JP5272883B2 - Generated water atomizer for fuel cell vehicles - Google Patents

Generated water atomizer for fuel cell vehicles Download PDF

Info

Publication number
JP5272883B2
JP5272883B2 JP2009114387A JP2009114387A JP5272883B2 JP 5272883 B2 JP5272883 B2 JP 5272883B2 JP 2009114387 A JP2009114387 A JP 2009114387A JP 2009114387 A JP2009114387 A JP 2009114387A JP 5272883 B2 JP5272883 B2 JP 5272883B2
Authority
JP
Japan
Prior art keywords
fuel cell
porous member
water
exhaust pipe
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009114387A
Other languages
Japanese (ja)
Other versions
JP2010260498A (en
Inventor
徹 昆沙賀
祐介 下簗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2009114387A priority Critical patent/JP5272883B2/en
Priority to US12/723,470 priority patent/US8697305B2/en
Publication of JP2010260498A publication Critical patent/JP2010260498A/en
Application granted granted Critical
Publication of JP5272883B2 publication Critical patent/JP5272883B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、燃料電池で生成された生成水を霧状にして車体の外方に排出するための燃料電池車両の生成水霧化装置に関する。   The present invention relates to a generated water atomizing device for a fuel cell vehicle for forming generated water generated by a fuel cell into a mist and discharging it to the outside of a vehicle body.

燃料電池車両は、例えば電力を生成する燃料電池と、電力生成時に燃料電池が生じる生成水を貯留し得るタンクと、タンク内の水を霧状にして車体の外方に排出する生成水霧化装置を有している(特許文献1、2参照)。生成水霧化装置は、生成水が液体の状態で排出されることが好ましくない場合に用いられる。例えば冷寒地や冷凍庫内において生成水が路面に滴下して凍結することが好ましくない場合や、屋内において生成水が床面に滴下して水溜りになることを避けたい場合などに用いられる。   A fuel cell vehicle is, for example, a fuel cell that generates electric power, a tank that can store generated water generated by the fuel cell when generating electric power, and generated water atomization that discharges water in the tank to the outside of the vehicle body in a mist form It has a device (see Patent Documents 1 and 2). The generated water atomizer is used when the generated water is not preferably discharged in a liquid state. For example, it is used when it is not preferable that the generated water drops on the road surface and freezes in a cold region or in a freezer, or when it is desired to prevent the generated water from dripping on the floor surface and becoming a water pool indoors.

従来、エンジンの吸気管に設けられる気化器も知られている(特許文献3、4参照)。気化器は、例えば吸気管に燃料を噴射する噴射管を有しており、噴射管の先端部に複数の孔を有する多孔部材が設けられている。燃料は多孔部材から吸気管に形成されたベンチュリ部に噴射されて、ベンチュリ部を流れる空気によって気化される。   Conventionally, a carburetor provided in an intake pipe of an engine is also known (see Patent Documents 3 and 4). The carburetor has, for example, an injection pipe for injecting fuel into an intake pipe, and a porous member having a plurality of holes is provided at the tip of the injection pipe. The fuel is injected from the porous member into the venturi formed in the intake pipe, and is vaporized by the air flowing through the venturi.

特開2007−141475号公報JP 2007-141475 A 特開2009−26498号公報JP 2009-26498 A 実開昭53−18418号公報Japanese Utility Model Publication No. 53-18418 実開昭56−8831号公報Japanese Utility Model Publication No. 56-8831

ところで燃料電池車両はエンジン車両に比べて騒音が少ない。そのため燃料電池車両では生成水霧化装置から発せられる騒音が問題になる場合がある。しかし特許文献1、2の生成水霧化装置には騒音対策のための構造が設けられていない。また特許文献3,4の気化装置は、エンジン車両に設けられているために騒音が問題になることがない。そこで本発明は、騒音が小さくかつ燃料電池車両に設けられる生成水霧化装置を提供することを目的とする。   By the way, the fuel cell vehicle has less noise than the engine vehicle. Therefore, in a fuel cell vehicle, noise generated from the generated water atomizer may be a problem. However, the generated water atomizers of Patent Documents 1 and 2 are not provided with a structure for noise countermeasures. Moreover, since the vaporization apparatus of patent documents 3 and 4 is provided in the engine vehicle, noise does not become a problem. SUMMARY OF THE INVENTION An object of the present invention is to provide a generated water atomizer that has low noise and is provided in a fuel cell vehicle.

前記課題を解決するために本発明は、各請求項に記載の通りの構成を備える燃料電池車両の生成水霧化装置であることを特徴とする。請求項1に記載の発明によると、管の内周径の一部がくびれているベンチュリ部を備える排気管と、生成水が貯留され得るタンク内の水をタンク側から排気管へ供給する導入管を有している。ベンチュリ部またはその近傍に位置する導入管の先端部に排気管内へ水を排出し得る複数の孔を備える多孔部材が設けられている。   In order to solve the above-mentioned problems, the present invention is a generated water atomization device for a fuel cell vehicle having the configuration as described in each claim. According to the first aspect of the present invention, an exhaust pipe having a venturi portion in which a part of the inner peripheral diameter of the pipe is constricted, and introduction of supplying water in the tank in which generated water can be stored from the tank side to the exhaust pipe. Has a tube. A porous member having a plurality of holes through which water can be discharged into the exhaust pipe is provided at the leading end of the introduction pipe located at or near the venturi.

したがって多孔部材の表面に排出された水は、ベンチュリ部において流速が速くなった排気管内の気体によって多孔部材から切り取られて霧状になる。また多孔部材は、複数の孔を有しているために表面が円滑でなく多孔部材の周りに乱流境界層が形成され得る。例えば図5に示すように円滑な外周面を有する管部材35の周りでは層流境界層が形成されるが、多孔部材の周りには乱流境界層が形成される。   Therefore, the water discharged to the surface of the porous member is cut out from the porous member by the gas in the exhaust pipe whose flow velocity is increased in the venturi portion and becomes a mist. Further, since the porous member has a plurality of holes, the surface is not smooth and a turbulent boundary layer can be formed around the porous member. For example, as shown in FIG. 5, a laminar boundary layer is formed around a pipe member 35 having a smooth outer peripheral surface, but a turbulent boundary layer is formed around a porous member.

乱流境界層では、層流境界層に比べて流体分子が盛んに衝突を繰り返して速度が平均化される。そのため多孔部材によって生じる乱流境界層では、層流境界層に比べて速度が平均化され、しかも逆流が生じ難くなって剥離が生じ難い。そして騒音の大きさ(音響パワー)は、一般に管内を流れる気体の流速の8乗に比例する。そのため排気管内を流れる気体の流量が同じであれば、流速の不均一が小さい程、騒音が小さくなる。そのため多孔部材によって形成される乱流境界層によって速度が平均化されかつ剥離の発生が抑制されることで騒音の発生が抑制され得る。   In the turbulent boundary layer, fluid molecules actively collide more frequently than in the laminar boundary layer, and the velocity is averaged. Therefore, in the turbulent boundary layer generated by the porous member, the velocity is averaged compared to the laminar boundary layer, and the backflow is less likely to occur and separation is unlikely to occur. The magnitude of the noise (sound power) is generally proportional to the eighth power of the flow velocity of the gas flowing in the pipe. Therefore, if the flow rate of the gas flowing in the exhaust pipe is the same, the noise becomes smaller as the non-uniformity in the flow velocity is smaller. Therefore, the speed is averaged by the turbulent boundary layer formed by the porous member, and the generation of noise can be suppressed by suppressing the occurrence of separation.

請求項2に記載の発明によると、多孔部材は、金属焼結体である。したがって例えば金属管に複数の打ち抜き加工を施したパンチングメタルや、複数のスリットを形成した金属管を引き伸ばすエクスパンドメタルに比べて複数の小さな孔が簡易に形成され得る。そして孔の径を小さくすることで多孔部材の表面へ排出される水の径が小さくなり、該水が霧状にされやすい。また孔を多く形成することで多孔部材の表面の凹凸が多くなり、乱流境界層が形成され易くなる。これにより騒音の発生が強く抑制され得る。   According to invention of Claim 2, a porous member is a metal sintered compact. Accordingly, for example, a plurality of small holes can be easily formed as compared with a punching metal obtained by punching a metal pipe and a metal pipe formed with a plurality of slits. And the diameter of the water discharged | emitted to the surface of a porous member becomes small by making the diameter of a hole small, and this water is easy to make it mist-like. Moreover, by forming many holes, the irregularities on the surface of the porous member increase, and a turbulent boundary layer is easily formed. Thereby, generation | occurrence | production of noise can be suppressed strongly.

請求項3に記載の発明によると、導入管の先端部が排気管の内周面近傍に位置している。導入管の先端部から多孔部材が排気管内に突出している。したがって排気管には、導入管ではなく多孔部材が突出している。そのため排気管内に突出する多孔部材の略全体において乱流境界層が形成され、これによって騒音の発生を強く抑制することができる。   According to the invention described in claim 3, the leading end portion of the introduction pipe is located in the vicinity of the inner peripheral surface of the exhaust pipe. A porous member projects into the exhaust pipe from the tip of the introduction pipe. Therefore, not the introduction pipe but the porous member protrudes from the exhaust pipe. For this reason, a turbulent boundary layer is formed in substantially the entire porous member protruding into the exhaust pipe, whereby the generation of noise can be strongly suppressed.

請求項に記載の発明によると、多孔部材は、排気管内の気体の流れに対向する上流領域とその反対側の下流領域を有している。多孔部材には下流領域を覆うカバーが設けられている。ところで多孔部材から排出される水は、気体の流速が速いほど霧状にされる量が多くなる。そして多孔部材の周りを流れる気体の流速は、上流領域周りで速く、下流領域周りで遅い。そのため多孔部材の下流領域において水が霧状にされずに液体のまま排気管に排出されるおそれがある。これに対して多孔部材の下流領域にはカバーが設けられている。そのため下流領域において水が液体のまま排気管に排出されることが抑制され得る。

According to the first aspect of the present invention, the porous member has an upstream region facing the gas flow in the exhaust pipe and a downstream region opposite to the upstream region. The porous member is provided with a cover that covers the downstream region. By the way, the amount of water discharged from the porous member is increased as the gas flow rate increases. The flow velocity of the gas flowing around the porous member is fast around the upstream region and slow around the downstream region. Therefore, there is a possibility that the water is not atomized in the downstream region of the porous member and is discharged into the exhaust pipe as a liquid. On the other hand, a cover is provided in the downstream region of the porous member. Therefore, it can be suppressed that water is discharged into the exhaust pipe as a liquid in the downstream region.

フォークリフトの側面図である。It is a side view of a forklift. 燃料電池システムの構成図である。It is a block diagram of a fuel cell system. 生成水霧化装置の構成部品の断面図である。It is sectional drawing of the component of a production | generation water atomizer. 多孔部材周りを流れる気体の様子を示す排気管内の概略上面図である。It is a schematic top view in an exhaust pipe which shows the mode of the gas which flows around a porous member. 比較例の金属管周りを流れる気体の様子を示す排気管内の概略上面図である。It is a schematic top view in the exhaust pipe which shows the mode of the gas which flows around the metal pipe of a comparative example. 他の実施形態にかかる多孔部材とカバーの上面図である。It is a top view of the porous member and cover concerning other embodiments. 図6のVII―VII線断面矢視図である。FIG. 7 is a cross-sectional view taken along line VII-VII in FIG. 6. 他の実施形態にかかる多孔部材とカバーの上面図である。It is a top view of the porous member and cover concerning other embodiments. 図8のIX―IX線断面矢視図である。FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG. 8. 他の実施形態にかかる多孔部材と導入管の上面図である。It is a top view of a porous member concerning other embodiments and an introduction tube. 図10のXI―XI線断面矢視図である。It is the XI-XI sectional view taken on the line of FIG. 他の実施形態にかかる生成水霧化装置の概略図である。It is the schematic of the produced | generated water atomization apparatus concerning other embodiment.

本発明の一つの実施形態を図1〜4にしたがって説明する。図1に示すように車両10は、産業車両の一つである屋内などで使用されるフォークリフトであって荷役装置12を有している。荷役装置12は、車体11の前部に立設されたマスト12aと、マスト12aに昇降可能に取付けられたリフトブラケット12bと、リフトブラケット12bに取付けられたフォーク12cを有している。フォーク12cとリフトブラケット12bは、マスト12aに装着されたリフトシリンダ12dとマスト12aによって昇降され得る。   One embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, a vehicle 10 is a forklift that is used for indoor use, which is one of industrial vehicles, and includes a cargo handling device 12. The cargo handling device 12 includes a mast 12a erected on the front portion of the vehicle body 11, a lift bracket 12b attached to the mast 12a so as to be movable up and down, and a fork 12c attached to the lift bracket 12b. The fork 12c and the lift bracket 12b can be moved up and down by a lift cylinder 12d and a mast 12a attached to the mast 12a.

図1に示すように車両10は、車体11の前下部に駆動輪(前輪)13を有し、車体11の後下部に後輪14を有している。車体11の前側内部には駆動輪13に動力を付与する走行用モータ15が設けられている。車体11の後側内部には、燃料電池21と水素タンク22などを備える燃料電池システム20が設けられている。燃料電池21が生成した電力は、リフトシリンダ12d等の油圧源になる油圧ポンプ(図示省略)と走行用モータ15などに供給される。   As shown in FIG. 1, the vehicle 10 has drive wheels (front wheels) 13 at the front lower portion of the vehicle body 11 and rear wheels 14 at the rear lower portion of the vehicle body 11. A traveling motor 15 that applies power to the drive wheels 13 is provided inside the front side of the vehicle body 11. A fuel cell system 20 including a fuel cell 21 and a hydrogen tank 22 is provided inside the rear side of the vehicle body 11. The electric power generated by the fuel cell 21 is supplied to a hydraulic pump (not shown) serving as a hydraulic pressure source such as the lift cylinder 12d, the traveling motor 15, and the like.

燃料電池システム20は、図2に示すように燃料電池21と、生成水を貯留し得るタンク26と、タンク26内の水を霧状にする生成水霧化装置(気化器)1を有している。燃料電池21は、例えば固体高分子型であって、アノード側に管路27を介して水素タンク22が接続される。これによりアノード側に水素タンク22から水素が供給される。燃料電池21のカソード側には管路29を介して加湿器24が接続され、加湿器24には管路28を介してコンプレッサ23が接続される。したがってコンプレッサ23によって酸化剤ガスである酸素を含む空気が加圧されて加湿器24に供給される。そして加湿器24において酸素に水分が供給され、該酸素を含む空気が燃料電池21のカソード側に供給される。   As shown in FIG. 2, the fuel cell system 20 includes a fuel cell 21, a tank 26 that can store generated water, and a generated water atomizer (vaporizer) 1 that atomizes the water in the tank 26. ing. The fuel cell 21 is, for example, a solid polymer type, and a hydrogen tank 22 is connected to the anode side via a conduit 27. Thereby, hydrogen is supplied from the hydrogen tank 22 to the anode side. A humidifier 24 is connected to the cathode side of the fuel cell 21 via a conduit 29, and a compressor 23 is connected to the humidifier 24 via a conduit 28. Therefore, the air containing oxygen which is the oxidant gas is pressurized by the compressor 23 and supplied to the humidifier 24. Then, moisture is supplied to oxygen in the humidifier 24, and air containing the oxygen is supplied to the cathode side of the fuel cell 21.

燃料電池21のアノードに供給された水素分子は、水素イオンになって電解質膜に含まれる水分を伴ってカソード側へ移動する。カソードに供給された空気中の酸素分子は、酸素イオンになって水素イオンと結合して生成水になる。生成水は、カソードに供給された空気の排気とともに管路30を介して加湿器24に供給され、一部が加湿器24にて抽出されて再利用される。残りの生成水は、排気とともに管路31を介して希釈器25に排出される(カソード側の排気)。   Hydrogen molecules supplied to the anode of the fuel cell 21 become hydrogen ions and move to the cathode side along with moisture contained in the electrolyte membrane. Oxygen molecules in the air supplied to the cathode become oxygen ions and combine with hydrogen ions to form product water. The generated water is supplied to the humidifier 24 through the conduit 30 together with the exhaust of the air supplied to the cathode, and a part of the generated water is extracted by the humidifier 24 and reused. The remaining produced water is discharged to the diluter 25 through the pipe line 31 together with the exhaust (cathode side exhaust).

燃料電池21のカソード側の水や窒素の一部は、逆拡散してアノード側へ移動する。そしてアノード側でこれらの濃度が高くなると発電効率が低下する。これを抑制するためにアノード側には図2に示すようにパージガス用管路32が接続されている。管路32に設けられた開閉弁33は、燃料電池21が所定時間稼動を継続した時点で図示省略の制御装置によって制御されて開放される。これによってアノード側に溜まった水分と窒素が水素ガスと共にパージガス用管路32を介して希釈器25側へ排出される(アノード側の排気)。   A part of the water or nitrogen on the cathode side of the fuel cell 21 is reversely diffused and moves to the anode side. When these concentrations increase on the anode side, the power generation efficiency decreases. In order to suppress this, a purge gas pipe 32 is connected to the anode side as shown in FIG. The on-off valve 33 provided in the pipe line 32 is controlled and opened by a control device (not shown) when the fuel cell 21 continues to operate for a predetermined time. As a result, moisture and nitrogen accumulated on the anode side are discharged together with hydrogen gas to the diluter 25 side through the purge gas pipe 32 (exhaust on the anode side).

希釈器25には、図2に示すように管路31,32を介して燃料電池21のカソード側の排気とアノード側の排気が供給される。これら排気は、比重差によって希釈器25内において気体と液体(生成水)に分離され、液体になった生成水はタンク26内に落下して貯留される。また希釈器25内では、アノード側の排気に含まれる水素の濃度がカソード側の排気に含まれる空気によって希釈される。そして希釈器25内の気体は、希釈器25の排気口に接続された排気管4へ排出される。   As shown in FIG. 2, the exhaust on the cathode side and the exhaust on the anode side of the fuel cell 21 are supplied to the diluter 25 via pipes 31 and 32. These exhaust gases are separated into gas and liquid (product water) in the diluter 25 due to the difference in specific gravity, and the product water that has become liquid falls into the tank 26 and is stored. In the diluter 25, the concentration of hydrogen contained in the exhaust on the anode side is diluted with the air contained in the exhaust on the cathode side. The gas in the diluter 25 is discharged to the exhaust pipe 4 connected to the exhaust port of the diluter 25.

排気管4は、図3に示すように入口側管部4aとベンチュリ部4bと広がり管部4cを一体に有している。入口側管部4aは、円筒状で全長において内外周径が略同じであり一端部が希釈器25に接続される。ベンチュリ部4bは、管の内周径の一部がくびれた部分であって入口側管部4aよりも内周径が小さい。広がり管部4cは、ベンチュリ部4bから出口部4c1に向けて徐々に内周径が大きくなっている。したがって排気管4内を流れる気体は、ベンチュリ部4b内またはベンチュリ部4bの近傍において最も速くなる。   As shown in FIG. 3, the exhaust pipe 4 has an inlet side pipe portion 4a, a venturi portion 4b, and a spread pipe portion 4c. The inlet side pipe portion 4 a is cylindrical and has substantially the same inner and outer peripheral diameters in the entire length, and one end thereof is connected to the diluter 25. The venturi portion 4b is a portion in which a part of the inner peripheral diameter of the tube is constricted, and the inner peripheral diameter is smaller than that of the inlet side tube portion 4a. The expanding pipe portion 4c has an inner diameter that gradually increases from the venturi portion 4b toward the outlet portion 4c1. Therefore, the gas flowing in the exhaust pipe 4 becomes the fastest in the venturi portion 4b or in the vicinity of the venturi portion 4b.

図2,3に示すように生成水霧化装置1は、導入管2と多孔部材3を有している。導入管2は、タンク26から排気管4まで延出する第一部2aと、排気管4のベンチュリ部4bの外周面から内周面に貫通する第二部2bを有している。第二部2bの先端部2cは、ベンチュリ部4bの内周面の近傍に位置している。   As shown in FIGS. 2 and 3, the generated water atomizer 1 includes an introduction pipe 2 and a porous member 3. The introduction pipe 2 has a first part 2 a extending from the tank 26 to the exhaust pipe 4 and a second part 2 b penetrating from the outer peripheral surface of the venturi part 4 b of the exhaust pipe 4 to the inner peripheral surface. The tip 2c of the second part 2b is located in the vicinity of the inner peripheral surface of the venturi 4b.

多孔部材3は、図3に示すように導入管2の第二部2bの先端部2cに装着されており、排気管4内に突出している。多孔部材3は、多孔質の金属焼結体である。金属焼結体は、金属の粉末を加圧成形して融点以下の温度にて熱処理することで粉末粒子が結合されて成形される。したがって多孔部材3は、粉末粒子間にて形成される複数の孔を有しており、多孔部材3の内側から孔を通って水が外表面に排出され得る。孔の直径は、小さく例えば50〜200μmである。   As shown in FIG. 3, the porous member 3 is attached to the distal end portion 2 c of the second portion 2 b of the introduction pipe 2 and protrudes into the exhaust pipe 4. The porous member 3 is a porous metal sintered body. The metal sintered body is formed by press-molding metal powder and heat-treating it at a temperature below the melting point to combine the powder particles. Therefore, the porous member 3 has a plurality of holes formed between the powder particles, and water can be discharged from the inside of the porous member 3 to the outer surface through the holes. The diameter of the hole is small, for example, 50 to 200 μm.

多孔部材3は、図3,4に示すように略筒状であって、円筒状の側壁部3aと側壁部3aの先端開口部を覆う蓋部3bを有している。側壁部3aは、ベンチュリ部4bの内周面に略垂直に立設している。蓋部3bは、円盤状であってベンチュリ部4bの断面中心線4dの近傍に位置している。   As shown in FIGS. 3 and 4, the porous member 3 has a substantially cylindrical shape, and includes a cylindrical side wall 3a and a lid 3b that covers a front end opening of the side wall 3a. The side wall portion 3a is erected substantially perpendicularly to the inner peripheral surface of the venturi portion 4b. The lid 3b has a disc shape and is located in the vicinity of the cross-sectional center line 4d of the venturi 4b.

図2,3に示すようにタンク26内の気圧は燃料電池21からの排気によって高くなり、排気管4内の圧力は圧力損失によってタンク26内の圧力よりも低くなる。またベンチュリ部4b内の圧力は、排気管4を流れる気体によって入口側管部4a内の圧力よりも低くなる。したがって前記圧力損失による圧力差またはベンチュリ部4bにおける圧力低下を利用してタンク26に貯留された水が導入管2に吸い上げられ、多孔部材3に供給される。   As shown in FIGS. 2 and 3, the atmospheric pressure in the tank 26 becomes higher due to exhaust from the fuel cell 21, and the pressure in the exhaust pipe 4 becomes lower than the pressure in the tank 26 due to pressure loss. Further, the pressure in the venturi portion 4 b is lower than the pressure in the inlet side pipe portion 4 a by the gas flowing through the exhaust pipe 4. Therefore, the water stored in the tank 26 is sucked into the introduction pipe 2 by using the pressure difference due to the pressure loss or the pressure drop in the venturi portion 4 b and supplied to the porous member 3.

多孔部材3に供給された水は、複数の孔を通って多孔部材3の内側から外表面に排出される(図3,4参照)。多孔部材3の外表面に排出された水は、排気管4内を流れる排気によって切り取られて霧状になる。排気管4内を流れる排気は、ベンチュリ部4bまたはその近傍において最も流速が速くなるため、多孔部材3の外表面に排出された水は確実に霧状にされ得る。霧状になった水は、排気とともに排気管4から車体11(図1参照)の外の大気中へ排出される。   The water supplied to the porous member 3 is discharged from the inside of the porous member 3 to the outer surface through a plurality of holes (see FIGS. 3 and 4). The water discharged to the outer surface of the porous member 3 is cut out by the exhaust gas flowing through the exhaust pipe 4 and becomes a mist. Since the exhaust gas flowing in the exhaust pipe 4 has the highest flow velocity at or near the venturi portion 4b, the water discharged to the outer surface of the porous member 3 can be reliably atomized. The water in the form of mist is discharged from the exhaust pipe 4 into the atmosphere outside the vehicle body 11 (see FIG. 1) together with the exhaust gas.

以上のように生成水霧化装置1は、図3に示すように排気管4と導入管2を有している。ベンチュリ部4bに位置する導入管2の先端部2cに排気管4内へ水を排出し得る複数の孔を備える多孔部材3が設けられている。   As described above, the generated water atomizer 1 includes the exhaust pipe 4 and the introduction pipe 2 as shown in FIG. A porous member 3 having a plurality of holes through which water can be discharged into the exhaust pipe 4 is provided at the distal end portion 2c of the introduction pipe 2 located in the venturi section 4b.

したがって多孔部材3の表面に排出された水は、ベンチュリ部4bにおいて流速が速くなった排気管4内の気体によって多孔部材3から切り取られて霧状になる。また多孔部材3は、複数の孔を有しているために表面が円滑でなく多孔部材3の周りに乱流境界層が形成され得る。例えば図5に示すように円滑な外周面を有する管部材35の周りでは層流境界層が形成されるが、図4に示すように多孔部材3の周りには乱流境界層が形成される。   Therefore, the water discharged to the surface of the porous member 3 is cut out from the porous member 3 by the gas in the exhaust pipe 4 whose flow velocity is increased in the venturi portion 4b and becomes a mist. Moreover, since the porous member 3 has a plurality of holes, the surface is not smooth, and a turbulent boundary layer can be formed around the porous member 3. For example, a laminar boundary layer is formed around a pipe member 35 having a smooth outer peripheral surface as shown in FIG. 5, but a turbulent boundary layer is formed around a porous member 3 as shown in FIG. .

乱流境界層では、層流境界層に比べて流体分子が盛んに衝突を繰り返して速度が平均化される。そのため多孔部材3によって生じる乱流境界層では、層流境界層に比べて速度が平均化され、しかも逆流が生じ難くなって剥離が生じ難い。そして騒音の大きさ(音響パワー)は、一般に管内を流れる気体の流速の8乗に比例する。そのため排気管内を流れる気体の流量が同じであれば、流速の不均一が小さい程、騒音が小さくなる。そのため多孔部材3によって形成される乱流境界層によって速度が平均化されかつ剥離の発生が抑制されることで騒音の発生が抑制され得る。   In the turbulent boundary layer, fluid molecules actively collide more frequently than in the laminar boundary layer, and the velocity is averaged. Therefore, in the turbulent boundary layer generated by the porous member 3, the velocity is averaged compared to the laminar boundary layer, and the backflow is less likely to occur and separation is unlikely to occur. The magnitude of the noise (sound power) is generally proportional to the eighth power of the flow velocity of the gas flowing in the pipe. Therefore, if the flow rate of the gas flowing in the exhaust pipe is the same, the noise becomes smaller as the non-uniformity in the flow velocity is smaller. Therefore, the speed is averaged by the turbulent boundary layer formed by the porous member 3, and the generation of noise can be suppressed by suppressing the occurrence of separation.

また多孔部材3は、複数の孔を有している。そのため孔を一つのみ有する従来のノズル等に比べて孔が詰まって水が噴射されなくなるおそれが小さい。したがって生成水霧化装置1の耐久性が向上する。   The porous member 3 has a plurality of holes. For this reason, the possibility of clogging the holes and preventing water from being ejected is small compared to a conventional nozzle or the like having only one hole. Therefore, the durability of the generated water atomizer 1 is improved.

また多孔部材3は、図3に示すように金属焼結体である。したがって例えば金属管に複数の打ち抜き加工を施したパンチングメタルや、複数のスリットを形成した金属管を引き伸ばすエクスパンドメタルに比べて複数の小さな孔が簡易に形成され得る。そして孔の径を小さくすることで多孔部材3の表面へ排出される水の径が小さくなり、該水が霧状にされやすい。また孔を多く形成することで多孔部材3の表面の凹凸が多くなり、乱流境界層が形成され易くなる。これにより騒音の発生が強く抑制され得る。   The porous member 3 is a sintered metal as shown in FIG. Accordingly, for example, a plurality of small holes can be easily formed as compared with a punching metal obtained by punching a metal pipe and a metal pipe formed with a plurality of slits. And the diameter of the water discharged | emitted to the surface of the porous member 3 becomes small by making the diameter of a hole small, and this water is easy to make it mist-like. Further, by forming a large number of holes, the surface of the porous member 3 becomes uneven, and a turbulent boundary layer is easily formed. Thereby, generation | occurrence | production of noise can be suppressed strongly.

また図3に示すように導入管2の先端部2cが排気管4の内周面近傍に位置している。導入管2の先端部2cから多孔部材3が排気管4内に突出している。したがって排気管4には、導入管2ではなく多孔部材3が突出している。そのため排気管4内に突出する多孔部材3の略全体において乱流境界層が形成され、これによって騒音の発生を強く抑制することができる。   As shown in FIG. 3, the leading end 2 c of the introduction pipe 2 is located in the vicinity of the inner peripheral surface of the exhaust pipe 4. A porous member 3 projects into the exhaust pipe 4 from the distal end portion 2 c of the introduction pipe 2. Therefore, not the introduction pipe 2 but the porous member 3 protrudes from the exhaust pipe 4. Therefore, a turbulent boundary layer is formed in substantially the entire porous member 3 protruding into the exhaust pipe 4, thereby making it possible to strongly suppress the generation of noise.

(他の実施の形態)
本発明は、上記実施の形態に限定されず以下の形態等であっても良い。例えばさらに図6,7に示すカバー5を有していても良い。カバー5は、例えば金属製であって多孔部材3の側壁部3aの一部を覆うことで多孔部材3から水が排出されることを防止する。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and may be the following form. For example, you may have further the cover 5 shown in FIG. The cover 5 is made of, for example, metal, and prevents water from being discharged from the porous member 3 by covering a part of the side wall portion 3 a of the porous member 3.

図6,7に示すように多孔部材3の側壁部3aは、排気管4を流れる気体に対して対向する上流領域3a1と、その反対側の下流領域3a2を有している。上流領域3a1と下流領域3a2は、それぞれ半円弧状である。カバー5は、多孔部材3の下流領域3a2を覆うため半円弧状であってかつ、下流領域3a2の軸方向基端部から先端部まで延出している。   As shown in FIGS. 6 and 7, the side wall 3 a of the porous member 3 has an upstream region 3 a 1 facing the gas flowing through the exhaust pipe 4 and a downstream region 3 a 2 on the opposite side. The upstream region 3a1 and the downstream region 3a2 each have a semicircular arc shape. The cover 5 has a semicircular arc shape so as to cover the downstream region 3a2 of the porous member 3, and extends from the axially proximal end portion to the distal end portion of the downstream region 3a2.

以上のように多孔部材3には、図6,7に示すように下流領域3a2を覆うカバー5が設けられている。ところで多孔部材3から排出される水は、気体の流速が速いほど霧状にされる量が多くなる。そして多孔部材3の周りを流れる気体の流速は、上流領域3a1周りで速く、下流領域3a2周りで遅い。そのため多孔部材3の下流領域3a2において水が霧状にされずに液体のまま排気管4に排出されるおそれがある。これに対して多孔部材3の下流領域3a2にはカバー5が設けられている。そのため下流領域3a2において水が液体のまま排気管4に排出されることが抑制され得る。   As described above, the porous member 3 is provided with the cover 5 that covers the downstream region 3a2 as shown in FIGS. By the way, the amount of water discharged from the porous member 3 is increased as the gas flow rate increases. The flow velocity of the gas flowing around the porous member 3 is fast around the upstream region 3a1 and slow around the downstream region 3a2. Therefore, in the downstream area 3a2 of the porous member 3, water may be discharged to the exhaust pipe 4 as a liquid without being atomized. On the other hand, a cover 5 is provided in the downstream region 3 a 2 of the porous member 3. Therefore, it can be suppressed that water is discharged to the exhaust pipe 4 in the downstream region 3a2 in the liquid state.

図6,7に示す多孔部材3には、カバー5が設けられている。しかし多孔部材3に図8,9に示すカバー6が設けられていても良い。図8,9に示すようにカバー6は、円筒状であって、多孔部材3の側壁部3aの全周を覆い、かつ側壁部3aの軸方向基端部から先端部まで延出している。したがってカバー6によって側壁部3aの上流領域3a1と下流領域3a2が覆われ、水は多孔部材3の蓋部3bから排気管4内へ排出され得る。   The porous member 3 shown in FIGS. 6 and 7 is provided with a cover 5. However, the porous member 3 may be provided with a cover 6 shown in FIGS. As shown in FIGS. 8 and 9, the cover 6 is cylindrical, covers the entire circumference of the side wall 3a of the porous member 3, and extends from the axial base end of the side wall 3a to the tip. Therefore, the upstream region 3 a 1 and the downstream region 3 a 2 of the side wall 3 a are covered by the cover 6, and water can be discharged into the exhaust pipe 4 from the lid 3 b of the porous member 3.

図3に示す生成水霧化装置1は、導入管2と多孔部材3を有している。しかし生成水霧化装置が図10,11に示す導入管2と多孔部材7を有していても良い。導入管2は、図11に示すようにベンチュリ部4bの外周面から内周面に貫通する第二部2bと、第二部2bからベンチュリ部4bの内側に突出する第三部2dを有している。第三部2dは、ベンチュリ部4bの内周面からベンチュリ部4bの断面中心線の近傍まで延出している。第三部2dの先端部2eには、先端部2eの開口部を覆う円盤状の多孔部材7が設けられている。したがって導入管2を通った水は、多孔部材7から排気管4内へ排出される。   The generated water atomizer 1 shown in FIG. 3 has an introduction pipe 2 and a porous member 3. However, the generated water atomizer may have the introduction pipe 2 and the porous member 7 shown in FIGS. As shown in FIG. 11, the introduction pipe 2 has a second portion 2b that penetrates from the outer peripheral surface of the venturi portion 4b to the inner peripheral surface, and a third portion 2d that protrudes from the second portion 2b to the inside of the venturi portion 4b. ing. The third portion 2d extends from the inner peripheral surface of the venturi portion 4b to the vicinity of the cross-sectional center line of the venturi portion 4b. A disc-shaped porous member 7 that covers the opening of the tip 2e is provided at the tip 2e of the third portion 2d. Therefore, the water that has passed through the introduction pipe 2 is discharged from the porous member 7 into the exhaust pipe 4.

図3に示す生成水霧化装置1は、導入管2と多孔部材3を有している。しかし生成水霧化装置が図12に示す導入管8と多孔部材9を有していても良い。導入管8は、タンク26から排気管4へ延出する第一部8aと、排気管4内を延出する第二部8bを有している。第一部8aの下端部は、タンク26に貯留された水の水面よりも下側に位置している。第二部8bは、排気管4の入口側管部4aの端部からベンチュリ部4bに向けて延出している。第二部8bの先端部は、ベンチュリ部4bの近傍に位置しており、その先端部に図3に示す多孔部材3と同様に形成された多孔部材9が装着されている。   The generated water atomizer 1 shown in FIG. 3 has an introduction pipe 2 and a porous member 3. However, the generated water atomizer may have the introduction pipe 8 and the porous member 9 shown in FIG. The introduction pipe 8 has a first part 8 a extending from the tank 26 to the exhaust pipe 4 and a second part 8 b extending inside the exhaust pipe 4. The lower end portion of the first part 8 a is located below the water surface of the water stored in the tank 26. The second part 8b extends from the end of the inlet side pipe part 4a of the exhaust pipe 4 toward the venturi part 4b. The distal end portion of the second portion 8b is located in the vicinity of the venturi portion 4b, and a porous member 9 formed in the same manner as the porous member 3 shown in FIG.

図3に示す多孔部材3は、金属焼結体であるが、パンチングメタルまたはエクスパンドメタルから成形されても良い。パンチングメタルは、金属管に複数の孔を打ち抜き加工によって形成される。エクスパンドメタルは、金属管に複数のスリットを形成し、該金属管を引き伸ばすことでスリットが開口して複数の孔が形成される。   The porous member 3 shown in FIG. 3 is a metal sintered body, but may be formed from a punching metal or an expanded metal. The punching metal is formed by punching a plurality of holes in a metal tube. The expanded metal forms a plurality of slits by forming a plurality of slits in a metal tube and stretching the metal tube to open the slits.

図3に示す導入管2の先端部2cは、排気管4の内周面近傍に位置しており、先端部2cに多孔部材3が取付けられている。しかし導入管の先端部が排気管内に突出しており、その先端部の一部側面に開口部が形成され、その開口部に多孔部材が設けられても良い。図2,3に示す排気管4は燃料電池21の排気側に接続されている。しかし排気管4にコンプレッサなどが接続され、コンプレッサなどによって排気管4に気体が供給されても良い。図1に示す車両10は、産業車両であるが自動車やバスなどの車両であっても良い。   The distal end portion 2c of the introduction pipe 2 shown in FIG. 3 is located in the vicinity of the inner peripheral surface of the exhaust pipe 4, and the porous member 3 is attached to the distal end portion 2c. However, the leading end of the introduction pipe may protrude into the exhaust pipe, an opening may be formed on a part of the tip, and a porous member may be provided at the opening. The exhaust pipe 4 shown in FIGS. 2 and 3 is connected to the exhaust side of the fuel cell 21. However, a compressor or the like may be connected to the exhaust pipe 4, and gas may be supplied to the exhaust pipe 4 by the compressor or the like. The vehicle 10 shown in FIG. 1 is an industrial vehicle, but may be a vehicle such as an automobile or a bus.

1…生成水霧化装置
2,8…導入管
2c,2e…先端部
3,7,9…多孔部材
3a…側壁部
3a1…上流領域
3a2…下流領域
3b…蓋部
4…排気管
4b…ベンチュリ部
5,6…カバー
10…車両
12…荷役装置
20…燃料電池システム
21…燃料電池
22…水素タンク
23…コンプレッサ
24…加湿器
25…希釈器
26…タンク
DESCRIPTION OF SYMBOLS 1 ... Generated water atomizer 2, 8 ... Introducing pipe 2c, 2e ... Tip part 3, 7, 9 ... Porous member 3a ... Side wall part 3a1 ... Upstream area | region 3a2 ... Downstream area | region 3b ... Cover part 4 ... Exhaust pipe 4b ... Venturi Parts 5, 6 ... cover 10 ... vehicle 12 ... cargo handling device 20 ... fuel cell system 21 ... fuel cell 22 ... hydrogen tank 23 ... compressor 24 ... humidifier 25 ... diluter 26 ... tank

Claims (4)

燃料電池で生成された生成水を霧状にして車体の外方に排出するための燃料電池車両の生成水霧化装置であって、
管の内周径の一部がくびれているベンチュリ部を備える排気管と、前記生成水が貯留され得るタンク内の水を前記タンク側から前記排気管へ供給する導入管を有し、
前記ベンチュリ部またはその近傍に位置する前記導入管の先端部に前記排気管内へ水を排出し得る複数の孔を備える多孔部材が設けられ
前記多孔部材は、前記排気管内の気体の流れに対向する上流領域とその反対側の下流領域を有し、
前記多孔部材には前記下流領域を覆うカバーが設けられていることを特徴とする燃料電池車両の生成水霧化装置。
A generated water atomization device for a fuel cell vehicle for making the generated water generated by the fuel cell into a mist and discharging it to the outside of the vehicle body,
An exhaust pipe having a venturi portion in which a part of the inner peripheral diameter of the pipe is constricted, and an introduction pipe for supplying water in the tank in which the generated water can be stored from the tank side to the exhaust pipe,
A porous member having a plurality of holes through which water can be discharged into the exhaust pipe is provided at the leading end of the introduction pipe located at or near the venturi section ,
The porous member has an upstream region facing the gas flow in the exhaust pipe and a downstream region opposite to the upstream region,
The porous water member is provided with a cover that covers the downstream region, and a generated water atomizer for a fuel cell vehicle.
請求項1に記載の燃料電池車両の生成水霧化装置であって、
多孔部材は、金属焼結体であることを特徴とする燃料電池車両の生成水霧化装置。
It is the production | generation water atomization apparatus of the fuel cell vehicle of Claim 1, Comprising:
The porous water member is a sintered metal body, and is a generated water atomizer for a fuel cell vehicle.
請求項1または2に記載の燃料電池車両の生成水霧化装置であって、
導入管の先端部が排気管の内周面近傍に位置し、
前記導入管の先端部から多孔部材が前記排気管内に突出していることを特徴とする燃料電池車両の生成水霧化装置。
A generated water atomization device for a fuel cell vehicle according to claim 1 or 2,
The leading end of the introduction pipe is located near the inner peripheral surface of the exhaust pipe,
A generated water atomizing device for a fuel cell vehicle, characterized in that a porous member projects into the exhaust pipe from the tip of the introduction pipe.
請求項1〜3のいずれか一つに記載の燃料電池車両の生成水霧化装置であって、
カバーは、多孔部材の下流領域を覆いかつ上流領域を覆わない構成になっていることを特徴とする燃料電池車両の生成水霧化装置。
It is the production | generation water atomization apparatus of the fuel cell vehicle as described in any one of Claims 1-3,
The cover is configured to cover the downstream region of the porous member and not to cover the upstream region, the generated water atomizing device for a fuel cell vehicle.
JP2009114387A 2009-03-16 2009-05-11 Generated water atomizer for fuel cell vehicles Expired - Fee Related JP5272883B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009114387A JP5272883B2 (en) 2009-05-11 2009-05-11 Generated water atomizer for fuel cell vehicles
US12/723,470 US8697305B2 (en) 2009-03-16 2010-03-12 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009114387A JP5272883B2 (en) 2009-05-11 2009-05-11 Generated water atomizer for fuel cell vehicles

Publications (2)

Publication Number Publication Date
JP2010260498A JP2010260498A (en) 2010-11-18
JP5272883B2 true JP5272883B2 (en) 2013-08-28

Family

ID=43358951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009114387A Expired - Fee Related JP5272883B2 (en) 2009-03-16 2009-05-11 Generated water atomizer for fuel cell vehicles

Country Status (1)

Country Link
JP (1) JP5272883B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5316431B2 (en) * 2010-01-18 2013-10-16 株式会社豊田自動織機 Fuel cell system
JP5464047B2 (en) * 2010-05-24 2014-04-09 株式会社豊田自動織機 Fuel cell system
JP5975700B2 (en) * 2012-04-02 2016-08-23 株式会社豊田自動織機 Indoor industrial vehicle
JP6007023B2 (en) * 2012-08-07 2016-10-12 株式会社豊田自動織機 Fuel cell system
JP6756591B2 (en) * 2016-11-24 2020-09-16 トヨタ自動車株式会社 Exhaust pipe structure
JP6982771B2 (en) 2019-04-12 2021-12-17 パナソニックIpマネジメント株式会社 Projection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568831U (en) * 1978-12-26 1981-01-26
JP3923627B2 (en) * 1997-11-25 2007-06-06 株式会社東芝 Solid polymer electrolyte fuel cell system
JP2003002604A (en) * 2001-06-18 2003-01-08 Denso Corp Reforming raw material feeder
JP2006032134A (en) * 2004-07-16 2006-02-02 Toyota Motor Corp Water storage equipment for storing water in fuel cell system and fuel cell system
JP5055808B2 (en) * 2006-04-04 2012-10-24 トヨタ自動車株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP2010260498A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
JP5272883B2 (en) Generated water atomizer for fuel cell vehicles
US8697305B2 (en) Fuel cell system
CN104241667B (en) Fuel cell system and centrifugal water separator for fuel cell system
CN105073219B (en) With oil separator and its correlation technique that injection enhancing is clashed into
US9605625B2 (en) High performance vacuum venturi pump
US8042751B2 (en) Nozzle system for injector
JP2010263737A (en) Fuel cell vehicle with generated water atomization device
KR20160092041A (en) Ejector
JP2010218802A (en) Fuel cell system
US11175069B2 (en) Air purification-aromatherapy machine
JP5316431B2 (en) Fuel cell system
JP2010218803A (en) Fuel cell system
JP2006344476A (en) Exhaust gas dilution device of fuel cell
CN109789381B (en) Gas-to-gas aspirator with improved entrainment efficiency
JP5464047B2 (en) Fuel cell system
JP5272882B2 (en) Generated water atomizer for fuel cell vehicles
US20020107293A1 (en) Method and device for generating an aerosol
JP4757076B2 (en) Liquid storage tank and engine exhaust purification system
US11008987B2 (en) Venturi fluid pump with outlet flow controller
Yao et al. Influence of some geometrical parameters on the characteristics of prefilming twin-fluid atomization
CN219125373U (en) Antifouling air guide spare and electron cigarette
CN216693895U (en) Air purifier
JP2020135955A (en) Muffler for fuel cell vehicle
CN216693894U (en) Air purifier
CN218737265U (en) Electronic atomization device and atomizer thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R151 Written notification of patent or utility model registration

Ref document number: 5272883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees