JP5270999B2 - Magnetic coupling - Google Patents

Magnetic coupling Download PDF

Info

Publication number
JP5270999B2
JP5270999B2 JP2008199076A JP2008199076A JP5270999B2 JP 5270999 B2 JP5270999 B2 JP 5270999B2 JP 2008199076 A JP2008199076 A JP 2008199076A JP 2008199076 A JP2008199076 A JP 2008199076A JP 5270999 B2 JP5270999 B2 JP 5270999B2
Authority
JP
Japan
Prior art keywords
magnetic
magnet body
force
partition wall
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008199076A
Other languages
Japanese (ja)
Other versions
JP2010041764A (en
Inventor
博司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha
Original Assignee
Doshisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha filed Critical Doshisha
Priority to JP2008199076A priority Critical patent/JP5270999B2/en
Publication of JP2010041764A publication Critical patent/JP2010041764A/en
Application granted granted Critical
Publication of JP5270999B2 publication Critical patent/JP5270999B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic coupling in simple structure, which reduces coupling loss that arises by a drive shaft and a driven shaft attracting each other by opposite magnets. <P>SOLUTION: In the magnetic coupling, in which first magnet bodies that become mutually attracting polarity are held at magnet holders on a drive shaft and a driven shaft that are provided in opposition across a bulkhead consisting of a nonmagnetic substance, each magnet holder includes a second magnet body, and also at least a part of it is structurized so that the distance to the bulkhead may be larger according as it goes away radially, with the axis on the bulkhead side of the drive shaft or the driven shaft as its apex, thereby making it hold a magnetic viscosity elastic fluid, thus it is so arranged as to generate thrust direction stress in a direction of breaking the drive shaft and the driven shaft away each from the bulkhead by the magnetic force of the magnet holder and the surface tension and the centrifugal force of the magnetic viscosity elastic fluid that rotates accompanying the rotation of the magnet body holder. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は磁気カップリングに係り、特に、非磁性体からなる隔壁を挟んで相対して設けられた駆動軸と被駆動軸のそれぞれ軸心から所定距離に、前記隔壁を挟んで相対して設けられた互いに引き合う磁石体からなる磁気カップリングにおいて、相対する磁石によって駆動軸と被駆動軸とが互いに引き合うことで生じる軸負荷を軽減できるようにした、磁気カップリングに関するものである。   The present invention relates to a magnetic coupling. In particular, the present invention relates to a magnetic coupling, and a drive shaft and a driven shaft that are provided opposite to each other with a partition made of a non-magnetic material at a predetermined distance from the center of the drive shaft. The present invention relates to a magnetic coupling that can reduce an axial load generated when a driving shaft and a driven shaft are attracted to each other by opposing magnets.

磁気カップリングは、磁石の引力、斥力を利用し、非接触で駆動軸側駆動力を被駆動軸側に伝える駆動力伝達機構である。この磁気カップリングは、駆動軸と被駆動軸とが非接触であるから、被駆動軸側を外部と完全に隔離した状況でも駆動力伝達が可能である。そのため被駆動軸側を、例えば高圧や真空状態、猛毒物質や放射性物質を収容した容器内など、軸を貫通させると気体や物質が進入したり漏れだしたりする可能性がある場合や、人工心臓のようにモータ側に血液が流れると事故が起きる可能性がある場合、などに用いて好適な駆動力伝達機構である。   The magnetic coupling is a driving force transmission mechanism that uses the attractive force and repulsive force of a magnet to transmit the driving shaft side driving force to the driven shaft side in a non-contact manner. In this magnetic coupling, since the driving shaft and the driven shaft are not in contact with each other, the driving force can be transmitted even when the driven shaft side is completely isolated from the outside. For this reason, there is a possibility that gas or substance may enter or leak when the driven shaft side is penetrated through the shaft, such as in a high pressure or vacuum state, in a container containing extremely toxic substances or radioactive substances, or an artificial heart This is a driving force transmission mechanism that is suitable for use in the case where an accident may occur if blood flows to the motor side.

このように密閉した容器に設けられた被駆動軸に、磁気カップリングによって駆動力を伝えるようにした先行技術としては、例えば特許文献1に示された流体制御用バルブへの駆動力伝達機構がある。この特許文献1に示された技術では、密閉された弁箱を構成する隔壁を挟み、弁箱外側にモータを設けて弁箱内側に設けられた被駆動軸を互いに対面する一対の磁気継手で駆動すると共に、モータ軸と弁箱内側の被駆動軸のそれぞれ軸方向にバネを設け、駆動軸と被駆動軸とをそれぞれ隔壁側に押圧して弾力的に支持し、作動停止直後の慣性力などで生じる振動や騒音の発生を防止すると共に、振動等に起因する駆動モータや機械部品類の寿命低下を防ぐようにしている。   As a prior art in which a driving force is transmitted to a driven shaft provided in such a sealed container by magnetic coupling, for example, a driving force transmission mechanism to a fluid control valve disclosed in Patent Document 1 is provided. is there. In the technique disclosed in Patent Document 1, a pair of magnetic couplings sandwiching a partition wall constituting a sealed valve box, providing a motor on the outside of the valve box, and facing the driven shafts provided on the inside of the valve box with each other. In addition to driving, springs are provided in the axial direction of the motor shaft and the driven shaft inside the valve box, respectively, and the driving shaft and the driven shaft are elastically supported by pressing them against the partition wall, respectively, and the inertial force immediately after the operation stops The generation of vibrations and noise caused by the above is prevented, and the life of the drive motor and mechanical parts due to the vibrations is prevented from being reduced.

特開平10−78152号公報JP-A-10-78152

しかしながらこの特許文献1に示された駆動力伝達機構では、モータ軸と被駆動軸とは磁気カップリングによって互いに引き合う方向の力も加えられ、さらにモータ軸と被駆動軸のそれぞれをバネにより隔壁側に押圧しているため、例え潤滑油を用いたとしても軸と隔壁との接触により回転エネルギーが消費される。また、摩耗が発生すると共に焼き付く可能性もある。こういったことを防ぐため、軸端が隔壁に接しないようにスラスト側で固定するスラスト軸受けを設けたものも存在するが、この場合も磁気カップリングによる引き合う力でスラスト方向の力が軸受けにかかり、摩擦力が発生してカップリングロスが生じる。   However, in the driving force transmission mechanism disclosed in Patent Document 1, a force in the direction in which the motor shaft and the driven shaft are attracted to each other is also applied by magnetic coupling, and each of the motor shaft and the driven shaft is moved to the partition side by a spring. Since it is pressed, even if lubricating oil is used, rotational energy is consumed by contact between the shaft and the partition wall. In addition, wear may occur and seizure may occur. In order to prevent this, some thrust bearings are provided that are fixed on the thrust side so that the shaft ends do not come into contact with the bulkheads. In this case, too, the force in the thrust direction is applied to the bearing by the attractive force of the magnetic coupling. As a result, frictional force is generated and coupling loss occurs.

そのため本発明においては、非常に簡単な構成で、相対する磁石、または磁性体と磁石によって駆動軸と被駆動軸とが互いに引き合うことで生じる、カップリングロス、即ち軸負荷を軽減できるようにした磁気カップリングを提供することが課題である。   Therefore, in the present invention, it is possible to reduce the coupling loss, that is, the axial load, which is caused by the attracting of the driving shaft and the driven shaft to each other by the opposing magnet or the magnetic body and the magnet with a very simple configuration. The challenge is to provide magnetic coupling.

