JP5273731B2 - Biorhythm control agent - Google Patents

Biorhythm control agent Download PDF

Info

Publication number
JP5273731B2
JP5273731B2 JP2009186257A JP2009186257A JP5273731B2 JP 5273731 B2 JP5273731 B2 JP 5273731B2 JP 2009186257 A JP2009186257 A JP 2009186257A JP 2009186257 A JP2009186257 A JP 2009186257A JP 5273731 B2 JP5273731 B2 JP 5273731B2
Authority
JP
Japan
Prior art keywords
circadian rhythm
formula
coch
gene
coc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009186257A
Other languages
Japanese (ja)
Other versions
JP2011037755A (en
Inventor
芳秋 大西
勝隆 大石
進 丸山
幸苗 山崎
泰広 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009186257A priority Critical patent/JP5273731B2/en
Publication of JP2011037755A publication Critical patent/JP2011037755A/en
Application granted granted Critical
Publication of JP5273731B2 publication Critical patent/JP5273731B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating circadian rhythm failure by regulating circadian rhythm cycle, and to provide a fundamental therapeutic method of a disease caused by the circadian rhythm failure. <P>SOLUTION: The circadian rhythm failure-ameliorating agent contains lycorins or lycoricidinols of alkaloids of Amaryllidaceae family, or a pharmacologically acceptable salts thereof as an active ingredient. The medicinal composition for the prevention or therapy of the disease caused by the circadian rhythm failure is also provided. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、概日リズムを制御することによる睡眠障害の改善剤に関する。   The present invention relates to an agent for improving sleep disorder by controlling circadian rhythm.

遺伝性の睡眠障害に加えて、社会の24時間化に伴う様々な睡眠障害が社会的問題となっている。概日リズム睡眠障害と呼ばれる一連の睡眠障害の発症には、時計遺伝子によって構成されている体内時計が関係しているものと考えられているが、その詳細なメカニズムに関しては不明である。
睡眠障害の治療法としては、特別な装置を必要とする高照度光療法や、ビタミンB12(非特許文献1)、ラトニン製剤(特許文献1)の投与が一般的である。
また、睡眠薬としては、ベンゾジアゼピン系の薬剤(非特許文献2)が一般に用いられており、長短時間型から、短時間型、中間型、長時間型まで様々な半減期の薬剤が開発されている。しかしながら、これらの睡眠薬による睡眠障害の治療法は、対処療法的なものであり、根本的に睡眠障害を治療することは困難である。また、夢遊症状等の副作用を伴う場合も多く、その使用法には細心の注意が必要である。最近、ノシセプチン受容体の作動薬としての作用を有する4-オキソイミダゾリジン-2-スピロピペリジン誘導体に概日リズム睡眠障害治療効果が期待されている(特許文献2)が、まだ研究開発途上であり副作用も懸念される。
天然成分や飲食品からの睡眠改善剤の研究開発も盛んで、茶葉由来のテアミンを用いるもの(特許文献4)、内因性のメラトニン分泌効果を有する発酵ホエーなどのホエー類を添加するもの(特許文献5)の他、高麗人参エキス(非特許文献3)、イクラ油に含まれるフォスファチジルコリン(非特許文献4)などを用いた睡眠改善剤が提案されている。これらは、いずれも飲食品用に用いられている素材に由来しているため、安全性も高く、日常的に摂取可能であるといえるが、その詳細な睡眠改善効果や作用メカニズムも十分な解明がなされておらず、効果に関しても大きな個人差があると考えられる。
このように、従来の治療方法は、そのほとんどは作用メカニズムが不明であるか、又は体内時計の位相を調節することにより生体リズムを正常化させようとするものであり、体内時計の周期の異常に起因する障害の根本的な治療法とはなっていない。
概日リズムは、体内時計によって制御されており、近年、時計遺伝子と呼ばれる一連の遺伝子群によって体内時計のリズムが刻まれていることが明らかとなってきた。体内時計は、生体リズムの位相調節と周期長の調節という2つの機能を有している。概日リズムの位相調節に関しては、時計遺伝子の発現が、少なくとも細胞培養系においては、多くの液性因子によって誘導されることから、生体においても、多くの調節因子が存在しているものと推測される(非特許文献5)。
一方で、概日リズムの周期長の調節に関しては、グリコーゲンシンターゼキナーゼ3β(GSK3β)が、時計分子PERIOD2(非特許文献11)やREV-ERBα(非特許文献12)のリン酸化を介して体内時計に作用するとの報告があり、概日リズムに関与する転写因子の1つであるBMAL1の抑制効果のあるc-Jun N末端キナーゼ-3(JNK3)の酵素活性調節剤を用いた睡眠改善剤も開発されてきている(特許文献3)。
睡眠障害を根本的に改善するためにも、概日リズムのうちでも、とりわけ周期長を調節する睡眠改善剤の開発は強く望まれていたが、これまでは詳細な概日リズム周期を検出する実験方法が確立されていなかったこともあり、もっぱら概日リズムのリセット(位相調節)が主に解析されてきた。
したがって、概日リズム、特に概日リズムの周期長を調節する根本的な睡眠改善剤の提供が望まれていた。
In addition to hereditary sleep disorders, various sleep disorders associated with 24-hour society have become social problems. The onset of a series of sleep disorders called circadian rhythm sleep disorders is thought to be related to the biological clock composed of clock genes, but the detailed mechanism is unknown.
As a treatment method for sleep disorders, high-intensity phototherapy requiring a special device, and administration of vitamin B12 (Non-patent Document 1) and a ratonin preparation (Patent Document 1) are generally used.
In addition, benzodiazepine drugs (Non-patent Document 2) are generally used as sleeping drugs, and various half-life drugs have been developed from long-time types to short-time types, intermediate types, and long-term types. . However, treatment methods for sleep disorders using these sleeping drugs are coping therapy, and it is difficult to fundamentally treat sleep disorders. In addition, there are many side effects such as sleepwalking symptoms, and the usage thereof requires careful attention. Recently, a 4-oxoimidazolidine-2-spiropiperidine derivative having an action as an agonist of a nociceptin receptor is expected to have a circadian rhythm sleep disorder treatment effect (Patent Document 2), but is still under research and development. Side effects are also a concern.
Research and development of sleep-improving agents from natural ingredients and foods and drinks is also active, using tea leaves derived teaamine (Patent Document 4), adding whey such as fermented whey with endogenous melatonin secretion effect (patent In addition to literature 5), sleep improvement agents using ginseng extract (non-patent literature 3), phosphatidylcholine (non-patent literature 4) contained in salmon oil have been proposed. These are all derived from materials used for food and drink, so they are safe and can be taken on a daily basis, but their detailed sleep improvement effects and mechanisms of action are fully elucidated. However, there is a great individual difference in the effect.
As described above, most of the conventional treatment methods have an unknown mechanism of action, or are intended to normalize the biological rhythm by adjusting the phase of the biological clock, and the period of the biological clock is abnormal. It is not a fundamental cure for disorders caused by.
The circadian rhythm is controlled by a circadian clock, and in recent years it has become clear that the rhythm of the circadian clock is engraved by a series of genes called clock genes. The biological clock has two functions: biological rhythm phase adjustment and period length adjustment. Regarding circadian rhythm phase regulation, the expression of clock genes is induced by many humoral factors, at least in cell culture systems, and it is assumed that there are many regulatory factors in living organisms. (Non-Patent Document 5).
On the other hand, regarding the regulation of the circadian rhythm cycle length, glycogen synthase kinase 3β (GSK3β) is linked to the biological clock through phosphorylation of clock molecules PERIOD2 (Non-patent Document 11) and REV-ERBα (Non-patent Document 12). A sleep-improving agent using an enzyme activity regulator of c-Jun N-terminal kinase-3 (JNK3) which has an inhibitory effect on BMAL1, one of the transcription factors involved in circadian rhythm. It has been developed (Patent Document 3).
In order to improve sleep disorders fundamentally, it was strongly desired to develop a sleep-improving agent that regulates the cycle length among circadian rhythms. However, until now, detailed circadian rhythm cycles have been detected. Since experimental methods have not been established, circadian rhythm reset (phase adjustment) has mainly been analyzed.
Therefore, it has been desired to provide a fundamental sleep improving agent that regulates the circadian rhythm, particularly the circadian rhythm cycle length.

特表平8−502259号公報Japanese National Patent Publication No. 8-502259 WO2003/010168WO2003 / 010168 WO2003/063907WO2003 / 063907 WO2005/097101WO2005 / 097101 WO2005/097101WO2005 / 097101 特開昭61−36221号公報JP-A-61-36221 特開平11−79992号公報Japanese Patent Laid-Open No. 11-79992 特開平11−255650号公報JP-A-11-255650

「サーカディアンリズム睡眠障害の臨床」千葉茂、本間研一 編、新興医学出版社、2003“Circadian Rhythm Sleep Clinic” Shigeru Chiba, Kenichi Honma, Emerging Medical Publishers, 2003 「睡眠障害の対応と治療ガイドライン」、内山真 編、じほう、2002“Sleep Disorder Response and Treatment Guidelines”, Makoto Uchiyama, Jiho, 2002 Young Ho Rhee, etal.,Psychopharmacology,101,p.486-488(1990)Young Ho Rhee, etal., Psychopharmacology, 101, p. 486-488 (1990) 日比野英彦、FoodStyle21,Vol.7,No.3,p.50-53(2003)Hidehiko Hibino, FoodStyle21, Vol.7, No.3, p.50-53 (2003) Curr Biol 2000, 10:1291-4Curr Biol 2000, 10: 1291-4 EMBO Reports 2007, 8:366-71、Eur J Neurosci 2007, 26:451-62EMBO Reports 2007, 8: 366-71, Eur J Neurosci 2007, 26: 451-62 Science, 1992, 258, 607-614Science, 1992, 258, 607-614 Cur. Biol., 2000, 10, 1291-1294Cur. Biol., 2000, 10, 1291-1294 FEBS Lett., 1999, 465, 79-82FEBS Lett., 1999, 465, 79-82 Gene to Cells, 2003, 8, 713-720Gene to Cells, 2003, 8, 713-720 J. Biol. Chem., 2005, 280, 29397-29402J. Biol. Chem., 2005, 280, 29397-29402 Science, 2006, 311, 1002-1005Science, 2006, 311, 1002-1005 Cell, 2000, 103, 1009-1017Cell, 2000, 103, 1009-1017 Nature, 2002, 418, 534-539Nature, 2002, 418, 534-539 Mol. Cell. Biol., 2008, 28, 3477-3488Mol. Cell. Biol., 2008, 28, 3477-3488 J. Biol. Chem., 1982, 257, 7847-7851J. Biol. Chem., 1982, 257, 7847-7851 Bioorg. Med. Chem., 2008, 16, 10182-10189Bioorg. Med. Chem., 2008, 16, 10182-10189 J. Biol. Chem., 1986, 261, 505-507J. Biol. Chem., 1986, 261, 505-507 Biochimica Biophysica et Acta., 1976, 425, 342Biochimica Biophysica et Acta., 1976, 425, 342 Jounalof Natural Products., 1992, 55, 1569Jounalof Natural Products., 1992, 55, 1569 Translational Oncology, 2008, 1, 1-13Translational Oncology, 2008, 1, 1-13

本発明の課題は、概日リズムを調節することで睡眠障害を治療する方法であって、体内時計の異常に起因する障害の根本的な治療法を提供することにある。   An object of the present invention is to provide a method for treating a sleep disorder by adjusting a circadian rhythm, and to provide a fundamental treatment for a disorder caused by an abnormality of a biological clock.

最近の概日リズム関連遺伝子を用いたノックアウト実験などの結果から、生物時計調節の中心となる遺伝子がBmal1遺伝子であることがほぼ確立してきている(非特許文献13)。
従来から、Bmal1遺伝子プロモーター中の「RORE」配列と外来のSV40プロモーター、そしてルシフェラーゼ遺伝子を含むプラスミドを一過性発現可能に導入したNIH3T3細胞を用いた培養細胞レベルでのレポーターアッセイが、哺乳類における生体内でのBmal1遺伝子を介した概日リズムを再現できることが知られていた(非特許文献14)。しかしながら、このような従来の培養細胞によるレポーターアッセイ法では、細胞内でのプラスミドの状態が不安定であり、培地中に被検物質を添加した状態で細胞の培養を続けてその影響を正確に測定することはできなかった。
従来のNIH3T3細胞を用いたレポーターアッセイ法は、Bmal1遺伝子のプロモーター領域などの特定領域(RORE配列)に一過的に作用する物質又は遺伝子の探索を意図するものであったが、今回本発明者らは、全く新たな発想による従来のレポーターアッセイ法の適用を考えた。すなわち、転写因子BMAL1と転写因子CLOCKのヘテロ二量体によって発現が促進されたPeriod遺伝子からPERIODが合成され、核外でCRYと結合して核内移行したPERIOD-CRY複合タンパク質がBMAL1とCLOCK転写活性を抑制するという一連の概日リズム形成サイクル自体に長期間にわたって作用する物質、その周期を早めたり遅くしたりする物質を探索するためのレポーターアッセイ系を構築することを発想した。
本発明者らは、そのためにまず、Bmal1遺伝子プロモーター中の「RORE」配列及び転写開始部位を含む領域(−202〜+27位)にレポーターとなるルシフェラーゼ遺伝子を繋いだレポータープラスミドを作製し(図1)、当該レポータープラスミドをNIH3T3細胞に導入し、安定に概日リズムを刻みながらルシフェラーゼを生産する細胞株を樹立した。当該樹立細胞株を用いて種々の物質を作用させて、ルシフェラーゼ活性をモニターした。その結果、ヒガンバナ植物由来のアルカロイドであるリコリンならびにリコリシジノールが、濃度依存的にBmal1遺伝子の転写リズムの周期を延長させることが明らかとなった。リコリン、リコリシジノールのみならず、天然成分由来の他のアルカロイドに関しては、従来概日リズムの周期長の調節作用については報告されていない。
リコリンには、タンパク質合成阻害作用が存在することが知られているため、タンパク質阻害作用による非特異的な作用である可能性を排除する目的で、一般的なタンパク質合成阻害剤であるシクロヘキサミドを同様に作用させたが、周期長に対する影響は認められず、リコリンとシクロヘキサミドの共存下で測定を行った場合でも、シクロヘキサミドの有無による影響は全く認められなかった。これらの結果は、リコリンの概日リズム周期への影響が、明らかにタンパク質合成阻害とは独立したメカニズムによるものであることを示すものである。
以上の知見を得たことで、本発明を完成した。
From the results of recent knockout experiments using circadian rhythm-related genes, it has been almost established that the gene that is the center of biological clock regulation is the Bmal1 gene (Non-patent Document 13).
Traditionally, reporter assays at the cultured cell level using NIH3T3 cells into which a plasmid containing the RORE sequence in the Bmal1 gene promoter, a foreign SV40 promoter, and a luciferase gene have been introduced for transient expression have been performed in mammals. It has been known that the circadian rhythm via Bmal1 gene in the body can be reproduced (Non-patent Document 14). However, in such a conventional reporter assay method using cultured cells, the state of the plasmid in the cell is unstable, and the cell culture is continued in a state where the test substance is added to the medium, and the influence is accurately determined. It was not possible to measure.
The conventional reporter assay method using NIH3T3 cells was intended to search for substances or genes that transiently act on a specific region (RORE sequence) such as the promoter region of the Bmal1 gene. Considered the application of a conventional reporter assay with a completely new concept. In other words, PERIOD was synthesized from the Period gene whose expression was promoted by the heterodimer of transcription factor BMAL1 and transcription factor CLOCK, and PERIOD-CRY complex protein that bound CRY outside the nucleus and translocated into the nucleus was transferred to BMAL1 and CLOCK. The idea was to construct a reporter assay system to search for substances that act over a long period of the circadian rhythm formation cycle itself, which suppresses the activity, and substances that accelerate or slow the cycle.
For this purpose, the inventors first prepared a reporter plasmid in which a luciferase gene serving as a reporter is linked to a region (positions −202 to +27) containing a “RORE” sequence and a transcription initiation site in the Bmal1 gene promoter (FIG. 1). ), The reporter plasmid was introduced into NIH3T3 cells, and a cell line that produced luciferase with stable circadian rhythm was established. Using the established cell line, various substances were allowed to act to monitor luciferase activity. As a result, it has been clarified that ricolin and licoricidinol, alkaloids derived from the Japanese anemone plant, prolong the cycle of the transcriptional rhythm of the Bmal1 gene in a concentration-dependent manner. Regarding not only licholine and licoricidinol but also other alkaloids derived from natural components, there has been no report on the effect of regulating the circadian rhythm cycle length.
Since it is known that ricolin has a protein synthesis inhibitory action, cyclohexamide, a general protein synthesis inhibitor, is used to eliminate the possibility of non-specific action due to protein inhibitory action. However, no effect on the cycle length was observed, and even when the measurement was performed in the presence of ricolin and cyclohexamide, no effect due to the presence or absence of cyclohexamide was observed. These results indicate that the effect of ricolin on the circadian rhythm cycle is apparently due to a mechanism independent of protein synthesis inhibition.
By obtaining the above knowledge, the present invention was completed.

すなわち、本発明は以下の発明を含むものである。
〔1〕 下記式(1)もしくは式(2)で表されるヒガンバナ科植物アルカロイド、又はその薬理学的に許容しうる塩もしくはエステルを有効成分として含む、概日リズム障害改善剤;

<式(1)>

Figure 0005273731
(式中、R及びRは、それぞれ独立して−H、−COCH、−COC、−COC又は−COCHCH(OH)CHを表す。

<式(2)>
Figure 0005273731
(式中、R、R及びRはそれぞれ独立して−H又は−OHを表す。)。
〔2〕 下記式(1)もしくは式(2)で表されるヒガンバナ科植物アルカロイド、又はその薬理学的に許容しうる塩もしくはエステルを有効成分として含む、概日リズムの障害に起因した疾患の治療用又は予防用医薬組成物;

<式(1)>
Figure 0005273731
(式中、R及びRは、それぞれ独立して−H、−COCH、−COC、−COC又は−COCHCH(OH)CHを表す。

<式(2)>
Figure 0005273731
(式中、R、R及びRはそれぞれ独立して−H又は−OHを表す。)。
〔3〕 概日リズムの障害に起因した疾患が、睡眠相前進症候群(ASPS)、睡眠相後退症候群(DSPS)、非24時間睡眠相後退症候群、および季節性うつ病からなる群から選択される疾患である前記〔2〕に記載の医薬組成物。 That is, the present invention includes the following inventions.
[1] An agent for improving circadian rhythm disorder, comprising an Amaryllidaceae alkaloid represented by the following formula (1) or formula (2), or a pharmacologically acceptable salt or ester thereof as an active ingredient;

<Formula (1)>
Figure 0005273731
(Wherein, R 1 and R 2 are each independently -H, -COCH 3, represents a -COC 2 H 5, -COC 3 H 7 or -COCH 2 CH (OH) CH 3 .

<Formula (2)>
Figure 0005273731
(In the formula, R 3 , R 4 and R 5 each independently represent —H or —OH).
[2] A disease caused by disturbance of circadian rhythm, comprising an Amaryllidaceae alkaloid represented by the following formula (1) or formula (2), or a pharmacologically acceptable salt or ester thereof as an active ingredient: A therapeutic or prophylactic pharmaceutical composition;

<Formula (1)>
Figure 0005273731
(Wherein, R 1 and R 2 are each independently -H, -COCH 3, represents a -COC 2 H 5, -COC 3 H 7 or -COCH 2 CH (OH) CH 3 .

<Formula (2)>
Figure 0005273731
(In the formula, R 3 , R 4 and R 5 each independently represent —H or —OH).
[3] The disease caused by the circadian rhythm disorder is selected from the group consisting of advanced sleep phase syndrome (ASPS), delayed sleep phase syndrome (DSPS), non-24 hour delayed sleep phase syndrome, and seasonal depression The pharmaceutical composition according to the above [2], which is a disease.

Bmal1レポータープラスミドの構築 Bmal1プロモーター領域の遺伝子地図中でのRORE(白)ならびにSAF-A結合配列(灰)の位置を示す。ROREを含む-202〜+27の領域をプラスミドpGL3-dLucのルシフェレース遺伝子上流に挿入した。Construction of Bmal1 reporter plasmid The positions of RORE (white) and SAF-A binding sequence (gray) in the genetic map of the Bmal1 promoter region are shown. The region from -202 to +27 containing RORE was inserted upstream of the luciferase gene of plasmid pGL3-dLuc. リコリンによる概日リズム調節 2.5μMのリコリン存在下(黒)、10μMのリコリン存在下(+)、ならびに対照(白)の化学発光量の経時変化を示す。Circadian rhythm regulation by ricolin The time course of chemiluminescence in the presence of 2.5 μM ricolin (black), the presence of 10 μM ricolin (+), and the control (white) is shown. 概日リズム調節におけるタンパク質合成阻害剤の影響 タンパク質合成阻害剤シクロヘキサミド(CHX:0.1nM)とともに、2.5μMのリコリン存在下(黒)、10 μMのリコリン存在下(+)、ならびに対照(白)の化学発光量の経時変化を示す。Effect of protein synthesis inhibitors on circadian rhythm regulation Along with the protein synthesis inhibitor cyclohexamide (CHX: 0.1 nM), 2.5 μM ricolin (black), 10 μM ricolin (+), and control (white) ) Shows the change over time in the amount of chemiluminescence. リコリシジノールによる概日リズム調節 0.1μMのリコリシジノール存在下(黒)、0.05μMのリコリシジノール存在下(+)、ならびに対照(白)の化学発光量の経時変化を示す。Circadian rhythm regulation by licoricidinol The time course of chemiluminescence in the presence of 0.1 μM licoricidinol (black), 0.05 μM licoricidinol (+), and control (white) is shown.

1.睡眠障害について
睡眠障害は、「概日リズム睡眠障害」と「睡眠呼吸障害」とに大別される。概日リズム睡眠障害には、外因性の急性症候群と内因性の慢性症候群とに区分され、睡眠相前進症候群や睡眠相後退症候群、非24時間睡眠覚醒障害、不規則型睡眠覚醒障害などは、内因性慢性症候群に含まれる。概日リズム睡眠障害には、体内時計の関与が考えられており、特に、内因性慢性症候群は、体内時計の周期異常が一因となっている。従来からの典型的な睡眠障害の治療法である光照射やメラトニン投与、あるいは様々な睡眠薬による治療法は、体内時計のリセットに作用する対処療法的なものであるのに対し、本発明が目指す睡眠障害の治療法は、体内時計の周期異常、すなわち「概日リズム障害」を改善することによる治療法である。
1. About Sleep Disorders Sleep disorders are roughly classified into “circadian rhythm sleep disorders” and “sleep breathing disorders”. Circadian rhythm sleep disorders are divided into exogenous acute syndromes and intrinsic chronic syndromes, such as sleep phase advance syndrome and sleep phase regression syndrome, non-24-hour sleep-wake disorder, irregular sleep-wake disorder, Included in intrinsic chronic syndrome. The circadian rhythm sleep disorder is considered to involve the body clock. In particular, the intrinsic chronic syndrome is caused by the abnormal period of the body clock. Conventional treatment methods for sleep disorders, such as light irradiation, melatonin administration, and treatments with various sleeping pills are coping therapy that acts on the reset of the body clock, whereas the present invention aims at The sleep disorder treatment method is a treatment method by improving the period abnormality of the body clock, that is, the “circadian rhythm disorder”.

2.概日リズム障害により引き起こされる疾患について
概日リズム障害に起因する疾患としては、睡眠相前進症候群(ASPS)、睡眠相後退症候群(DSPS)、非24時間睡眠相後退症候群、および季節性うつ病が典型的なものとして考えられる。その他、内因性躁鬱病、周期性緊張症、周期性高血圧症、周期性潰瘍、不規則排卵周期、およびインスリン分泌の周期性異常に起因する糖尿病などの周期性・反復性障害や、脳血管型痴呆やアルツハイマー型痴呆における夜間徘徊なども概日リズム障害が関与すると考えられている。
2. About diseases caused by circadian rhythm disorders Diseases caused by circadian rhythm disorders include advanced sleep phase syndrome (ASPS), late sleep phase syndrome (DSPS), non-24 hour sleep phase regression syndrome, and seasonal depression. It can be considered typical. Other periodic and repetitive disorders such as endogenous manic depression, periodic tension, periodic hypertension, periodic ulcer, irregular ovulation cycle, and diabetes caused by periodic abnormalities of insulin secretion, and cerebral vascular types Circadian rhythm disorder is also considered to be involved in dementia and nighttime hemorrhage in Alzheimer type dementia.

3.概日リズムとBmal1遺伝子について
体内時計の調節に係わる主要な因子としては、体内時計の刻みを促進するBmal1遺伝子とClock遺伝子、抑制因子として働くCry遺伝子とPeriod遺伝子の4種類がある。
これら遺伝子群のうちで、Bmal1遺伝子をノックアウトしたマウスでは、行動のリズムが全く見られなくなり、まるで生物リズムが全く破壊された様に振舞う。他の時計遺伝子PeriodやCryptochrome等のノックアウトマウスでは活動周期に異常が観察されるのみであり、Bmal1遺伝子は単一遺伝子の破壊において行動リズム形成を全く示さなくなる唯一つの遺伝子である。さらにBmal1遺伝子ノックアウトマウスでは時計中枢である視交叉上核(SCN)において時計遺伝子Period1およびPeriod2の発現がほぼ完全に抑えられている。以上のことより、生物時計調節の中心となるのがBmal1遺伝子であると考えられている(非特許文献13)。
最近、本発明者らは、Bmal1遺伝子プロモーター領域中の「SAF−A結合領域(-27〜+266位)」へのSAF−A結合によるBmal1遺伝子を介した概日リズムの転写調節を解明した(非特許文献15、特願2008−25966)。
3. About circadian rhythm and Bmal1 gene There are four major factors involved in the regulation of the circadian clock: the Bmal1 and Clock genes that promote the ticking of the circadian clock, and the Cry and Period genes that act as suppressors.
Among these genes, mice that knocked out the Bmal1 gene no longer have any behavioral rhythm, and behave as if the biological rhythm was completely destroyed. In knockout mice such as other clock genes such as Period and Cryptochrome, abnormalities are only observed in the activity cycle, and the Bmal1 gene is the only gene that does not show any behavioral rhythm formation when a single gene is disrupted. Furthermore, in Bmal1 gene knockout mice, expression of clock genes Period1 and Period2 is almost completely suppressed in the suprachiasmatic nucleus (SCN), which is the clock center. From the above, it is considered that the Bmal1 gene is the center of biological clock regulation (Non-patent Document 13).
Recently, the present inventors have elucidated the transcriptional regulation of circadian rhythm via Bmal1 gene by SAF-A binding to “SAF-A binding region (positions −27 to +266)” in the Bmal1 gene promoter region. (Non-patent document 15, Japanese Patent Application No. 2008-25966).

4.概日リズムの周期を調節する物質のスクリーニング
本発明において、概日リズムの周期を調節する物質のスクリーニングに用いるレポーターアッセイ系は、従来の研究でBmal1遺伝子のプロモーター領域などの特定領域に一過的に作用する物質又は遺伝子を探索するために用いられていたスクリーニング系を改変して利用するものである。
まず、プラスミドpGL3-dLuc (非特許文献14)のルシフェレース遺伝子上流に、Bmal1プロモーター領域の「RORE」を含む-202〜+27の領域を挿入して作製したレポータープラスミド(図1)を、非特許文献14の手法に従ってNIH3T3細胞に導入し、継代培養して、安定に概日リズムを刻みながらルシフェラーゼを生産する形質転換NIH3T3細胞株を樹立した。
当該樹立細胞の培地に被検物質を添加し、培養しながらルシフェラーゼの発光強度を経時的にモニターすることにより、転写因子BMAL1と転写因子CLOCKのヘテロ二量体によって発現が促進されたPeriod遺伝子からPERIODが合成され、核外でCRYと結合して核内移行したPERIOD-CRY複合タンパク質がBMAL1とCLOCK転写活性を抑制するという一連の概日リズム形成サイクル自体に長期間にわたって作用する物質、その周期を早めたり遅くしたりする物質がはじめて探索できるようになった。
4). Screening for a substance that regulates the circadian rhythm cycle In the present invention, a reporter assay system used for screening a substance that regulates the circadian rhythm cycle is transiently applied to a specific region such as the promoter region of the Bmal1 gene in conventional research. The screening system that has been used to search for substances or genes that act on the drug is modified and used.
First, a reporter plasmid (FIG. 1) prepared by inserting a region of −202 to +27 containing “RORE” of the Bmal1 promoter region upstream of the luciferase gene of the plasmid pGL3-dLuc (Non-patent Document 14) Introduced into NIH3T3 cells according to the technique of Patent Document 14, subcultured, and established a transformed NIH3T3 cell line that produced luciferase with stable circadian rhythm.
From the Period gene whose expression was promoted by the heterodimer of transcription factor BMAL1 and transcription factor CLOCK by adding a test substance to the medium of the established cells and monitoring the luminescence intensity of luciferase over time while culturing. A substance that acts for a long time on a series of circadian rhythm formation cycles in which PERIOD-CRY complex protein, in which PERIOD is synthesized, bound to CRY outside the nucleus and translocated into the nucleus, suppresses BMAL1 and CLOCK transcriptional activity, is the cycle It became possible for the first time to search for substances that speed up or slow down.

5.ヒガンバナ科植物アルカロイドのリコリン類及びリコリシジノール類について
本発明において「ヒガンバナ科植物アルカロイド」とは、ヒガンバナ、スイセンなどのヒガンバナ科植物由来の植物アルカロイドを指すが、好ましくは、下記のリコリン類及びリコリシジノール類である。
リコリン類とは、ヒガンバナ科植物に含まれる「Amaryllidaceae alkaloids」に属するものであり、galanthan骨格構造を有する下記式(1)の化合物をいう。

<式(1)>

Figure 0005273731
(式中、R及びRは、それぞれ独立して水素であるか、又は水酸基を有しても良い低級アシル基であり、具体的には、−H、−COCH、−COC、−COC又は−COCHCH(OH)CH(Acetyl, Propanoyl, Butanoyl,又はHydroxybutanoyl基)を表す。 5. About the Amaryllidaceae Alkaloids Licolins and Licolicidinols In the present invention, the term "Amphilidae Alkaloids" refers to plant alkaloids derived from Amaryllidaceae plants such as Amaryllidaceae, Narcissus, etc. is there.
The licholines belong to “Amaryllidaceae alkaloids” contained in the Amaryllidaceae plant, and refer to a compound of the following formula (1) having a galanthan skeleton structure.

<Formula (1)>
Figure 0005273731
(In the formula, R 1 and R 2 are each independently hydrogen or a lower acyl group which may have a hydroxyl group. Specifically, —H, —COCH 3 , —COC 2 H 5 represents -COC 3 H 7 or -COCH 2 CH (OH) CH 3 (Acetyl, Propanoyl, Butanoyl, or Hydroxybutanoyl group).

リコリン類は、古くから多様な生物活性を持つことが知られており、蛋白質合成阻害作用(非特許文献18)のみならず、鎮痛作用、抗ウィルス作用、抗マラリア作用、抗腫瘍作用、抗炎症作用に関してすでに報告されている(非特許文献17)。その他、免疫抑制作用(特許文献6)、アポトーシス阻害作用(特許文献7)も知られている。これら生物活性機構は詳細には解明されていないが、タンパク質合成における翻訳過程のTermination反応阻害に関する生化学機構については最もよく解明されている (非特許文献18)。
式(1)の典型例はリコリンであり、R及びRがいずれも−Hの場合である。Rが−HでありRが−COCHCH(OH)CH(−(3’S)-Hydroxybutanoyl)の場合がLT1であり、LT1は、細胞増殖抑制作用等においてリコリンと生理作用が共通していることが知られている(非特許文献17)。本発明においては、式(1)の典型的な例として主にリコリンについて述べるが、他の化合物についても同様の作用を有することが期待でき、リコリンと同様の概日リズム周期長の調節効果が期待できる。
Licolins have been known for a long time to have various biological activities, and include not only protein synthesis inhibitory action (Non-patent Document 18) but also analgesic action, antiviral action, antimalarial action, antitumor action, anti-inflammatory effect. The action has already been reported (Non-patent Document 17). In addition, immunosuppressive action (Patent Document 6) and apoptosis inhibitory action (Patent Document 7) are also known. Although these biological activity mechanisms have not been elucidated in detail, the biochemical mechanism relating to the termination reaction inhibition of the translation process in protein synthesis is best elucidated (Non-patent Document 18).
A typical example of formula (1) is licholine, where R 1 and R 2 are both —H. The case where R 1 is —H and R 2 is —COCH 2 CH (OH) CH 3 (— (3 ′S) -Hydroxybutanoyl) is LT1, and LT1 shares physiological functions with recholine in cell growth inhibitory action and the like. (Non-patent Document 17). In the present invention, ricolin is mainly described as a typical example of the formula (1), but other compounds can be expected to have the same action, and the circadian rhythm cycle length adjustment effect similar to ricolin is effective. I can expect.

また、リコリシジノール類とは、リコリンと同様にヒガンバナ科植物に含まれ、phenanthridineを母骨格構造として生合成された下記式(2)の化合物をいう。

<式(2)>

Figure 0005273731
(式中、R、R及びRはそれぞれ独立して−H又は−OHを表す。) Licolicidinols are compounds of the following formula (2), which are contained in an Amaryllidaceae plant as in the case of lycoline, and are biosynthesized with phenanthridine as a mother skeleton structure.

<Formula (2)>
Figure 0005273731
(In formula, R < 3 >, R < 4 > and R < 5 > represent -H or -OH each independently.)

リコリシジノール類も、リコリンと同様に、蛋白質合成阻害作用(非特許文献19)、抗ウイルス作用(非特許文献20)、及びアポトーシス阻害作用(特許文献8)が知られている。
式(2)の典型例はリコリシジノールであって、R、R及びRがいずれも−OHの場合である。Rが−Hであり、R及びRが−OHの場合がリコリシジン(lycoricidine)であり、抗腫瘍作用等においてリコリシジノールと共通の生理作用を有していることが知られている(非特許文献21)。本発明においては、式(2)の典型的な例として主にリコリシジノールについて述べるが、式(2)と類似の他の化合物についても同様の作用を有することが期待でき、リコリシジノールと同様の概日リズム周期長の調節効果が期待できる。
Like ricolin, licoricidinols are also known to have a protein synthesis inhibitory action (Non-patent Document 19), an antiviral action (Non-patent Document 20), and an apoptosis inhibitory action (Patent Document 8).
A typical example of formula (2) is licoricidinol, where R 3 , R 4 and R 5 are all —OH. When R 3 is —H and R 4 and R 5 are —OH, it is known that lycoricidine has a physiological action common to licoricidinol in antitumor action or the like (non- Patent Document 21). In the present invention, licoricidinol is mainly described as a typical example of the formula (2), but other compounds similar to the formula (2) can be expected to have the same action, and circadian similar to licoricidinol. The effect of adjusting the rhythm cycle length can be expected.

本発明においては、上記4.で樹立した、安定に概日リズムを刻みながらルシフェラーゼを生産する形質転換NIH3T3細胞株を用いてルシフェラーゼ活性をモニターすることで、ヒガンバナ植物由来のアルカロイドであるリコリンが、濃度依存的にBmal1遺伝子の転写リズムの周期を延長させることが明らかとなった。リコリンには、タンパク質合成阻害作用が存在することが知られているが、一般的なタンパク質合成阻害剤であるシクロヘキサミドの有無による影響は全く認められないことが確認され、タンパク質合成阻害作用による非特異的な作用である可能性が排除された。   In the present invention, the above 4. By monitoring the luciferase activity using a transformed NIH3T3 cell line that stably produces circadian rhythm and produced luciferase, ricolin, an alkaloid derived from the Japanese anemone plant, transcribes the Bmal1 gene in a concentration-dependent manner. It became clear that the cycle of the rhythm was extended. Lycoline is known to have a protein synthesis inhibitory effect, but it was confirmed that there was no effect due to the presence or absence of cyclohexamide, a general protein synthesis inhibitor. The possibility of non-specific effects was excluded.

本発明で概日リズム調節をしようとする対象動物は、ヒト等の霊長類、イヌ、ネコなどの愛玩動物、ウシ、ウマなどの家畜動物、マウス、ラットなどの実験動物を含む哺乳類及び相同性の高い時計遺伝子を持つ鳥類及び魚類である。したがって、本発明で、「Bmal1遺伝子」などというとき、ヒトを含む哺乳類、鳥類及び魚類由来の遺伝子又は遺伝子産物を指すものである。   The target animals to be adjusted for circadian rhythm in the present invention include mammals including primates such as humans, pets such as dogs and cats, domestic animals such as cattle and horses, laboratory animals such as mice and rats, and homology. Birds and fish with high clock genes. Therefore, in the present invention, “Bmal1 gene” refers to a gene or gene product derived from mammals including humans, birds and fish.

6.概日リズム障害改善剤及び概日リズム障害に起因する疾患の予防及び治療用医薬組成物
上記リコリン類、リコリシジノール類等のヒガンバナ科植物アルカロイドもしくはその薬理学的に許容しうる塩ならびに摂取した生体内において容易に転換されるエステル型の前駆体は、いずれも概日リズム障害改善剤として用いることができる。本発明に用いられる薬理学的に許容しうる塩としては、酢酸塩、硫酸塩、塩酸塩等がある。
概日リズムの改善剤を有効成分として含み、適当な薬理学的に許容しうる担体または賦形剤などと組み合わせることで概日リズム障害に起因する疾患の予防及び治療用の医薬組成物とすることができる。
そのような疾患としては、睡眠相前進症候群(ASPS)、睡眠相後退症候群(DSPS)、非24時間睡眠相後退症候群、および季節性うつ病が典型的なものとして考えられる。
その他、内因性躁鬱病、周期性緊張症、周期性高血圧症、周期性潰瘍、不規則排卵周期、およびインスリン分泌の周期性異常に起因する糖尿病などの周期性・反復性障害や、脳血管型痴呆やアルツハイマー型痴呆における夜間徘徊のための治療用に、単独で又は治療に必要な他の化合物または医薬と一緒に使用する。
医薬組成物の投与形態は、全身投与であっても局所投与であってもよく、注射、膏薬など非経口投与でも、経口投与でもよく、周知の製剤化方法が適用できる。
用量は、患者の年齢、体重等により適宜調整することができ、投与形態により異なるが、例えば、リコリン塩酸塩などとして体重1kg当たり、0.001mg〜20mg、好ましくは、0.01mg〜10mg、より好ましくは0.1〜1.0mgであり、目的に応じて投与回数を決定することが好ましい。
6). Circadian rhythm disorder improving agent and pharmaceutical composition for prevention and treatment of diseases caused by circadian rhythm disorder: Amaryllidaceae alkaloids such as ricolins and licoricidinols or pharmacologically acceptable salts thereof, and ingested in vivo Any of the ester-type precursors easily converted in can be used as a circadian rhythm disorder improving agent. Examples of the pharmacologically acceptable salt used in the present invention include acetate, sulfate, hydrochloride and the like.
A pharmaceutical composition for the prevention and treatment of diseases caused by circadian rhythm disorders by containing a circadian rhythm improving agent as an active ingredient and combining with an appropriate pharmacologically acceptable carrier or excipient. be able to.
Such diseases are typically considered to be advanced sleep phase syndrome (ASPS), delayed sleep phase syndrome (DSPS), non-24 hour delayed sleep phase syndrome, and seasonal depression.
Other periodic and repetitive disorders such as endogenous manic depression, periodic tension, periodic hypertension, periodic ulcer, irregular ovulation cycle, and diabetes caused by periodic abnormalities of insulin secretion, and cerebral vascular types Used alone or in combination with other compounds or medicines required for treatment for the treatment of nocturnal epilepsy in dementia or Alzheimer type dementia.
The administration form of the pharmaceutical composition may be systemic administration or local administration, and may be parenteral administration such as injection, salve, or oral administration, and a well-known formulation method can be applied.
The dose can be appropriately adjusted depending on the age, weight, etc. of the patient, and varies depending on the administration form. For example, 0.001 mg to 20 mg, preferably 0.01 mg to 10 mg, per kg of body weight as ricolin hydrochloride, etc. Preferably it is 0.1-1.0 mg, and it is preferable to determine the frequency | count of administration according to the objective.

以下、実施例により本発明を具体的に説明するが、本発明は特にこれら実施例に限定されるものではない。
なお、本発明で使用されている技術的用語は、別途定義されていない限り、当業者により普通に理解されている意味を持つ。本発明の実施例で用いた遺伝子組換え技術、PCR法、その他の手法などの具体的な手順や条件は、特に断らない限り、Sambrook and Russell,Molecular Cloning:A Laboratory Manual,3rd Edition.Cold Spring Harbor Laboratory Press,Plainview,NY(2001)、Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989); D. M. Glover et al. ed., "DNA Cloning", 2nd ed., Vol. 1 to 4, (The Practical Approach Series), IRL Press, Oxford University Press (1995); Ausubel, F. M. et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y, 1995;日本生化学会編、「続生化学実験講座1、遺伝子研究法II」、東京化学同人 (1986);日本生化学会編、「新生化学実験講座2、核酸 III(組換えDNA技術)」、東京化学同人 (1992); R. Wu ed.,"Methods in Enzymology", Vol. 68 (Recombinant DNA), Academic Press, New York (1980); R. Wu et al. ed., "Methods in Enzymology", Vol. 100 (Recombinant DNA, PartB) & 101 (Recombinant DNA, Part C), Academic Press, New York (1983); R. Wu et al. ed., "Methods in Enzymology", Vol. 153 (Recombinant DNA, Part D), 154 (Recombinant DNA, Part E) & 155 (Recombinant DNA, Part F), Academic Press, New York (1987)などに記載の方法あるいはそこで引用された文献記載の方法またはそれらと実質的に同様な方法により行うことができる。
また、本発明で引用した先行文献又は特許出願明細書の記載内容は、本明細書の記載として組み入れるものとする。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not particularly limited to these examples.
Technical terms used in the present invention have meanings commonly understood by those skilled in the art unless otherwise defined. Unless otherwise specified, specific procedures and conditions such as genetic recombination techniques, PCR methods, and other techniques used in the examples of the present invention are as follows: Sambrook and Russell, Molecular Cloning: A Laboratory Manual, 3rd Edition. Harbor Laboratory Press, Plainview, NY (2001), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989); DM Glover et al. Ed., "DNA Cloning", 2nd ed., Vol. 1 to 4, (The Practical Approach Series), IRL Press, Oxford University Press (1995); Ausubel, FM et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, 1995; Chemistry Experiment Course 1, Genetic Research Method II ", Tokyo Chemical Doujin (1986); edited by The Japanese Biochemical Society," Shinsei Chemistry Experiment Course 2, Nucleic Acid III (Recombinant DNA Technology) ", Tokyo Chemical Doujin (1992); R. Wu ed., "Methods in Enzymology", Vol. 68 (Recombinant DNA), Academic Press, New York (1980); R. Wu et al. ed., "Methods in Enzymology", Vol. 100 (Recombinant DNA, PartB) & 101 (Recombinant DNA, Part C), Academic Press, New York (1983); R. Wu et al. Ed., "Methods in Enzymology", Vol. 153 (Recombinant DNA, Part D), 154 (Recombinant DNA, Part E) & 155 (Recombinant DNA, Part F), Academic Press, New York (1987), etc., or the method described in the literature cited therein or a method substantially similar thereto.
Moreover, the description content of the prior art literature or the patent application specification cited in the present invention is incorporated as the description of this specification.

(実施例1)Bmal1プロモーターにより転写されるルシフェラーゼ遺伝子を安定的に保持しているNIH3T3細胞株の樹立
Bmal1遺伝子のリズミックな発現に必要最小限のプロモーター領域として、「RORE」を含む-202〜+27の領域を選定し、プラスミドpGL3-dLuc (非特許文献14)のルシフェラーゼ遺伝子上流に、挿入してBmal1レポータープラスミドを作製した(図1)。
当該Bmal1レポータープラスミドと共に、抗生物質(Zeocin)耐性マーカー遺伝子を持つpTracer-CMV(Invitrogen社製)をNIH3T3細胞に導入し(非特許文献14記載の手法による。)、Bmal1プロモーターにより転写調節されるルシフェラーゼ遺伝子を安定的に保持する組換えNIH3T3細胞を取得した。さらに継代培養を繰り返し、安定に概日リズムを刻みながらルシフェラーゼを生産する形質転換NIH3T3細胞株を樹立し、樹立した細胞の中でルシフェラーゼ活性の概日リズムが最も安定的に観察されるクローンを選択した。
(Example 1) Establishment of NIH3T3 cell line stably holding a luciferase gene transcribed by the Bmal1 promoter
As a minimal promoter region necessary for rhythmic expression of the Bmal1 gene, a region of −202 to +27 including “RORE” is selected and inserted upstream of the luciferase gene of the plasmid pGL3-dLuc (Non-patent Document 14). A Bmal1 reporter plasmid was prepared (FIG. 1).
A pTracer-CMV (manufactured by Invitrogen) having an antibiotic (Zeocin) resistance marker gene together with the Bmal1 reporter plasmid is introduced into NIH3T3 cells (by the method described in Non-Patent Document 14), and luciferase transcriptionally regulated by the Bmal1 promoter. Recombinant NIH3T3 cells stably retaining the gene were obtained. Repeated subcultures to establish a transformed NIH3T3 cell line that produces luciferase with a stable circadian rhythm, and the clone in which the circadian rhythm of luciferase activity is most stably observed among the established cells Selected.

(実施例2)リコリンによる概日リズムの周期延長
実施例1で樹立したNIH3T3細胞株を約5×105個を35 mm培養ディッシュに播種した後、100 nMデキサメサゾンにより生体リズムをリセットして用いた。
樹立したNIH3T3細胞株の発光基質ルシフェリンを含む培地に被検物質を添加し、細胞培養を続けながら、リアルタイムでレポーター遺伝子による化学発光を約120時間測定した。発光は10分毎に1分間測定した。
次いで、2.5μMまたは10μMのリコリンを、発光基質ルシフェリンを含む培地に添加し、細胞培養を続けながら、リアルタイムでレポーター遺伝子による化学発光を10分毎に1分間測定した。120時間にわたり測定したところ、概日リズムの周期はコントロールと比較して2.5μM存在下にて約3.8時間、10μM存在下にて約8.6時間延長された。(図2)
(Example 2) Periodic extension of circadian rhythm by ricolin After seeding approximately 5 × 10 5 NIH3T3 cell lines established in Example 1 in a 35 mm culture dish, reset the biological rhythm with 100 nM dexamethasone. It was.
A test substance was added to a medium containing the luminescent substrate luciferin of the established NIH3T3 cell line, and chemiluminescence by the reporter gene was measured in real time for about 120 hours while continuing cell culture. Luminescence was measured for 1 minute every 10 minutes.
Subsequently, 2.5 μM or 10 μM ricolin was added to the medium containing the luminescent substrate luciferin, and chemiluminescence by the reporter gene was measured every 10 minutes for 1 minute in real time while continuing cell culture. When measured over 120 hours, the circadian rhythm period was extended by about 3.8 hours in the presence of 2.5 μM and about 8.6 hours in the presence of 10 μM compared to the control. (Figure 2)

(実施例3)概日リズム調節におけるタンパク質合成阻害剤の影響
典型的なタンパク質合成阻害剤シクロヘキサミド(CHX)0.1 nMを共存させて、実施例2と同様に、2.5μMまたは10μMのリコリンを培養培地に添加し、レポーター遺伝子による化学発光を120時間にわたり測定したところ、いずれの培養条件下においてもCHX添加によりレポーター遺伝子発現量の低下が観察された。(図示せず)しかしながら概日リズムの周期を観察したところ、CHX存在下においても実施例2の結果と全く同一のリコリンによる概日リズム周期延長の結果を得た。(図3)
(Example 3) Effect of protein synthesis inhibitor on circadian rhythm regulation As in Example 2, 2.5 μM or 10 μM ricolin was added in the presence of a typical protein synthesis inhibitor cyclohexamide (CHX) 0.1 nM. When added to the culture medium and chemiluminescence by the reporter gene was measured for 120 hours, a decrease in the expression level of the reporter gene was observed by addition of CHX under any culture condition. However, when the circadian rhythm cycle was observed, the result of circadian rhythm cycle extension by ricolin, exactly the same as the result of Example 2, was obtained even in the presence of CHX. (Figure 3)

(実施例4)リコリシジノールによる概日リズムの周期延長
0.1μMのリコリシジノールを培養培地に添加し、実施例2と同様にレポーター遺伝子による化学発光を110時間にわたり測定したところ、概日リズムの周期はコントロールと比較して0.05μM存在下にて約1.6時間、0.1μM存在下にて約3時間延長された。(図4)
以上の結果を得たことで、リコリン類およびリコリシジノール類により概日リズム周期を人為的に変化させることができ、しかもそれは、タンパク質合成阻害とは独立したメカニズムによるものであることが立証できた。
(Example 4) Period extension of circadian rhythm by licoricidinol
When 0.1 μM licoricidinol was added to the culture medium and chemiluminescence by the reporter gene was measured over 110 hours as in Example 2, the circadian rhythm period was about 1.6 hours in the presence of 0.05 μM compared to the control. For about 3 hours in the presence of 0.1 μM. (Fig. 4)
By obtaining the above results, it was proved that circadian rhythm cycle can be artificially changed by ricolins and licorcidinols, and that this is due to a mechanism independent of protein synthesis inhibition.

Claims (3)

下記式(1)もしくは式(2)で表されるヒガンバナ科植物アルカロイド、又はその薬理学的に許容しうる塩もしくはエステルを有効成分として含む、概日リズム周期延長剤;
<式(1)>
Figure 0005273731
(式中、R及びRは、それぞれ独立して−H、−COCH、−COC、−COC又は−COCHCH(OH)CHを表す。
<式(2)>
Figure 0005273731
(式中、R、R及びRはそれぞれ独立して−H又は−OHを表す。)。
A circadian rhythm cycle extender comprising an Amaryllidaceae alkaloid represented by the following formula (1) or formula (2), or a pharmacologically acceptable salt or ester thereof as an active ingredient;
<Formula (1)>
Figure 0005273731
(Wherein, R 1 and R 2 are each independently -H, -COCH 3, represents a -COC 2 H 5, -COC 3 H 7 or -COCH 2 CH (OH) CH 3 .
<Formula (2)>
Figure 0005273731
(In the formula, R 3 , R 4 and R 5 each independently represent —H or —OH).
下記式(1)もしくは式(2)で表されるヒガンバナ科植物アルカロイド、又はその薬理学的に許容しうる塩もしくはエステルを有効成分として含み、概日リズムの周期を延長させることを特徴とする、概日リズムの周期異常に起因した疾患の治療用又は予防用医薬組成物;
<式(1)>
Figure 0005273731
(式中、R及びRは、それぞれ独立して−H、−COCH、−COC、−COC又は−COCHCH(OH)CHを表す。
<式(2)>
Figure 0005273731
(式中、R、R及びRはそれぞれ独立して−H又は−OHを表す。)。
See containing Amaryllidaceae plant alkaloid represented by the following formula (1) or formula (2), or a pharmaceutically acceptable salt or ester as an active ingredient, and characterized by extending the period of circadian rhythms A pharmaceutical composition for treating or preventing a disease caused by abnormal circadian rhythm;
<Formula (1)>
Figure 0005273731
(Wherein, R 1 and R 2 are each independently -H, -COCH 3, represents a -COC 2 H 5, -COC 3 H 7 or -COCH 2 CH (OH) CH 3 .
<Formula (2)>
Figure 0005273731
(In the formula, R 3 , R 4 and R 5 each independently represent —H or —OH).
概日リズムの周期異常に起因した疾患が、内因性躁鬱病、周期性緊張症、周期性高血圧症、周期性潰瘍、不規則排卵周期、およびインスリン分泌の周期性異常に起因する糖尿病からなる周期性・反復性障害群から選択される疾患である請求項2に記載の医薬組成物。 Period caused by abnormal disease of the circadian rhythm, consisting of endogenous manic depression, periodic tension disease, periodic hypertension, cyclic ulcers, irregular ovulation cycle, and periodicity caused by abnormal diabetes of insulin secretion period The pharmaceutical composition according to claim 2, which is a disease selected from the group of sexual / repetitive disorders .
JP2009186257A 2009-08-11 2009-08-11 Biorhythm control agent Expired - Fee Related JP5273731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009186257A JP5273731B2 (en) 2009-08-11 2009-08-11 Biorhythm control agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186257A JP5273731B2 (en) 2009-08-11 2009-08-11 Biorhythm control agent

Publications (2)

Publication Number Publication Date
JP2011037755A JP2011037755A (en) 2011-02-24
JP5273731B2 true JP5273731B2 (en) 2013-08-28

Family

ID=43765939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186257A Expired - Fee Related JP5273731B2 (en) 2009-08-11 2009-08-11 Biorhythm control agent

Country Status (1)

Country Link
JP (1) JP5273731B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102746325B (en) * 2012-07-17 2014-03-26 中国科学院昆明植物研究所 Compound 1,10-N-decylene lycorine dibromo salt, pharmaceutical composition and application thereof in medicine
CN104961744B (en) * 2015-04-27 2018-07-17 吉首大学 A method of extracting lycorine from lycoris plants

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5558648B2 (en) * 1998-11-23 2014-07-23 デイビス、ボニー Administration formulation for acetylcholinesterase inhibitors
FR2792833B1 (en) * 1999-04-27 2002-09-06 Hoffmann La Roche USE OF N-ANISOYL-GAMMA-AMINOBUTYRIC ACID OR P-ANISIC ACID FOR THE PREPARATION OF A PHARMACEUTICAL COMPOSITION

Also Published As

Publication number Publication date
JP2011037755A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
Berry-Kravis et al. Targeted treatments for fragile X syndrome
Zeng et al. The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease
Horton et al. SREBPs: transcriptional mediators of lipid homeostasis
Dard et al. RAS signalling in energy metabolism and rare human diseases
Creus-Muncunill et al. Increased translation as a novel pathogenic mechanism in Huntington’s disease
Duan et al. Angiotensin-(1–7) analogue AVE0991 modulates astrocyte-mediated neuroinflammation via lncRNA SNHG14/miR-223-3p/NLRP3 pathway and offers neuroprotection in a transgenic mouse model of Alzheimer's disease
Hu et al. Targeting tissue-specific metabolic signaling pathways in aging: the promise and limitations
Nohara et al. Manipulating the circadian and sleep cycles to protect against metabolic disease
Monassier et al. Contribution of gene-modified mice and rats to our understanding of the cardiovascular pharmacology of serotonin
JP6918839B2 (en) Methods and pharmaceutical compositions for treating microbiome dysregulation associated with circadian clock disturbances
Miyake et al. Integrated stress response regulates GDF15 secretion from adipocytes, preferentially suppresses appetite for a high-fat diet and improves obesity
WO2020095971A1 (en) Method for removing senescent cell, and method for preparing senescent cell
Jagannath et al. The multiple roles of salt-inducible kinases in regulating physiology
JP5273731B2 (en) Biorhythm control agent
Zhang et al. LncRNA INPP5F ameliorates stress‐induced hypertension via the miR‐335/Cttn axis in rostral ventrolateral medulla
Kelly et al. Mammalian sleep genetics
US11077110B2 (en) Compositions and methods for treating and preventing metabolic disorders
Hwu et al. AADC deficiency: occurring in humans, modeled in rodents
Brenachot et al. The histone acetyltransferase MOF activates hypothalamic polysialylation to prevent diet-induced obesity in mice
Jiang et al. Prednisolone induces sleep disorders via inhibition of melatonin secretion by the circadian rhythm in zebrafish
JP5716153B2 (en) Reporter assay system for circadian rhythm control by DNA methylation of clock genes
Xu et al. MiR-375-3p mediates reduced pineal function in hypoxia-ischemia brain damage
JP5464410B2 (en) Biorhythm control agent
JP5697111B2 (en) Biorhythm control agent
JP5777125B2 (en) Biorhythm control agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5273731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees