JP5277070B2 - Milling method - Google Patents

Milling method Download PDF

Info

Publication number
JP5277070B2
JP5277070B2 JP2009123450A JP2009123450A JP5277070B2 JP 5277070 B2 JP5277070 B2 JP 5277070B2 JP 2009123450 A JP2009123450 A JP 2009123450A JP 2009123450 A JP2009123450 A JP 2009123450A JP 5277070 B2 JP5277070 B2 JP 5277070B2
Authority
JP
Japan
Prior art keywords
cutting
edge tip
cutting edge
tip
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009123450A
Other languages
Japanese (ja)
Other versions
JP2010269407A (en
Inventor
宏之 福島
敏彦 福田
明浩 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009123450A priority Critical patent/JP5277070B2/en
Publication of JP2010269407A publication Critical patent/JP2010269407A/en
Application granted granted Critical
Publication of JP5277070B2 publication Critical patent/JP5277070B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/28Features relating to lubricating or cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a milling method that achieves efficient execution of simultaneous cutting of an iron-based material and an aluminum alloy by using a cutting-edge tip made of a PCBN (polycrystal boron nitride)material. <P>SOLUTION: The milling method is used for executing simultaneous cutting of an iron-based material 10a and an aluminum alloy 10b by the same cutting tool 14. A cutting-edge tip 15 of the cutting tool 14 is made of a PCBN material. Roughness of the rake face 15b of the cutting-edge tip 15 is set to less than or equal to Ry 0.8 &mu;m. The simultaneous cutting surface 10f of the cutting-edge tip 15 is sprayed with cutting-oil mist 23 formed by mixing gas, mainly composed of air, and cutting oil. The spray flow rate of the mist is set to 100-400 cc in terms of per hour. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は,同一の刃具により鉄系材とアルミニューム合金との共削りを実施するフライス加工方法の改良に関する。   The present invention relates to an improvement of a milling method for performing co-machining of an iron-based material and an aluminum alloy with the same cutting tool.

内燃機関のシリンダブロックは,鉄系材製のシリンダスリーブと,このシリンダスリーブを鋳包むアルミニューム合金製のシリンダブロック本体よりなっているので,このシリンダブロックのガスケット合わせ面には,シリンダスリーブ及びシリンダブロック本体の端面が共に露出している。このため,シリンダブロックのガスケットとの合わせ面をフライス加工すると,同一の刃具が異質の鉄系材とアルミニューム合金とを断続的に切削することになる。   The cylinder block of the internal combustion engine is composed of a cylinder sleeve made of iron-based material and a cylinder block body made of aluminum alloy that casts the cylinder sleeve. Both end faces of the block body are exposed. For this reason, when the mating surface with the gasket of the cylinder block is milled, the same cutting tool intermittently cuts the different iron-based material and aluminum alloy.

この場合,一般に刃具としてスロアウェイ式の刃先チップ(交換チップ)を用いており,従来では,切削量が多いシリンダブロック本体の切削を重視して,その刃先チップの材質に超硬材やPCD材(人工ダイアモンド焼結材)を使用している。しかしながら,そのような材質の刃先チップは,高速で鉄系材を切削すると,切削熱により刃先が摩耗し易く,高能率の加工が困難である。   In this case, a throw-away tip (replacement tip) is generally used as the cutting tool. Conventionally, the cutting of the cylinder block body with a large amount of cutting is emphasized, and the tip tip material is cemented carbide or PCD material. (Artificial diamond sintered material) is used. However, the cutting edge tip made of such a material is likely to be worn by the cutting heat when cutting a ferrous material at a high speed, and it is difficult to perform highly efficient machining.