上記課題を解決するため本発明になる磁気カップリングは、
非磁性体からなる隔壁を挟んで相対し、軸心上に配された駆動軸と被駆動軸と、
該駆動軸と被駆動軸のそれぞれにおける前記軸心から半径方向に所定距離隔て、互いに引き合う極性として相対して配された複数の第1の磁石体と、前記駆動軸と被駆動軸のそれぞれに設けられて前記第1の磁石体を保持する磁石体保持部と、からなる磁気カップリングにおいて、
前記それぞれの磁石体保持部における前記軸心周囲領域に配された第2の磁石体と、該第2の磁石体の磁力で保持された磁気粘弾性流体とを有し、前記磁石体保持部は、少なくとも一部に前記隔壁側軸心をそれぞれ頂点として半径方向に遠ざかるに従って隔壁との離間距離が大きくなるよう形成され、
前記磁石体保持部は、前記隔壁側軸心を一端とし、円周方向に弧状に形成されて、該磁石体保持部の回転による前記磁気粘弾性流体の遠心力と表面張力及び第2の磁石体の磁力との合力により、前記第1の磁石体の引き合う力に抗して生じる前記駆動軸と被駆動軸とをそれぞれ前記隔壁から離反させる方向のスラスト方向応力により、低軸負荷としたことを特徴とする。
In order to solve the above problems, the magnetic coupling according to the present invention is:
A drive shaft and a driven shaft that are opposed to each other across a partition wall made of a non-magnetic material and are arranged on an axis,
A plurality of first magnet bodies that are arranged at a predetermined distance in the radial direction from the shaft center of each of the drive shaft and the driven shaft and that are opposed to each other as polarities attracting each other, and each of the drive shaft and the driven shaft In a magnetic coupling comprising a magnet body holding portion that is provided and holds the first magnet body,
A second magnet body disposed in a region around the axial center in each of the magnet body holding portions; and a magnetic viscoelastic fluid held by the magnetic force of the second magnet body, and the magnet body holding portion. Is formed so that the separation distance from the partition wall increases as the distance from the partition wall side axis increases at least partially in the radial direction.
The magnet body holding portion, and one end of the partition wall-side axis, is formed in an arc shape in the circumferential direction, the centrifugal force of the magnetic viscoelastic fluid by rotation of the magnet holding member and the surface tension and the second magnet Due to the resultant force with the magnetic force of the body, a low-axis load is applied due to the thrust direction stress in the direction in which the drive shaft and the driven shaft are separated from the partition wall against the pulling force of the first magnet body. It is characterized by.

同様に本発明になる磁気カップリングは、
非磁性体からなる隔壁を挟んで相対し、軸心上に配された駆動軸と被駆動軸と、該駆動軸と被駆動軸のそれぞれにおける前記軸心から半径方向に所定距離隔て、互いに引き合う極性として相対して配された複数の第1の磁石体と、前記駆動軸と被駆動軸のそれぞれに設けられて前記第1の磁石体を保持する磁石体保持部と、からなる磁気カップリングにおいて、
前記磁石体保持部の前記軸心周囲領域における磁力で保持された磁気粘弾性流体を有し、
前記それぞれの磁石体保持部は、少なくとも一部に前記隔壁側軸心をそれぞれ頂点として半径方向に遠ざかるに従って隔壁との離間距離が大きくなるように且つ該磁石体保持部は、前記隔壁側軸心を一端とし、円周方向に弧状に形成されていると共に、磁性体を用いて前記軸心周囲領域に前記第1の磁石体により磁力を生じるよう構成され、
前記磁石体保持部の回転による前記磁気粘弾性流体の遠心力と表面張力及び前記磁石体保持部における軸心周囲領域の磁力との合力により、前記第1の磁石体の引き合う力に抗して生じる前記駆動軸と被駆動軸とをそれぞれ前記隔壁から離反させる方向のスラスト方向応力により、低軸負荷としたことを特徴とする。
Similarly, the magnetic coupling according to the present invention is
The drive shaft and the driven shaft, which are opposed to each other with a partition made of a non-magnetic material interposed therebetween, attract each other at a predetermined distance in the radial direction from the shaft center of each of the drive shaft and the driven shaft. Magnetic coupling comprising a plurality of first magnet bodies arranged in a relative relationship as polarities, and a magnet body holding portion that is provided on each of the drive shaft and the driven shaft and holds the first magnet body In
A magnetic viscoelastic fluid held by a magnetic force in the region around the axial center of the magnet body holding portion;
Each of the magnet body holding portions is configured such that the separation distance from the partition wall increases as the distance from the partition wall increases in the radial direction with the partition wall side axis as an apex at least partially. Is formed in an arc shape in the circumferential direction, and is configured to generate a magnetic force by the first magnet body in the region around the axis using a magnetic body,
Against the attractive force of the first magnet body due to the resultant force of the centrifugal force and surface tension of the magnetic viscoelastic fluid due to the rotation of the magnet body holding part and the magnetic force of the area around the axis of the magnet body holding part. The drive shaft and the driven shaft that are generated are each made to have a low axial load by a thrust direction stress in a direction in which they are separated from the partition wall.

磁気粘弾性流体は、一般的に知られているように磁性流体と粘弾性流体とを混合したものであり、このうち磁性流体は、粒子径10nm程度のフェライトなどの強磁性微粒子の表面に界面活性剤を吸着させ、溶媒中に安定分散させた黒色不透明のコロイド溶液である。もう一方の粘弾性流体は、粘性と弾性の性質を併せ持つ非ニュートン流体で、高分子液体の弾性に起因する、回転でズリ変形を与えたときにズリ応力以外に法線応力(回転方向(ラジアル方向)に垂直な方向、即ちスラスト方向の応力)が発生する。   As is generally known, a magnetic viscoelastic fluid is a mixture of a magnetic fluid and a viscoelastic fluid. Among them, the magnetic fluid is interfaced with the surface of a ferromagnetic fine particle such as ferrite having a particle diameter of about 10 nm. A black opaque colloidal solution in which an active agent is adsorbed and stably dispersed in a solvent. The other viscoelastic fluid is a non-Newtonian fluid that has both viscous and elastic properties. When the shear deformation is caused by rotation due to the elasticity of the polymer liquid, normal stress (rotational direction (radial direction) Direction), that is, a stress in the thrust direction).

そのため、このように磁石体保持部に第2の磁石体による磁力、または第1の磁石体により磁石体保持部軸心周囲領域に生じた磁力により磁気粘弾性流体を保持させ、磁気粘弾性流体保持面を回転させると、粘弾性流体における法線応力効果により回転方向に垂直な方向(スラスト方向)の応力が生じ、駆動軸と被駆動軸の隔壁との接触力が軽減(低軸負荷)されると共に、第2の磁石体による磁力、または第1の磁石体により磁石体保持部軸心周囲領域に生じている磁力は、カップリングの作用もするから、非常に簡単な構成で、カップリングロスを軽減できる磁気カップリングを提供することができる。   Therefore, the magnet viscoelastic fluid is held in the magnet body holding portion by the magnetic force generated by the second magnet body or by the magnetic force generated in the region around the axis of the magnet body holding portion by the first magnet body. When the holding surface is rotated, stress in the direction perpendicular to the rotation direction (thrust direction) is generated by the normal stress effect in the viscoelastic fluid, reducing the contact force between the drive shaft and the partition wall of the driven shaft (low-axis load). Since the magnetic force generated by the second magnet body or the magnetic force generated in the region around the axis of the magnet body holding portion by the first magnet body also acts as a coupling, the cup has a very simple configuration. A magnetic coupling that can reduce ring loss can be provided.

そして、前記磁気粘弾性流体は、その表面張力と前記第2の磁石体の磁力とによる合力が、前記磁気粘弾性流体の回転により生じる遠心力と重力との合力よりも大きくなるよう設定され、また、前記磁気粘弾性流体は、その表面張力と前記磁石体保持部における軸心周囲領域の磁力とによる合力が、前記磁気粘弾性流体の回転により生じる遠心力と重力との合力よりも大きくなるよう選択されていることで、磁気粘弾性流体を磁石体保持部に保持し続けることができる。   The magnetic viscoelastic fluid is set such that the resultant force of the surface tension and the magnetic force of the second magnet body is greater than the resultant force of the centrifugal force and gravity generated by the rotation of the magnetic viscoelastic fluid, Further, in the magneto-viscoelastic fluid, the resultant force of the surface tension and the magnetic force in the region around the axial center in the magnet body holding portion is larger than the resultant force of centrifugal force and gravity generated by the rotation of the magneto-viscoelastic fluid. By being selected as such, the magnetic viscoelastic fluid can be continuously held in the magnet body holding portion.

さらに、前記磁石体保持部は、前記隔壁側軸心を頂点とした円錐体形状とすることで、磁石体保持部を非常に簡単に形成(工作)することができる。   Furthermore, the magnet body holding portion can be formed (worked) very easily by forming a conical shape with the partition wall side axis as the apex.

そして、前記磁石体保持部は、前記隔壁側軸心を一端とし、円周方向に弧状に形成することで、駆動軸や被駆動軸から所定距離の円環状部位で磁気粘弾性流体を保持すれば、今度は磁気粘弾性流体の遠心力がスラスト方向応力となり、さらに駆動軸と被駆動軸の隔壁との接触力軽減が可能となる。   The magnet body holding portion is formed in an arc shape in the circumferential direction with the partition wall side axis as one end, so that the magnetic viscoelastic fluid is held at an annular portion at a predetermined distance from the drive shaft and the driven shaft. In this case, the centrifugal force of the magnetic viscoelastic fluid becomes the stress in the thrust direction, and the contact force between the drive shaft and the partition wall of the driven shaft can be reduced.

また、前記磁石体保持部は、非回転状態で1または円環状部を含む複数の位置で前記隔壁と接触するようにすれば、駆動軸と被駆動軸とが非回転状態のときも安定して停止させることができる。   In addition, if the magnet body holding portion is brought into contact with the partition wall at a plurality of positions including one or an annular portion in a non-rotating state, the driving shaft and the driven shaft are stable even in a non-rotating state. Can be stopped.

そして、前記磁石体保持部が非回転状態で前記隔壁と接触する位置が、前記隔壁側軸心とすることで、駆動軸と被駆動軸とが非回転状態から回転状態になるときも、安定して回転状態にさせることができる。   In addition, the position where the magnet body holding portion is in contact with the partition wall in the non-rotating state is the partition wall side axis so that the drive shaft and the driven shaft are stable even when the driving shaft and the driven shaft are rotated from the non-rotating state. And can be rotated.

さらに、前記磁石体保持部が前記隔壁側軸心を一端とした弧状に形成され、前記駆動軸と被駆動軸とが非回転状態で前記磁石体保持部が前記隔壁と接触する部位が、前記弧状の円環状部に設けられていれば、駆動軸と被駆動軸とが非回転状態、回転状態のいずれであっても安定した状態にさせることができる。   Further, the magnet body holding portion is formed in an arc shape with the partition side axial center as one end, and the portion where the magnet body holding portion contacts the partition wall when the driving shaft and the driven shaft are not rotated, If it is provided in the arcuate annular portion, the driving shaft and the driven shaft can be in a stable state regardless of whether they are in a non-rotating state or a rotating state.

以上記載のごとく本発明になる磁気カップリングは、少なくとも一部に前記隔壁側軸心をそれぞれ頂点として、半径方向に遠ざかるに従って隔壁との離間距離が大きくなるよう形成された磁石体保持部に磁気粘弾性流体を保持させることで、法線応力効果により回転方向に垂直な方向(スラスト方向)の応力が生じ、そのスラスト方向応力によって駆動軸と被駆動軸の隔壁との接触力が軽減されるから、非常に簡単な構成で、カップリングロスを軽減して低軸負荷とした、効率良く駆動力を伝達できると共に長寿命とすることのできる磁気カップリングを提供することができる。   As described above, the magnetic coupling according to the present invention is magnetically coupled to the magnet body holding portion formed so that the separation distance from the partition increases as the distance from the partition increases in the radial direction, with at least a part of the partition side axis as the apex. By holding the viscoelastic fluid, a stress in a direction perpendicular to the rotation direction (thrust direction) is generated by the normal stress effect, and the contact force between the drive shaft and the partition wall of the driven shaft is reduced by the thrust direction stress. Therefore, it is possible to provide a magnetic coupling that can transmit a driving force efficiently and have a long life with a very simple configuration and reduced coupling loss and a low axial load.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は、本発明になる磁気カップリングの実施例1の、(A)が主要部の構成概略、(B)がトルク伝達用の磁石体(第1の磁石体)の配置状態の一例の図であり、図2は本発明になる磁気カップリングの実施例1の、(A)が磁気粘弾性流体を保持した磁石体保持部の拡大構成概略、(B)が磁気粘弾性流体により、駆動軸と被駆動軸とをそれぞれ隔壁から離反させる方向のスラスト方向応力を生じさせる原理を説明するための図である。   1A is a schematic diagram of a main part of the magnetic coupling according to the first embodiment of the present invention, and FIG. 1B is an example of an arrangement state of a magnet body for torque transmission (first magnet body). FIG. 2 is a schematic view of an enlarged configuration of a magnet body holding portion that holds a magnetic viscoelastic fluid in Example 1 of the magnetic coupling according to the present invention, and FIG. It is a figure for demonstrating the principle which produces the thrust direction stress of the direction which separates a drive shaft and a to-be-driven shaft from a partition, respectively.

図中、10は本発明の磁気カップリング、11は被駆動軸、12はモータなどの駆動軸、13、14は磁気カップリングを構成する磁石体を保持する磁石体保持部(コーン)、15、15、15、16、16は磁気カップリングを構成する磁石体(以下、第1の磁石体と称する)、17は磁気粘弾性流体、18は隔壁、19は被駆動軸の回転方向、20は駆動軸の回転方向、26は磁気粘弾性流体を保持するための磁石体(以下、第2の磁石体と称する)である。 In the figure, 10 is a magnetic coupling of the present invention, 11 is a driven shaft, 12 is a driving shaft such as a motor, 13 and 14 are magnet body holding portions (cones) for holding magnet bodies constituting the magnetic coupling, 15 1 , 15 2 , 15 3 , 16 1 , 16 2 are magnet bodies (hereinafter referred to as first magnet bodies) constituting a magnetic coupling, 17 is a magnetic viscoelastic fluid, 18 is a partition wall, and 19 is a driven shaft. , 20 is a rotation direction of the drive shaft, and 26 is a magnet body (hereinafter referred to as a second magnet body) for holding the magnetic viscoelastic fluid.

磁石体保持部(コーン)13、14は、第2の磁石体26を軸心周辺領域に配した場合は、ステンレスなどの非磁性体で構成する。この磁石体保持部(コーン)13、14は、図2(A)に拡大構成概略を示したように、駆動軸12と被駆動軸11の隔壁18側軸心をそれぞれ頂点として、少なくとも一部に半径方向に遠ざかるに従って隔壁18との離間距離が大きくなるように構成され、この実施例1では円錐形状としてある。   The magnet body holding portions (cones) 13 and 14 are made of a non-magnetic material such as stainless steel when the second magnet body 26 is disposed in the axial center peripheral region. The magnet body holding portions (cones) 13 and 14 are at least partly centered on the partition 18 side axis of the drive shaft 12 and the driven shaft 11 as shown in FIG. 2A. The distance from the partition wall 18 increases as the distance increases in the radial direction. In the first embodiment, a conical shape is used.

図1に戻って、この磁石体保持部(コーン)13、14における円錐形状部における隔壁18との角度は、図示したように略3°程度が好ましい。そしてこの実施例1の場合は、この磁石体保持部(コーン)13、14における円錐形状部と隔壁18との空隙に、第2の磁石体26による磁力で磁気粘弾性流体を17を保持するようにしてある。   Returning to FIG. 1, it is preferable that the angle between the cone-shaped portions of the magnet body holding portions (cones) 13 and 14 and the partition wall 18 is about 3 ° as shown. In the case of the first embodiment, the magnetic viscoelastic fluid 17 is held by the magnetic force of the second magnet body 26 in the gap between the cone-shaped portion and the partition wall 18 in the magnet body holding portions (cones) 13 and 14. It is like that.

磁気カップリングを構成する第1の磁石体15、15、15、16、16は、図1(B)に示したように、駆動軸12と被駆動軸11の軸心から半径方向に所定距離隔てられて所定の角度(この図1(B)では90度)毎に設けられている。隔壁18は、ステンレス、樹脂、セラミックなどで形成されており、これら第1の磁石体15、15、15、16、16は、この隔壁18を挟み、相対した第1の磁石体が逆極性となるように、即ち第1の磁石体15、16の一方がN極なら他方がS極に、第1の磁石体15、15も一方がN極なら他方がS極にという具合に配置され、お互いに引き合うようになっている。なお、この第1の磁石体15、15、15、16、16は、一方を磁石として他方を鉄などの磁性体とし、一方の磁石の磁力で磁性体を引きつけるようにして磁気カップリングを構成しても良い。 As shown in FIG. 1B, the first magnet bodies 15 1 , 15 2 , 15 3 , 16 1 , and 16 2 constituting the magnetic coupling are separated from the axis of the drive shaft 12 and the driven shaft 11. A predetermined distance (90 degrees in FIG. 1B) is provided at a predetermined distance in the radial direction. The partition wall 18 is made of stainless steel, resin, ceramic, or the like, and the first magnet bodies 15 1 , 15 2 , 15 3 , 16 1 , 16 2 sandwich the partition wall 18 and are opposed to each other. So that one of the first magnet bodies 15 1 , 16 1 is an N pole, the other is an S pole, and the other one of the first magnet bodies 15 2 , 15 2 is an N pole, the other is They are arranged on the south pole and attract each other. The first magnet bodies 15 1 , 15 2 , 15 3 , 16 1 , and 16 2 are configured such that one is a magnet and the other is a magnetic body such as iron, and the magnetic body is attracted by the magnetic force of one magnet. A magnetic coupling may be configured.

磁気粘弾性流体17は、一般的に知られているように磁性流体と粘弾性流体とを混合したものであり、このうち磁性流体は、例えばタイホーコウザイ株式会社の製品番号W−41のように、粒子径10nm程度のフェライトなどの強磁性微粒子の表面に界面活性剤を吸着させ、溶媒としての水に安定分散させた黒色不透明のコロイド溶液である。もう一方の粘弾性流体は、粘性と弾性の性質を併せ持つPolyacrylamide(PAA)などの非ニュートン流体であり、例えば三洋化成工業株式会社の名称「サンフロックAH−210P」などの、分子量約1.6×10、濃度7500ppm程度のものを用いる。 As is generally known, the magnetic viscoelastic fluid 17 is a mixture of a magnetic fluid and a viscoelastic fluid. Among these, the magnetic fluid is, for example, product number W-41 of Taiho Kozai Co., Ltd. Further, a black opaque colloidal solution in which a surfactant is adsorbed on the surface of a ferromagnetic fine particle such as ferrite having a particle diameter of about 10 nm and is stably dispersed in water as a solvent. The other viscoelastic fluid is a non-Newtonian fluid such as Polyacrylamide (PAA) having both viscous and elastic properties. X10 7 and a concentration of about 7500 ppm are used.

また、図2(A)に示したように、磁石体保持部(コーン)13、14が、磁気粘弾性流体を保持するための第2の磁石体26により磁力を有することで、磁気粘弾性流体17がこの磁石体保持部(コーン)13、14と隔壁18との空隙に保持され、被駆動軸11と駆動軸12の回転によって磁気粘弾性流体17が回転しても飛散しないようになっている。   Further, as shown in FIG. 2A, the magnet body holding portions (cones) 13 and 14 have magnetic force by the second magnet body 26 for holding the magnetic viscoelastic fluid, so that the magnetic viscoelasticity is obtained. The fluid 17 is held in the gap between the magnet body holding portions (cones) 13 and 14 and the partition wall 18 so that even if the magnetic viscoelastic fluid 17 is rotated by the rotation of the driven shaft 11 and the driving shaft 12, the fluid 17 is not scattered. ing.

そして、磁性流体と粘弾性流体とを混合した磁気粘弾性流体は、軸または磁気粘弾性流体保持面に回転を与えてズリ変形を起こしたとき、ズリ応力以外に法線応力(回転方向に垂直な方向、即ちスラスト方向の応力)効果が発生する。純粘性の場合はこのような現象は生じない。   A magnetic viscoelastic fluid, which is a mixture of magnetic fluid and viscoelastic fluid, generates normal stress (perpendicular to the rotation direction) in addition to shear stress when the shaft or magnetic viscoelastic fluid holding surface is rotated to cause shear deformation. In a different direction, that is, a stress in the thrust direction). Such a phenomenon does not occur in the case of pure viscosity.

また、この磁気粘弾性流体17には、図2(A)に27の番号を付した部分の拡大図である図2(B)に示したように、磁気カップリング10を横置きにして回転させた場合、遠心力21と重力22とが作用する。そのため、磁気粘弾性流体17の表面張力23と、磁気粘弾性流体を保持するための第2の磁石体26の磁気体積力(磁力)24とによる合力が、この遠心力21と重力22との合力よりも大きくなるように選択することで、磁気粘弾性流体17の飛散を防ぐことができる。   Further, the magnetic viscoelastic fluid 17 is rotated with the magnetic coupling 10 placed horizontally as shown in FIG. 2B, which is an enlarged view of a portion denoted by reference numeral 27 in FIG. 2A. When it is made, centrifugal force 21 and gravity 22 act. Therefore, the resultant force of the surface tension 23 of the magnetic viscoelastic fluid 17 and the magnetic bulk force (magnetic force) 24 of the second magnet body 26 for holding the magnetic viscoelastic fluid is the centrifugal force 21 and the gravity 22. By selecting so as to be larger than the resultant force, scattering of the magnetic viscoelastic fluid 17 can be prevented.

また、磁石体保持部(コーン)13、14が高速回転して磁気粘弾性流体17も一緒に回転すると、前記した法線応力効果によって25で示したスラスト方向応力が生じ、磁石体保持部(コーン)13、14を隔壁18とは逆方向に押圧するため、駆動軸12と被駆動軸11とがそれぞれ隔壁18から離反させる方向のスラスト応力を受け、隔壁18との接触力が軽減されて、非常に簡単な構成で、カップリングロスを軽減できる低軸負荷磁気カップリングを提供することができる。   Further, when the magnet body holding portions (cones) 13 and 14 are rotated at a high speed and the magnetic viscoelastic fluid 17 is also rotated together, a stress in the thrust direction indicated by 25 is generated by the normal stress effect described above, and the magnet body holding portion ( Since the cones 13 and 14 are pressed in the direction opposite to the partition wall 18, the driving shaft 12 and the driven shaft 11 receive thrust stress in the direction of separating from the partition wall 18, and the contact force with the partition wall 18 is reduced. It is possible to provide a low-axis load magnetic coupling that can reduce coupling loss with a very simple configuration.

なお、駆動軸12と被駆動軸11における、それぞれ隔壁18との接触力が軽減されるためには、磁気粘弾性流体17を保持するための磁気粘弾性流体を保持するための第2の磁石体26の磁力と、スラスト方向応力25との合力が、駆動軸12と被駆動軸11(磁石体保持部13、14)を隔壁18離間させ、第1の磁石体15、15、15、16、16の互いに引き合う力と有る点で釣り合うようにする必要がある。 In order to reduce the contact force between the drive shaft 12 and the driven shaft 11 with the partition wall 18, the second magnet for holding the magnetic viscoelastic fluid 17 for holding the magnetic viscoelastic fluid 17. The resultant force of the magnetic force of the body 26 and the thrust direction stress 25 separates the drive shaft 12 and the driven shaft 11 (magnet body holding portions 13, 14) from the partition wall 18, and the first magnet bodies 15 1 , 15 2 , 15 3 , 16 1 , 16 2 need to be balanced at a certain point.

このようにすることにより、スラスト軸受けや特許文献1に示されていたように、モータ軸と被駆動軸のそれぞれをバネにより隔壁側に押圧する機構などが不用で、軸(磁石体保持部13、14)と隔壁とが接触することで回転エネルギーが消費されたり、摩耗が発生すると共に焼き付く、といったことが起こることなく、簡単な構成でカップリングロスを軽減した、低軸負荷磁気カップリングを提供することが可能となる。   By doing so, a thrust bearing and a mechanism for pressing each of the motor shaft and the driven shaft against the partition wall by a spring as shown in Patent Document 1 are unnecessary, and the shaft (magnet body holding portion 13) is not required. 14) and the bulkhead contact with each other, a low-axis load magnetic coupling that reduces coupling loss with a simple configuration without causing rotational energy consumption, wear, and seizure. It becomes possible to provide.

図6は、本発明になる磁気カップリング10の、駆動軸12と被駆動軸11とをそれぞれ隔壁18から離反させる方向のスラスト方向応力を測定した実験装置の構成概略であり、図7はこの図6に示した実験装置により測定した、レオロジー特性のグラフである。   FIG. 6 is a schematic configuration of an experimental apparatus for measuring the thrust direction stress in the direction of separating the drive shaft 12 and the driven shaft 11 from the partition wall 18 of the magnetic coupling 10 according to the present invention. It is the graph of the rheological characteristic measured by the experimental apparatus shown in FIG.

図中、61はサーボモータ、62と63はサーボモータ61の駆動力を磁気カップリングに伝えるためのプーリーとタイミングベルト、64はトルクメータ、65はローティティングメータ、66は磁気カップリング、67は前記した磁気粘弾性流体、68は隔壁、69はスラスト方向応力を測定するスラストセンサ、70はダイナモメータ、71はA/Dコンバータ、72は測定結果を蓄積するコンピュータである。   In the figure, 61 is a servo motor, 62 and 63 are pulleys and timing belts for transmitting the driving force of the servo motor 61 to the magnetic coupling, 64 is a torque meter, 65 is a rotating meter, 66 is a magnetic coupling, and 67 is a magnetic coupling. The magnetic viscoelastic fluid described above, 68 is a partition, 69 is a thrust sensor that measures a stress in the thrust direction, 70 is a dynamometer, 71 is an A / D converter, and 72 is a computer that accumulates measurement results.

この実験に用いた供試流体は、磁性流体が前記したタイホーコウザイ株式会社の製品番号W−41で、密度が1.416[kg/m]、粘度が1.8×10−2[Pa・s]、飽和磁化が30.2[Wb/m]、平均粒子直径10−8[m]、体積濃度10.90[%]、磁気モーメント21.3[Wb・m/kg]、一粒子体積5.24×10−25[m]、数密度2.06×1023[個/m]、である。粘弾性流体は三洋化成工業株式会社の名称「サンフロックAH−210P」などの、分子量約1.6×10、濃度7500ppmのものを用いた。 The test fluid used in this experiment is the product number W-41 of Taiho Kouzai Co., Ltd., the magnetic fluid described above, the density is 1.416 [kg / m 3 ], and the viscosity is 1.8 × 10 −2 [ Pa · s], saturation magnetization 30.2 [Wb / m 2 ], average particle diameter 10 −8 [m], volume concentration 10.90 [%], magnetic moment 21.3 [Wb · m / kg], One particle volume is 5.24 × 10 −25 [m 3 ], and the number density is 2.06 × 10 23 [pieces / m 3 ]. A viscoelastic fluid having a molecular weight of about 1.6 × 10 7 and a concentration of 7500 ppm, such as the name “Sanfloc AH-210P” of Sanyo Chemical Industries, Ltd., was used.

一方、磁気カップリングにおけるトルク伝達用の第1の磁石体15、15、15、16、16は、ネオジウム磁石で残留磁束密度が380mTのものを用い、磁石体間距離を5mm、トルク伝達容量0.55Mnとした。また磁気粘弾性流体を保持するための第2の磁石体26は、ネオジウム磁石、フェライト磁石で残留磁束密度が445mTのものと130mTのものを用いた。磁石体保持部(コーン)13、14は、1.5mm厚のSUS304を用い、円錐形状部における隔壁18との角度を略3°とした。隔壁68は1.5mm厚のSUS304である。 On the other hand, the first magnet bodies 15 1 , 15 2 , 15 3 , 16 1 and 16 2 for torque transmission in the magnetic coupling are neodymium magnets having a residual magnetic flux density of 380 mT, and the distance between the magnet bodies is 5 mm. The torque transmission capacity was 0.55 Mn. As the second magnet body 26 for holding the magnetic viscoelastic fluid, neodymium magnets and ferrite magnets having residual magnetic flux densities of 445 mT and 130 mT were used. The magnet body holding portions (cones) 13 and 14 were made of SUS304 having a thickness of 1.5 mm, and the angle with the partition wall 18 in the conical shape portion was set to about 3 °. The partition wall 68 is SUS304 having a thickness of 1.5 mm.

図7はこの図6に示した実験装置により測定した、レオロジー特性のグラフである。図7(A)のグラフの横軸は剪断速度(sheer rate γ:回転速度と考えてよい)[1/s]、縦軸は粘度(viscosity η)[Pa・s]で、剪断速度(sheer rate γ)が大きくなるに従い、粘度(viscosity η)が小さくなっているのがわかる。また図7(B)のグラフは、横軸が剪断速度(sheer rate γ)[1/s]、縦軸がN1(回転方向に垂直な方向の法線応力)[Pa]で、剪断速度(sheer rate γ)が大きくなるに従い、N1(回転方向に垂直な方向の法線応力)が大きくなっているのがわかる。すなわち、図7(A)のグラフからは、粘度が剪断速度の増加により減少することが分かり、図7(B)のグラフからは、法線応力が剪断速度の増加により増加していることがわかる。   FIG. 7 is a graph of rheological characteristics measured by the experimental apparatus shown in FIG. The horizontal axis of the graph in FIG. 7A is the shear rate (sheer rate γ: rotation speed) [1 / s], the vertical axis is the viscosity (viscosity η) [Pa · s], and the shear rate (sheer It can be seen that the viscosity (viscosity η) decreases as rate γ) increases. In the graph of FIG. 7B, the horizontal axis is a shear rate (sheer rate γ) [1 / s], the vertical axis is N1 (normal stress in a direction perpendicular to the rotation direction) [Pa], and the shear rate ( It can be seen that N1 (normal stress in the direction perpendicular to the rotation direction) increases as sheer rate γ) increases. That is, it can be seen from the graph of FIG. 7A that the viscosity decreases as the shear rate increases, and from the graph of FIG. 7B, the normal stress increases as the shear rate increases. Recognize.

以上が本発明になる磁気カップリングであるが、本発明は図1に示した実施例1の形態だけでなく、種々の変形が可能である。まず図3は、本発明になる磁気カップリングの実施例2の磁石体保持部の構成概略である。   The above is the magnetic coupling according to the present invention. The present invention is not limited to the form of the first embodiment shown in FIG. 1, and various modifications are possible. First, FIG. 3 is a schematic diagram of the configuration of the magnet body holding portion of the second embodiment of the magnetic coupling according to the present invention.

この図3に示した磁気カップリングは、磁石体保持部(コーン)33、34の磁気粘弾性流体保持部35、36を、駆動軸12と被駆動軸11とにおける隔壁18側中心を一端とし、円周方向に弧状としたものである。このようにすると、弧状の磁気粘弾性流体保持部35、36は、磁気粘弾性流体保持部35、36の外縁側が円環状となり、その円環状部位でも磁気粘弾性流体17を保持すれば、今度は磁気粘弾性流体17の遠心力がスラスト方向応力となり、さらに駆動軸12と被駆動軸11の隔壁18との接触力軽減が可能となる。   The magnetic coupling shown in FIG. 3 has the magnetic viscoelastic fluid holding portions 35 and 36 of the magnet body holding portions (cones) 33 and 34 as one end at the partition 18 side center between the drive shaft 12 and the driven shaft 11. The arc is formed in the circumferential direction. In this way, the arc-shaped magnetic viscoelastic fluid holding portions 35 and 36 have an annular shape on the outer edge side of the magnetic viscoelastic fluid holding portions 35 and 36, and if the magnetic viscoelastic fluid 17 is held even in the annular portion, This time, the centrifugal force of the magneto-viscoelastic fluid 17 becomes a stress in the thrust direction, and further, the contact force between the drive shaft 12 and the partition wall 18 of the driven shaft 11 can be reduced.

また、磁石体保持部(コーン)33、34が回転していない(非回転状態)とき、磁石体保持部(コーン)33、34の隔壁18側頂点が隔壁18に接するようにすることが一般的であるが、このように磁気粘弾性流体保持部35、36に円環状部が存在する場合、隔壁18に接する部位を円環状部に設けることで、駆動軸と被駆動軸とが非回転状態、回転状態のいずれであっても安定した状態にさせることができる。   In addition, when the magnet body holding portions (cones) 33 and 34 are not rotating (non-rotating state), it is general that the apex of the magnet body holding portions (cones) 33 and 34 is in contact with the partition wall 18. However, when there are annular portions in the magnetic viscoelastic fluid holding portions 35 and 36 as described above, the drive shaft and the driven shaft are not rotated by providing a portion in contact with the partition wall 18 in the annular portion. In either the state or the rotation state, it can be made stable.

図4は実施例3の磁気カップリングの磁石体保持部の構成概略である。この図4に示した実施例3の磁気カップリングは、磁石体保持部(コーン)43、44の磁気粘弾性流体保持部45、46を、駆動軸12と被駆動軸11とにおける隔壁18側中心を凸状として設け、磁石体保持部(コーン)43、44における第1の磁石体15、15、15、16、16が近接できるようにしたものである。このようにすることで、第1の磁石体15、15、15、16、16を近接させることができるから、より強力な磁気カップリングを提供することができる。 FIG. 4 is a schematic configuration diagram of a magnet body holding portion of the magnetic coupling of the third embodiment. In the magnetic coupling of the third embodiment shown in FIG. 4, the magnetic viscoelastic fluid holding portions 45 and 46 of the magnet body holding portions (cones) 43 and 44 are connected to the partition wall 18 side of the drive shaft 12 and the driven shaft 11. It provided around the convex, in which the magnet holding member (corn) first magnet body 15 in the 43 and 44 1, 15 2, 15 3, 16 1, 16 2 has to be close. By doing so, because the first magnet body 15 1, 15 2, 15 3, 16 1, 16 2 can be brought close, it is possible to provide a stronger magnetic coupling.

図5は実施例4の磁気カップリングの磁石体保持部の構成概略である。今まで説明してきた実施例1乃至4の磁気カップリングは、磁気粘弾性流体を保持するための第2の磁石体26が図1(B)、図2(A)に示したように磁石体保持部(コーン)13、14に設けられていた。しかしこの図5に示した実施例4の磁気カップリングの磁石体保持部53、54は、第2の磁石体26を持たず、その代わりに磁石体保持部53、54を磁性体で形成する。そして、磁気カップリング用の第1の磁石体15、15、15、16、16を、磁石体保持部(コーン)13、14のそれぞれで全て同一極性とし、磁石体保持部53、54に矢印で示したように、第1の磁石体15、15、15、16、16の磁力が磁石体保持部53、54の中を通り、軸心部に集中して磁気粘弾性流体17を保持できるようにしたものである。 FIG. 5 is a schematic configuration diagram of a magnet body holding portion of the magnetic coupling according to the fourth embodiment. In the magnetic couplings of Examples 1 to 4 described so far, the second magnet body 26 for holding the magnetic viscoelastic fluid has a magnet body as shown in FIGS. 1 (B) and 2 (A). The holding portions (cones) 13 and 14 were provided. However, the magnet body holding portions 53 and 54 of the magnetic coupling of the fourth embodiment shown in FIG. 5 do not have the second magnet body 26, and instead, the magnet body holding portions 53 and 54 are formed of a magnetic material. . The first magnet bodies 15 1 , 15 2 , 15 3 , 16 1 , and 16 2 for magnetic coupling are all made to have the same polarity in each of the magnet body holding parts (cones) 13 and 14, and the magnet body holding part As indicated by arrows in 53 and 54, the magnetic forces of the first magnet bodies 15 1 , 15 2 , 15 3 , 16 1 , and 16 2 pass through the magnet body holding parts 53 and 54 and concentrate on the axial center part. Thus, the magnetic viscoelastic fluid 17 can be held.

このようにすることで、磁気粘弾性流体を保持するための第2の磁石体26を磁石体保持部(コーン)13、14に設けた場合、その位置は被駆動軸11、駆動軸12の有る位置であるからドーナツ状の磁石体を用意するか、または被駆動軸11、駆動軸12を第2の磁石体の手前までとする必要があるのに対し、そういった特別な磁石を用意する必要や被駆動軸11、駆動軸12を短くする必要がなくなる。   In this manner, when the second magnet body 26 for holding the magnetic viscoelastic fluid is provided in the magnet body holding portions (cones) 13 and 14, the positions thereof are the driven shaft 11 and the driving shaft 12. It is necessary to prepare a donut-shaped magnet body because it is at a certain position, or to provide the driven shaft 11 and the driving shaft 12 before the second magnet body, but it is necessary to prepare such a special magnet In addition, it is not necessary to shorten the driven shaft 11 and the driving shaft 12.

本発明によれば、磁気カップリングにおける駆動軸と被駆動軸のカップリングロスを軽減でき、長寿命の磁気カップリングを提供することができる。   According to the present invention, the coupling loss between the drive shaft and the driven shaft in the magnetic coupling can be reduced, and a long-life magnetic coupling can be provided.

本発明になる磁気カップリングの実施例1の、(A)が主要部の構成概略、(B)がトルク伝達用の磁石体の配置状態の一例の図である。BRIEF DESCRIPTION OF THE DRAWINGS (A) of the magnetic coupling Example 1 which concerns on this invention is (A) the structure outline of a principal part, (B) is a figure of an example of the arrangement | positioning state of the magnet body for torque transmission. 本発明になる磁気カップリングの実施例1の、(A)が磁気粘弾性流体を保持した磁石体保持部の拡大構成概略、(B)が磁気粘弾性流体により、駆動軸と被駆動軸とをそれぞれ隔壁から離反させる方向のスラスト方向応力を生じさせる原理を説明するための図である。In Example 1 of the magnetic coupling according to the present invention, (A) is an enlarged schematic diagram of a magnet body holding part holding a magnetic viscoelastic fluid, and (B) is a driving shaft and a driven shaft by the magnetic viscoelastic fluid. It is a figure for demonstrating the principle which produces the thrust direction stress of the direction which separates each from a partition. 本発明になる磁気カップリングの実施例2の磁石体保持部の構成概略である。It is a structure outline of the magnet body holding part of Example 2 of the magnetic coupling which becomes this invention. 本発明になる磁気カップリングの実施例3の磁石体保持部の構成概略である。It is a structure outline of the magnet body holding part of Example 3 of the magnetic coupling which becomes this invention. 本発明になる磁気カップリングにおける磁石体保持部の磁力を、トルク伝達用第1の磁石体の磁力を用いるようにした実施例の構成概略である。It is the structure outline of the Example which used the magnetic force of the 1st magnet body for torque transmission as the magnetic force of the magnet body holding part in the magnetic coupling which becomes this invention. 本発明になる磁気カップリングの、駆動軸と被駆動軸とをそれぞれ隔壁から離反させる方向のスラスト方向応力を測定した実験装置の構成概略である。3 is a schematic configuration of an experimental apparatus in which a thrust stress in a direction in which a driving shaft and a driven shaft are separated from a partition wall of a magnetic coupling according to the present invention is measured. 図6に示した実験装置により測定したレオロジー特性のグラフである。It is a graph of the rheological characteristic measured by the experimental apparatus shown in FIG.

符号の説明Explanation of symbols

10 磁気カップリング
11 被駆動軸
12 駆動軸
13、14 磁石体保持部(コーン)
15、15、15、16、16 第1の磁石体
17 磁気粘弾性流体
18 隔壁
19 被駆動軸の回転方向
20 駆動軸の回転方向
26 第2の磁石体
21 遠心力
22 重力
23 表面張力
24 磁気体積力(磁力)
25 スラスト方向応力
DESCRIPTION OF SYMBOLS 10 Magnetic coupling 11 Driven shaft 12 Drive shaft 13, 14 Magnet body holding part (cone)
15 1 , 15 2 , 15 3 , 16 1 , 16 2 First magnet body 17 Magneto-viscoelastic fluid 18 Partition wall 19 Rotating direction of driven shaft 20 Rotating direction of driving shaft 26 Second magnet body 21 Centrifugal force 22 Gravity 23 Surface tension 24 Magnetic body force (magnetic force)
25 Thrust direction stress

Claims (8)

非磁性体からなる隔壁を挟んで相対し、軸心上に配された駆動軸と被駆動軸と、
該駆動軸と被駆動軸のそれぞれにおける前記軸心から半径方向に所定距離隔て、互いに引き合う極性として相対して配された複数の第1の磁石体と、前記駆動軸と被駆動軸のそれぞれに設けられて前記第1の磁石体を保持する磁石体保持部と、からなる磁気カップリングにおいて、
前記それぞれの磁石体保持部における前記軸心周囲領域に配された第2の磁石体と、該第2の磁石体の磁力で保持された磁気粘弾性流体とを有し、前記磁石体保持部は、少なくとも一部に前記隔壁側軸心をそれぞれ頂点として半径方向に遠ざかるに従って隔壁との離間距離が大きくなるよう形成され、
前記磁石体保持部は、前記隔壁側軸心を一端とし、円周方向に弧状に形成されて、該磁石体保持部の回転による前記磁気粘弾性流体の遠心力と表面張力及び第2の磁石体の磁力との合力により、前記第1の磁石体の引き合う力に抗して生じる前記駆動軸と被駆動軸とをそれぞれ前記隔壁から離反させる方向のスラスト方向応力により、低軸負荷としたことを特徴とする磁気カップリング。
A drive shaft and a driven shaft that are opposed to each other across a partition wall made of a non-magnetic material and are arranged on an axis,
A plurality of first magnet bodies that are arranged at a predetermined distance in the radial direction from the shaft center of each of the drive shaft and the driven shaft and that are opposed to each other as polarities attracting each other, and each of the drive shaft and the driven shaft In a magnetic coupling comprising a magnet body holding portion that is provided and holds the first magnet body,
A second magnet body disposed in a region around the axial center in each of the magnet body holding portions; and a magnetic viscoelastic fluid held by the magnetic force of the second magnet body, and the magnet body holding portion. Is formed so that the separation distance from the partition wall increases as the distance from the partition wall side axis increases at least partially in the radial direction.
The magnet body holding portion, and one end of the partition wall-side axis, is formed in an arc shape in the circumferential direction, the centrifugal force of the magnetic viscoelastic fluid by rotation of the magnet holding member and the surface tension and the second magnet Due to the resultant force with the magnetic force of the body, a low-axis load is applied due to the thrust direction stress in the direction in which the drive shaft and the driven shaft are separated from the partition wall against the pulling force of the first magnet body. Magnetic coupling characterized by.
前記磁気粘弾性流体は、その表面張力と前記第2の磁石体の磁力とによる合力が、前記磁気粘弾性流体の回転により生じる遠心力と重力との合力よりも大きくなるよう設定されていることを特徴とする請求項1に記載した磁気カップリング。   The magnetic viscoelastic fluid is set so that the resultant force of the surface tension and the magnetic force of the second magnet body is greater than the resultant force of centrifugal force and gravity generated by the rotation of the magnetic viscoelastic fluid. The magnetic coupling according to claim 1. 非磁性体からなる隔壁を挟んで相対し、軸心上に配された駆動軸と被駆動軸と、該駆動軸と被駆動軸のそれぞれにおける前記軸心から半径方向に所定距離隔て、互いに引き合う極性として相対して配された複数の第1の磁石体と、前記駆動軸と被駆動軸のそれぞれに設けられて前記第1の磁石体を保持する磁石体保持部と、からなる磁気カップリングにおいて、
前記磁石体保持部の前記軸心周囲領域における磁力で保持された磁気粘弾性流体を有し、
前記それぞれの磁石体保持部は、少なくとも一部に前記隔壁側軸心をそれぞれ頂点として半径方向に遠ざかるに従って隔壁との離間距離が大きくなるように且つ該磁石体保持部は、前記隔壁側軸心を一端とし、円周方向に弧状に形成されていると共に、磁性体を用いて前記軸心周囲領域に前記第1の磁石体により磁力を生じるよう構成され、
前記磁石体保持部の回転による前記磁気粘弾性流体の遠心力と表面張力及び前記磁石体保持部における軸心周囲領域の磁力との合力により、前記第1の磁石体の引き合う力に抗して生じる前記駆動軸と被駆動軸とをそれぞれ前記隔壁から離反させる方向のスラスト方向応力により、低軸負荷としたことを特徴とする磁気カップリング。
The drive shaft and the driven shaft, which are opposed to each other with a partition made of a non-magnetic material interposed therebetween, attract each other at a predetermined distance in the radial direction from the shaft center of each of the drive shaft and the driven shaft. Magnetic coupling comprising a plurality of first magnet bodies arranged in a relative relationship as polarities, and a magnet body holding portion that is provided on each of the drive shaft and the driven shaft and holds the first magnet body In
A magnetic viscoelastic fluid held by a magnetic force in the region around the axial center of the magnet body holding portion;
Each of the magnet body holding portions is configured such that the separation distance from the partition wall increases as the distance from the partition wall increases in the radial direction with the partition wall side axis as an apex at least partially. Is formed in an arc shape in the circumferential direction, and is configured to generate a magnetic force by the first magnet body in the region around the axis using a magnetic body,
Against the attractive force of the first magnet body due to the resultant force of the centrifugal force and surface tension of the magnetic viscoelastic fluid due to the rotation of the magnet body holding part and the magnetic force of the area around the axis of the magnet body holding part. A magnetic coupling having a low axial load caused by a thrust direction stress in a direction in which the generated drive shaft and driven shaft are separated from the partition wall.
前記磁気粘弾性流体は、その表面張力と前記磁石体保持部における軸心周囲領域の磁力とによる合力が、前記磁気粘弾性流体の回転により生じる遠心力と重力との合力よりも大きくなるよう選択されていることを特徴とする請求項3に記載した磁気カップリング。   The magnetic viscoelastic fluid is selected so that the resultant force of the surface tension and the magnetic force in the region around the axis of the magnet body holding portion is greater than the resultant force of centrifugal force and gravity generated by the rotation of the magnetic viscoelastic fluid. The magnetic coupling according to claim 3, wherein the magnetic coupling is provided. 前記磁石体保持部は、前記隔壁側軸心を頂点とした円錐体形状であることを特徴とする請求項1乃至4のいずれかに記載した磁気カップリング。   5. The magnetic coupling according to claim 1, wherein the magnet body holding portion has a conical shape with the partition wall side axis as an apex. 前記磁石体保持部は、非回転状態で1または円環状部を含む複数の位置で前記隔壁と接触することを特徴とする請求項1乃至のいずれかに記載した磁気カップリング。 The magnetic coupling according to any one of claims 1 to 5 , wherein the magnet body holding portion is in contact with the partition at a plurality of positions including one or an annular portion in a non-rotating state. 前記磁石体保持部が非回転状態で前記隔壁と接触する位置が、前記隔壁側軸心であることを特徴とする請求項に記載した磁気カップリング。 The magnetic coupling according to claim 6 , wherein a position where the magnet body holding portion contacts the partition wall in a non-rotating state is the partition wall side axis. 前記磁石体保持部が前記隔壁側軸心を一端とした弧状に形成され、前記駆動軸と被駆動軸とが非回転状態で前記磁石体保持部が前記隔壁と接触する部位が、前記弧状の円環状部に設けられていることを特徴とする請求項に記載した磁気カップリング。 The magnet body holding portion is formed in an arc shape with the partition side axial center as one end, and the portion where the magnet body holding portion contacts the partition wall in a non-rotating state of the driving shaft and the driven shaft is the arc shape The magnetic coupling according to claim 6 , wherein the magnetic coupling is provided in an annular portion.
JP2008199076A 2008-07-31 2008-07-31 Magnetic coupling Expired - Fee Related JP5270999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008199076A JP5270999B2 (en) 2008-07-31 2008-07-31 Magnetic coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008199076A JP5270999B2 (en) 2008-07-31 2008-07-31 Magnetic coupling

Publications (2)

Publication Number Publication Date
JP2010041764A JP2010041764A (en) 2010-02-18
JP5270999B2 true JP5270999B2 (en) 2013-08-21

Family

ID=42013731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008199076A Expired - Fee Related JP5270999B2 (en) 2008-07-31 2008-07-31 Magnetic coupling

Country Status (1)

Country Link
JP (1) JP5270999B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5859216B2 (en) * 2011-03-18 2016-02-10 株式会社プロスパイン Magnetic coupling device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272920A (en) * 1985-09-27 1987-04-03 Nippon Seiko Kk Spindle
JP2865766B2 (en) * 1990-02-09 1999-03-08 株式会社日立製作所 Polygon mirror motor
JP3106349B2 (en) * 1996-09-02 2000-11-06 セントラルマシン株式会社 Driving force transmission mechanism to fluid control valve

Also Published As

Publication number Publication date
JP2010041764A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
WO2015176559A1 (en) Permanent-magnet coupling self-alignment protective device
JPS6240054A (en) Magnet joint
US9410588B2 (en) Braking device
CN102792039B (en) Magnetic bearing and turbo machine
US2768316A (en) Permanent magnetic couplings
WO2007004690A1 (en) Magnetic fluid sealing device
CN101169952B (en) Automatic balancing apparatus, rotating apparatus, disc drive apparatus, balancer, and housing
JP7428863B2 (en) Grinding and mixing methods
CN112840139B (en) Magnetorheological fluid clutch apparatus with low permeation drum
JP5270999B2 (en) Magnetic coupling
JP2005195171A (en) Electrorheological clutch
JP6483573B2 (en) Power transmission device
US10393171B2 (en) Fluid dynamic bearing and spindle motor
JP2005253292A (en) High torque transmission non-contact gear
JPS62127513A (en) Spindle
CN103883622A (en) Magnetic liquid cylindrical roller bearing
US20140287865A1 (en) Rotating electric machine
WO2023032812A1 (en) Bearing and rotary device
JPH1198814A (en) Magnetic coupling
KR20220134285A (en) A magnetic coupling
CN102136334B (en) Magnetic liquid applicable to large gap magnetic liquid sealing
JP2003126670A (en) Agitator
KR200301819Y1 (en) A sealing method of motor shafts under rotations simultaneous with rectilinear motions with magnetic fluids between the motor shaft and the radial magnet with a single pole.
JPH0328519A (en) Magnetic slide bearing
JPH01158271A (en) Shaft sealing device employing magnetic fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees