JP5276620B2 - Baking repair material - Google Patents

Baking repair material Download PDF

Info

Publication number
JP5276620B2
JP5276620B2 JP2010078745A JP2010078745A JP5276620B2 JP 5276620 B2 JP5276620 B2 JP 5276620B2 JP 2010078745 A JP2010078745 A JP 2010078745A JP 2010078745 A JP2010078745 A JP 2010078745A JP 5276620 B2 JP5276620 B2 JP 5276620B2
Authority
JP
Japan
Prior art keywords
powder
iron oxide
repair material
metal powder
organic binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010078745A
Other languages
Japanese (ja)
Other versions
JP2011207702A (en
Inventor
和寛 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2010078745A priority Critical patent/JP5276620B2/en
Publication of JP2011207702A publication Critical patent/JP2011207702A/en
Application granted granted Critical
Publication of JP5276620B2 publication Critical patent/JP5276620B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Ceramic Products (AREA)

Description

本発明は、耐火骨材と有機バインダとを含む焼付け補修材に関する。   The present invention relates to a baking repair material including a refractory aggregate and an organic binder.

以下、制限的意味なく転炉の投げ込み補修法を例にとって、焼付け補修材の一施工形態を説明する。   In the following, one construction mode of the baking repair material will be described by taking the converter throwing repair method as an example without limiting meaning.

製鋼プロセスで溶鉄の精錬を担う転炉の補修法として、出鋼直後の転炉に、ビニル袋等の焼失性をもつ袋で梱包された焼付け補修材を投げ込む方法が知られている。   As a repair method for a converter responsible for refining molten iron in the steelmaking process, a method is known in which a baking repair material packed in a burnable bag such as a vinyl bag or the like is thrown into a converter immediately after steelmaking.

焼付け補修材には、マグネシアクリンカ等で構成される耐火骨材に、ピッチやレジン等で構成される有機バインダを添加したものが用いられている。   As the baking repair material, a fireproof aggregate composed of magnesia clinker or the like and an organic binder composed of pitch, resin or the like is added.

転炉内に投げ込まれた焼付け補修材は、炉熱で一旦軟化し、炉壁の損傷した部分に展開した後、有機バインダ中の揮発分の逸散、及び有機バインダ中の固定炭素分によるカーボンボンドの形成を伴いながら固化する。   The baking repair material thrown into the converter is once softened by the furnace heat and developed on the damaged part of the furnace wall, then the volatile matter in the organic binder is dissipated, and the carbon due to the fixed carbon in the organic binder. Solidify with bond formation.

焼付け補修材に要求される特性の一つに、固化に要する時間(以下、固化時間という。)が短いことが挙げられる。焼付け補修材の固化時間が短い程、転炉の補修をすみやかに終えることができ、転炉の稼動率の向上に貢献する。   One of the characteristics required for a baking repair material is that the time required for solidification (hereinafter referred to as solidification time) is short. The shorter the hardening time of the baking repair material, the quicker the repair of the converter can be completed, which contributes to the improvement of the operation rate of the converter.

特許文献1は、焼付け補修材の固化時間の短縮を図るために、Mg粉の適用を提案している(特許文献1の段落0009参照)。これにより、炉内面からの受熱に加え、施工体の内部からもMg粉の燃焼熱が生じるため、固化時間の短縮が図られるとされている。   Patent Document 1 proposes the application of Mg powder in order to shorten the solidification time of the baking repair material (see paragraph 0009 of Patent Document 1). Thereby, in addition to the heat received from the furnace inner surface, the combustion heat of Mg powder is generated from the inside of the construction body, so that the solidification time can be shortened.

特許文献2は、特許文献1と同様の作用効果を得る目的で、焼付け補修材へのAl粉の適用を提案している(特許文献2の段落0041参照)。Al粉は、酸化による発熱量が高く、固化の促進に効果があるとされている。   Patent Document 2 proposes application of Al powder to a baking repair material for the purpose of obtaining the same effect as Patent Document 1 (see paragraph 0041 of Patent Document 2). It is said that Al powder has a high calorific value due to oxidation and is effective in promoting solidification.

特開平11−240771号公報Japanese Patent Laid-Open No. 11-240771 特許第3729495号公報Japanese Patent No. 3729495 特開平5−117046号公報Japanese Patent Laid-Open No. 5-117046

焼付け補修材よりなる施工体の内部組織は、表層部の組織に比べて多孔質なものとなりやすい。この問題は、特に焼付け補修材を厚く施工する場合に深刻化するため、施工厚を増しても、それに見合った補修効果が得られにくい。   The internal structure of the construction body made of the baking repair material tends to be more porous than the structure of the surface layer portion. Since this problem becomes serious particularly when the repairing material for baking is thickly constructed, even if the construction thickness is increased, it is difficult to obtain a repairing effect corresponding to the construction thickness.