切削熱は,素材が塑性変形するとき,切り屑が素材から引きちぎられとき,刃先チップと素材とが摩擦するときに発生する。刃先チップが熱を帯びるのは,素材に生じた熱が速やかに切り屑側に逃げていないからであり,刃先チップや素材の温度を,品質的に異常がない程度に下げるには冷却液(クーラント)を掛けれよい。しかしながら,鉄系材を切削する際には,アルミニューム合金を切削する場合に比して高熱になり,刃先チップや素材をアルミニューム合金が溶着しない温度にまで下げる必要があるが,そのまゝ掛けてしまったのでは,刃先チップが帯びる温度の上下動繰り返しにより,チッピング(刃縁の破損)の原因となる。   Cutting heat is generated when the material is plastically deformed, when chips are torn off from the material, and when the cutting edge tip and the material are rubbed. The cutting edge tip is heated because the heat generated in the material does not escape quickly to the chip side. To reduce the temperature of the cutting edge tip and the material to an extent that there is no abnormality in quality, a coolant ( Coolant can be applied. However, when cutting ferrous materials, it becomes hotter than cutting aluminum alloy, and it is necessary to lower the cutting edge tip and material to a temperature at which the aluminum alloy does not weld. If it is hung, chipping (breakage of the blade edge) may be caused by repeated vertical movement of the temperature at which the cutting edge tip takes on.

また,刃先チップの材質として,鉄系材の切削に最適なPCBN材(多結晶立方晶窒化硼素材)を使用し,その刃先チップでシリンダブロックのガスケット合わせ面を切削してみると,シリンダブロック本体のアルミニューム合金と刃先チップのPCBN材とが反応して,アルミニューム合金の切り屑が刃先チップに溶着し,これがチッピングを生じさせて刃先チップの切削性能を低下させ,加工品質に悪影響を及ぼすことになる。   In addition, when the PCBN material (polycrystalline cubic boron nitride material) that is most suitable for cutting ferrous materials is used as the material of the cutting edge tip, and the gasket mating surface of the cylinder block is cut with the cutting edge tip, the cylinder block The aluminum alloy of the main body reacts with the PCBN material of the cutting edge tip, and the aluminum alloy chips are welded to the cutting edge tip, which causes chipping, which reduces the cutting performance of the cutting edge tip and adversely affects the machining quality. Will be affected.

しかしながら,本発明者は,種々のテストを重ねた結果,PCBN材の刃先チップを使用しても,切削個所に供給する切削油の条件や,切削速度,刃先チップの掬い面の粗さの選定により,アルミニューム合金の切り屑が刃先チップに溶着を防ぐことができ,鉄系材は勿論,アルミニューム合金の切削をも能率良く切削し得ることを究明した。   However, as a result of various tests, the present inventor has selected the conditions of the cutting oil supplied to the cutting location, the cutting speed, and the roughness of the scooping surface of the cutting edge tip even when the PCBN cutting edge tip is used. As a result, it has been found that aluminum alloy chips can be prevented from welding to the cutting edge tip, and it is possible to cut not only ferrous materials but also aluminum alloys efficiently.

したがって本発明は,PCBN材の刃先チップを使用しながら,鉄系材とアルミニューム合金との共削りを能率よく実施し得るフライス加工方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a milling method capable of efficiently performing co-machining of an iron-based material and an aluminum alloy while using a PCBN cutting edge tip.

上記目的を達成するために,本発明は,同一の刃具により鉄系材とアルミニューム合金との共削りを実施するフライス加工方法において,前記刃具の刃先チップをPCBN材製とすると共に,該刃先チップの掬い面の粗さを,Ry0.8μm以下に設定し,該刃先チップによる前記共削りの面には,空気を主成分とするガスと切削油とを混合してなる切削油ミストを噴射し,その噴射流量を,1時間当たりに換算にして100〜400ccに設定することを特徴とする。尚,前記鉄系材及びアルミニューム合金は,後述する本発明の実施例中のシリンダスリーブ10a及びシリンダブロック本体10bにそれぞれ対応し,また前記共削りの面はシリンダブロックのガスケット合わせ面10fに対応する。   In order to achieve the above object, according to the present invention, there is provided a milling method for performing co-machining of an iron-based material and an aluminum alloy with the same cutting tool, wherein the cutting edge tip of the cutting tool is made of PCBN material, The roughness of the scooping surface of the insert is set to Ry 0.8 μm or less, and a cutting oil mist formed by mixing a gas mainly composed of air and cutting oil is sprayed onto the surface of the co-cutting by the cutting edge tip. The injection flow rate is set to 100 to 400 cc in terms of conversion per hour. The iron-based material and the aluminum alloy correspond to a cylinder sleeve 10a and a cylinder block body 10b in the embodiments of the present invention to be described later, respectively, and the co-cutting surface corresponds to the gasket mating surface 10f of the cylinder block. To do.

本発明によれば,刃先チップの耐久性を確保しながら,鉄系材及びアルミニューム合金を高速で共削りすることが可能となり,鉄系材及びアルミニューム合金のフライス加工能率の向上を大いに図ることができる。   According to the present invention, it becomes possible to co-grind iron-based material and aluminum alloy at high speed while ensuring the durability of the cutting edge tip, and greatly improves the milling efficiency of the iron-based material and aluminum alloy. be able to.

本発明のフライス加工方法を実施するフライス盤の要部側面図。The principal part side view of the milling machine which implements the milling method of this invention. 図1の2−2線断面図。FIG. 2 is a sectional view taken along line 2-2 in FIG. 1. 図2の3−3線拡大断面図。FIG. 3 is an enlarged sectional view taken along line 3-3 in FIG. 2. 刃先チップの材料及びその掬い面の粗さとワークの切削状況との関係をテストした結果を示すグラフ。The graph which shows the result of having tested the relationship between the material of a blade edge | tip tip, the roughness of the scooping surface, and the cutting condition of a workpiece | work. 切削ミスト噴射流量と刃先チップの耐久性との関係をテストした結果を示すグラフ。The graph which shows the result of having tested the relationship between the cutting mist injection flow rate and the durability of a cutting edge tip. PCBN材製の刃先チップの掬い面の粗さと刃先チップの摩耗量及び切削速度との関係をテストした結果を示すグラフ。The graph which shows the result of having tested the relationship between the roughness of the scooping surface of the blade tip made of PCBN material, the wear amount of the blade tip, and the cutting speed.

本発明の実施の形態を,添付図面に示す本発明の好適な実施例に基づいて以下に説明する。   Embodiments of the present invention will be described below on the basis of preferred embodiments of the present invention shown in the accompanying drawings.

図1及び図2において,エンジンのシリンダブロック10がワークとしてフライス盤の移動テーブル(図示せず)上に固定される。シリンダブロック10は,鉄系材製のシリンダスリーブ10aと,このシリンダスリーブ10aを鋳包むアルミニューム合金製のシリンダブロック本体10bよりなっている。このシリンダブロック10のガスケット合わせ面10fには,シリンダスリーブ10a及びシリンダブロック本体10bの端面が共に露出しており,このシリンダブロック10のガスケット合わせ面10fは,フライス盤のスピンドルヘッドに支持されるスピンドル12により回転駆動される正面フライス13により平滑に切削されるようになっている。   1 and 2, an engine cylinder block 10 is fixed as a work on a moving table (not shown) of a milling machine. The cylinder block 10 includes a cylinder sleeve 10a made of an iron-based material and a cylinder block body 10b made of an aluminum alloy for casting the cylinder sleeve 10a. Both the cylinder sleeve 10a and the end face of the cylinder block body 10b are exposed at the gasket mating surface 10f of the cylinder block 10, and the gasket mating surface 10f of the cylinder block 10 is a spindle 12 supported by the spindle head of the milling machine. It is cut smoothly by the front milling machine 13 that is driven to rotate.

正面フライス13の下端部外周には,PCBN材製の刃先チップ15を備えた複数の刃具14が環状に配列されてそれぞれボルト16により着脱可能に固着される。各刃先チップ15のノーズ部15aにはRが付与され,例えば,Rは,正面フライス13の直径が200mmの場合,10mmに設定される。また掬い面15bの粗さは,Ry0.8μm以下に設定される。   On the outer periphery of the lower end portion of the face mill 13, a plurality of cutting tools 14 each having a blade tip 15 made of PCBN material are arranged in an annular shape and fixed detachably by bolts 16. R is applied to the nose portion 15a of each cutting edge tip 15. For example, R is set to 10 mm when the diameter of the face mill 13 is 200 mm. The roughness of the scooping surface 15b is set to Ry 0.8 μm or less.

正面フライス13には,スピンドル12中心部のミスト通路18に連通するミストチャンバ19が設けられ,このミストチャンバ19から複数のミスト噴孔20が延出しており,これらミスト噴孔20は,刃具14に極力近接した位置で正面フライス13の端面に開口する。図示例では刃具14相互間に開口する。こうすることでミスト噴孔20から各刃先チップ15による切削部に切削油ミスト23を効果的に噴射することができる。   The front mill 13 is provided with a mist chamber 19 that communicates with a mist passage 18 at the center of the spindle 12, and a plurality of mist injection holes 20 extend from the mist chamber 19. To the end face of the face mill 13 at a position as close as possible. In the illustrated example, the blades 14 are opened between each other. By doing so, the cutting oil mist 23 can be effectively injected from the mist injection hole 20 to the cutting portion of each cutting edge tip 15.

前記ミスト通路18の上流にはMQL(Minimum Quantity Lubrication)ユニット21が接続され,その上流側に切削油ミスト生成ユニット22が接続される。この切削油ミスト生成ユニット22では,空気を主成分とするガスと切削油とを混合してなる切削油ミスト23を生成し,MQLユニット21では,切削油ミスト23の微細化しながら,前記ミスト噴孔20からの切削油ミスト23の噴射流量が1時間当たりに換算にして100〜400ccになるように,切削油ミスト23を計量する。   An MQL (Minimum Quantity Lubrication) unit 21 is connected upstream of the mist passage 18, and a cutting oil mist generating unit 22 is connected upstream thereof. The cutting oil mist generating unit 22 generates a cutting oil mist 23 obtained by mixing a gas containing air as a main component and cutting oil. The MQL unit 21 reduces the size of the cutting oil mist 23 while reducing the mist jet. The cutting oil mist 23 is measured so that the injection flow rate of the cutting oil mist 23 from the hole 20 becomes 100 to 400 cc in terms of conversion per hour.

図4は,異なる刃先チップ15によりシリンダブロック10のガスケット合わせ面10fを切削テストした場合のシリンダブロック本体10b,即ちアルミニューム合金の切削状況を示すもので,図中(1)は,掬い面15bの粗さが0.1μmのPCD材製の刃先チップ15で切削した場合,図中(2)及び(3)は,掬い面の粗さを異にするPCBN材製の刃先チップ15で切削した場合である。何れの場合も,切削速度は150m/分であった。   FIG. 4 shows the cutting state of the cylinder block body 10b, that is, the aluminum alloy when the gasket mating surface 10f of the cylinder block 10 is subjected to a cutting test using different cutting edge tips 15. In FIG. When cutting with a cutting edge tip 15 made of a PCD material having a roughness of 0.1 μm, (2) and (3) in the figure were cut with a cutting edge tip 15 made of PCBN material having a different grooving surface roughness. Is the case. In either case, the cutting speed was 150 m / min.

これから明らかなように,PCBN材製の刃先チップ15の掬い面15bの粗さがRy0.8μm以下では,アルミニューム合金の刃先チップ15の掬い面15bへの溶着は発生しないが,Ry0.8μmを超えると,その溶着が発生した。   As is clear from this, when the roughness of the scooping surface 15b of the PCBN cutting edge tip 15 is Ry 0.8 μm or less, welding of the aluminum alloy to the scooping surface 15b of the cutting edge tip 15 does not occur, but Ry 0.8 μm is reduced. When exceeded, the welding occurred.

即ち,PCBN材製の刃先チップ15の掬い面15bの粗さをRy0.8μm以下に設定することにより,特にアルミニューム合金の切り屑と前記掬い面15bとの摩擦抵抗の減少し,その切り屑の掬い面15bへの溶着が発生せず,したがって,鉄系材は勿論,アルミニューム合金の切削をも能率良く切削することができる。   That is, by setting the roughness of the scooping surface 15b of the cutting edge tip 15 made of PCBN to Ry 0.8 μm or less, the frictional resistance between the scrap of aluminum alloy and the scooping surface 15b is reduced. Therefore, not only iron-based materials but also aluminum alloys can be cut efficiently.

図5は,シリンダブロック10のガスケット合わせ面10fを,ミスト噴孔20からの切削ミスト噴射流量を変えて,同一の刃先チップ15により切削した場合の刃先チップ15の耐久性をテストした結果を示すものである。チップの材質はPCBN材で,切削速度は450m/分から5500m/分まで変化させた。   FIG. 5 shows the result of testing the durability of the cutting edge tip 15 when the gasket mating surface 10f of the cylinder block 10 is cut with the same cutting edge tip 15 by changing the cutting mist injection flow rate from the mist injection hole 20. Is. The chip material was PCBN, and the cutting speed was changed from 450 m / min to 5500 m / min.

これから明らかなように,ミスト噴孔20からの切削ミスト噴射流量が1時間当たりに換算にして100cc未満のときは,刃先チップ15は温度上昇による摩耗が発生し,400ccを超えると,刃先チップ15の刃縁に破損が生じ,100〜400ccの範囲では,刃先チップ15に異常は発生しなかった。400ccを超えると,刃先チップ15の刃縁が破損に生じることは,異材の断続的な切削により加熱と,切削油ミストの多量供給による過冷却とが刃先チップ15に繰り返し作用することによると考えられる。   As is clear from this, when the cutting mist injection flow rate from the mist injection hole 20 is less than 100 cc in terms of one hour, the cutting edge tip 15 is worn due to temperature rise, and when exceeding 400 cc, the cutting edge tip 15 The blade edge was damaged, and no abnormality occurred in the blade tip 15 in the range of 100 to 400 cc. If it exceeds 400 cc, the cutting edge of the cutting edge tip 15 may be damaged due to repeated action on the cutting edge tip 15 due to intermittent cutting of different materials and supercooling due to a large amount of cutting oil mist supplied. It is done.

即ち,ミスト噴孔20からの切削ミスト噴射流量を1時間当たりに換算にして100〜400ccに設定することにより,刃先チップ15の耐久性を確保することができる。   That is, the durability of the cutting edge tip 15 can be ensured by setting the cutting mist injection flow rate from the mist injection hole 20 to 100 to 400 cc in terms of conversion per hour.

尚,100〜400ccの範囲では,切削速度を450m/分から5500m/分まで実際に変化させたときには,刃先チップ15に何等異常は発生しなかった。即ち,切削速度を450m/分から5500m/分まで変化させたときには,切削速度は刃先チップ15の耐久性に影響しないことが判明した。   In the range of 100 to 400 cc, when the cutting speed was actually changed from 450 m / min to 5500 m / min, no abnormality occurred in the blade tip 15. That is, it was found that when the cutting speed was changed from 450 m / min to 5500 m / min, the cutting speed did not affect the durability of the cutting edge tip 15.

図6は,シリンダブロック10のガスケット合わせ面10fを,掬い面15bの粗さを一定にした場合において,即ちその粗さを0.8μmにしたPCBN材製の刃先チップ15で切削した場合の,該チップの摩耗量と切削速度との関係をテストにより得た結果を示すものである。   FIG. 6 shows a case where the gasket mating surface 10f of the cylinder block 10 is cut with a cutting edge tip 15 made of PCBN material with a constant roughness of the scooping surface 15b, that is, with a roughness of 0.8 μm. The result of having obtained the relationship between the abrasion amount of this chip | tip and the cutting speed by the test is shown.

これから明らかなように,PCBN材製の刃先チップ15の切削速度が1800m/分より遅くなると,刃先チップ15の摩耗が急増し,このため切削速度を下げることができないが,切削速度が1800m/分以上であれば,刃先チップ15の摩耗が極めて少ない。結局,掬い面15bの粗さをRy0.8μmとしたときは,Ry0.8μmを超えた場合に比べ切削速度を大幅に増加させることができ,しかも切削速度が4500m/分まで増加するにつれて刃先チップ15の摩耗が減じていく。Ry0.8μm以下であれば,刃先チップ15とワークとが摩耗するときに出る熱を含む切削熱は十分に低く,刃先チップ15の摩耗が少なくなり,高効率の加工が容易になる。   As is clear from this, when the cutting speed of the cutting edge tip 15 made of PCBN becomes slower than 1800 m / min, the wear of the cutting edge tip 15 increases rapidly, so that the cutting speed cannot be lowered, but the cutting speed is 1800 m / min. If it is above, abrasion of the blade tip 15 is very little. Eventually, when the roughness of the scooping surface 15b is Ry 0.8 μm, the cutting speed can be greatly increased as compared to the case where Ry 0.8 μm is exceeded, and the cutting edge tip increases as the cutting speed increases to 4500 m / min. 15 wear decreases. If Ry is 0.8 μm or less, the cutting heat including heat generated when the cutting edge tip 15 and the workpiece are worn is sufficiently low, the wear of the cutting edge tip 15 is reduced, and high-efficiency machining is facilitated.

具体的には,切削速度において,PCD材製で掬い面粗さRy0.1μmの刃先チップ15の実効的能力が450m/分だったものが,PCBN材製で掬い面の粗さRy0.8μm以下の刃先チップ15による場合は4500m/分であり,10倍の増加を達成することができた。   Specifically, at the cutting speed, the effective ability of the cutting edge tip 15 made of a PCD material and having a rough surface roughness Ry of 0.1 μm was 450 m / min. The cutting surface roughness Ry of 0.8 μm or less made of PCBN material. In the case of using the cutting edge tip 15 of 4500 m / min, a 10-fold increase could be achieved.

かくして,同一の刃具14によりシリンダブロック10のガスケット合わせ面10fを切削する際,刃具14の刃先チップ15をPCBN材製とすると共に,刃先チップ15の掬い面15bの粗さを,Ry0.8μm以下に設定し,刃先チップ15による前記共削り面には,空気を主成分とするガスと切削油とを混合してなる切削油ミスト23を噴射し,その噴射流量を,1時間当たりに換算にして100〜400ccに設定することにより,刃先チップ15の耐久性を確保しながら,鉄系材のシリンダスリーブ10a及びアルミニューム合金のシリンダブロック本体10bの端面を高速で共削りすることが可能となり,シリンダブロック10のガスケット合わせ面10fのフライス加工能率の向上を大いに図ることができる。   Thus, when cutting the gasket mating surface 10f of the cylinder block 10 with the same cutting tool 14, the cutting edge tip 15 of the cutting tool 14 is made of PCBN material, and the roughness of the scooping surface 15b of the cutting edge chip 15 is Ry 0.8 μm or less. The cutting oil mist 23 formed by mixing a gas mainly composed of air and cutting oil is sprayed onto the co-machined surface by the cutting edge tip 15, and the injection flow rate is converted per hour. By setting to 100 to 400 cc, the end face of the iron-based material cylinder sleeve 10a and the aluminum alloy cylinder block body 10b can be cut at high speed while ensuring the durability of the cutting edge tip 15. The milling efficiency of the gasket mating surface 10f of the cylinder block 10 can be greatly improved.

本発明は上記実施例に限定されるものではなく,その要旨を逸脱しない範囲で種々の変更が可能である。例えば,本発明のフライス加工方法は,シリンダブロックに限らず,切削面に鉄系材及びアルミニューム合金が混在する他の構造部材のフライス加工にも適用可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. For example, the milling method of the present invention is not limited to the cylinder block, and can be applied to milling other structural members in which a ferrous material and an aluminum alloy are mixed on the cutting surface.

10a・・・鉄系材(シリンダスリーブ)
10b・・・アルミニューム合金(シリンダブロック)
13・・・・正面フライス
14・・・・刃具
15・・・・刃先チップ
23・・・・切削油ミスト
10a ... Iron-based material (cylinder sleeve)
10b Aluminum alloy (cylinder block)
13... Face mill 14... Cutting tool 15... Cutting edge tip 23.

Claims (1)

同一の刃具(14)により鉄系材(10a)とアルミニューム合金(10b)との共削りを実施するフライス加工方法において,
前記刃具(14)の刃先チップ(15)をPCBN材製とすると共に,該刃先チップ(15)の掬い面(15b)の粗さを,Ry0.8μm以下に設定し,該刃先チップ(15)による前記共削りの面(10f)には,空気を主成分とするガスと切削油とを混合してなる切削油ミスト(23)を噴射し,その噴射流量を,1時間当たりに換算にして100〜400ccに設定することを特徴とするフライス加工方法。
In a milling method for performing co-machining of an iron-based material (10a) and an aluminum alloy (10b) with the same cutting tool (14),
The cutting edge tip (15) of the cutting tool (14) is made of PCBN material, and the roughness of the scooping surface (15b) of the cutting edge tip (15) is set to Ry 0.8 μm or less, and the cutting edge tip (15) A cutting oil mist (23), which is a mixture of a gas mainly composed of air and cutting oil, is sprayed on the co-grinding surface (10f) according to the above, and the injection flow rate is converted per hour. Milling method characterized by setting to 100-400cc.
JP2009123450A 2009-05-21 2009-05-21 Milling method Expired - Fee Related JP5277070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009123450A JP5277070B2 (en) 2009-05-21 2009-05-21 Milling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009123450A JP5277070B2 (en) 2009-05-21 2009-05-21 Milling method

Publications (2)

Publication Number Publication Date
JP2010269407A JP2010269407A (en) 2010-12-02
JP5277070B2 true JP5277070B2 (en) 2013-08-28

Family

ID=43417862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009123450A Expired - Fee Related JP5277070B2 (en) 2009-05-21 2009-05-21 Milling method

Country Status (1)

Country Link
JP (1) JP5277070B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104070217B (en) * 2014-06-19 2016-10-19 南京中车浦镇城轨车辆有限责任公司 The processing method of milling large thin-wall Al alloy composite W shape section bar
JP6457257B2 (en) * 2014-12-18 2019-01-23 Dmg森精機株式会社 Milling tool and machining method using the same
CN105290470B (en) * 2015-11-02 2018-08-14 成都航天精诚科技有限公司 The milling method of graphene aluminum matrix composite
CN114417709A (en) * 2021-12-28 2022-04-29 有研工程技术研究院有限公司 Multi-process parameter optimization method for milling aluminum alloy

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293711A (en) * 1992-04-16 1993-11-09 Sumitomo Electric Ind Ltd Simultaneous cutting or grinding method for different kind of material
JPH0727717U (en) * 1993-10-25 1995-05-23 東芝タンガロイ株式会社 Face milling machine with cutting edge adjustment mechanism
JPH09253915A (en) * 1996-03-23 1997-09-30 Toyota Banmotsupusu Kk Throw-away tip type grinding cutter
JP2003175408A (en) * 1999-11-25 2003-06-24 Sumitomo Electric Ind Ltd Polycrystal hard sintered body throw-away tip
SE520252C2 (en) * 2000-11-22 2003-06-17 Sandvik Ab Ways to cut a material consisting of aluminum and perlitic gray cast iron
JP3913019B2 (en) * 2001-09-20 2007-05-09 住友電工ハードメタル株式会社 Rotary cutting tool
JP3809610B2 (en) * 2002-11-25 2006-08-16 ホーコス株式会社 Multi-axis spindle head for machine tools
JP4185370B2 (en) * 2003-01-23 2008-11-26 住友電工ハードメタル株式会社 Hard sintered body cutting tool with chip breaker and method for manufacturing the same
JP2005007527A (en) * 2003-06-19 2005-01-13 Osg Corp Tap
JP2010162677A (en) * 2009-01-19 2010-07-29 Hitachi Tool Engineering Ltd Small-diameter cbn ball end mill

Also Published As

Publication number Publication date
JP2010269407A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
Zhang et al. Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions
JP5520795B2 (en) Tool holder
JP5277070B2 (en) Milling method
JP2013146819A (en) Cutting tool
JP2005532917A (en) Milling tools
Ji et al. Experimental evaluation of polycrystalline diamond (PCD) tool geometries at high feed rate in milling of titanium alloy TC11
CN2850780Y (en) Stepwise expanding drill
JP2009045715A (en) Cutting method using high-pressure coolant
JP2010179412A (en) Cutting tool and cutting method
Boswell et al. Feasibility study of adopting minimal quantities of lubrication for end milling aluminium
JP2017087373A (en) Rotary Cutting Tool
CN202639373U (en) Cooling drill chuck of lathe drilling tool
Sarwar et al. Performance of titanium nitride-coated carbide-tipped circular saws when cutting stainless steel and mild steel
CN109277585B (en) Ti3Turning method for inner ring of Al alloy guide vane
WO2011052682A1 (en) Method for processing difficult-to-cut cast iron
Liu et al. Experimental studies on machinability of six kinds of nickel-based superalloys
JP2014039963A (en) Drill with coolant jet hole
CN202114279U (en) Deep-hole lathe tool
Abrão et al. High-performance circular sawing of AISI 1045 steel with cermet and tungsten carbide inserts
JP2006224197A (en) Cutting tool
Ji et al. Investigations of surface roughness with cutting speed and cooling in the wear process during turing GH4133 with PCBN tool
CN217913053U (en) Staggered-tooth tool bit structure for machining grooves of workpieces
CN217253116U (en) High-strength hard alloy milling cutter with chip breaker groove
Yang et al. Machining performance and tool wear of coated carbide inserts in high speed turning powder metallurgy nickel-base superalloy
JP3227860U (en) Core drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5277070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees