobile” 特開平6−297173「レーザー加工による金属の溶接方法」JP-A-6-297173 “Metal Welding Method by Laser Processing”

しかし、特許文献1開示技術の対象は、明らかに円筒型のインジェクタに絞ったものであって平面板に適用するには具体的な実施例がなく(段落0010〜0020)、しかもレーザ照射エネルギーおよびその溶融形状などの情報がない。そのために本発明の対象物のように長さが1m以上にもなると、結局は一からレーザ照射条件を検討し直さなくてはならず、適用できない。また、特許文献2開示技術では、一方の端部突出物を屈曲させる必要があって突出物端寄りに照射するとの記述しかなく、平面板の場合には適用できない。   However, the object of the technology disclosed in Patent Document 1 is clearly limited to a cylindrical injector, and there is no specific example to apply to a flat plate (paragraphs 0010 to 0020). There is no information such as its melting shape. Therefore, if the length is 1 m or more as in the object of the present invention, the laser irradiation conditions must be re-examined from the beginning, which is not applicable. Further, in the technique disclosed in Patent Document 2, it is necessary to bend one end protrusion, and there is only a description that irradiation is performed near the end of the protrusion, and this is not applicable to a flat plate.

特許文献3、4開示技術は、入射角度を傾けたことのみに特徴を持たせたものである。したがって、これを本発明の対象物に適用しようとしても、パルス幅、パルスエネルギー、照射径などのレーザ照射条件を、結局は一から試行錯誤で検討し直さなくてはならず、適用できない。実際に、特許文献3、4開示技術を本発明の対象材である長さ1m以上の板材の溶接に適用してみたところ、溶接方向である長手方向に歪み(反り)が生じてしまい、有効に歪みを防止することはできなかった。   The technologies disclosed in Patent Documents 3 and 4 are characterized only by tilting the incident angle. Therefore, even if this is applied to the object of the present invention, laser irradiation conditions such as pulse width, pulse energy, and irradiation diameter must be reexamined from the beginning by trial and error, and cannot be applied. Actually, when the techniques disclosed in Patent Documents 3 and 4 are applied to the welding of a plate material having a length of 1 m or more, which is a target material of the present invention, distortion (warpage) occurs in the longitudinal direction, which is the welding direction, and effective. The distortion could not be prevented.

さらに、一般に普及しているYAGレーザ装置のように、焦点距離が短く、先端に酸化防止のためのノズルが付属されている場合などは、このような低角度ではノズルが被溶接物あるいは試料置き台等に接触し適用できないので、この方法の適用を見越したノズルを製作するか、焦点距離の長いレーザ装置に換えなくてはならないなど、改善コストを必要とするものであった。   Furthermore, when the focal length is short and a nozzle for preventing oxidation is attached to the tip, such as a widely used YAG laser device, the nozzle is placed on the work piece or sample at such a low angle. Since this method cannot be applied in contact with a stand or the like, it is necessary to manufacture a nozzle in anticipation of the application of this method, or to change to a laser device with a long focal length, which requires improvement costs.

また、特許文献5開示技術では、本発明がその対象としている連続溶接には適用できず、特許文献6開示技術では、フィラーワイヤ自体の消耗品使用によりコストがかかることや、フィラーワイヤの溶融物と溶接箇所との位置合わせなどの精密な制御が必要なことから、技術導入は容易ではなく、採用することができない。   In addition, the technique disclosed in Patent Document 5 cannot be applied to the continuous welding which is the subject of the present invention. In the technique disclosed in Patent Document 6, the use of consumables for the filler wire itself is costly, or the filler wire is melted. Because precise control such as positioning with the welding location is necessary, technology introduction is not easy and cannot be adopted.

また、特許文献7開示技術では、水やミストを噴射するとその乾燥を十分に行う必要があり、しかも錆や水素脆性などの品質上の劣化が生じやすい。またガス噴射は通常酸化防止として行われているものであり、液体冷却に比べ気体の場合は冷却能力が劣るために、本発明の対象物のような厚さと大きさを有するものに適用しても、歪み防止効果は期待できない。   In the technique disclosed in Patent Document 7, when water or mist is jetted, it is necessary to sufficiently dry it, and quality deterioration such as rust and hydrogen embrittlement tends to occur. In addition, gas injection is usually performed as an antioxidant, and in the case of gas compared to liquid cooling, the cooling capacity is inferior. Therefore, it is applied to the object having the thickness and size as the object of the present invention. However, the distortion prevention effect cannot be expected.

以上のとおり、紹介した各特許文献記載の技術は、いずれも方法の提案のみであり、溶接後の溶融部形状などの材料自体の特徴は提案されていないため、レーザ照射条件を検討する上での指標が無かった。また、本発明の対象物のように溶接方向に沿った長さが1m以上で、幅30〜500mm、厚さ0.8〜3mmの鉄系金属板同士をレーザにて連続溶接する場合には、これら従来方法を適用しても、材料の形状、消耗品コスト、品質等において問題が生じ、いずれも適用できるものではなかった。   As described above, the technologies described in each of the patent documents described above are only method proposals, and the characteristics of the material itself such as the shape of the molten part after welding have not been proposed. There was no indicator. In addition, when the steel metal plates having a length in the welding direction of 1 m or more, a width of 30 to 500 mm, and a thickness of 0.8 to 3 mm are continuously welded with a laser like the object of the present invention. Even if these conventional methods are applied, problems occur in the shape of materials, the cost of consumables, quality, etc., and none of them can be applied.

本発明の課題は、上記従来技術の問題点を解決しようとするものであり、レーザを用いて二の金属板を重ね合わせ溶接する場合において、歪みが無い接合構造を容易にかつ確実に得ることのできるレーザ接合技術とそれによるレーザ接合材、および接合材の歪み発生有無予測方法あるいは歪み発生に関する管理技術を提供することである。特に、1m以上の長さの鉄系金属板を重ね合わせてすみ肉をレーザ溶接する場合において、歪みが無い接合構造を容易にかつ確実に得ることのできるレーザ接合技術とそれによるレーザ接合材、および接合材の歪み発生有無予測方法あるいは歪み発生に関する管理技術を提供することである。   An object of the present invention is to solve the above-mentioned problems of the prior art, and in the case of welding two metal plates by using a laser, it is possible to easily and reliably obtain a joint structure free from distortion. It is to provide a laser joining technique that can be performed, a laser joining material thereby, a method for predicting the presence or absence of distortion in the joining material, or a management technique relating to the occurrence of distortion. In particular, when laser welding the fillet by superimposing iron-based metal plates having a length of 1 m or more, a laser joining technique capable of easily and reliably obtaining a distortion-free joining structure and a laser joining material thereby obtained, And a technique for predicting the presence or absence of distortion in the bonding material or a management technique relating to the occurrence of distortion.

本願発明者は上記課題を解決するために鋭意検討し、レーザ溶接箇所の溶融形状を規定することに基づいて該課題を解決し得ることを見出し、本発明に至った。すなわち、本願において特許請求もしくは少なくとも開示される発明は、以下のとおりである。
(1) 厚さ方向を揃えて重ね合わせた2枚の鉄系金属板をレーザにて1m以上の長さにてすみ肉溶接してレーザ接合材を得るに先立ち、歪みが発生しない溶接条件を得るために行う歪み発生有無予測方法であって、該方法は、
該2枚の鉄系金属板を用いて作製されるレーザ接合材のテストピースを溶接方向に対し垂直に切断し、切断面に現れるレーザ溶接による溶融領域中またはその相似表現物中(以下、溶融領域の相似表現物を含めて「溶融領域」という。)のレーザ照射入口の両端位置を第一端点Aならびに第二端点Bとし、板厚方向の最深位置を最深点Oとするかもしくは両端点A、Bを結ぶ直線である入射幅ABと垂直方向に最も深く溶け込んだ位置を最深点Oとし、第一端点A・第二端点B・最深点Oを結んでなる三角形AOBを歪み評価用三角形とし、該歪み評価用三角形AOBにおける該入射幅ABの長さをx、その他二辺AO、BOの長さをそれぞれy、zとし、さらに最深点Oから該入射幅ABへの垂線の長さすなわち深さをhとするとき、
三角形AOBの三辺の和x+y+zを断面の溶融形状の大きさの指標とし、
レーザ入口長さxに対するx+y+zの比「(x+y+z)/x」を溶融部の狭さを表現する指標として規定し、
一方、レーザ入口長さxに対する深さhの比「h/x」をレーザ入口部の溶融幅に対する溶け込み深さすなわち深さを表現する指標として規定し、
さらに、該狭さの指標「(x+y+z)/x」と該深さの指標「h/x」との積「h(x+y+z)/x 」を歪みにくさを表現する指標たる歪みにくさ値と規定し、
実測値に基づいて算出された歪みにくさ値を、予め測定して得られている歪み実測値−歪みにくさ値関係に基づく特定値と比較しての大小により、該レーザ接合材における歪み発生の有無を予測することを特徴とする、接合材の歪み発生有無予測方法。
(2) 前記歪みにくさ値が2以上である場合には、前記テストピースにおける条件と同じ条件で実際にレーザ溶接を行っても歪み発生がないと判定することを特徴とする、(1)に記載のレーザ接合材の歪み発生有無予測方法。
(3) 厚さ方向を揃えて重ね合わされた2枚の鉄系金属板がレーザにて1m以上の長さにてすみ肉溶接されてなるレーザ接合構造の形成方法であって、
該レーザ接合構造は(1)または(2)に記載のレーザ接合材の歪み発生有無予測方法により得られたレーザ溶接条件を用いることにより得られ、
すみ肉溶接部における前記2枚の鉄系金属板の長手方向両端いずれにも反りがないレーザ接合構造を得られることを特徴とする、無歪みレーザ接合構造形成方法
The inventor of the present application has intensively studied to solve the above-mentioned problems, and found that the problems can be solved based on defining the melt shape of the laser welding portion, and has reached the present invention. That is, the invention claimed or at least disclosed in the present application is as follows.
(1) Prior to obtaining a laser joining material by performing fillet welding of two iron-based metal plates with a thickness of 1 m or more in a thickness of 1 m or more with a laser, the welding conditions under which distortion does not occur are set. A distortion generation presence / absence prediction method performed to obtain the method,
A test piece of a laser joining material produced using the two iron-based metal plates is cut perpendicularly to the welding direction, and in a melting region by laser welding appearing on the cut surface or in a similar expression thereof (hereinafter referred to as melting) The end positions of the laser irradiation entrance of the laser irradiation entrance including the similar expression of the area are referred to as the first end point A and the second end point B, and the deepest position in the thickness direction is the deepest point O or both ends. The deepest point O is the deepest penetration point in the perpendicular direction to the incident width AB, which is a straight line connecting points A and B, and distortion evaluation is performed on the triangle AOB connecting the first end point A, the second end point B, and the deepest point O. In the distortion evaluation triangle AOB, the length of the incident width AB is x, the lengths of the other two sides AO and BO are y and z, respectively, and the perpendicular from the deepest point O to the incident width AB When the length or depth is h,
The sum x + y + z of the three sides of the triangle AOB is used as an index of the size of the molten shape of the cross section,
The ratio of x + y + z to the laser inlet length x, “(x + y + z) / x”, is defined as an index expressing the narrowness of the melted part,
On the other hand, the ratio “h / x” of the depth h to the laser inlet length x is defined as an index expressing the penetration depth, that is, the depth with respect to the melt width of the laser inlet portion,
Further, the product of the narrowness index “(x + y + z) / x” and the depth index “h / x” “h (x + y + z) / x 2 ” is a distortion resistance value that is an index expressing the difficulty of distortion. And
Strain generation in the laser bonding material is calculated depending on the magnitude of the strain toughness value calculated based on the actual measurement value compared with a specific value based on the relationship between the strain actual measurement value and the strain toughness value obtained by measurement in advance. A method for predicting the presence or absence of distortion in a bonding material, characterized by predicting the presence or absence of a bonding material.
(2) When the strain resistance value is 2 or more, it is determined that there is no distortion even if laser welding is actually performed under the same conditions as in the test piece. (1) 2. A method for predicting whether or not the laser bonding material is distorted.
(3) A method of forming a laser joining structure in which two iron-based metal plates stacked with the thickness direction aligned are fillet welded with a laser at a length of 1 m or more,
The laser joining structure is obtained by using the laser welding conditions obtained by the method for predicting the presence or absence of distortion of the laser joining material according to (1) or (2),
A method for forming a strain-free laser joining structure, characterized in that a laser joining structure can be obtained in which no warpage occurs at both longitudinal ends of the two iron-based metal plates in a fillet weld.

(4) 前記無歪みレーザ接合構造形成方法により得られるレーザ接合構造において、溶接方向に対し垂直な任意の一の断面に現れるレーザ溶接による溶融領域またはその相似表現物(以下、溶融領域の相似表現物を含めて「溶融領域」という。)が、下記〔I〕を満たすことを特徴とする、(3)に記載の無歪みレーザ接合構造形成方法
〔I〕溶融領域中のレーザ照射入口の両端位置を第一端点Aならびに第二端点Bとし、板厚方向の最深位置を最深点Oとし、第一端点A・第二端点B・最深点Oを結んでなる三角形AOBを歪み評価用三角形とし、該歪み評価用三角形AOBにおける該入射幅ABの長さをx、その他二辺AO、BOの長さをそれぞれy、zとし、さらに最深点Oから該入射幅ABへの垂線の長さすなわち深さをhとするとき、(x+y+z)/xとh/xの積であるh(x+y+z)/xの値が2以上である。
(5) 前記2枚の鉄系金属板はいずれも幅30〜500mm、厚さ0.8〜3mmであることを特徴とする、(3)または(4)に記載の無歪みレーザ接合構造形成方法
(6) (3)ないし(5)のいずれかに記載の無歪みレーザ接合構造形成方法用いて歪みの無いレーザ接合材を得る、歪みの無いレーザ接合材製造方法
(4) In a laser joining structure obtained by the above-described method for forming an unstrained laser joining structure, a molten region by laser welding that appears in an arbitrary cross section perpendicular to the welding direction or a similar representation thereof (hereinafter, a similar representation of the molten region) The non-strained laser-bonded structure forming method according to (3), wherein the “melting region” including the object satisfies the following [I].
[I] Both end positions of the laser irradiation entrance in the melting region are defined as first end point A and second end point B, the deepest position in the thickness direction is defined as deepest point O, and the first end point A, second end point B, and deepest point A triangle AOB formed by connecting the points O is set as a distortion evaluation triangle, the length of the incident width AB in the distortion evaluation triangle AOB is x, and the lengths of the other two sides AO and BO are y and z, respectively. when the point O the length or depth of the normal to the incident width AB is h, it is (x + y + z) / x and the product of h / x h (x + y + z) / value of x 2 is 2 or more.
(5) The two iron-based metal plates each have a width of 30 to 500 mm and a thickness of 0.8 to 3 mm. The strain-free laser joining structure formation according to (3) or (4) Way .
(6) A distortion-free laser bonding material manufacturing method , wherein a distortion- free laser bonding material is obtained using the non-distortion laser bonding structure forming method according to any one of (3) to (5).

つまり本発明は、レーザ溶接により形成される溶融領域(以下、「溶融部」ともいう。)について、その溶融形状を式化することで歪みの無い被接合材の指標を設けて管理できる、という特徴を有するものである。本発明レーザ接合材についてその代表的な例を述べれば、「溶接方向に沿った長さが1m以上で、幅30〜500mm、厚さ0.8〜3mmの厚さの鉄系金属板同士を重ね合わせ、そのすみ肉をレーザにて連続溶接する際、溶接方向と垂直な方向の断面において、溶融部端点A,Bと、板厚方向の最深位置もしくは溶接方向と垂直方向に最も深く溶け込んだ位置である点Oとを、結んで形成した三角形AOBにおいて、レーザ入射口に相当する辺ABの長さをx、その他の辺AOとBOの長さをそれぞれy,zとし、さらに頂点Oから辺ABへの垂線の長さをhとするとき、(x+y+z)/xとh/xの積h(x+y+z)/xの値が2以上となることを特徴とする歪みの無いレーザ接合材」である。 That is, according to the present invention, the melted region formed by laser welding (hereinafter also referred to as “melted part”) can be managed by providing an index of the material to be joined without distortion by formulating the melted shape. It has characteristics. A typical example of the laser joining material of the present invention is described as follows: “A length along the welding direction is 1 m or more, a width of 30 to 500 mm, and a thickness of 0.8 to 3 mm. When the fillet is continuously welded by laser, the melted part end points A and B and the deepest position in the plate thickness direction or deepest in the direction perpendicular to the welding direction are melted in the cross section perpendicular to the welding direction. In the triangle AOB formed by connecting the point O which is the position, the length of the side AB corresponding to the laser incident port is x, the lengths of the other sides AO and BO are y and z, respectively, and further from the vertex O When the length of the perpendicular to the side AB is h, the product of (x + y + z) / x and h / x, the value of h (x + y + z) / x 2 is 2 or more, and there is no distortion laser bonding material Is.

本発明によれば、上述のように溶融形状が規定されることで、小さなテストピースを溶接後、断面を切断、研磨し、溶融部の寸法測定を行えば、本発明の式において歪みが無いかどうかの判定が可能となる。その後で、長さ1mを超えるような長尺の試料を用いた本試験あるいは製品の接合を行うことができるため、作業や材料に無駄を生じることがなく、あるいは相当程度軽減され、効率的である。従来の方法特許では製品自体に関する規定が無いために、たとえば1m以上の長さをレーザ接合した場合の歪みを知るには、やはりその材料を実際に接合してみないとわからなかったため、大変非効率的であった。本発明によりそれを解消することができる。しかも、本発明によれば条件設定および管理がしやすく、現場において簡単に利用できる。また、材料のみを溶かす方法であるため、フィラーワイヤなどの消耗品が発生しない。   According to the present invention, there is no distortion in the formula of the present invention if the molten shape is defined as described above, and the cross section is cut and polished after the small test piece is welded and the dimension of the molten part is measured. It is possible to determine whether or not. After that, it is possible to perform the main test or product joining using a long sample exceeding 1 m in length, so that work and materials are not wasted or are considerably reduced and efficient. is there. In the conventional method patent, there is no provision concerning the product itself. For example, in order to know the strain when laser joining a length of 1 m or more, it is not known unless the material is actually joined. It was efficient. This can be solved by the present invention. Moreover, according to the present invention, it is easy to set and manage conditions, and it can be easily used in the field. In addition, since only the material is melted, consumables such as filler wires are not generated.

本発明のように、溶融部における溶融形態を把握、考察し、特定の指標を設けてこれを適用することによって、個別のレーザ溶接実施における具体的なレーザ照射条件の詳細を効果的に検討することができ、それに基づき、効率的な溶接作業を実現することができる。   As in the present invention, the details of specific laser irradiation conditions in individual laser welding implementations are effectively examined by grasping and considering the molten form in the molten part, and applying a specific index. And based on that, an efficient welding operation can be realized.

以下、本発明内容について詳細に説明する。
図1は、本発明の無歪みレーザ接合構造(以下、「無歪みレーザ接合材」、「歪みの無いレーザ接合材」ともいう。)について、一実施例の断面写真をもって説明する説明図である。
また図2は、比較例として、歪みが生じたレーザ接合材の接合構造について、断面写真をもって説明する説明図であり、歪みが10mm発生したレーザ接合材の断面図である。図1、2はいずれも、長さ1.3m、幅300mm、1.5mm厚さのステンレス鋼同士における重ね合わせすみ肉のレーザ接合結果写真を用いたものである。
Hereinafter, the contents of the present invention will be described in detail.
FIG. 1 is an explanatory view for explaining a non-strained laser bonding structure of the present invention (hereinafter also referred to as “unstrained laser bonding material” or “laser-free laser bonding material”) with a cross-sectional photograph of one embodiment. .
FIG. 2 is an explanatory diagram illustrating a bonded structure of a laser bonding material in which distortion occurs as a comparative example, with a cross-sectional photograph, and is a cross-sectional view of the laser bonding material in which distortion is generated by 10 mm. FIGS. 1 and 2 both use photographs of the results of laser joining of the fillets of stainless steel having a length of 1.3 m, a width of 300 mm, and a thickness of 1.5 mm.

まずは、この写真上に示される溶接方向と垂直な方向の断面において、溶融部端点A,Bと、板厚方向に最も深く溶け込んだ点Oとを結んで形成した三角形AOBを、歪み評価用三角形として規定する。そして三角形AOBにおいて、レーザ入射口に相当する辺ABの長さをx、その他の辺AOとBOの長さをそれぞれy,zとした時の(x+y+z)/x を、歪み評価用の指標を構成する一つとして、特に溶融部のいわば狭さを表現する指標として規定する。
First, in the cross section in the direction perpendicular to the welding direction shown in this photograph, a triangle AOB formed by connecting the melting point A and B and the point O deepestly melted in the plate thickness direction is used as a strain evaluation triangle. It prescribes as In the triangle AOB, (x + y + z) / x where x is the length of the side AB corresponding to the laser entrance, and y and z are the lengths of the other sides AO and BO, respectively. One of the constituents is defined as an index expressing the so-called narrowness of the melted part.

つまり、x+y+zは三角形AOBの三辺の和であり、断面の溶融形状の大きさを簡便に表現するのに最適であることから指標に用いたものである。溶融形状は、断面の研磨後、たとえば、塩化第二鉄を塩酸に溶解しさらにこれをアルコールと混合してなる腐食液を用いた腐食処理を行い、その結果観察される溶融部と非溶融部の腐食度の違いにより判別する。たとえば、その顕微鏡像を紙に印刷し、定規で該A,O,B点を結んだ三角形を描き、各辺の長さx,y,zを測定するだけでよいため、誰でも簡単に手計算により算出することができる。溶融部の大きさを面積として表すとなると、複雑形状であるため手計算ができなく、画像解析等を行うためのソフトウェアと電子計算機が必要となる。この場合、顕微鏡観察したときの溶融部と非溶融部との色の違いが明瞭でないと解析が難しくなるが、実際には溶融部以外の箇所も腐食液で黒ずむことや、色むらが生じることなど、作業者の熟練度によって腐食の程度に差が生じるので、必ずしも溶融部のみが画像解析で判別できるとは限らない。そのため、面積で表現する方法は簡便ではない。
なお、断面の切断から溶融部の形状を観察する手順は、たとえば下記のようにすればよい。
〔1〕精密カッター等で鏡面状態またはそれに近い状態に切断する。あるいは一般のカッターで切断した後、鏡面程度の仕上げとなるよう研磨する。
〔2〕切断面あるいは研磨面を腐食液に浸漬して、腐食速度の違いから溶融部の形状を浮き出させる。
〔3〕光学顕微鏡あるいはマイクロスコープなど適宜の顕微鏡を用いて、溶融部の形状が浮き出た断面を観察する。
In other words, x + y + z is the sum of the three sides of the triangle AOB and is used as an index because it is optimal for simply expressing the size of the melted shape of the cross section. For example, after the cross section is polished, the melted shape is subjected to a corrosion treatment using a corrosive solution obtained by dissolving ferric chloride in hydrochloric acid and then mixing it with alcohol. Judged by the difference in the degree of corrosion. For example, it is only necessary to print the microscope image on paper, draw a triangle connecting the A, O, and B points with a ruler and measure the length x, y, z of each side. It can be calculated by calculation. If the size of the melted part is expressed as an area, it cannot be calculated manually because of its complicated shape, and software and an electronic computer for performing image analysis and the like are required. In this case, the analysis is difficult unless the difference in color between the melted part and the non-melted part is clear when observed under a microscope, but in fact, the part other than the melted part is darkened with a corrosive liquid, or color unevenness occurs. For example, since the degree of corrosion varies depending on the skill level of the operator, only the melted portion cannot always be determined by image analysis. Therefore, the method of expressing by area is not simple.
The procedure for observing the shape of the melted portion from the cutting of the cross section may be as follows, for example.
[1] Cut into a mirror surface state or a state close thereto with a precision cutter or the like. Alternatively, after cutting with a general cutter, the surface is polished to a mirror finish.
[2] The cut surface or the polished surface is immersed in a corrosive liquid, and the shape of the melted part is raised from the difference in corrosion rate.
[3] Using an appropriate microscope such as an optical microscope or a microscope, observe the cross section where the shape of the melted part is raised.

xは、レーザが照射する入口(間口)に相当し、溶融部形状はワインカップ状あるいは深さ方向に細長くなるので、この長さが大きい程多く溶融することになる。特に角度を設けて入射した場合は、図1のxに相当するすみ肉の形状は変化無いが、鉛直上方向から入射した場合は、板の端部が溶融して形状が変化し、図2に示したようになる。この三辺の和をxで除することにより、溶融部の大きさに対する長さxの占める割合、いわば狭さが表現できる。つまり、この値が大きい程、レーザ入口部の溶融領域が狭いことを表現できる。
x corresponds to the entrance (frontage) irradiated by the laser, and the shape of the melted portion is elongated in the shape of a wine cup or in the depth direction. In particular, when the incident light is incident at an angle, the shape of the fillet corresponding to x in FIG. 1 does not change. However, when incident from the vertically upward direction, the edge of the plate is melted to change the shape, and FIG. As shown in By dividing the sum of these three sides by x, the ratio of the length x to the size of the melted portion, that is, the narrowness can be expressed. That is, it can be expressed that the larger this value, the narrower the melting region of the laser entrance.

次に、頂点Oから辺ABへの垂線の長さをhとするときのh/xについてであるが、レーザ入口部の溶融幅に対する溶け込み深さ、いわば深さを示した指標である。この値が大きければ細長く溶融したことになる。溶融部の大きさを小さくするには有効であり、熱歪みも小さくなる方向であるため、指標となる。


Next, h / x when the length of the perpendicular line from the vertex O to the side AB is h is an index indicating the penetration depth with respect to the melt width of the laser entrance portion, that is, the so-called depth . If this value is large, it is melted long and narrow. This is effective for reducing the size of the melted part, and is also an index because it tends to reduce the thermal strain.


上記2つの指標をまとめることができることから、(x+y+z)/x と h/xの積 h(x+y+z)/x を最終指標とした。本発明者らは鋭意研究し、この値が2以上で歪みが無くなることを見い出した。
図3は、本発明に係る歪み発生の指標と、レーザ接合材における実際の歪み量との関係を示すグラフである。長さ1.3m、幅300mmの1.5mm厚さのステンレス鋼同士における重ね合わせすみ肉のレーザ接合実験の結果である。h(x+y+z)/x が2を下回ると、急激に歪みが発生しやすくなることがわかる。2以上の値では常に、歪みは0である。
Since it is possible to combine the above two indicators, it was (x + y + z) / x and h / x product h (x + y + z) / x 2 final index. The present inventors have intensively studied and found that when this value is 2 or more, there is no distortion.
FIG. 3 is a graph showing the relationship between the strain generation index according to the present invention and the actual strain amount in the laser bonding material. It is the result of the laser joining experiment of the superposition fillet in 1.5 mm-thick stainless steel with a length of 1.3 m and a width of 300 mm. and h (x + y + z) / x 2 is less than 2, it can be seen that the rapid distortion is likely to occur. For values of 2 and above, the distortion is always zero.

この、2という値は、前述したように理論的な解析からは決して得ることのできない数字であり、あくまでも鋭意実験を重ねた結果、見い出したものである。   The value of 2 is a number that can never be obtained from theoretical analysis as described above, and has been found as a result of repeated earnest experiments.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
<実施例1 パルス波YAGレーザを用いた溶接>
板厚0.8〜3mm、溶接方向の長さ1.4m、幅50mmのSUS304鋼板と、板厚1.5mm、溶接方向の長さ1.4m、幅300mmのSUS304鋼板を20mm長さ分重ね合わせて押さえ治具で固定し、すみ肉をパルス波YAGレーザにて溶接した。溶接速度は0.5〜0.9m/minとした。スポット径0.4mm、パルス幅10ms、繰り返し回数14Hz/s、焦点位置にてレーザの照射角度(水平線とレーザのなす角度)とパルスエネルギーを変えて照射した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
Example 1 Welding Using Pulsed Wave YAG Laser
A SUS304 steel plate with a thickness of 0.8 to 3 mm, a welding direction length of 1.4 m, and a width of 50 mm, and a SUS304 steel plate with a plate thickness of 1.5 mm, a welding direction length of 1.4 m, and a width of 300 mm are stacked for a length of 20 mm. They were fixed together with a holding jig, and the fillet was welded with a pulsed YAG laser. The welding speed was 0.5 to 0.9 m / min. Irradiation was performed with a spot diameter of 0.4 mm, a pulse width of 10 ms, a repetition frequency of 14 Hz / s, and a laser irradiation angle (angle formed by the horizontal line and the laser) and pulse energy at the focal position.

歪みの評価
溶接後の歪みの評価は、平坦な地面に接合材を静置させ、板の端が地面から浮いた鉛直方向の高さにより行った。なお、その高さは両端の平均値とした。
表1に、試験条件と歪み測定結果を示す。
Evaluation of distortion Evaluation of distortion after welding was performed based on the height in the vertical direction in which the joining material was allowed to stand on a flat ground and the edge of the plate floated from the ground. In addition, the height was made into the average value of both ends.
Table 1 shows test conditions and strain measurement results.

実施例1−1〜1−8は本発明であり、h(x+y+z)/xの値が2以上であるので、いずれも歪み量は0mmであった。 Examples 1-1 to 1-8 are invention, the value of h (x + y + z) / x 2 is 2 or more, any strain amount was 0 mm.

比較例1−1は、0.8mm厚さのSUS304鋼に照射したパルスエネルギーの値が12Jと大きかったために、h(x+y+z)/xの値が2未満となり、歪みが12.2mmも生じた。この材料の最適条件は実施例1−1のとおりであり、パルスエネルギーが大きくなったことでxの値が大きくなり、h(x+y+z)/xの値が低下した。 In Comparative Example 1-1, since the value of the pulse energy irradiated to SUS304 steel having a thickness of 0.8 mm was as large as 12 J, the value of h (x + y + z) / x 2 was less than 2, and the distortion was also 12.2 mm. It was. The optimum conditions for this material are as in Example 1-1. As the pulse energy increased, the value of x increased and the value of h (x + y + z) / x 2 decreased.

同様に比較例1−2〜1−6においても、それぞれ1.0、1.5、2.0、2.5、3.0mm厚さのSUS304鋼に照射したパルスエネルギーの値が最適条件より大きかったために、h(x+y+z)/xの値が2未満となり歪みが生じた。 Similarly, also in Comparative Examples 1-2 to 1-6, the values of pulse energy irradiated to 1.0, 1.5, 2.0, 2.5, and 3.0 mm thick SUS304 steel were more than optimal conditions. for larger, the value of h (x + y + z) / x 2 is the result distortion has occurred less than 2.

比較例1−7〜1−9は0.7mmのSUS304鋼に適用した例である。厚さが、本発明の対象材の厚さ0.8〜3.0mmからはずれているため、溶接速度を調整して、h(x+y+z)/xの値を変化させても、歪みが生じた。また、比較例1−9の速度0.9m/minでは、入熱が少なすぎて接合しなかった。 Comparative Examples 1-7 to 1-9 are examples applied to 0.7 mm SUS304 steel. Since the thickness deviates from the thickness of 0.8 to 3.0 mm of the target material of the present invention, distortion occurs even when the welding speed is adjusted and the value of h (x + y + z) / x 2 is changed. It was. Further, at a speed of 0.9 m / min in Comparative Example 1-9, the heat input was too small to join.

比較例1−10〜1−12は3.2mmのSUS304鋼に適用した例である。厚さが、やはり本発明の対象材の厚さ0.8〜3.0mmからはずれているため、溶接速度を調整して h(x+y+z)/xの値を変化させても、歪みが生じた。また、比較例1−12の0.8m/minでは、入熱が少なすぎて接合しなかった。 Comparative Examples 1-10 to 1-12 are examples applied to 3.2 mm SUS304 steel. Since the thickness is still different from the thickness of the target material of the present invention of 0.8 to 3.0 mm, distortion occurs even if the welding speed is adjusted and the value of h (x + y + z) / x 2 is changed. It was. Moreover, at 0.8 m / min of Comparative Example 1-12, the heat input was too small to join.

比較例1−13は1.5mmのSUS304鋼に照射角度90°、つまり鉛直上方からレーザを照射した場合であり、xに相当する長さが大きくなり、h(x+y+z)/xの値が2を下回り、歪みが10mmも生じた。 Comparative Example 1-13 is a case where 1.5 mm SUS304 steel is irradiated with a laser at an irradiation angle of 90 °, that is, vertically above, the length corresponding to x increases, and the value of h (x + y + z) / x 2 is Less than 2, a distortion of 10 mm was also generated.

<実施例2 連続波ファイバーレーザを用いた溶接>
実施例1のYAGレーザの代わりに連続波ファイバーレーザを、試料にはSS400を用いた。スポット径は0.3mmとし、照射角度50°で出力と溶接速度を変えて入熱を変化させた。なお、一般に防錆目的でSS400鋼に油が塗られているが、溶接欠陥になりやすいのできれいに洗浄してから行った。表2に、実施例2の条件と結果をまとめて示す。
Example 2 Welding Using Continuous Wave Fiber Laser
Instead of the YAG laser of Example 1, a continuous wave fiber laser was used, and SS400 was used as a sample. The spot diameter was 0.3 mm, and the heat input was changed by changing the output and welding speed at an irradiation angle of 50 °. In general, SS400 steel is coated with oil for the purpose of rust prevention. Table 2 summarizes the conditions and results of Example 2.

実施例2−1〜2−6は本発明であり、h(x+y+z)/xの値が2以上であるので、いずれも歪み量は0mmであった。 Examples 2-1 to 2-6 are invention, the value of h (x + y + z) / x 2 is 2 or more, any strain amount was 0 mm.

比較例2−1は、0.8mm厚さのSS400鋼に溶接速度7m/minでレーザ接合した場合である。実施例2−1よりも速度が遅い分入熱が大きく、h(x+y+z)/xの値が2未満となり、歪みが11.2mmも生じた。この材料の最適条件は実施例2−1のとおりであり、比較例2−1はそれよりも溶接速度が遅いためにxの値が大きくなり、h(x+y+z)/xの値が低下した。 Comparative Example 2-1 is a case where laser joining is performed on SS400 steel having a thickness of 0.8 mm at a welding speed of 7 m / min. EXAMPLE slow minute heat input greater rate than 2-1, the value of h (x + y + z) / x 2 is less than 2, the distortion occurred even 11.2 mm. Optimal conditions for this material is as in Example 2-1, Comparative Example 2-1 the value of x is increased to slow welding speed than that, the value of h (x + y + z) / x 2 drops .

同様に比較例2−2〜2−6においても、それぞれ1.0、1.5、2.0、2.5、3.0mm厚さのSS400鋼において、溶接速度が最適条件より小さかったために、h(x+y+z)/xの値が2未満となり、歪みが生じた。 Similarly, in Comparative Examples 2-2 to 2-6, the welding speed was smaller than the optimum condition in SS400 steel of 1.0, 1.5, 2.0, 2.5, and 3.0 mm thickness, respectively. H (x + y + z) / x2 was less than 2 , resulting in distortion.

比較例2−7〜2−9は0.7mmのSS400鋼に適用した例である。厚さが、本発明の対象材の厚さ0.8〜3.0mmからはずれているために、レーザ出力を調整して、h(x+y+z)/xの値を変化させても歪みは生じた。また、比較例2−9においては、歪みを少なくするために入熱を低減させようとさらに出力を小さくしたが、入熱が少なすぎて接合しなかった。 Comparative Examples 2-7 to 2-9 are examples applied to 0.7 mm SS400 steel. Since the thickness deviates from the thickness of 0.8 to 3.0 mm of the target material of the present invention, distortion occurs even when the laser output is adjusted and the value of h (x + y + z) / x 2 is changed. It was. In Comparative Example 2-9, the output was further reduced in order to reduce the heat input in order to reduce the distortion, but the heat input was too small to be joined.

比較例2−10〜2−12は3.2mmのSS400鋼に適用した例である。厚さが、やはり本発明の対象材の厚さ0.8〜3.0mmからはずれているために、レーザ出力を調整して、h(x+y+z)/xの値を変化させても歪みは生じた。また、比較例2−12では比較例2−9同様に入熱が少なすぎて接合しなかった。 Comparative Examples 2-10 to 2-12 are examples applied to 3.2 mm SS400 steel. Since the thickness is also different from the thickness of the target material of the present invention of 0.8 to 3.0 mm, even if the laser output is adjusted and the value of h (x + y + z) / x 2 is changed, the distortion is occured. Further, in Comparative Example 2-12, as in Comparative Example 2-9, the heat input was too small to join.

本発明は以上のように実施することができ、小さなテストピースを用いた予備試験において、作業現場でも金属切断機と簡易の研磨装置があれば簡単に歪みの無い条件を確認・設定することができる。本発明の指標を用いることにより、レーザにより重ね合わせ溶接された金属板の歪みを無くす効果を簡便に得ることができるので、関連する産業分野において利用性が極めて高い発明である。   The present invention can be implemented as described above, and in a preliminary test using a small test piece, it is possible to easily confirm and set conditions without distortion if there is a metal cutting machine and a simple polishing device even at a work site. it can. By using the index of the present invention, it is possible to easily obtain the effect of eliminating the distortion of the metal plate that is overlap-welded with a laser, so that the invention is extremely highly applicable in the related industrial fields.

本発明の無歪みレーザ接合構造について、一実施例の断面写真をもって説明する説明図である。It is explanatory drawing explaining the unstrained laser joining structure of this invention with the cross-sectional photograph of one Example. 比較例として、歪みが生じたレーザ接合材の接合構造について、断面写真をもって説明する説明図である。As a comparative example, it is explanatory drawing explaining the joining structure of the laser joining material which produced the distortion with a cross-sectional photograph. 本発明に係る歪み発生の指標 h(x+y+z)/x の値と、レーザ接合材における実際の歪み量との関係を示すグラフである。The value of the index h (x + y + z) / x 2 of the distortion generator according to the present invention, is a graph showing the relationship between the actual amount of strain in the laser bonding material.

Claims (6)

厚さ方向を揃えて重ね合わせた2枚の鉄系金属板をレーザにて1m以上の長さにてすみ肉溶接してレーザ接合材を得るに先立ち、歪みが発生しない溶接条件を得るために行う歪み発生有無予測方法であって、該方法は、
該2枚の鉄系金属板を用いて作製されるレーザ接合材のテストピースを溶接方向に対し垂直に切断し、切断面に現れるレーザ溶接による溶融領域中またはその相似表現物中(以下、溶融領域の相似表現物を含めて「溶融領域」という。)のレーザ照射入口の両端位置を第一端点Aならびに第二端点Bとし、板厚方向の最深位置を最深点Oとするかもしくは両端点A、Bを結ぶ直線である入射幅ABと垂直方向に最も深く溶け込んだ位置を最深点Oとし、第一端点A・第二端点B・最深点Oを結んでなる三角形AOBを歪み評価用三角形とし、該歪み評価用三角形AOBにおける該入射幅ABの長さをx、その他二辺AO、BOの長さをそれぞれy、zとし、さらに最深点Oから該入射幅ABへの垂線の長さすなわち深さをhとするとき、
三角形AOBの三辺の和x+y+zを断面の溶融形状の大きさの指標とし、
レーザ入口長さxに対するx+y+zの比「(x+y+z)/x」を溶融部の狭さを表現する指標として規定し、
一方、レーザ入口長さxに対する深さhの比「h/x」をレーザ入口部の溶融幅に対する溶け込み深さすなわち深さを表現する指標として規定し、
さらに、該狭さの指標「(x+y+z)/x」と該深さの指標「h/x」との積「h(x+y+z)/x 」を歪みにくさを表現する指標たる歪みにくさ値と規定し、
実測値に基づいて算出された歪みにくさ値を、予め測定して得られている歪み実測値−歪みにくさ値関係に基づく特定値と比較しての大小により、該レーザ接合材における歪み発生の有無を予測することを特徴とする、接合材の歪み発生有無予測方法。
In order to obtain welding conditions in which distortion does not occur prior to obtaining a laser joining material by performing fillet welding of two iron-based metal plates with the same thickness direction overlapped with a laser at a length of 1 m or more. A distortion generation presence / absence prediction method to be performed,
A test piece of a laser joining material produced using the two iron-based metal plates is cut perpendicularly to the welding direction, and in a melting region by laser welding appearing on the cut surface or in a similar expression thereof (hereinafter referred to as melting) The end positions of the laser irradiation entrance of the laser irradiation entrance including the similar expression of the area are referred to as the first end point A and the second end point B, and the deepest position in the thickness direction is the deepest point O or both ends. The deepest point O is the deepest penetration point in the perpendicular direction to the incident width AB, which is a straight line connecting points A and B, and distortion evaluation is performed on the triangle AOB connecting the first end point A, the second end point B, and the deepest point O. In the distortion evaluation triangle AOB, the length of the incident width AB is x, the lengths of the other two sides AO and BO are y and z, respectively, and the perpendicular from the deepest point O to the incident width AB When the length or depth is h,
The sum x + y + z of the three sides of the triangle AOB is used as an index of the size of the molten shape of the cross section,
The ratio of x + y + z to the laser inlet length x, “(x + y + z) / x”, is defined as an index expressing the narrowness of the melted part,
On the other hand, the ratio “h / x” of the depth h to the laser inlet length x is defined as an index expressing the penetration depth, that is, the depth with respect to the melt width of the laser inlet portion,
Further, the product of the narrowness index “(x + y + z) / x” and the depth index “h / x” “h (x + y + z) / x 2 ” is a distortion resistance value that is an index expressing the difficulty of distortion. And
Strain generation in the laser bonding material is calculated depending on the magnitude of the strain toughness value calculated based on the actual measurement value compared with a specific value based on the relationship between the strain actual measurement value and the strain toughness value obtained by measurement in advance. A method for predicting the presence or absence of distortion in a bonding material, characterized by predicting the presence or absence of a bonding material.
前記歪みにくさ値が2以上である場合には、前記テストピースにおける条件と同じ条件で実際にレーザ溶接を行っても歪み発生がないと判定することを特徴とする、請求項1に記載のレーザ接合材の歪み発生有無予測方法。 2. The method according to claim 1, wherein when the strain resistance value is 2 or more, it is determined that no distortion occurs even if laser welding is actually performed under the same conditions as the conditions of the test piece. A method for predicting the presence or absence of distortion in a laser bonding material. 厚さ方向を揃えて重ね合わされた2枚の鉄系金属板がレーザにて1m以上の長さにてすみ肉溶接されてなるレーザ接合構造の形成方法であって、
該レーザ接合構造は請求項1または2に記載のレーザ接合材の歪み発生有無予測方法により得られたレーザ溶接条件を用いることにより得られ、
すみ肉溶接部における前記2枚の鉄系金属板の長手方向両端いずれにも反りがないレーザ接合構造を得られることを特徴とする、無歪みレーザ接合構造形成方法
A method of forming a laser joining structure in which two iron-based metal plates that are overlapped in the thickness direction are fillet welded with a laser at a length of 1 m or more,
The laser joining structure is obtained by using the laser welding conditions obtained by the method for predicting the presence or absence of distortion of the laser joining material according to claim 1 or 2,
A method for forming a strain-free laser joining structure, characterized in that a laser joining structure can be obtained in which no warpage occurs at both longitudinal ends of the two iron-based metal plates in a fillet weld.
前記無歪みレーザ接合構造形成方法により得られるレーザ接合構造において、溶接方向に対し垂直な任意の一の断面に現れるレーザ溶接による溶融領域またはその相似表現物(以下、溶融領域の相似表現物を含めて「溶融領域」という。)が、下記〔I〕を満たすことを特徴とする、請求項3に記載の無歪みレーザ接合構造形成方法
〔I〕溶融領域中のレーザ照射入口の両端位置を第一端点Aならびに第二端点Bとし、板厚方向の最深位置を最深点Oとし、第一端点A・第二端点B・最深点Oを結んでなる三角形AOBを歪み評価用三角形とし、該歪み評価用三角形AOBにおける該入射幅ABの長さをx、その他二辺AO、BOの長さをそれぞれy、zとし、さらに最深点Oから該入射幅ABへの垂線の長さすなわち深さをhとするとき、(x+y+z)/xとh/xの積であるh(x+y+z)/xの値が2以上である。
In the laser joining structure obtained by the method for forming an unstrained laser joining structure, a melted region by laser welding that appears in any one cross section perpendicular to the welding direction or a similar representation thereof (hereinafter including a similar representation of the molten region). The method for forming a strain-free laser joining structure according to claim 3, wherein the “melting region” satisfies the following [I].
[I] Both end positions of the laser irradiation entrance in the melting region are defined as first end point A and second end point B, the deepest position in the thickness direction is defined as deepest point O, and the first end point A, second end point B, and deepest point A triangle AOB formed by connecting the points O is set as a distortion evaluation triangle, the length of the incident width AB in the distortion evaluation triangle AOB is x, and the lengths of the other two sides AO and BO are y and z, respectively. when the point O the length or depth of the normal to the incident width AB is h, it is (x + y + z) / x and the product of h / x h (x + y + z) / value of x 2 is 2 or more.
前記2枚の鉄系金属板はいずれも幅30〜500mm、厚さ0.8〜3mmであることを特徴とする、請求項3または4に記載の無歪みレーザ接合構造形成方法5. The method for forming a strain-free laser joining structure according to claim 3, wherein each of the two iron-based metal plates has a width of 30 to 500 mm and a thickness of 0.8 to 3 mm. 請求項3ないし5のいずれかに記載の無歪みレーザ接合構造形成方法用いて歪みの無いレーザ接合材を得る、歪みの無いレーザ接合材製造方法
A distortion-free laser bonding material manufacturing method , wherein a distortion- free laser bonding material is obtained using the non-strained laser bonding structure forming method according to claim 3.
JP2007077992A 2007-03-24 2007-03-24 Strain-free laser bonding material manufacturing method, non-strained laser bonding structure forming method, and laser bonding material distortion occurrence prediction method Active JP5277393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007077992A JP5277393B2 (en) 2007-03-24 2007-03-24 Strain-free laser bonding material manufacturing method, non-strained laser bonding structure forming method, and laser bonding material distortion occurrence prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007077992A JP5277393B2 (en) 2007-03-24 2007-03-24 Strain-free laser bonding material manufacturing method, non-strained laser bonding structure forming method, and laser bonding material distortion occurrence prediction method

Publications (2)

Publication Number Publication Date
JP2008238176A JP2008238176A (en) 2008-10-09
JP5277393B2 true JP5277393B2 (en) 2013-08-28

Family

ID=39910139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007077992A Active JP5277393B2 (en) 2007-03-24 2007-03-24 Strain-free laser bonding material manufacturing method, non-strained laser bonding structure forming method, and laser bonding material distortion occurrence prediction method

Country Status (1)

Country Link
JP (1) JP5277393B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111872562B (en) * 2020-07-14 2022-09-16 河南航天液压气动技术有限公司 Welding method of thin-wall bearing piece

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270084A (en) * 1991-02-25 1992-09-25 Ishikawajima Harima Heavy Ind Co Ltd Non-filler fillet welding method utilizing laser beam
JP2792340B2 (en) * 1992-06-17 1998-09-03 日産自動車株式会社 Laser welding method
JPH08187587A (en) * 1994-12-28 1996-07-23 Ishikawajima Harima Heavy Ind Co Ltd Laser beam fillet welding method for t joint and device therefor
JPH0919778A (en) * 1995-07-02 1997-01-21 Nippon Light Metal Co Ltd Laser welding method for aluminum alloy without exposing molten metal on the rear surface
JPH11123575A (en) * 1997-08-22 1999-05-11 Topy Ind Ltd Stainless shape steel and its manufacture
JP2000102888A (en) * 1998-09-28 2000-04-11 Topy Ind Ltd Laser welding method of t-joint
JP2002018583A (en) * 2000-07-07 2002-01-22 Hitachi Zosen Corp Method of laser beam welding
JP2003001454A (en) * 2001-06-15 2003-01-08 Honda Motor Co Ltd Lap fillet welding method for metallic plates to each other
JP2003326379A (en) * 2002-05-14 2003-11-18 Sango Co Ltd Laser beam welding method for lap joint

Also Published As

Publication number Publication date
JP2008238176A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
Mai et al. Characterisation of dissimilar joints in laser welding of steel–kovar, copper–steel and copper–aluminium
Chen et al. CO2 laser welding of galvanized steel sheets using vent holes
Bang et al. Interfacial microstructure and mechanical properties of dissimilar friction stir welds between 6061-T6 aluminum and Ti-6% Al-4% V alloys
Atabaki et al. High power laser welding of thick steel plates in a horizontal butt joint configuration
Zhao et al. Microstructural and mechanical characteristics of laser welding of Ti6Al4V and lead metal
Kannan et al. Effect of cold metal transfer process parameters on microstructural evolution and mechanical properties of AISI 316L tailor welded blanks
Song et al. Overlap welding of magnesium AZ31B sheets using laser-arc hybrid process
Saravanan et al. Studies on metallurgical and mechanical properties of laser welded dissimilar grade steels
Selvamani et al. Effects of heat distribution during cold metal transfer arc welding on galvanized steel using volumetric heat source model
Miranda et al. Characterization of fiber laser welds in X100 pipeline steel
Hosseini et al. Interlayer thickening for development of laser-welded Ti-SS joint strength
Mirakhorli et al. Single pass laser cold-wire welding of thick section AA6061-T6 aluminum alloy
Ma et al. Effects of ultrasonic vibration on microstructure, mechanical properties, and fracture mode of Inconel 625 parts fabricated by cold metal transfer arc additive manufacturing
Zhang et al. Investigation on the effects of parameters on hot cracking and tensile shear strength of overlap joint in laser welding dissimilar Al alloys
Zhang et al. Reduced hot cracking susceptibility by controlling the fusion ratio in laser welding of dissimilar Al alloys joints
Vasantharaja et al. Effect of arc welding processes on the weld attributes of type 316LN stainless steel weld joint
Çalıgülü et al. Microstructural characteristic of dissimilar welded components (AISI 430 ferritic-AISI 304 austenitic stainless steels) by CO2 laser beam welding (LBW)
JP5277393B2 (en) Strain-free laser bonding material manufacturing method, non-strained laser bonding structure forming method, and laser bonding material distortion occurrence prediction method
Iwase et al. Dual-focus technique for high-power Nd: YAG laser welding of aluminum alloys
Harooni et al. Studying the effect of laser welding parameters on the quality of ZEK100 magnesium alloy sheets in lap joint configuration
WO2014083621A1 (en) Laser-welding material for austenitic stainless steel, and welded joint using same
Liu et al. Mechanical characterization and prediction of aluminum alloy laser welding joints including roles of geometries and porosity
Chen et al. Evaluation of metal-active gas double-sided double-power arc welded joints of high-strength low-alloy steel
JP7332872B2 (en) Composite welding method
Schwarz et al. New welding joint geometries manufactured by powder bed fusion from 316L

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5277393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250