本発明者によると、この主な原因は、施工体の内部における有機バインダの燃焼が、表層部における有機バインダの燃焼より遅れるため、内部に有機バインダの揮発分が閉じ込められた状態で、表層部から固化が進行することにあると考えられる。   According to the present inventor, the main cause is that the combustion of the organic binder inside the construction body is delayed from the combustion of the organic binder in the surface layer portion, so that the volatile matter of the organic binder is confined inside the surface layer portion. It is thought that the solidification progresses.

特許文献1及び2の提案によると、Mg粉やAl粉等の金属粉の使用により、施工体内部からの燃焼を促進できるようにみえるが、実際には、施工体内部には金属粉の燃焼に必要な酸素が充分に存在しないため、内部からの発熱が充分に得られない。   According to the proposals in Patent Documents 1 and 2, it seems that combustion from the inside of the construction body can be promoted by using metal powder such as Mg powder and Al powder. Since the oxygen necessary for this is not sufficiently present, heat generation from the inside cannot be obtained sufficiently.

このため、特許文献1及び2の技術によっては、施工体の内部組織の多孔質化の問題は解消しがたく、また固化時間の短縮に関しても改善の余地を残している。   For this reason, depending on the techniques of Patent Documents 1 and 2, it is difficult to solve the problem of making the internal structure of the construction body porous, and there is still room for improvement in terms of shortening the solidification time.

本発明の目的は、固化時間の短縮を図ることができ、かつ施工体の内部組織が多孔質化しにくい焼付け補修材を提供することである。   The objective of this invention is providing the baking repair material which can aim at shortening of solidification time and the internal structure of a construction body is hard to become porous.

本発明の一観点によれば、耐火骨材と有機バインダとを含む焼付け補修材において、酸化鉄粉と金属粉とを、酸化鉄粉:金属粉の質量比が9:1〜1:9となる条件で、有機バインダに対する外かけで合計10質量%以上含むことを特徴とする焼付け補修材が提供される。   According to one aspect of the present invention, in a baked repair material including a refractory aggregate and an organic binder, the iron oxide powder and the metal powder have a mass ratio of iron oxide powder: metal powder of 9: 1 to 1: 9. Under such conditions, a baking repair material characterized by containing a total of 10% by mass or more of the outer coating with respect to the organic binder is provided.

酸化鉄粉と金属粉とを組み合わせて使用することに基づいて、固化時間の短縮を図ることができ、かつ施工体の内部組織の多孔質化を抑制できることが判った。これは、酸化鉄粉が金属粉によって還元され、金属粉が燃焼することで、施工体の内部から揮発分の逸散を促進でき、施工体内部への揮発分の残留を抑制できるためと考えられる。   Based on the combined use of iron oxide powder and metal powder, it was found that the solidification time can be shortened and the internal structure of the construction body can be prevented from becoming porous. This is thought to be because iron oxide powder is reduced by metal powder and the metal powder burns, so that the dissipation of volatile matter from the inside of the construction body can be promoted and the residual volatile matter inside the construction body can be suppressed. It is done.

なお、酸化鉄は、有機バインダが形成するカーボンボンドを酸化し脆弱化させる原因ともなるため(例えば、特許文献3の段落0003参照)、従来、これを焼付け補修材に適用した例はみられない。しかし、酸化鉄粉と金属粉と併用する場合は、このカーボンボンドの脆弱化の問題を回避しうることが判った。   In addition, since iron oxide also causes the carbon bond formed by the organic binder to oxidize and become brittle (see, for example, paragraph 0003 of Patent Document 3), there has been no example of applying this to a baking repair material. . However, when iron oxide powder and metal powder are used in combination, it has been found that this carbon bond weakening problem can be avoided.

焼付け補修材よるなる施工体の断面を示す写真である。It is a photograph which shows the cross section of the construction body which consists of a baking repair material.

耐火骨材には、例えば、マグネシアクリンカ等のマグネシア質原料、ドロマイトクリンカ等のドロマイト質原料、カルシアクリンカ等のカルシア質原料、スピネルクリンカ等のスピネル質原料、アルミナ質原料、及びこれらを原料に用いた使用済み耐火物の粉砕物から選択される1種以上を、被補修面の材質等に応じて適宜に選択して用いることができる。耐火骨材は酸化鉄粉よりも還元されにくい。本明細書において、耐火骨材の概念からは、酸化鉄粉及び金属粉は除かれるものとする。   For fireproof aggregates, for example, magnesia raw materials such as magnesia clinker, dolomite raw materials such as dolomite clinker, calcia raw materials such as calcia clinker, spinel raw materials such as spinel clinker, alumina raw materials, and these are used as raw materials. One or more kinds selected from pulverized used refractories can be appropriately selected and used according to the material of the surface to be repaired. Refractory aggregates are less likely to be reduced than iron oxide powder. In the present specification, iron oxide powder and metal powder are excluded from the concept of refractory aggregate.

耐火骨材は、密な充填構造を形成するために、JIS−Z8801に規定の篩を用いた測定で、例えば、粒径1mm以上の粗粒:35〜45質量%、粒径75μm以上1mm未満の中粒:20〜30質量%、及び粒径75μm未満の微粒:15〜30質量%よりなるように粒度構成される。   In order to form a dense packing structure, the refractory aggregate is measured using a sieve specified in JIS-Z8801, for example, coarse particles having a particle size of 1 mm or more: 35 to 45 mass%, particle size of 75 μm or more and less than 1 mm The particle size is composed of 20 to 30% by mass of fine particles and fine particles having a particle size of less than 75 μm: 15 to 30% by mass.

有機バインダは、熱間でカーボンボンドを形成する物質であり、例えば、瀝青、樹脂、又は両者の組み合わせを用いることができる。瀝青としては、例えば、ピッチ、タール、アスファルト等が挙げられ、樹脂としては、例えば、フェノール樹脂、フラン樹脂、エポキシ樹脂等のカーボン質樹脂等が挙げられる。   The organic binder is a substance that forms a carbon bond with heat. For example, bitumen, resin, or a combination of both can be used. Examples of the bitumen include pitch, tar, and asphalt, and examples of the resin include carbon resins such as a phenol resin, a furan resin, and an epoxy resin.

有機バインダの添加量が、施工条件に応じて当業者により適宜に選択できることは従来と変わりない。例えば、有機バインダ/耐火骨材の質量比は10/90〜40/60とすることができる。10/90以上とすることで、カーボンボンドの形成による強度及び接着性を高める効果が特に顕著となり、40/60以下に抑えることで、施工体の組織の緻密性を高めることができる。   The addition amount of the organic binder can be appropriately selected by those skilled in the art depending on the construction conditions. For example, the mass ratio of organic binder / refractory aggregate can be 10/90 to 40/60. By setting it to 10/90 or more, the effect of improving the strength and adhesiveness due to the formation of the carbon bond is particularly remarkable, and by suppressing it to 40/60 or less, the denseness of the structure of the construction body can be increased.

湿潤剤を、有機バインダと併用してもよい。湿潤剤は、焼付け補修材の流動性及び充填性を高める効果をもつ。湿潤剤としては、エチレングリコール等の多価アルコール、灯油、アントラセン油、軽油、重油、クレオソート油、ワックス油、パラフィン、p−アルキルフェノール類、ラクタム類、ビスフェノール、ジフェニル、ジフェニルアミン等から選択される1種を用いることができる。湿潤剤を用いる場合、その添加量は、有機バインダに対する外かけで、100質量%以下が好ましく、60質量%以下がより好ましい。   A wetting agent may be used in combination with an organic binder. The wetting agent has an effect of improving the fluidity and filling property of the baking repair material. The wetting agent is selected from polyhydric alcohols such as ethylene glycol, kerosene, anthracene oil, light oil, heavy oil, creosote oil, wax oil, paraffin, p-alkylphenols, lactams, bisphenol, diphenyl, diphenylamine and the like 1 Seeds can be used. When a wetting agent is used, the amount added is preferably 100% by mass or less, more preferably 60% by mass or less, based on the outer coating with respect to the organic binder.

金属粉としては、酸化鉄粉を還元しやすい元素、即ち、Feよりもイオン化傾向の小さな元素、具体的には、例えば、Al、Mg、Ca、及びそれらの少なくともいずれかを含む合金から選択される1種以上を用いることができる。上記合金としては、例えば、Al‐Mg、Ca‐Si、Al‐Si、Al‐Si‐Mg、Al‐Si‐Mg‐Ca等が挙げられる。なお、金属粉は、それを構成する各粒子に大気中での発火を防止するための皮膜が形成されたものであってもよい。   The metal powder is selected from an element that easily reduces iron oxide powder, that is, an element that has a lower ionization tendency than Fe, specifically, for example, Al, Mg, Ca, and an alloy containing at least one of them. One or more can be used. Examples of the alloy include Al—Mg, Ca—Si, Al—Si, Al—Si—Mg, and Al—Si—Mg—Ca. The metal powder may be one in which a film for preventing ignition in the atmosphere is formed on each particle constituting the metal powder.

酸化鉄粉としては、化学成分値で、FeO、Fe、Fe、又はこれらの組み合わせが、90質量%以上を占めるものが好ましい。中でも、原料が安価で安定している3価のFeよりなる粉末が好ましい。 The iron oxide powder is preferably a chemical component value in which FeO, Fe 2 O 3 , Fe 3 O 4 , or a combination thereof occupies 90% by mass or more. Among these, a powder made of trivalent Fe 2 O 3 whose raw material is inexpensive and stable is preferable.

酸化鉄粉が、金属粉の燃焼に必要な酸素の供給源となることで、金属粉と共に施工体の内部からの燃焼を促進する。このため、施工体内部への揮発分の残留量を低減でき、たとえ施工体を厚く形成する場合であっても、施工体の内部組織が粗雑化しにくくなる。燃焼によって施工体の固化が促進されるため、固化時間の短縮が図られる。   The iron oxide powder serves as a supply source of oxygen necessary for the combustion of the metal powder, thereby promoting the combustion from the inside of the construction body together with the metal powder. For this reason, the residual amount of the volatile matter inside a construction body can be reduced, and even if it is a case where a construction body is formed thickly, it becomes difficult to roughen the internal structure of a construction body. Since the solidification of the construction body is promoted by the combustion, the solidification time can be shortened.

この効果の顕著化を図るために、金属粉及び酸化鉄粉の粒径は細かい程好ましい。具体的には、金属粉及び酸化鉄粉の粒径は、JIS−Z8801に規定の篩を用いた測定で、0.5mm以下が好ましく、75μm以下がより好ましい。   In order to make this effect remarkable, it is preferable that the particle sizes of the metal powder and the iron oxide powder are smaller. Specifically, the particle sizes of the metal powder and iron oxide powder are preferably 0.5 mm or less, more preferably 75 μm or less, as measured using a sieve specified in JIS-Z8801.

酸化鉄粉と金属粉は、酸化鉄粉:金属粉の質量比が9:1〜1:9となる条件で配合することが必要である。酸化鉄粉/金属粉の質量比が1/9未満だと、金属粉の割合が高すぎて、金属粉の燃焼に必要な酸素が不足する問題が生じやすい。酸化鉄粉/金属粉の質量比が9を超えると、酸化鉄粉の割合が高すぎて、有機バインダが形成するカーボンボンドを脆弱化する問題が生じやすい。   It is necessary to mix the iron oxide powder and the metal powder under the condition that the mass ratio of iron oxide powder: metal powder is 9: 1 to 1: 9. If the mass ratio of iron oxide powder / metal powder is less than 1/9, the ratio of the metal powder is too high, and the problem of insufficient oxygen necessary for the combustion of the metal powder tends to occur. When the mass ratio of iron oxide powder / metal powder exceeds 9, the ratio of iron oxide powder is too high, and the problem of weakening the carbon bond formed by the organic binder tends to occur.

酸化鉄粉と金属粉は、有機バインダに対する外かけで合計10質量%以上配合することが必要である。両者の合計量が、有機バインダに対する外かけ10質量%未満だと、施工体中で金属粉と酸化鉄粉とが接触する確率が小さくなるため、金属粉の燃焼で生じる熱量が不充分となり、施工体の内部から揮発分の燃焼を促進する効果が得られにくい。   It is necessary that the iron oxide powder and the metal powder be blended in a total amount of 10% by mass or more with respect to the organic binder. If the total amount of both is less than 10% by weight with respect to the organic binder, the probability that the metal powder and the iron oxide powder come into contact with each other in the construction body becomes small, and the amount of heat generated by the combustion of the metal powder becomes insufficient. The effect of promoting combustion of volatile matter from the inside of the construction body is difficult to obtain.

なお、酸化鉄粉と金属粉の合計量の上限は、特に制限されない。両者の合計量が多い程、固化時間が短くなり、内部組織の緻密さも良好になる。但し、両者の合計量が多すぎると、その分、主材たるべき耐火骨材及び有機バインダの割合が減少するため、耐食性が低下する傾向がみられる。焼付け補修材としての常識的な特性を担保するために、両者の合計量が自ずと制限されることは当業者に自明であろう。   In addition, the upper limit of the total amount of iron oxide powder and metal powder is not particularly limited. The larger the total amount of both, the shorter the solidification time and the better the internal structure. However, if the total amount of the two is too large, the proportion of the refractory aggregate and the organic binder that should be the main materials decreases accordingly, so that the corrosion resistance tends to decrease. It will be apparent to those skilled in the art that the total amount of both is naturally limited in order to ensure common sense characteristics as a baking repair material.

例えば、金属粉と酸化鉄粉との合計の配合量を、有機バインダに対する外かけで90質量%以下に抑えることで、上述した内部組織の緻密化の効果と相まって、耐食性改善の効果も得られる。   For example, by suppressing the total blending amount of the metal powder and the iron oxide powder to 90% by mass or less by external coating with respect to the organic binder, the effect of improving the corrosion resistance can be obtained in combination with the effect of densification of the internal structure described above. .

本焼付け補修材の施工方法は特に限定されない。典型的には、フレコンバックやビニル袋等の焼失性をもつ袋に収容された状態で、補修対象部位に投入される。また、本焼付け補修材を予めブロック状又は塊状に加圧成形しておくことで、焼失性袋を使用することなく、補修対象部位への投入が可能となる。また、本焼付け補修材は、配管内をエアー搬送し、補修対象部位に吹付けることも可能である。   The construction method of this baking repair material is not specifically limited. Typically, it is put into a site to be repaired in a state where it is contained in a burnout bag such as a flexible container bag or a vinyl bag. In addition, by subjecting the baking repair material to pressure forming in a block shape or a lump shape in advance, it is possible to put the material into the repair target region without using a burnable bag. Moreover, this baking repair material can also air-transport the inside of piping, and can spray it on the repair object site | part.

本焼付け補修材の用途は特に限定されない。本焼付け補修材は、転炉、電気炉、溶鋼鍋、溶銑鍋、脱ガス炉、電気炉、出銑樋その他の溶融金属容器の熱間での補修に広く用いることができる。本明細書において、熱間とは、溶融金属容器の内面が400℃以上である状態を指すものとする。   The use of this baking repair material is not particularly limited. This baking repair material can be widely used for hot repair of converters, electric furnaces, molten steel pans, hot metal ladle, degassing furnaces, electric furnaces, tapping and other molten metal containers. In the present specification, hot refers to a state in which the inner surface of the molten metal container is 400 ° C. or higher.

本焼付け補修材は、厚く施工する場合に特に意義が大きい。厚く施工する場合であっても、固化時間の短縮を図ることができ、かつ施工体の内部組織の多孔質化を防止できる。例えば、転炉の出鋼口スリーブ若しくは炉底羽口の周囲、取鍋のノズル孔の周囲、又は溶融金属容器内面の異常溶損した箇所といった比較的深い、例えば深さ30mm以上、より具体的には深さ50mm以上の凹部の補修に好適である。但し、本焼付け補修材は、10mm程度の厚さに施工する場合にも、好ましく利用できることは言うまでもない。   This baking repair material is particularly significant when thickly constructed. Even in the case of thick construction, the solidification time can be shortened and the internal structure of the construction body can be prevented from becoming porous. For example, relatively deep, for example, a depth of 30 mm or more, such as around the steel outlet sleeve or bottom tuyeres of the converter, around the nozzle hole of the ladle, or an abnormally melted spot on the inner surface of the molten metal container. Is suitable for repairing a recess having a depth of 50 mm or more. However, it goes without saying that this baking repair material can be preferably used even when it is constructed to a thickness of about 10 mm.

表1〜3に、焼付け補修材の実施例及び比較例を示す。   Tables 1 to 3 show examples of the baking repair material and comparative examples.

表1〜3で、耐火骨材には、マグネシアクリンカを、粗粒:45質量%、中粒:25質量%、及び微粒:30質量%よりなるように粒度調整したものを用いた。有機バインダには、フェノール樹脂とピッチとを質量比1:3の割合で組み合わせたものを用いた。酸化鉄粉には、3価の酸化鉄よりなる粒径75μm以下のベンガラを用いた。金属粉は、いずれも粒径75μm以下のものを用いた。   In Tables 1 to 3, the refractory aggregate used was a magnesia clinker whose particle size was adjusted so as to consist of coarse particles: 45% by mass, medium particles: 25% by mass, and fine particles: 30% by mass. As the organic binder, a combination of phenol resin and pitch at a mass ratio of 1: 3 was used. As the iron oxide powder, a bengara made of trivalent iron oxide and having a particle size of 75 μm or less was used. As the metal powder, one having a particle size of 75 μm or less was used.

早期固化性は、次の要領で評価した。円柱状凹部がくり貫かれた煉瓦を準備し、これを1000℃に加熱した状態でその凹部に焼付け補修材を充填する。充填後、3分毎に、重さ160g外径2.5mmの丸棒を自重で凹部内の施工体に貫入させ、貫入深さがゼロになった場合を固化完了とする。充填から固化完了までの時間を固化時間とし、固化時間の短さによって◎、○、△、×の4段階で相対評価した。   Early solidification was evaluated in the following manner. A brick in which a cylindrical concave portion is cut is prepared, and this is heated to 1000 ° C., and the concave portion is filled with a baking repair material. After filling, every 3 minutes, a round bar having a weight of 160 g and an outer diameter of 2.5 mm is allowed to penetrate the construction body in the recess by its own weight, and solidification is completed when the penetration depth becomes zero. The time from filling to completion of solidification was defined as the solidification time, and relative evaluation was performed in four stages of ◎, ○, Δ, and × depending on the shortness of the solidification time.

内部組織の緻密さは、次の要領で評価した。上述した固化が完了した施工体から、その厚さ方向中央部を含む部分を所定寸法切り出して、その見かけ気孔率を測定する。見かけ気孔率の小ささによって◎、○、△、×の4段階で相対評価した。   The internal organization was evaluated in the following manner. A portion including the central portion in the thickness direction is cut out from the construction body that has been solidified as described above, and its apparent porosity is measured. Relative evaluation was performed in four stages of ◎, ○, Δ, and × depending on the apparent porosity.

耐食性は、次の要領で評価した。水平に置かれたプレート状定形耐火物を1000℃に加熱した状態で、その表面に、焼付け補修材を厚さ約50mmに施工する。既述の要領で焼付け補修材の固化を確認した後、プレート状定形耐火物を垂直に立て、焼付け補修材の施工体に、転炉スラグと鋼片を1:1の質量割合で組み合わせた侵食材を溶射する。侵食材の供給量や溶射時間等の条件は共通とし、溶射によって施工体がえぐられる深さによって◎、○、△、×の4段階で相対評価した。   Corrosion resistance was evaluated in the following manner. A plate-shaped refractory placed horizontally is heated to 1000 ° C., and a baking repair material is applied to its surface to a thickness of about 50 mm. After confirming the solidification of the baking repair material as described above, the plate-shaped refractory is set up vertically, and the construction of the baking repair material is combined with the converter slag and steel pieces in a mass ratio of 1: 1. Spray the ingredients. The conditions such as the supply amount of the erosion material and the spraying time were the same, and relative evaluation was performed in four stages of ◎, ○, Δ, and × depending on the depth to which the construction body was removed by spraying.

例Aは、酸化鉄粉を含まない比較例であり、Al粉の燃焼が適切に進行せず、特に早期固化性の点で劣る。   Example A is a comparative example that does not contain iron oxide powder, and the combustion of Al powder does not proceed properly, and is particularly inferior in terms of early solidification.

例Kは、金属粉を含まない比較例であり、早期固化性の点で劣るとともに、酸化鉄粉がカーボンボンドを酸化したためか、内部組織の緻密さの点でも相対的に劣る。   Example K is a comparative example that does not contain metal powder, and is inferior in terms of early solidification properties, and is also relatively inferior in terms of the density of the internal structure, probably because iron oxide powder has oxidized carbon bonds.

例B〜Jは、酸化鉄粉とAl粉の双方を含む実施例であり、酸化鉄粉:Al粉の質量比が9:1〜1:9である場合に、比較例A及びKよりも優れた結果が得られている。表1の結果から、酸化鉄粉:金属粉の質量比は、2:8〜8:2が好ましく、3:7〜7:3がより好ましいといえる。   Examples B to J are examples including both iron oxide powder and Al powder, and when the mass ratio of iron oxide powder: Al powder is 9: 1 to 1: 9, than Comparative Examples A and K. Excellent results have been obtained. From the results in Table 1, it can be said that the mass ratio of iron oxide powder: metal powder is preferably 2: 8 to 8: 2, and more preferably 3: 7 to 7: 3.

なお、表1の結果から、酸化鉄粉とAl粉の最適な質量比は5:5と推定される。この値は、両者が過不足なくテルミット反応を起こす理論値(Al粉:酸化鉄粉=1:2)と異なるが、両者の質量比が5:5に近づく程、組織中で両者が反応する確率が高くなるため、早期固化性及び内部組織の緻密さの改善効果が顕著になると考えられる。   In addition, from the result of Table 1, the optimal mass ratio of iron oxide powder and Al powder is estimated to be 5: 5. This value is different from the theoretical value (Al powder: iron oxide powder = 1: 2) in which both cause thermite reaction without excess or deficiency, but as the mass ratio of both approaches 5: 5, both react in the structure. Since the probability increases, it is considered that the effect of improving the early solidification property and the internal structure is remarkable.

図1(a)は、表1の実施例Fの焼付け補修材よりなる施工体の断面を示す。組織が緻密であることが分かる。   Fig.1 (a) shows the cross section of the construction body which consists of a baking repair material of Example F of Table 1. It can be seen that the organization is dense.

図1(b)は、表1の比較例Aの焼付け補修材よりなる施工体の断面を示す。比較例Aは、酸化鉄粉を含まないため、図1(a)に比べると、やや組織が粗雑である。   FIG.1 (b) shows the cross section of the construction body which consists of a baking repair material of the comparative example A of Table 1. FIG. Since the comparative example A does not contain iron oxide powder, the structure is slightly rough compared to FIG.

図1(c)は、表1の比較例Kの焼付け補修材よりなる施工体の断面を示す。比較例Kは、金属粉を含まないため、酸化鉄粉がカーボンボンドを酸化したためか、図1(a)及び(b)に比べると、組織が粗雑である。   FIG.1 (c) shows the cross section of the construction body which consists of a baking repair material of the comparative example K of Table 1. FIG. Since the comparative example K does not contain metal powder, it is because the iron oxide powder has oxidized the carbon bond, or the structure is rough compared to FIGS. 1 (a) and 1 (b).

表2で、例L〜Sは、有機バインダを20質量%使用し、例T〜Vは、有機バインダを40質量%使用し、例W及びXは、有機バインダを10質量%使用した。   In Table 2, Examples L to S used 20% by weight of organic binder, Examples T to V used 40% by weight of organic binder, and Examples W and X used 10% by weight of organic binder.

表2のいずれの例も、酸化鉄粉:金属粉の質量比は5:5であるが、例L及びTは、両者の合計量が少なすぎて改善効果がみられなかった比較例であり、例M〜S、及びU〜Xは、両者の合計量が改善効果の発現に足りた実施例である。   In all the examples in Table 2, the mass ratio of iron oxide powder: metal powder is 5: 5, but Examples L and T are comparative examples in which the total amount of both was too small and no improvement effect was observed. , Examples M to S, and U to X are examples in which the total amount of both is sufficient to express the improvement effect.

実施例M及びUに示すように、改善効果の発現に必要な酸化鉄粉と金属粉の合計量は、有機バインダの含有量に依存する。即ち、有機バインダの使用量が多い程、多くの揮発分を逸散させる必要があるため、それを担う酸化鉄粉と金属粉も多く必要となる。   As shown in Examples M and U, the total amount of iron oxide powder and metal powder necessary for the improvement effect depends on the content of the organic binder. In other words, the larger the amount of organic binder used, the more volatile components need to be dissipated, so that more iron oxide powder and metal powder are required.

そこで、酸化鉄粉と金属粉の合計量は、有機バインダに対する外かけで規定することが適切である。例M、U、及びWの結果から、両者の合計量は、有機バインダに対する外かけ10質量%以上であることが必要である。例N〜S、V、及びXが示すように、両者の合計量が多い程、早期固化性及び内部組織の緻密さに関して改善効果が高くなるため、両者の合計量は、有機バインダに対する外かけ20質量%以上が好ましく、30質量%以上がより好ましい。   Therefore, it is appropriate that the total amount of iron oxide powder and metal powder is defined by the outer coating on the organic binder. From the results of Examples M, U, and W, the total amount of both needs to be 10% by mass or more of the outer coating with respect to the organic binder. As examples N to S, V, and X show, the greater the total amount of both, the higher the improvement effect with respect to the early solidification and the denseness of the internal structure. 20 mass% or more is preferable and 30 mass% or more is more preferable.

但し、実施例R及びSに示すように、両者の合計量が多すぎると耐食性が低下する傾向がみられる。これは、主に、焼付け補修材に占める耐火骨材の割合が減少することに起因する。そこで、両者の合計量は、有機バインダに対する外かけ80質量%以下が好ましく、70質量%以下がより好ましい。   However, as shown in Examples R and S, when the total amount of both is too large, the corrosion resistance tends to be reduced. This is mainly due to a decrease in the proportion of the refractory aggregate in the baking repair material. Therefore, the total amount of both is preferably 80% by mass or less, more preferably 70% by mass or less, based on the organic binder.

表3で、例Yは、金属粉にMg粉を用いた実施例、例Zは、金属粉にAl‐Mg合金粉を用いた実施例、例AAは、金属粉にAl‐Si合金粉を用いた実施例、例ABは、金属粉にCa‐Si合金粉を用いた実施例である。表3の結果から、金属粉には、Mg粉及び/又はCa‐Si合金粉を用いることが特に好ましいと考えられる。   In Table 3, Example Y is an example using Mg powder as metal powder, Example Z is an example using Al-Mg alloy powder as metal powder, and Example AA is Al-Si alloy powder as metal powder. The used example, Example AB, is an example using Ca-Si alloy powder as the metal powder. From the results in Table 3, it is considered that it is particularly preferable to use Mg powder and / or Ca—Si alloy powder as the metal powder.

以上、実施例に沿って説明したが、本発明はこれに限られない。例えば、種々の組み合わせ及び改良が可能なことは当業者に自明であろう。   As mentioned above, although demonstrated along the Example, this invention is not limited to this. For example, it will be apparent to those skilled in the art that various combinations and improvements are possible.

Claims (1)

耐火骨材と有機バインダとを含む焼付け補修材において、酸化鉄粉と金属粉とを、酸化鉄粉:金属粉の質量比が9:1〜1:9となる条件で、前記有機バインダに対する外かけで合計10質量%以上含むことを特徴とする焼付け補修材。   In a baking repair material including a refractory aggregate and an organic binder, the iron oxide powder and the metal powder are externally applied to the organic binder under the condition that the mass ratio of iron oxide powder: metal powder is 9: 1 to 1: 9. A baking repair material characterized by containing a total of 10% or more by hook.
JP2010078745A 2010-03-30 2010-03-30 Baking repair material Expired - Fee Related JP5276620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010078745A JP5276620B2 (en) 2010-03-30 2010-03-30 Baking repair material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010078745A JP5276620B2 (en) 2010-03-30 2010-03-30 Baking repair material

Publications (2)

Publication Number Publication Date
JP2011207702A JP2011207702A (en) 2011-10-20
JP5276620B2 true JP5276620B2 (en) 2013-08-28

Family

ID=44939189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010078745A Expired - Fee Related JP5276620B2 (en) 2010-03-30 2010-03-30 Baking repair material

Country Status (1)

Country Link
JP (1) JP5276620B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858309B2 (en) * 1980-08-22 1983-12-24 鶴海合成炉材株式会社 How to repair an industrial kiln
JP2556786B2 (en) * 1991-10-24 1996-11-20 日本鋼管株式会社 Bake repair material and kiln furnace bake repair method using the bake repair material
JPH09227215A (en) * 1996-02-27 1997-09-02 Harima Ceramic Co Ltd Baking repairing material
JP2002121081A (en) * 2000-10-06 2002-04-23 Kurosaki Harima Corp Quickly sinterable, hot baking repairing material for hot-repairing
JP2004028504A (en) * 2002-06-27 2004-01-29 Kurosaki Harima Corp Hot repairing method for industrial furnace

Also Published As

Publication number Publication date
JP2011207702A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
TWI606993B (en) Magnesia carbon brick
JP5249948B2 (en) Blast furnace hearth
JP5419231B2 (en) Indefinite refractory
JP2008151425A (en) Repair method of magnesia carbon brick
JP5276620B2 (en) Baking repair material
WO1996027568A1 (en) Unshaped refractories and gunning refractories prepared therefrom
JP7041523B2 (en) Magnesia Alumina Carbon Brick
JP5249909B2 (en) Baking repair material
TWI415821B (en) Hot spray repair materials
JP6795773B1 (en) Baking repair material
JP2019117045A (en) Hot repair material for DC electric furnace
JP6348071B2 (en) Magnesia refractory
JP2004141899A (en) Sliding nozzle plate for ladle
JPH08143372A (en) Castable refractory for hot repairing and its production
JPS5826080A (en) Refractory mixture for dry thermal repairment
JP2005089271A (en) Carbon-containing refractory, its manufacturing method and its use application
JP6340131B1 (en) Hot repair spray material
JP3037625B2 (en) Baking repair material
JPH11278948A (en) Repairing material by firing
JPH08239274A (en) Spray repairing material
JP6640937B1 (en) Baking repair material
TW458950B (en) Annealing repair mix
JPS6372474A (en) Method for repairing ladle bedding part
JP2004161529A (en) Baking repairing material for spray application, and application method therefor
JPH09227215A (en) Baking repairing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130517

R150 Certificate of patent or registration of utility model

Ref document number: 5276620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees