JP5270935B2 - Propylene resin composition for foam molded article and foam molded article thereof - Google Patents

Propylene resin composition for foam molded article and foam molded article thereof Download PDF

Info

Publication number
JP5270935B2
JP5270935B2 JP2008067545A JP2008067545A JP5270935B2 JP 5270935 B2 JP5270935 B2 JP 5270935B2 JP 2008067545 A JP2008067545 A JP 2008067545A JP 2008067545 A JP2008067545 A JP 2008067545A JP 5270935 B2 JP5270935 B2 JP 5270935B2
Authority
JP
Japan
Prior art keywords
propylene
resin composition
based resin
foam molded
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008067545A
Other languages
Japanese (ja)
Other versions
JP2009221356A (en
Inventor
実裕 山本
正之 篠原
安彦 大槻
智巳 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Polymer Co Ltd
Original Assignee
Prime Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Polymer Co Ltd filed Critical Prime Polymer Co Ltd
Priority to JP2008067545A priority Critical patent/JP5270935B2/en
Publication of JP2009221356A publication Critical patent/JP2009221356A/en
Application granted granted Critical
Publication of JP5270935B2 publication Critical patent/JP5270935B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a propylene-based resin composition for a foam molding which can be used for preferably producing a foam molding excellent in the balance of heat resistance, mechanical strength, flexibility and reversibility after deformation. <P>SOLUTION: The propylene-based resin composition for a foam molding comprises at least one selected from the group consisting of a propylene homopolymer and a propylene-&alpha;-olefin copolymer, wherein a peak melting temperature (Tm) measured by a differential scanning calorimeter (DSC) ranges from 140 to 165&deg;C; a melting energy calculated from the peak melting area at 140&deg;C or higher is less than 50 mJ/mg; and an amount of a solution composition at an elution temperature of 80&deg;C or higher is 50% by weight of a total solution composition amount on an elution curve given by temperature rising elution fractionation (TREF). <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、発泡成形体の材料として好適なプロピレン系樹脂組成物に関する。   The present invention relates to a propylene-based resin composition suitable as a material for a foam molded article.

ポリオレフィン発泡成形体は、耐候性、耐薬品性、加工性、衛生性、リサイクル性に優れており、自動車の内装材、断熱材、土木・建築の目地材、吸音材、スポーツ用品あるいは食品包装の緩衝材、空調設備の断熱材などに広く利用されている。ポリオレフィン発泡成形体のうちポリエチレン発泡成形体は、柔軟性、伸び性などに優れているが、耐熱性、機械的強度などに問題がある。一方、より高融点であるポリプロピレン発泡成形体は、ポリエチレン発泡成形体の問題点である耐熱性、機械的強度に優れているが、柔軟性が不足すると共に、変形後の回復性が劣るという問題がある。   Polyolefin foam molded products are excellent in weather resistance, chemical resistance, processability, hygiene, and recyclability, and are suitable for automobile interior materials, heat insulating materials, civil engineering / architectural joint materials, sound absorbing materials, sporting goods or food packaging. It is widely used for cushioning materials and heat insulation materials for air conditioning equipment. Among polyolefin foam moldings, polyethylene foam moldings are excellent in flexibility, extensibility, and the like, but have problems in heat resistance, mechanical strength, and the like. On the other hand, a polypropylene foam molded article having a higher melting point is superior in heat resistance and mechanical strength, which are problems of a polyethylene foam molded article, but lacks flexibility and is inferior in recoverability after deformation. There is.

また、ポリオレフィン発泡成形体以外の発泡成形体、例えばポリウレタン発泡成形体は、リサイクル性において問題がある。
これらの問題に対して、特定の線状低密度ポリエチレンを含有する発泡性樹脂組成物(例えば、特許文献1参照)、特定のポリプロピレン系樹脂と特定のポリエチレン系樹脂とを含有するオレフィン系樹脂組成物(例えば、特許文献2参照)、さらに融解エネルギーが特定の範囲にある架橋オレフィン系樹脂発泡体(例えば、特許文献3参照)などが提案されている。
In addition, foamed molded products other than polyolefin foamed molded products, such as polyurethane foamed molded products, have a problem in recyclability.
For these problems, an expandable resin composition containing a specific linear low density polyethylene (see, for example, Patent Document 1), an olefin resin composition containing a specific polypropylene resin and a specific polyethylene resin. Articles (see, for example, Patent Document 2), and crosslinked olefin resin foams (see, for example, Patent Document 3) having melting energy in a specific range have been proposed.

しかしながら、何れの場合も、耐熱性および機械的強度と、柔軟性および変形後の回復性とのバランスに優れる発泡成形体を得ることは困難であった。
特開平05−247247号公報 特開平07−070350号公報 特開2000−248097号公報
However, in any case, it has been difficult to obtain a foamed molded article having an excellent balance between heat resistance and mechanical strength, flexibility and recoverability after deformation.
JP 05-247247 A Japanese Patent Application Laid-Open No. 07-070350 JP 2000-248097 A

本発明は、耐熱性、機械的強度、柔軟性および変形後の回復性のバランスに優れる発泡成形体を好適に製造することができる発泡成形体用プロピレン系樹脂組成物を提供することを課題とする。   It is an object of the present invention to provide a propylene-based resin composition for a foamed molded article that can suitably produce a foamed molded article having an excellent balance of heat resistance, mechanical strength, flexibility, and recoverability after deformation. To do.

本発明者らは上記課題を解決するために鋭意検討した結果、本発明を完成するに至った。
即ち、本発明の発泡成形体用プロピレン系樹脂組成物は、プロピレン単独重合体およびプロピレン・α−オレフィン共重合体からなる群から選ばれる少なくとも1種を含むプロピレン系樹脂組成物であって、示差走査熱量計(DSC)により測定される融解ピーク温度(Tm)が140〜165℃の範囲にあり、かつ融解ピーク面積から得られる140℃以上の融解エネルギーが50mJ/mg未満であり、温度上昇溶離分別(TREF)によって得られる溶出曲線において、溶出温度80℃以上における溶出成分量が全溶出成分量の50重量%以下であることを特徴とする。
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, the propylene-based resin composition for foam molded articles of the present invention is a propylene-based resin composition containing at least one selected from the group consisting of a propylene homopolymer and a propylene / α-olefin copolymer, The melting peak temperature (Tm) measured by a scanning calorimeter (DSC) is in the range of 140 to 165 ° C., and the melting energy of 140 ° C. or higher obtained from the melting peak area is less than 50 mJ / mg, and the temperature rise elution The elution curve obtained by fractionation (TREF) is characterized in that the amount of eluted components at an elution temperature of 80 ° C. or higher is 50% by weight or less of the total amount of eluted components.

本発明の発泡成形体用プロピレン系樹脂組成物は、メルトフローレート(MFR;JIS K7210、230℃、荷重2.16kg)が0.01〜30g/10分の範囲にあることが好ましい。   The propylene-based resin composition for foam molded articles of the present invention preferably has a melt flow rate (MFR; JIS K7210, 230 ° C., load 2.16 kg) in the range of 0.01 to 30 g / 10 minutes.

上記α−オレフィンは、エチレンであることが好ましい。
また、本発明の発泡成形体は、上記発泡成形体用プロピレン系樹脂組成物を発泡させて得られることを特徴とする。
The α-olefin is preferably ethylene.
The foamed molded product of the present invention is obtained by foaming the above-mentioned propylene-based resin composition for foamed molded product.

本発明の発泡成形体用プロピレン系樹脂組成物は、その融解ピーク温度(Tm)が140〜165℃の範囲にあり、ポリエチレン系樹脂に比べ高い。このため、従来のポリエチレン発泡成形体が耐熱性あるいは機械的強度で問題になる用途においても、前記組成物を発泡させて得られる発泡成形体を有利に使用することができる。   The propylene-based resin composition for foam molded articles of the present invention has a melting peak temperature (Tm) in the range of 140 to 165 ° C., which is higher than that of the polyethylene-based resin. For this reason, even in applications where conventional polyethylene foam moldings are problematic in terms of heat resistance or mechanical strength, foam moldings obtained by foaming the composition can be advantageously used.

さらに、本発明の発泡成形体用プロピレン系樹脂組成物は、その融解エネルギーおよび温度上昇溶離分別における80℃以上の溶出成分量が通常のプロピレン系樹脂に比べ小さい。このため、従来のポリプロピレン発泡成形体が柔軟性あるいは変形後の回復性で問題になる用途においても、前記組成物を発泡させて得られる発泡成形体を有利に使用することができる。   Furthermore, the propylene-based resin composition for foamed molded products of the present invention has a smaller melting energy and an elution component amount of 80 ° C. or higher in temperature rising elution fractionation compared to a normal propylene-based resin. For this reason, even in applications where conventional polypropylene foam moldings are problematic in terms of flexibility or recoverability after deformation, foam moldings obtained by foaming the composition can be advantageously used.

即ち、本発明の発泡成形体用プロピレン系樹脂組成物を発泡させて得られる発泡成形体は、耐熱性および機械的強度と、柔軟性および変形後の回復性とのバランスに優れる、従来には無かったポリオレフィン発泡成形体である。   That is, the foamed molded product obtained by foaming the propylene-based resin composition for foamed molded products of the present invention is excellent in the balance between heat resistance and mechanical strength, flexibility and recoverability after deformation. It was a polyolefin foam molding that was not present.

次に、本発明の発泡成形体用プロピレン系樹脂組成物およびその発泡成形体について具体的に説明する。   Next, the propylene-based resin composition for foam molded article and the foam molded article of the present invention will be specifically described.

〔発泡成形体用プロピレン系樹脂組成物〕
本発明の発泡成形体用プロピレン系樹脂組成物は、プロピレン単独重合体およびプロピレン・α−オレフィン共重合体からなる群から選ばれる少なくとも1種(以下、「プロピレン系樹脂」ともいう。)を含むプロピレン系樹脂組成物であって、(1)示差走査熱量計(DSC)により測定される融解ピーク温度(Tm)、(2)示差走査熱量計(DSC)により測定される融解ピーク面積から得られる140℃以上の融解エネルギー、および(3)温度上昇溶離分別(TREF)によって得られる溶出曲線において、溶出温度80℃以上における溶出成分量が以下に記載する範囲にあることを特徴とし、さらに(4)メルトフローレート(MFR)が以下に記載する範囲にあることが好ましい。
[Propylene resin composition for foamed molded article]
The propylene-based resin composition for foam molded articles of the present invention contains at least one selected from the group consisting of a propylene homopolymer and a propylene / α-olefin copolymer (hereinafter also referred to as “propylene-based resin”). Propylene-based resin composition, obtained from (1) melting peak temperature (Tm) measured by a differential scanning calorimeter (DSC) and (2) melting peak area measured by a differential scanning calorimeter (DSC) In the elution curve obtained by melting energy of 140 ° C. or higher and (3) temperature rising elution fractionation (TREF), the elution component amount at an elution temperature of 80 ° C. or higher is in the range described below, and (4 ) The melt flow rate (MFR) is preferably in the range described below.

<要件(1):融解ピーク温度(Tm)>
本発明の発泡成形体用プロピレン系樹脂組成物は、示差走査熱量計(DSC)により測定される融解ピーク温度(Tm)が、140〜165℃、好ましくは145〜165℃、さらに好ましくは150〜165の範囲にある。融解ピーク温度(Tm)が前記範囲にあると、前記組成物を発泡させて得られる発泡成形体は、耐熱性および機械的強度に優れる。
<Requirement (1): Melting peak temperature (Tm)>
The propylene-based resin composition for foam molded articles of the present invention has a melting peak temperature (Tm) measured by a differential scanning calorimeter (DSC) of 140 to 165 ° C., preferably 145 to 165 ° C., more preferably 150 to It is in the range of 165. When the melting peak temperature (Tm) is in the above range, the foamed molded product obtained by foaming the composition is excellent in heat resistance and mechanical strength.

<要件(2):融解エネルギー>
本発明の発泡成形体用プロピレン系樹脂組成物は、示差走査熱量計(DSC)により測定される融解ピーク面積から得られる140℃以上の融解エネルギーが、50mJ/mg未満、好ましくは3〜47mJ/mg、さらに好ましくは5〜45mJ/mgの範囲にある。融解エネルギーが前記範囲にあると、前記組成物を発泡させて得られる発泡成形体は、柔軟性および変形後の回復性に優れる。
<Requirement (2): Melting energy>
The propylene-based resin composition for foam molded articles of the present invention has a melting energy of 140 ° C. or higher obtained from the melting peak area measured by a differential scanning calorimeter (DSC), less than 50 mJ / mg, preferably 3 to 47 mJ / mg, more preferably in the range of 5-45 mJ / mg. When the melting energy is in the above range, the foamed molded product obtained by foaming the composition is excellent in flexibility and recoverability after deformation.

<要件(3):温度上昇溶離分別(TREF)>
本発明の発泡成形体用プロピレン系樹脂組成物は、温度上昇溶離分別(TREF)によ
って得られる溶出曲線において、溶出温度80℃以上における溶出成分量が全溶出成分量の50重量%以下、好ましくは5〜50重量%、より好ましくは10〜50重量%の範囲にある。溶出温度80℃以上における溶出成分量が前記範囲にあると、前記組成物を発泡させて得られる発泡成形体は、柔軟性および変形後の回復性に優れる。
<Requirement (3): Temperature rising elution fractionation (TREF)>
In the elution curve obtained by temperature rising elution fractionation (TREF), the amount of elution component at an elution temperature of 80 ° C. or higher is preferably 50% by weight or less of the total elution component amount, It is in the range of 5 to 50% by weight, more preferably 10 to 50% by weight. When the elution component amount at an elution temperature of 80 ° C. or higher is in the above range, the foamed molded article obtained by foaming the composition is excellent in flexibility and recoverability after deformation.

なお、上記の温度上昇溶離分別とは公知の分析法であって、原理的には、高温で測定対象試料を溶媒に完全に溶解させた後に冷却して、溶液中に存在させておいた不活性担体の表面に薄いポリマー層を形成させる。このとき、結晶化しやすい高結晶性成分から、結晶化しにくい低結晶性成分、非晶性成分の順にポリマー層が形成される。次いで、連続または段階的に昇温すると、前記と逆に、非晶性成分、低結晶性成分から溶出し、最後に高結晶性成分が溶出する。このようにして、各温度での溶出成分量と溶出温度によって描かれる溶出曲線とからポリマーの組成分布を分析するものであり、測定方法の詳細については、例えばJournal of Applied Polymer Science,Vol.26,4217〜4231(1981)に記載されている。   The above temperature rising elution fractionation is a known analytical method. In principle, the sample to be measured is completely dissolved in a solvent at a high temperature and then cooled to leave it in the solution. A thin polymer layer is formed on the surface of the active carrier. At this time, a polymer layer is formed in the order of a highly crystalline component that is easily crystallized, a low crystalline component that is difficult to crystallize, and an amorphous component. Next, when the temperature is raised continuously or stepwise, the amorphous component and the low crystalline component are eluted, and finally the high crystalline component is eluted, contrary to the above. In this way, the composition distribution of the polymer is analyzed from the amount of the eluted component at each temperature and the elution curve drawn by the elution temperature. For details of the measurement method, see, for example, Journal of Applied Polymer Science, Vol. 26, 4217-4231 (1981).

<要件(4):メルトフローレート(MFR)>
本発明の発泡成形体用プロピレン系樹脂組成物は、メルトフローレート(MFR;JIS K7210、230℃、荷重2.16kg)が、通常0.01〜30g/10分、好ましくは0.02〜20g/10分、より好ましくは0.03〜10g/10分の範囲にある。MFRが前記範囲にあると、前記組成物を発泡させて得られる発泡成形体は、成形性と機械的強度および外観とのバランスに優れる。
<Requirement (4): Melt flow rate (MFR)>
The propylene-based resin composition for foamed molded products of the present invention has a melt flow rate (MFR; JIS K7210, 230 ° C., load 2.16 kg) usually 0.01 to 30 g / 10 minutes, preferably 0.02 to 20 g. / 10 minutes, more preferably in the range of 0.03 to 10 g / 10 minutes. When the MFR is in the above range, the foamed molded product obtained by foaming the composition is excellent in the balance between moldability, mechanical strength, and appearance.

<プロピレン単独重合体、プロピレン・α−オレフィン共重合体>
本発明の発泡成形体用プロピレン系樹脂組成物に用いられる上記プロピレン単独重合体としては、立体規則性が高く高結晶性のプロピレン単独重合体、立体規則性が低く非晶性または低結晶性のプロピレン単独重合体などが挙げられる。これらは、上記要件(1)〜(3)を充足するように2種以上を適宜混合して用いるか、あるいは上記プロピレン単独重合体と後述のプロピレン・α−オレフィン共重合体とを適宜混合して用いる。なお、高結晶性のプロピレン単独重合体を用いる場合、発泡成形体用プロピレン系樹脂組成物における高結晶性のプロピレン単独重合体の含有量は、通常50重量%以下である。
<Propylene homopolymer, propylene / α-olefin copolymer>
The propylene homopolymer used in the propylene-based resin composition for foam molded articles of the present invention is a highly stereopropylene homopolymer with high stereoregularity, low stereoregularity, amorphous or low crystalline A propylene homopolymer etc. are mentioned. These are used by appropriately mixing two or more kinds so as to satisfy the above requirements (1) to (3), or by appropriately mixing the propylene homopolymer and the propylene / α-olefin copolymer described later. Use. When a highly crystalline propylene homopolymer is used, the content of the highly crystalline propylene homopolymer in the propylene-based resin composition for foam molded articles is usually 50% by weight or less.

本発明の発泡成形体用プロピレン系樹脂組成物に用いられる上記プロピレン・α−オレフィン共重合体は、プロピレンと炭素数2以上のα−オレフィン(ただし、プロピレンを除く。以下同じ。)とのランダムまたはブロック共重合体である。これらは1種単独で用いてもよく、2種以上を併用してもよい。   The propylene / α-olefin copolymer used in the propylene-based resin composition for foam molded articles of the present invention is a random mixture of propylene and an α-olefin having 2 or more carbon atoms (excluding propylene, the same applies hereinafter). Or it is a block copolymer. These may be used alone or in combination of two or more.

上記α−オレフィンとしては、例えばエチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−デセン、1−ドデセン、1−ヘキサデセン、3−メチル−1−ブテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、3−メチル−1−ヘキセン、3,3−ジメチル−1−ブテン、3−エチル−1−ペンテン、ジメチル−1−ペンテン、メチルエチル−1−ペンテン、ジエチル−1−ヘキセン、トリメチル−1−ペンテン、ジメチル−1−ヘキセン、3,5,5−トリメチル−1−ヘキセン、メチルエチル−1−ヘプテン、トリメチル−1−ヘプテン、ジメチル−1−オクテン、エチル−1−オクテン、メチル−1−ノネン、ビニルシクロペンタン、ビニルシクロヘキサン、ビニルノルボルナンなどが挙げられる。これらの中では、エチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテンが好ましく、中でもエチレンが最も好ましい。これらは1種単独で用いてもよく、2種以上を併用してもよい。   Examples of the α-olefin include ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, 3-methyl-1-hexene, 3,3-dimethyl-1-butene, 3-ethyl-1-pentene, dimethyl-1-pentene, methylethyl -1-pentene, diethyl-1-hexene, trimethyl-1-pentene, dimethyl-1-hexene, 3,5,5-trimethyl-1-hexene, methylethyl-1-heptene, trimethyl-1-heptene, dimethyl- 1-octene, ethyl-1-octene, methyl-1-nonene, vinylcyclopentane, vinylcyclohexane, vinylnorbornane, etc. It is below. Among these, ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene are preferable, and ethylene is most preferable. These may be used alone or in combination of two or more.

上記プロピレン・α−オレフィン共重合体中におけるα−オレフィン由来の構成単位の含有量は、通常0mol%を超えて80mol%以下、好ましくは0.2〜70mol%
、さらに好ましくは0.4〜60mol%の範囲にある。これらの中では、α−オレフィン由来の構成単位の含有量が10mol%以下の共重合体は、上記要件(1)を充足する共重合体となり、α−オレフィン由来の構成単位の含有量が10mol%を超える共重合体は、上記要件(2)および(3)を充足する共重合体となり易い。したがって、α−オレフィン由来の構成単位の含有量が異なる共重合体を2種以上併用するか、上記プロピレン単独重合体と混合することにより、上記要件(1)〜(3)を充足するプロピレン系樹脂組成物を得ることができる。
The content of the structural unit derived from α-olefin in the propylene / α-olefin copolymer is usually more than 0 mol% and not more than 80 mol%, preferably 0.2 to 70 mol%.
More preferably, it exists in the range of 0.4-60 mol%. Among these, a copolymer having an α-olefin-derived constituent unit content of 10 mol% or less is a copolymer that satisfies the above requirement (1), and the α-olefin-derived constituent unit content is 10 mol. A copolymer exceeding% tends to be a copolymer that satisfies the requirements (2) and (3). Therefore, the propylene type | system | group which satisfies the said requirements (1)-(3) by using together 2 or more types of copolymers from which content of the structural unit derived from an alpha olefin differs, or mixing with the said propylene homopolymer. A resin composition can be obtained.

本発明で用いられるプロピレン単独重合体あるいはプロピレン・α−オレフィン共重合体は、周期律表第IV族の遷移金属を用いるメタロセン化合物とメチルアルミノキサンまたはアルキルアルミニウムもしくはアルキルアルミニウムハライドとからなるメタロセン触媒、バナジウム系触媒、三塩化チタンあるいは四塩化チタンを塩化マグネシウムなどのマグネシウム化合物に担持させたチタン系触媒、アニオン重合触媒、ラジカル重合触媒などの存在下に、プロピレンを単独重合、またはプロピレンとα−オレフィンとを共重合することにより得られる。   The propylene homopolymer or propylene / α-olefin copolymer used in the present invention is a metallocene catalyst comprising a metallocene compound using a transition metal of Group IV of the periodic table and methylaluminoxane or alkylaluminum or alkylaluminum halide, vanadium. Propylene in the presence of a titanium catalyst, titanium trichloride or titanium tetrachloride supported on a magnesium compound such as magnesium chloride, anionic polymerization catalyst, radical polymerization catalyst, or propylene and α-olefin Can be obtained by copolymerization.

重合は、スラリー重合、バルク重合、気相重合、液相重合などの何れの方法でもよい。こうした重合は、バッチ式、セミバッチ式、連続式による何れの方式を採用してもよく、また、単段重合あるいは多段重合の何れの方式を採用してもよい。なお、かかる多段重合においては、上記重合体は、気相重合または液相重合で製造してもよく、気相重合と液相重合とを組み合わせて製造してもよい。また、重合中、水素を導入することにより分子量を調節したり、得られた重合体を有機過酸化物などの分子量調節剤(分解剤)により分子量を調節してもよい。   The polymerization may be any method such as slurry polymerization, bulk polymerization, gas phase polymerization, and liquid phase polymerization. Such polymerization may employ any of batch, semi-batch, and continuous methods, and may employ either single-stage polymerization or multi-stage polymerization. In the multistage polymerization, the polymer may be produced by gas phase polymerization or liquid phase polymerization, or may be produced by combining gas phase polymerization and liquid phase polymerization. Further, during the polymerization, the molecular weight may be adjusted by introducing hydrogen, or the molecular weight of the obtained polymer may be adjusted by a molecular weight regulator (decomposing agent) such as an organic peroxide.

なお、本発明の発泡成形体用プロピレン系樹脂組成物には、プロピレン単独重合体およびプロピレン・α−オレフィン共重合体からなる群から選ばれる少なくとも1種のプロピレン系樹脂が、通常50重量%以上、好ましくは60重量%以上含まれる。   In the propylene resin composition for foamed molded products of the present invention, at least one propylene resin selected from the group consisting of a propylene homopolymer and a propylene / α-olefin copolymer is usually 50% by weight or more. , Preferably 60% by weight or more.

<添加剤>
本発明の発泡成形体用プロピレン系樹脂組成物には、必要に応じて、酸化防止剤、加工安定剤、耐候安定剤、分解剤、中和剤、結晶核剤、金属不活性剤、紫外線吸収剤、滑剤、可塑剤、難燃剤、帯電防止剤、着色剤などの添加剤を添加してもよい。前記添加剤の添加量は、本発明の発泡成形体用プロピレン系樹脂組成物を発泡させて得られる発泡成形体に要求される諸特性あるいは成形条件に応じて適宜決定すればよい。
上記分解剤としては、例えばパーヘキサ25B(日本油脂製)などの過酸化物が挙げられる。
<Additives>
The propylene-based resin composition for foamed molded products of the present invention includes, as necessary, an antioxidant, a processing stabilizer, a weathering stabilizer, a decomposition agent, a neutralizing agent, a crystal nucleating agent, a metal deactivator, and an ultraviolet absorber. You may add additives, such as an agent, a lubricant, a plasticizer, a flame retardant, an antistatic agent, and a coloring agent. What is necessary is just to determine suitably the addition amount of the said additive according to the various characteristics or molding conditions requested | required of the foaming molding obtained by foaming the propylene-type resin composition for foaming moldings of this invention.
Examples of the decomposing agent include peroxides such as perhexa 25B (manufactured by NOF Corporation).

〔発泡成形体用プロピレン系樹脂組成物の製造方法〕
上記要件(1)〜(3)、好ましくは要件(4)を充足する本発明の発泡成形体用プロピレン系樹脂組成物は、以下の方法で得ることができる。
[Method for producing propylene-based resin composition for foam molded article]
The propylene-based resin composition for foam molded articles of the present invention satisfying the above requirements (1) to (3), preferably the requirement (4), can be obtained by the following method.

プロピレン系樹脂の融解ピーク温度(Tm)および融解エネルギーは、得られるプロピレン系樹脂の立体規則性と結晶性とに依存する。即ち、プロピレン系樹脂の立体規則性が高いとその融解ピーク温度(Tm)は通常165℃以上になるが、同時に融解エネルギーも通常100mJ/mg以上になる。一方、プロピレン系樹脂の立体規則性を低くしたり、プロピレンと共重合させるα―オレフィンの量が増えると結晶性が低下し、融解エネルギーが通常1mJ/mg以下になる。   The melting peak temperature (Tm) and melting energy of the propylene resin depend on the stereoregularity and crystallinity of the resulting propylene resin. That is, when the stereoregularity of the propylene resin is high, its melting peak temperature (Tm) is usually 165 ° C. or higher, but at the same time, the melting energy is usually 100 mJ / mg or higher. On the other hand, when the stereoregularity of the propylene resin is lowered or the amount of α-olefin copolymerized with propylene is increased, the crystallinity is lowered and the melting energy is usually 1 mJ / mg or less.

一般的に、融解ピーク温度(Tm)が上記要件(1)を充足するプロピレン系樹脂は、上記公知の触媒を用い、プロピレンを単独重合するか、プロピレンと少量のα―オレフィ
ンとを共重合することにより得られる。しかしながら、このようにして得られたプロピレン系樹脂の融解エネルギーは、通常60〜100mJ/mgの範囲にある。
In general, a propylene-based resin having a melting peak temperature (Tm) satisfying the above requirement (1) is obtained by homopolymerizing propylene or copolymerizing propylene and a small amount of α-olefin using the above known catalyst. Can be obtained. However, the melting energy of the propylene-based resin thus obtained is usually in the range of 60 to 100 mJ / mg.

一方、非晶性もしくは低結晶性のプロピレン単独重合体、またはプロピレン・α−オレフィン共重合体は、通常は融解ピーク温度(Tm)を有さないか、140℃未満である。また、それらの融解エネルギーは通常0〜30mJ/mgの範囲にある。   On the other hand, the amorphous or low crystalline propylene homopolymer or propylene / α-olefin copolymer usually does not have a melting peak temperature (Tm) or less than 140 ° C. Their melting energy is usually in the range of 0 to 30 mJ / mg.

したがって、融解ピーク温度(Tm)が140〜165℃、好ましくは145〜165℃の範囲にあるプロピレン単独重合体またはプロピレン・α―オレフィン共重合体(高結晶性成分)と、融解エネルギーが0〜30mJ/mg、好ましくは0〜20mJ/mgの範囲にある非晶性もしくは低結晶性のプロピレン単独重合体またはプロピレン・α―オレフィン共重合体(低結晶性成分)とを適宜混合することにより、上記要件(1)および要件(2)を共に充足するプロピレン系樹脂組成物を得ることができる。   Therefore, a propylene homopolymer or a propylene / α-olefin copolymer (high crystalline component) having a melting peak temperature (Tm) in the range of 140 to 165 ° C., preferably 145 to 165 ° C., and a melting energy of 0 to By appropriately mixing an amorphous or low crystalline propylene homopolymer or propylene / α-olefin copolymer (low crystalline component) in the range of 30 mJ / mg, preferably 0 to 20 mJ / mg, A propylene-based resin composition that satisfies both the above requirements (1) and (2) can be obtained.

高結晶性成分と低結晶性成分との混合は、先に高結晶性成分を所定の量で重合した後、引続き低結晶性成分を重合する、いわゆるブロック共重合法により製造してもよいし、予め得られた高結晶性成分と低結晶性成分とを混合あるいは溶融混練して製造してもよい。これらの中では、ブロック共重合法により得られた2種以上のプロピレン系樹脂を混合してプロピレン系樹脂組成物を製造することが好ましい。   The high crystalline component and the low crystalline component may be mixed by a so-called block copolymerization method in which the high crystalline component is first polymerized in a predetermined amount and then the low crystalline component is subsequently polymerized. Alternatively, a high crystallinity component and a low crystallinity component obtained in advance may be mixed or melt kneaded. Among these, it is preferable to produce a propylene resin composition by mixing two or more propylene resins obtained by a block copolymerization method.

また、プロピレン系樹脂組成物の温度上昇溶離分別(TREF)の溶出温度80℃以上における溶出成分量(要件(3))は、プロピレン単独重合体またはプロピレン・α―オレフィン共重合体の立体規則性を低くすると減少し、あるいはプロピレン・α―オレフィン共重合体中のα―オレフィン含有量を増すと減少する。ここで、立体規則性は主に重合触媒の選択によって調節することが可能である。   In addition, the elution component amount (requirement (3)) at the elution temperature of 80 ° C. or higher in the temperature rising elution fractionation (TREF) of the propylene resin composition is the stereoregularity of the propylene homopolymer or propylene / α-olefin copolymer. It decreases when the value is lowered, or decreases when the content of α-olefin in the propylene / α-olefin copolymer is increased. Here, the stereoregularity can be adjusted mainly by the selection of the polymerization catalyst.

また、プロピレン系樹脂組成物のMFR(要件(4))は、プロピレン系樹脂の重合条件により調節可能である他、プロピレン系樹脂に添加する上記分解剤の種類と量、および分解温度ならびに分解時間を選択することでも適宜調節することができる。   The MFR (requirement (4)) of the propylene-based resin composition can be adjusted by the polymerization conditions of the propylene-based resin, as well as the type and amount of the above decomposing agent added to the propylene-based resin, the decomposition temperature, and the decomposition time. It can also be adjusted appropriately by selecting.

〔発泡成形体の製造〕
本発明の発泡成形体用プロピレン系樹脂組成物は、発泡剤と混合して、従来から公知の方法で発泡成形することができる。発泡成形方法としては、例えば常圧発泡、加圧発泡、押出発泡、射出発泡、プレス発泡、型内発泡、ビーズ発泡などが挙げられる。
[Manufacture of foam moldings]
The propylene-based resin composition for foam molded articles of the present invention can be mixed with a foaming agent and foam-molded by a conventionally known method. Examples of the foam molding method include normal pressure foaming, pressure foaming, extrusion foaming, injection foaming, press foaming, in-mold foaming, and bead foaming.

また、発泡成形する際に、適度な粘弾性を発泡成形体に付与するためにプロピレン系樹脂組成物を架橋処理してもよい。架橋処理する場合には、過酸化物を用いた化学架橋あるいは電子線架橋を適用することができ、必要に応じて架橋助剤としてジビニルベンゼンなどの多官能性モノマーを用いることができる。   Moreover, when foam-molding, the propylene-based resin composition may be subjected to a crosslinking treatment in order to impart appropriate viscoelasticity to the foam-molded product. In the case of crosslinking treatment, chemical crosslinking using a peroxide or electron beam crosslinking can be applied, and a polyfunctional monomer such as divinylbenzene can be used as a crosslinking aid if necessary.

本発明の発泡成形体用プロピレン系樹脂組成物を発泡成形して得られる発泡成形体の発泡倍率は、通常1.3〜40倍、好ましくは2〜30倍の範囲にある。   The foaming ratio of the foamed molded product obtained by foaming the propylene-based resin composition for foamed molded product of the present invention is usually 1.3 to 40 times, preferably 2 to 30 times.

<発泡剤>
上記発泡剤としては、物理発泡剤あるいは化学発泡剤などが挙げられる。前記物理発泡剤あるいは化学発泡剤は、それぞれを単独で用いてもよいが、物理発泡剤と化学発泡剤とを併用してもよい。
<Foaming agent>
Examples of the foaming agent include physical foaming agents and chemical foaming agents. Each of the physical foaming agent or the chemical foaming agent may be used alone, or a physical foaming agent and a chemical foaming agent may be used in combination.

上記物理発泡剤としては、例えば窒素ガス、二酸化炭素、空気、プロパン、ブタン、ペンタン、シクロペンタン、ヘキサン、ジクロロエタン、ジクロロジフルオロメタン、ジク
ロロモノフルオロメタン、トリクロロモノフルオロメタンなどが挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。また、前記物理発泡剤は、液体状態、超臨界状態、および気体状態のいずれも使用可能である。
Examples of the physical foaming agent include nitrogen gas, carbon dioxide, air, propane, butane, pentane, cyclopentane, hexane, dichloroethane, dichlorodifluoromethane, dichloromonofluoromethane, and trichloromonofluoromethane. These may be used alone or in combination of two or more. The physical foaming agent can be used in any of a liquid state, a supercritical state, and a gas state.

上記化学発泡剤としては、例えば重曹;重曹とクエン酸、クエン酸ナトリウム、ステアリン酸などの有機酸との混合物;トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネートなどのイソシアネート化合物、アゾジカルボン酸アミド、アゾビスブチロニトリル、バリウムアゾジカルボキシレート、ジアゾアミノベンゼン、トリヒドラジノトリアジンなどのアゾまたはジアゾ化合物;ベンゼンスルホニルヒドラジド、p,p’−オキシビス(ベンゼンスルホニルヒドラジド)、トルエンスルホニルヒドラジドなどのヒドラジン誘導体;N,N’−ジニトロソペンタメチレンテトラミン、N,N’−ジメチル−N,N’−ジニトロソテレフタルアミドなどのニトロソ化合物;p−トルエンスルホニルセミカルバジド、4,4’−オキシビスベンゼンスルホニルセミカルバジドなどのセミカルバジド化合物、アジ化合物、トリアゾール化合物などが挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。   Examples of the chemical foaming agent include baking soda; a mixture of baking soda and an organic acid such as citric acid, sodium citrate, and stearic acid; an isocyanate compound such as tolylene diisocyanate and 4,4′-diphenylmethane diisocyanate; Azo or diazo compounds such as azobisbutyronitrile, barium azodicarboxylate, diazoaminobenzene, trihydrazinotriazine; hydrazine derivatives such as benzenesulfonyl hydrazide, p, p'-oxybis (benzenesulfonyl hydrazide), toluenesulfonyl hydrazide Nitroso compounds such as N, N′-dinitrosopentamethylenetetramine and N, N′-dimethyl-N, N′-dinitrosotephthalamide; p-toluenesulfonyl semicarbazide, 4,4 ′ Semicarbazide compounds such oxybisbenzenesulfonyl semicarbazide, azide compounds, and triazole compounds. These may be used alone or in combination of two or more.

また、上記発泡剤と共に、発泡助剤として酸化亜鉛、尿素などを、気泡調整剤としてタルク、ステアリン酸亜鉛、ケイ酸カルシウムなどを用いてもよい。
上記発泡剤の添加量は、発泡剤の種類、成形方法、あるいは目的とする発泡倍率により異なるので特に限定されないが、上記発泡成形体用プロピレン系樹脂組成物100重量部に対して、通常0.1〜50重量部、好ましくは1〜20重量部である。
In addition to the foaming agent, zinc oxide, urea, or the like may be used as a foaming aid, and talc, zinc stearate, calcium silicate, or the like may be used as a foam regulator.
The amount of the foaming agent to be added is not particularly limited because it varies depending on the type of foaming agent, the molding method, or the target foaming ratio, but it is generally 0.1% relative to 100 parts by weight of the propylene-based resin composition for foamed molded products. 1 to 50 parts by weight, preferably 1 to 20 parts by weight.

〔発泡成形体〕
本発明の発泡成形体用プロピレン系樹脂組成物を発泡成形して得られる発泡成形体は、耐熱性および機械的強度と、柔軟性および変形後の回復性とのバランスに優れている。
[Foamed molded product]
The foam molded article obtained by foam molding of the propylene-based resin composition for foam molded article of the present invention is excellent in balance between heat resistance and mechanical strength, flexibility and recoverability after deformation.

したがって、本発明の発泡成形体は、耐候性、耐薬品性、加工性、衛生性、リサイクル性に優れており、自動車の内装材、断熱材、土木・建築の目地材、吸音材、スポーツ用品あるいは食品包装の緩衝材、空調設備の断熱材などに広く利用することができる。   Accordingly, the foamed molded article of the present invention is excellent in weather resistance, chemical resistance, processability, hygiene, and recyclability, and is used for automobile interior materials, heat insulating materials, civil engineering / architectural joint materials, sound absorbing materials, and sports equipment. Alternatively, it can be widely used as a cushioning material for food packaging, a heat insulating material for air conditioning equipment, and the like.

次に、本発明の発泡成形体用プロピレン系樹脂組成物およびその発泡成形体について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。   Next, examples of the propylene-based resin composition for foamed molded products and the foamed molded products of the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

≪示差走査熱量測定≫
プロピレン系樹脂組成物の融解ピーク温度は、Diamond DSC(Perkin−Elmer社製)を用いて、JIS K7121に準拠して求めた値であり、窒素気流下、以下の条件で測定し、下記(3)の過程から融解ピーク温度を求めた。
(1)500℃/分の速度で230℃に昇温してサンプルを一度融解させ、10分保持する。
(2)10℃/分の速度で30℃に降温して、1分保持する。
(3)30℃から10℃/分の速度で230℃に昇温する。
≪Differential scanning calorimetry≫
The melting peak temperature of the propylene-based resin composition is a value determined in accordance with JIS K7121 using Diamond DSC (manufactured by Perkin-Elmer), measured under the following conditions under a nitrogen stream, and the following (3 ) To determine the melting peak temperature.
(1) The temperature is raised to 230 ° C. at a rate of 500 ° C./min, and the sample is once melted and held for 10 minutes.
(2) The temperature is lowered to 30 ° C. at a rate of 10 ° C./min and held for 1 minute.
(3) The temperature is raised from 30 ° C. to 230 ° C. at a rate of 10 ° C./min.

また、プロピレン系樹脂組成物の140℃以上の融解エネルギーは、上述の融解ピーク温度測定と同じ条件で測定し、JIS K7122に準拠して全融解ピーク面積から求められる融解エネルギーのうち、140℃以上の融解ピーク面積から求められる融解エネルギーに相当する値である。   Further, the melting energy of 140 ° C. or higher of the propylene-based resin composition is measured under the same conditions as the above-described melting peak temperature measurement, and is 140 ° C. or higher of the melting energy obtained from the total melting peak area according to JIS K7122. This is a value corresponding to the melting energy obtained from the melting peak area.

≪温度上昇溶離分別≫
プロピレン系樹脂組成物の温度上昇溶離分別は、以下の条件で測定した。
カラム:4.2mmφ×150mm(ステンレス製)
充填剤:クロモソルブP(30〜60メッシュ)
溶媒:o−ジクロロベンゼン
流速:1.0ml/分
試料濃度:6mg/ml
試料注入量:0.5ml
結晶化:135℃から5℃/hrの速度で0℃に降温して、30分保持する。
溶出:0℃から40℃/hrの速度で135℃に昇温する。
検出器:IR(MIRAN社製、検出波長3.41μm)
≪Temperature rise elution fractionation≫
The temperature rising elution fractionation of the propylene resin composition was measured under the following conditions.
Column: 4.2 mmφ × 150 mm (made of stainless steel)
Filler: Chromosolv P (30-60 mesh)
Solvent: o-dichlorobenzene Flow rate: 1.0 ml / min Sample concentration: 6 mg / ml
Sample injection volume: 0.5 ml
Crystallization: The temperature is lowered from 135 ° C. to 0 ° C. at a rate of 5 ° C./hr and held for 30 minutes.
Elution: The temperature is raised from 0 ° C to 135 ° C at a rate of 40 ° C / hr.
Detector: IR (manufactured by MIRAN, detection wavelength 3.41 μm)

≪メルトフローレート(MFR)≫
プロピレン系樹脂組成物のMFRは、JIS K7210(230℃、荷重2.16kg)に準拠して測定した。
≪Melt flow rate (MFR) ≫
The MFR of the propylene-based resin composition was measured in accordance with JIS K7210 (230 ° C., load 2.16 kg).

≪発泡倍率≫
発泡成形体の比重を水中置換法により測定し、発泡倍率を算出した。
≪圧縮硬さ≫
縦10mm、横10mm、厚さ約10mmの直方体の試験片の厚さを測定した後、圧縮試験機に配置して、10mm/分の速度で初期の厚さの25%だけ圧縮して停止し、20秒後の荷重から応力を算出して圧縮硬さとした。
≪Foaming ratio≫
The specific gravity of the foamed molded product was measured by an underwater substitution method, and the foaming ratio was calculated.
≪Compression hardness≫
After measuring the thickness of a rectangular parallelepiped test piece having a length of 10 mm, a width of 10 mm, and a thickness of about 10 mm, the test piece was placed in a compression tester and compressed by 25% of the initial thickness at a speed of 10 mm / min. The stress was calculated from the load after 20 seconds to obtain the compression hardness.

≪25%圧縮歪み≫
縦10mm、横10mm、厚さ約10mmの直方体の試験片の厚さを測定し、これをt0とした。次に試験片を圧縮試験機に設置して、10mm/分の速度で初期の試験片の厚さの25%だけ圧縮固定し、この時の厚さをt1とした。このまま23℃の条件で22時間放置し、その後、圧縮を開放して、23℃の条件で24時間放置した後、試験片の厚さを測定して、その厚さをt2とした。(t0−t2)/(t0−t1)×100(%)を25%圧縮歪みとした。
≪25% compression strain≫
The thickness of a rectangular parallelepiped test piece having a length of 10 mm, a width of 10 mm, and a thickness of about 10 mm was measured, and this was designated as t0. Next, the test piece was placed in a compression tester, and was compressed and fixed by 25% of the initial thickness of the test piece at a speed of 10 mm / min. The thickness at this time was defined as t1. The sample was allowed to stand at 23 ° C. for 22 hours, then released from compression, and allowed to stand at 23 ° C. for 24 hours. The thickness of the test piece was measured, and the thickness was defined as t2. (T0−t2) / (t0−t1) × 100 (%) was defined as 25% compression strain.

≪引張試験≫
小型のダンベル打抜型(全長:50mm、平行部長さ:30mm、平行部幅:5mm、チャック部幅10mm)で打抜いた試験片をチャック間距離30mmで引張試験機に取り付け、引張速度10mm/分で引張り、切断にいたるまでの最大荷重と切断時のチャック間距離とから、引張破断強度と引張破断伸びとを算出した。
≪Tensile test≫
A test piece punched with a small dumbbell punching die (total length: 50 mm, parallel part length: 30 mm, parallel part width: 5 mm, chuck part width 10 mm) is attached to a tensile tester with a chuck distance of 30 mm, and a tensile speed of 10 mm / min. The tensile strength at break and the tensile elongation at break were calculated from the maximum load until pulling and cutting and the distance between chucks at the time of cutting.

〔製造例1〕
(1)固体触媒成分の調製
窒素ガスで充分に置換した内容積500Lのステンレス鋼製の触媒反応槽に、ジエトキシマグネシウム16kg、精製ヘプタン80L、四塩化ケイ素2.4L、およびフタル酸ジエチル2.3Lを仕込んだ。前記触媒反応槽内を90℃に保ち、攪拌しながら四塩化チタン77Lを加え、110℃で2時間反応させた後、固体成分を分離して80℃の精製ヘプタンで洗浄した。さらに、四塩化チタン122Lを加え、110℃で2時間反応させた後、精製ヘプタンで充分洗浄し、固体触媒成分を得た。
[Production Example 1]
(1) Preparation of solid catalyst component In a catalytic reaction tank made of stainless steel having an internal volume of 500 L, sufficiently substituted with nitrogen gas, 16 kg of diethoxymagnesium, 80 L of purified heptane, 2.4 L of silicon tetrachloride, and diethyl phthalate 3L was charged. While keeping the inside of the catalyst reaction tank at 90 ° C., 77 L of titanium tetrachloride was added with stirring and reacted at 110 ° C. for 2 hours, and then the solid component was separated and washed with purified heptane at 80 ° C. Further, 122 L of titanium tetrachloride was added and reacted at 110 ° C. for 2 hours, and then sufficiently washed with purified heptane to obtain a solid catalyst component.

(2)予備重合
窒素ガスで充分に置換した内容積80Lのステンレス鋼製重合反応槽に、上記(1)で得られた固体触媒成分4kg、精製ヘプタン40L、トリエチルアルミニウム1.6mol、およびシクロヘキシルメチルジメトキシシラン0.4molを仕込んだ。前記重合反応槽内を40℃に保ち、攪拌しながらプロピレンを連続的に2時間供給し、ほぼ常圧で予
備重合した。プロピレンの供給を停止した後、前記重合反応槽内を40℃で30分間保持した後、精製ヘプタンで充分洗浄し、予備重合触媒を得た。
(2) Prepolymerization Into an 80 L stainless steel polymerization reaction tank sufficiently substituted with nitrogen gas, 4 kg of the solid catalyst component obtained in (1) above, 40 L of purified heptane, 1.6 mol of triethylaluminum, and cyclohexylmethyl Dimethoxysilane 0.4 mol was charged. While maintaining the inside of the polymerization reaction vessel at 40 ° C., propylene was continuously supplied for 2 hours with stirring, and prepolymerization was performed at almost normal pressure. After the supply of propylene was stopped, the inside of the polymerization reaction tank was kept at 40 ° C. for 30 minutes, and then sufficiently washed with purified heptane to obtain a prepolymerized catalyst.

(3)重合
窒素ガスで充分に置換した内容積5Lの攪拌機付きステンレス鋼製重合反応槽に、液体プロピレンを3L、トリエチルアルミニウム1.7mmol、シクロヘキシルメチルジメトキシシラン0.17mmol、および水素を気相中の濃度が6.5mol%になるように加え、該重合反応槽内の温度を55℃に昇温した。次に、上記(2)で得られた予備重合触媒をチタン原子換算で0.011mmol加え、55℃で30分間プロピレン重合を行った(工程1)。次に、エチレンを気相中の圧力が0.16MPaとなる量で供給し、55℃で100分間プロピレン/エチレン共重合を行った(工程2)。反応終了後、降温し未反応モノマーをパージして、ポリプロピレン成分およびプロピレン/エチレンランダム共重合体成分を含むブロック共重合体であるポリマー(A)を得た。得られたポリマー(A)を、70℃で1時間乾燥した。このポリマー(A)の一部を採取し分析した結果、MFRは0.05g/10分、エチレン由来の構成単位の含有量は30mol%であった。
(3) Polymerization Into a stainless steel polymerization reactor equipped with a stirrer with an internal volume of 5 L, sufficiently substituted with nitrogen gas, 3 L of liquid propylene, 1.7 mmol of triethylaluminum, 0.17 mmol of cyclohexylmethyldimethoxysilane, and hydrogen in the gas phase The concentration in the polymerization reaction vessel was increased to 55 ° C. Next, 0.011 mmol of the prepolymerized catalyst obtained in the above (2) was added in terms of titanium atom, and propylene polymerization was performed at 55 ° C. for 30 minutes (step 1). Next, ethylene was supplied in such an amount that the pressure in the gas phase was 0.16 MPa, and propylene / ethylene copolymerization was performed at 55 ° C. for 100 minutes (step 2). After completion of the reaction, the temperature was lowered and the unreacted monomer was purged to obtain a polymer (A) which is a block copolymer containing a polypropylene component and a propylene / ethylene random copolymer component. The obtained polymer (A) was dried at 70 ° C. for 1 hour. As a result of collecting and analyzing a part of this polymer (A), the MFR was 0.05 g / 10 min, and the content of structural units derived from ethylene was 30 mol%.

〔製造例2〕
製造例1で得られたポリマー(A)100重量部に対して、酸化防止剤としてイルガノックス1010(チバスペシャリティーケミカルズ社製)0.2重量部、安定剤としてDHT−4A(協和化学社製)0.05重量部、および分解剤として過酸化物であるパーヘキサ25B−40(日本油脂製;純度40%)1.2重量部を配合し、攪拌混合を充分行った。次に、KZW31二軸押出機(テクノベル社製、スクリュー径31mm、L/D=30)を用い、シリンダー温度240℃、ダイス温度200℃、スクリュー回転数300rpm、押出量16kg/hで混練してポリマー(B)を得た。得られたポリマー(B)のMFRは75g/10分であった。
[Production Example 2]
With respect to 100 parts by weight of the polymer (A) obtained in Production Example 1, 0.2 part by weight of Irganox 1010 (manufactured by Ciba Specialty Chemicals) as an antioxidant and DHT-4A (manufactured by Kyowa Chemical Co., Ltd.) as a stabilizer ) 0.05 part by weight, and 1.2 parts by weight of Perhexa 25B-40 (manufactured by Nippon Oil &Fats; purity 40%) as a peroxide as a decomposing agent were blended and sufficiently mixed with stirring. Next, using a KZW31 twin screw extruder (manufactured by Technobel, screw diameter 31 mm, L / D = 30), kneading is performed at a cylinder temperature of 240 ° C., a die temperature of 200 ° C., a screw rotation speed of 300 rpm, and an extrusion rate of 16 kg / h. A polymer (B) was obtained. MFR of the obtained polymer (B) was 75 g / 10 minutes.

〔製造例3〕
(1)固体触媒成分の調製、および(2)予備重合は、製造例1と同様の条件で行った。
[Production Example 3]
(1) Preparation of the solid catalyst component and (2) prepolymerization were carried out under the same conditions as in Production Example 1.

(3)重合
窒素ガスで充分に置換した内容積5Lの攪拌機付きステンレス鋼製重合反応槽に、液体プロピレンを3L、トリエチルアルミニウム1.7mmol、シクロヘキシルメチルジメトキシシラン0.17mmol、および水素を気相中の濃度が9.0mol%になるように加え、該重合反応槽内の温度を55℃に昇温した。次に、上記(2)で得られた予備重合触媒をチタン原子換算で0.011mmol加え、55℃で30分間プロピレン重合を行った(工程1)。次に、エチレンを気相中の圧力が0.23MPaとなる量で供給し、55℃で100分間プロピレン/エチレン共重合を行った(工程2)。反応終了後、降温し未反応モノマーをパージして、ポリプロピレン成分およびプロピレン/エチレンランダム共重合体成分を含むブロック共重合体であるポリマー(C)を得た。得られたポリマー(C)を、70℃で1時間乾燥した。このポリマー(C)の一部を採取し分析した結果、MFRは0.03g/10分、エチレン由来の構成単位の含有量は40mol%であった。
(3) Polymerization Into a stainless steel polymerization reactor equipped with a stirrer with an internal volume of 5 L, sufficiently substituted with nitrogen gas, 3 L of liquid propylene, 1.7 mmol of triethylaluminum, 0.17 mmol of cyclohexylmethyldimethoxysilane, and hydrogen in the gas phase The temperature in the polymerization reaction vessel was raised to 55 ° C. Next, 0.011 mmol of the prepolymerized catalyst obtained in the above (2) was added in terms of titanium atom, and propylene polymerization was performed at 55 ° C. for 30 minutes (step 1). Next, ethylene was supplied in such an amount that the pressure in the gas phase became 0.23 MPa, and propylene / ethylene copolymerization was performed at 55 ° C. for 100 minutes (step 2). After completion of the reaction, the temperature was lowered and the unreacted monomer was purged to obtain a polymer (C) which is a block copolymer containing a polypropylene component and a propylene / ethylene random copolymer component. The obtained polymer (C) was dried at 70 ° C. for 1 hour. As a result of collecting and analyzing a part of this polymer (C), the MFR was 0.03 g / 10 min, and the content of the structural unit derived from ethylene was 40 mol%.

〔製造例4〕
製造例2において、製造例1で得られたポリマー(A)100重量部のかわりに製造例3で得られたポリマー(C)100重量部を使用すると共に、過酸化物であるパーヘキサ25B−40(日本油脂製;純度40%)の配合量を0.02重量部にかえた他は製造例2と同様にして、ポリマー(D)を得た。得られたポリマー(D)のMFRは2.0g/
10分であった。
[Production Example 4]
In Production Example 2, 100 parts by weight of the polymer (C) obtained in Production Example 3 was used in place of 100 parts by weight of the polymer (A) obtained in Production Example 1, and Perhexa 25B-40 as a peroxide was used. A polymer (D) was obtained in the same manner as in Production Example 2, except that the blending amount (made by Nippon Oil &Fats; purity 40%) was changed to 0.02 parts by weight. MFR of the obtained polymer (D) is 2.0 g /
It was 10 minutes.

〔製造例5〕
製造例2において、製造例1で得られたポリマー(A)100重量部のかわりに製造例1で得られたポリマー(A)60重量部と製造例3で得られたポリマー(C)40重量部とを使用すると共に、過酸化物であるパーヘキサ25B−40(日本油脂製;純度40%)の配合量を0.25重量部にかえた他は製造例2と同様にして、ポリマー(E)を得た。得られたポリマー(E)のMFRは10g/10分であった。
製造例1〜5で得られたポリマー(A)〜(E)の組成などを表1に示す。
[Production Example 5]
In Production Example 2, instead of 100 parts by weight of the polymer (A) obtained in Production Example 1, 60 parts by weight of the polymer (A) obtained in Production Example 1 and 40 parts by weight of the polymer (C) obtained in Production Example 3 In the same manner as in Production Example 2 except that the amount of Perhexa 25B-40 (manufactured by Nippon Oil &Fats; purity 40%) as a peroxide was changed to 0.25 parts by weight. ) MFR of the obtained polymer (E) was 10 g / 10 minutes.
Table 1 shows the compositions of the polymers (A) to (E) obtained in Production Examples 1 to 5.

Figure 0005270935
[実施例1]
ポリマー(A)30重量部、ポリマー(B)50重量部、およびポリマー(D)20重量部と、酸化防止剤としてイルガノックス1010(チバスペシャリティーケミカルズ社製)0.1重量部、イルガフォス168(チバスペシャリティーケミカルズ社製)0.1
重量部、およびステアリン酸カルシウム(日本油脂製)0.1重量部とをヘンシェルミキサーで攪拌混合した。次に、KZW31二軸押出機(テクノベル製、スクリュー径31mm、L/D=30)を用い、シリンダー温度190℃、ダイス温度190℃、スクリュー回転数150rpm、押出量15kg/hで混練してプロピレン系樹脂組成物を得た。得られたプロピレン系樹脂組成物は、融解ピーク温度が152.7℃、融解ピーク面積から得られる140℃以上の融解エネルギーが5.3mJ/mg、TREFによって得られる溶出曲線において、溶出温度80℃以上における溶出成分量が全溶出成分量の11.3重量%、MFRが1.9g/10分であった。
Figure 0005270935
[Example 1]
30 parts by weight of polymer (A), 50 parts by weight of polymer (B), 20 parts by weight of polymer (D), 0.1 part by weight of Irganox 1010 (manufactured by Ciba Specialty Chemicals) as an antioxidant, and Irgafos 168 ( Ciba Specialty Chemicals) 0.1
Part by weight and 0.1 part by weight of calcium stearate (manufactured by NOF Corporation) were stirred and mixed with a Henschel mixer. Next, using a KZW31 twin-screw extruder (manufactured by Technobel, screw diameter 31 mm, L / D = 30), kneading at a cylinder temperature of 190 ° C., a die temperature of 190 ° C., a screw speed of 150 rpm, and an extrusion rate of 15 kg / h, propylene A system resin composition was obtained. The resulting propylene-based resin composition has a melting peak temperature of 152.7 ° C., a melting energy of 140 ° C. or higher obtained from the melting peak area of 5.3 mJ / mg, and an elution temperature of 80 ° C. in an elution curve obtained by TREF. The amount of eluted components in the above was 11.3% by weight of the total amount of eluted components, and the MFR was 1.9 g / 10 minutes.

次に、タンデム式短軸押出機(一段目押出機 スクリュー径:35mm、シリンダー設定温度:240℃、二段目押出機 スクリュー径:50mm、シリンダー設定温度:150℃)の原料供給ホッパーより上記プロピレン系樹脂組成物を12kg/hで供給して溶融させた後、一段目押出機途中より超臨界状態の二酸化炭素を、該プロピレン系樹脂組成物100重量部に対して4.2重量部の割合で圧入した。続いて、二段目押出機の先端に取り付けられた、直径0.8mmの孔が27個配置された多孔ダイ(設定温度:150℃)から前記発泡性のプロピレン系樹脂組成物を押出すことにより、発泡ストランドが集合した角柱形状の押出発泡成形体を得た。   Next, the propylene from the raw material supply hopper of a tandem short-axis extruder (first stage extruder screw diameter: 35 mm, cylinder set temperature: 240 ° C., second stage extruder screw diameter: 50 mm, cylinder set temperature: 150 ° C.) After supplying the resin resin composition at 12 kg / h to melt, carbon dioxide in a supercritical state from the middle of the first stage extruder is in a proportion of 4.2 parts by weight with respect to 100 parts by weight of the propylene resin composition. Press-fitted with. Subsequently, the foamable propylene resin composition is extruded from a perforated die (set temperature: 150 ° C.) having 27 holes with a diameter of 0.8 mm attached to the tip of the second stage extruder. As a result, a prismatic extruded foam molded body in which foam strands were gathered was obtained.

上記押出発泡成形体の比重を水中置換法により測定し、発泡倍率を算出した。また、上記押出発泡成形体から縦10mm×横10mm×厚さ10mmの試験片を切り出して、圧縮硬さと25%圧縮歪とを測定した。結果を表2に示す。   The specific gravity of the extruded foamed molded product was measured by an underwater substitution method, and the expansion ratio was calculated. Further, a test piece having a length of 10 mm, a width of 10 mm, and a thickness of 10 mm was cut out from the extruded foamed product, and the compression hardness and 25% compression strain were measured. The results are shown in Table 2.

[実施例2]
樹脂成分をポリマー(A)30重量部、ポリマー(B)20重量部、ポリマー(D)20重量部、およびMFRが60g/10分であるホモポリプロピレン(X)(プライムポリプロ J139)30重量部にかえた他は実施例1と同様にして、プロピレン系樹脂組成物を得た。得られたプロピレン系樹脂組成物は、融解ピーク温度が161.9℃、融解ピーク面積から得られる140℃以上の融解エネルギーが36.2mJ/mg、TREFによって得られる溶出曲線において、溶出温度80℃以上における溶出成分量が全溶出成分量の36.5重量%、MFRが1.7g/10分であった。
次に、実施例1と同様にして上記プロピレン系樹脂組成物から押出発泡成形体を得た。
上記押出発泡成形体の発泡倍率、圧縮硬さ、25%圧縮歪を表2に示す。
[Example 2]
The resin component was added to 30 parts by weight of polymer (A), 20 parts by weight of polymer (B), 20 parts by weight of polymer (D), and 30 parts by weight of homopolypropylene (X) (Prime Polypro J139) having an MFR of 60 g / 10 min. A propylene-based resin composition was obtained in the same manner as Example 1 except for changing. The resulting propylene-based resin composition has a melting peak temperature of 161.9 ° C., a melting energy of 140 ° C. or higher obtained from the melting peak area of 36.2 mJ / mg, and an elution temperature of 80 ° C. in an elution curve obtained by TREF. The amount of eluted components in the above was 36.5% by weight of the total amount of eluted components, and the MFR was 1.7 g / 10 minutes.
Next, in the same manner as in Example 1, an extruded foam molded article was obtained from the propylene-based resin composition.
Table 2 shows the expansion ratio, compression hardness, and 25% compression strain of the extruded foam molding.

[実施例3]
樹脂成分をポリマー(A)100重量部にかえた他は実施例1と同様にして、プロピレン系樹脂組成物を得た。得られたプロピレン系樹脂組成物は、融解ピーク温度が150.3℃、融解ピーク面積から得られる140℃以上の融解エネルギーが5.4mJ/mg、TREFによって得られる溶出曲線において、溶出温度80℃以上における溶出成分量が全溶出成分量の16.4重量%、MFRが0.35g/10分であった。
次に、実施例1と同様にして上記プロピレン系樹脂組成物から押出発泡成形体を得た。
上記押出発泡成形体の発泡倍率、圧縮硬さ、25%圧縮歪を表2に示す。
[Example 3]
A propylene-based resin composition was obtained in the same manner as in Example 1 except that the resin component was changed to 100 parts by weight of the polymer (A). The resulting propylene-based resin composition has a melting peak temperature of 150.3 ° C., a melting energy of 140 ° C. or higher obtained from the melting peak area of 5.4 mJ / mg, and an elution temperature of 80 ° C. in an elution curve obtained by TREF. The amount of eluted components in the above was 16.4% by weight of the total amount of eluted components, and the MFR was 0.35 g / 10 minutes.
Next, in the same manner as in Example 1, an extruded foam molded article was obtained from the propylene-based resin composition.
Table 2 shows the expansion ratio, compression hardness, and 25% compression strain of the extruded foam molding.

[比較例1]
樹脂成分をポリマー(A)30重量部、ポリマー(D)20重量部、およびホモポリプロピレン(X)50重量部にかえた他は実施例1と同様にして、プロピレン系樹脂組成物を得た。得られたプロピレン系樹脂組成物は、融解ピーク温度が163.3℃、融解ピーク面積から得られる140℃以上の融解エネルギーが55.7mJ/mg、TREFによって得られる溶出曲線において、溶出温度80℃以上における溶出成分量が全溶出成分量の51.7重量%、MFRが2.8g/10分であった。
次に、実施例1と同様にして上記プロピレン系樹脂組成物から押出発泡成形体を得た。
上記押出発泡成形体の発泡倍率、圧縮硬さ、25%圧縮歪を表2に示す。
[Comparative Example 1]
A propylene-based resin composition was obtained in the same manner as in Example 1 except that the resin component was changed to 30 parts by weight of polymer (A), 20 parts by weight of polymer (D), and 50 parts by weight of homopolypropylene (X). The resulting propylene resin composition has a melting peak temperature of 163.3 ° C., a melting energy of 140 ° C. or higher obtained from the melting peak area of 55.7 mJ / mg, and an elution temperature of 80 ° C. in an elution curve obtained by TREF. The amount of eluted components in the above was 51.7% by weight of the total amount of eluted components, and the MFR was 2.8 g / 10 minutes.
Next, in the same manner as in Example 1, an extruded foam molded article was obtained from the propylene-based resin composition.
Table 2 shows the expansion ratio, compression hardness, and 25% compression strain of the extruded foam molding.

[比較例2]
プロピレン系樹脂組成物として、融解ピーク温度が156.9℃、融解ピーク面積から得られる140℃以上の融解エネルギーが85.8mJ/mg、TREFによって得られる溶出曲線において、溶出温度80℃以上における溶出成分量が全溶出成分量の85.9重量%、MFRが3.3g/10分のホモポリプロピレン(Y)(プライムポリプロ E−105PW)を用いて、実施例1と同様にして押出発泡成形体を得た。
上記押出発泡成形体の発泡倍率、圧縮硬さ、25%圧縮歪を表2に示す。
[Comparative Example 2]
As a propylene-based resin composition, the melting peak temperature is 156.9 ° C., the melting energy of 140 ° C. or higher obtained from the melting peak area is 85.8 mJ / mg, and the elution curve obtained by TREF is eluted at an elution temperature of 80 ° C. or higher. Extruded foamed molded article in the same manner as in Example 1 using homopolypropylene (Y) (Prime Polypro E-105PW) having a component amount of 85.9% by weight and a MFR of 3.3 g / 10 min. Got.
Table 2 shows the expansion ratio, compression hardness, and 25% compression strain of the extruded foam molding.

Figure 0005270935
表2からわかるように、本発明の発泡成形体用プロピレン系樹脂組成物から得られる発泡成形体(実施例1〜3)は、140℃以上の融解エネルギーが50mJ/mg以上で、TREFの溶出温度80℃以上における溶出成分量が全溶出成分量の50重量%を超えているプロピレン系樹脂組成物(比較例1〜2)から得られる発泡成形体と比較して、25%圧縮歪が小さいので、変形後の回復性に優れている。
Figure 0005270935
As can be seen from Table 2, the foamed molded products (Examples 1 to 3) obtained from the propylene-based resin composition for foamed molded products of the present invention have a melting energy of 140 ° C. or higher and 50 mJ / mg or higher, and TREF elution. 25% compression strain is small as compared with foamed molded products obtained from propylene-based resin compositions (Comparative Examples 1 and 2) in which the amount of the eluted component at a temperature of 80 ° C. or higher exceeds 50% by weight of the total eluted component Therefore, it has excellent recoverability after deformation.

[実施例4]
樹脂成分をポリマー(A)18重量部、ポリマー(B)30重量部、ポリマー(D)1
2重量部、およびポリマー(E)40重量部にかえた他は実施例1と同様にして、プロピレン系樹脂組成物を得た。得られたプロピレン系樹脂組成物は、融解ピーク温度が156.6℃、融解ピーク面積から得られる140℃以上の融解エネルギーが7.9mJ/mg、TREFによって得られる溶出曲線において、溶出温度80℃以上における溶出成分量が全溶出成分量の14.1重量%、MFRが3.4g/10分であった。
[Example 4]
Polymer component (A) 18 parts by weight, polymer (B) 30 parts by weight, polymer (D) 1
A propylene-based resin composition was obtained in the same manner as in Example 1 except that 2 parts by weight and 40 parts by weight of the polymer (E) were changed. The resulting propylene resin composition has a melting peak temperature of 156.6 ° C., a melting energy of 140 ° C. or higher obtained from the melting peak area of 7.9 mJ / mg, and an elution temperature of 80 ° C. in an elution curve obtained by TREF. The amount of eluted components in the above was 14.1% by weight of the total amount of eluted components, and the MFR was 3.4 g / 10 minutes.

次に、上記プロピレン系樹脂組成物100重量部と化学発泡剤マスターバッチ ポリスレンEE205(重曹/クエン酸系、永和化成工業製)0.5重量部とをドライブレンドして原料組成物を得た。ギアポンプ(設定温度:180℃)を介してリングダイ(ダイ口径:65mm、ダイリップ間隔:0.8mm、設定温度:180℃)を接続した二軸押出機(スクリュー径:41mm、L/D=28、シリンダー設定温度:C1〜C3=210℃、C4〜C6=180℃)の原料供給ホッパーより、前記原料組成物を30kg/hで供給すると共に、押出機のC4部分より、液化二酸化炭素を原料組成物100重量部に対して0.4重量部の割合で圧入した。リングダイから押出された筒状の樹脂を外径207mmの冷却マンドレル上で二分割して、引き取り機で巻き取り、厚み1.3mm、幅740mmの発泡シートを得た。   Next, 100 parts by weight of the propylene-based resin composition and 0.5 parts by weight of chemical blowing agent master batch Polyslene EE205 (bicarbonate / citric acid, manufactured by Eiwa Chemical Industries) were dry blended to obtain a raw material composition. A twin screw extruder (screw diameter: 41 mm, L / D = 28) connected with a ring die (die diameter: 65 mm, die lip interval: 0.8 mm, set temperature: 180 ° C.) via a gear pump (set temperature: 180 ° C.) The cylinder composition temperature: C1-C3 = 210 ° C., C4-C6 = 180 ° C.) The raw material composition is supplied at 30 kg / h from the raw material supply hopper, and liquefied carbon dioxide is supplied from the C4 portion of the extruder. Press-fitting was performed at a ratio of 0.4 part by weight to 100 parts by weight of the composition. The cylindrical resin extruded from the ring die was divided into two on a cooling mandrel having an outer diameter of 207 mm and wound up by a take-up machine to obtain a foamed sheet having a thickness of 1.3 mm and a width of 740 mm.

上記発泡シートの比重を水中置換法により測定し、発泡倍率を算出した。また、縦10mm×横10mmの発泡シートを8枚重ね合わせて厚さ約10mmに調整して、圧縮硬さと25%圧縮歪とを測定した。引張試験の結果を合わせて表3に示す。   The specific gravity of the foam sheet was measured by an underwater substitution method, and the expansion ratio was calculated. In addition, 8 foam sheets each having a length of 10 mm and a width of 10 mm were overlapped and adjusted to a thickness of about 10 mm, and compression hardness and 25% compression strain were measured. The results of the tensile test are shown together in Table 3.

[実施例5]
樹脂成分をポリマー(A)14重量部、ポリマー(B)24重量部、ポリマー(D)10重量部、ポリマー(E)32重量部、およびMFRが4.8g/10分である発泡用ポリプロピレン(FB3312;日本ポリプロ製)20重量部にかえた他は実施例4と同様にして、プロピレン系樹脂組成物を得た。得られたプロピレン系樹脂組成物は、融解ピーク温度が161.5℃、融解ピーク面積から得られる140℃以上の融解エネルギーが27.5mJ/mg、TREFによって得られる溶出曲線において、溶出温度80℃以上における溶出成分量が全溶出成分量の28.6重量%、MFRが3.6g/10分であった。
次に、実施例4と同様にして上記プロピレン系樹脂組成物から発泡シートを得た。
上記発泡シートの発泡倍率、引張試験の結果、圧縮硬さ、25%圧縮歪を表3に示す。
[Example 5]
The resin component is 14 parts by weight of polymer (A), 24 parts by weight of polymer (B), 10 parts by weight of polymer (D), 32 parts by weight of polymer (E), and polypropylene for foaming having an MFR of 4.8 g / 10 minutes ( (FB3312; manufactured by Nippon Polypro) A propylene-based resin composition was obtained in the same manner as in Example 4 except that the amount was changed to 20 parts by weight. The resulting propylene-based resin composition has a melting peak temperature of 161.5 ° C., a melting energy of 140 ° C. or higher obtained from the melting peak area of 27.5 mJ / mg, and an elution curve obtained by TREF with an elution temperature of 80 ° C. The amount of eluted components in the above was 28.6% by weight of the total amount of eluted components, and the MFR was 3.6 g / 10 minutes.
Next, a foamed sheet was obtained from the propylene resin composition in the same manner as in Example 4.
Table 3 shows the expansion ratio, the tensile test result, the compression hardness, and the 25% compression strain of the foam sheet.

[実施例6]
樹脂成分をポリマー(A)30重量部、ポリマー(B)40重量部、およびポリマー(E)30重量部にかえた他は実施例4と同様にして、プロピレン系樹脂組成物を得た。得られたプロピレン系樹脂組成物は、融解ピーク温度が153.8℃、融解ピーク面積から得られる140℃以上の融解エネルギーが6.5mJ/mg、TREFによって得られる溶出曲線において、溶出温度80℃以上における溶出成分量が全溶出成分量の10.0重量%、MFRが2.0g/10分であった。
次に、実施例4と同様にして上記プロピレン系樹脂組成物から発泡シートを得た。
上記発泡シートの発泡倍率、引張試験の結果、圧縮硬さ、25%圧縮歪を表3に示す。
[Example 6]
A propylene-based resin composition was obtained in the same manner as in Example 4 except that the resin component was changed to 30 parts by weight of the polymer (A), 40 parts by weight of the polymer (B), and 30 parts by weight of the polymer (E). The resulting propylene-based resin composition has a melting peak temperature of 153.8 ° C., a melting energy of 140 ° C. or higher obtained from the melting peak area of 6.5 mJ / mg, and an elution temperature of 80 ° C. in an elution curve obtained by TREF. The amount of eluted components in the above was 10.0% by weight of the total amount of eluted components, and the MFR was 2.0 g / 10 minutes.
Next, a foamed sheet was obtained from the propylene resin composition in the same manner as in Example 4.
Table 3 shows the expansion ratio, the tensile test result, the compression hardness, and the 25% compression strain of the foam sheet.

[実施例7]
樹脂成分をポリマー(D)60重量部、および発泡用ポリプロピレン(FB3312)40重量部にかえた他は実施例4と同様にして、プロピレン系樹脂組成物を得た。得られたプロピレン系樹脂組成物は、融解ピーク温度が161.8℃、融解ピーク面積から得られる140℃以上の融解エネルギーが43.2mJ/mg、TREFによって得られる溶出曲線において、溶出温度80℃以上における溶出成分量が全溶出成分量の48.6重量%、MFRが3.1g/10分であった。
次に、実施例4と同様にして上記プロピレン系樹脂組成物から発泡シートを得た。
上記発泡シートの発泡倍率、引張試験の結果、圧縮硬さ、25%圧縮歪を表3に示す。
[Example 7]
A propylene-based resin composition was obtained in the same manner as in Example 4 except that the resin component was changed to 60 parts by weight of the polymer (D) and 40 parts by weight of polypropylene for foaming (FB3312). The resulting propylene-based resin composition has a melting peak temperature of 161.8 ° C., a melting energy of 140 ° C. or higher obtained from the melting peak area of 43.2 mJ / mg, and an elution temperature of 80 ° C. in an elution curve obtained by TREF. The amount of eluted components in the above was 48.6% by weight of the total amount of eluted components, and the MFR was 3.1 g / 10 minutes.
Next, a foamed sheet was obtained from the propylene resin composition in the same manner as in Example 4.
Table 3 shows the expansion ratio, the tensile test result, the compression hardness, and the 25% compression strain of the foam sheet.

[比較例3]
樹脂成分を発泡用ポリプロピレン(FB3312)20重量部、およびMFRが7g/10分であるホモポリプロピレン(Z)(プライムポリプロ F−704NT)80重量部にかえた他は実施例4と同様にして、プロピレン系樹脂組成物を得た。得られたプロピレン系樹脂組成物は、融解ピーク温度が162.1℃、融解ピーク面積から得られる140℃以上の融解エネルギーが90.3mJ/mg、TREFによって得られる溶出曲線において、溶出温度80℃以上における溶出成分量が全溶出成分量の87.3重量%、MFRが7.2g/10分であった。
[Comparative Example 3]
Example 4 except that the resin component was changed to 20 parts by weight of foaming polypropylene (FB3312) and 80 parts by weight of homopolypropylene (Z) (Prime Polypropylene F-704NT) having an MFR of 7 g / 10 min. A propylene-based resin composition was obtained. The resulting propylene-based resin composition has a melting peak temperature of 162.1 ° C., a melting energy of 140 ° C. or higher obtained from the melting peak area of 90.3 mJ / mg, and an elution curve obtained by TREF with an elution temperature of 80 ° C. The amount of eluted components in the above was 87.3% by weight of the total amount of eluted components, and the MFR was 7.2 g / 10 minutes.

次に、実施例4と同様にして上記プロピレン系樹脂組成物から発泡シートを得た。
上記発泡シートの発泡倍率、引張試験の結果、圧縮硬さ、25%圧縮歪を表3に示す。
Next, a foamed sheet was obtained from the propylene resin composition in the same manner as in Example 4.
Table 3 shows the expansion ratio, the tensile test result, the compression hardness, and the 25% compression strain of the foam sheet.

Figure 0005270935
表3からわかるように、本発明の発泡成形体用プロピレン系樹脂組成物から得られる発泡シート(実施例4〜7)は、140℃以上の融解エネルギーが50mJ/mg以上で、TREFの溶出温度80℃以上における溶出成分量が全溶出成分量の50重量%を超えているプロピレン系樹脂組成物(比較例3)から得られる発泡シートと比較して、引張破断伸び(%)が大きく、25%圧縮歪が小さいので、柔軟で変形後の回復性に優れている。
Figure 0005270935
As can be seen from Table 3, the foamed sheets (Examples 4 to 7) obtained from the propylene-based resin composition for foamed molded products of the present invention have a melting energy of 140 mC or higher and 50 mJ / mg or higher, and the elution temperature of TREF. Compared with the foamed sheet obtained from the propylene-based resin composition (Comparative Example 3) in which the amount of the eluted component at 80 ° C. or higher exceeds 50% by weight of the total eluted component amount, the elongation at break (%) is large, 25 Since% compression strain is small, it is flexible and excellent in recoverability after deformation.

本発明のプロピレン系樹脂組成部を発泡させて得られる発泡成形体は、耐熱性、機械的
強度、伸び性、柔軟性、および変形後の回復性のバランスに優れると共に、ポリウレタン発泡成形体で問題になるリサイクル性にも優れるので、内装材、断熱材、目地材、吸音材、緩衝材などの用途において極めて有利に使用することができる。
The foam molded product obtained by foaming the propylene-based resin composition part of the present invention has a good balance of heat resistance, mechanical strength, extensibility, flexibility, and recoverability after deformation, and is a problem with polyurethane foam molded products. Therefore, it can be used very advantageously in applications such as interior materials, heat insulating materials, joint materials, sound absorbing materials, and cushioning materials.

Claims (8)

プロピレン単独重合体およびプロピレン・α−オレフィン共重合体からなる群から選ばれる少なくとも1種を含むプロピレン系樹脂組成物であって、
示差走査熱量計(DSC)により測定される融解ピーク温度(Tm)が140〜165℃の範囲にあり、かつ融解ピーク面積から得られる140℃以上の融解エネルギーが50mJ/mg未満であり、
温度上昇溶離分別(TREF)によって得られる溶出曲線において、溶出温度80℃以上における溶出成分量が全溶出成分量の50重量%以下である
ことを特徴とする発泡成形体用プロピレン系樹脂組成物。
A propylene-based resin composition comprising at least one selected from the group consisting of a propylene homopolymer and a propylene / α-olefin copolymer,
The melting peak temperature (Tm) measured by a differential scanning calorimeter (DSC) is in the range of 140 to 165 ° C., and the melting energy of 140 ° C. or higher obtained from the melting peak area is less than 50 mJ / mg,
A propylene-based resin composition for foam molded articles, wherein an elution component amount at an elution temperature of 80 ° C. or higher is 50% by weight or less of a total elution component amount in an elution curve obtained by temperature rising elution fractionation (TREF).
メルトフローレート(MFR;JIS K7210、230℃、荷重2.16kg)が0.01〜30g/10分の範囲にあることを特徴とする請求項1に記載の発泡成形体用プロピレン系樹脂組成物。   The melt flow rate (MFR; JIS K7210, 230 ° C, load 2.16 kg) is in the range of 0.01 to 30 g / 10 minutes, and the propylene-based resin composition for foam molded articles according to claim 1 . 前記α−オレフィンが、エチレンであることを特徴とする請求項1または2に記載の発泡成形体用プロピレン系樹脂組成物。   The propylene-based resin composition for foam molded articles according to claim 1 or 2, wherein the α-olefin is ethylene. (i)融解ピーク温度が140〜165℃の範囲にあるプロピレン単独重合体またはプロピレン・α−オレフィン共重合体と、(I) a propylene homopolymer or a propylene / α-olefin copolymer having a melting peak temperature in the range of 140 to 165 ° C .;
(ii)融解ピーク温度を有さないかもしくは140℃未満であり、融解エネルギーが0〜30mJ/mgの範囲にあるプロピレン単独重合体またはプロピレン・α−オレフィン共重合体と(Ii) a propylene homopolymer or a propylene / α-olefin copolymer having no melting peak temperature or less than 140 ° C. and having a melting energy in the range of 0 to 30 mJ / mg;
を含むことを特徴とする請求項1〜3の何れかに記載の発泡成形体用プロピレン系樹脂組成物。The propylene-based resin composition for foam molded articles according to any one of claims 1 to 3, wherein
前記(i)におけるプロピレン・α−オレフィン共重合体のα−オレフィン由来の構成単位の含有量が0mol%を超えて10mol%以下であり、前記(ii)におけるプロピレン・α−オレフィン共重合体のα−オレフィン由来の構成単位の含有量が10mol%を超えて80mol%以下であることThe content of the structural unit derived from the α-olefin of the propylene / α-olefin copolymer in (i) is more than 0 mol% and 10 mol% or less, and the propylene / α-olefin copolymer in (ii) The content of the structural unit derived from α-olefin is more than 10 mol% and 80 mol% or less.
を特徴とする請求項4に記載の発泡成形体用プロピレン系樹脂組成物。The propylene-based resin composition for foam molded articles according to claim 4.
請求項1〜の何れかに記載の発泡成形体用プロピレン系樹脂組成物を発泡させて得られることを特徴とする発泡成形体。 A foamed molded product obtained by foaming the propylene-based resin composition for foamed molded product according to any one of claims 1 to 5 . 請求項1〜5の何れかに記載の発泡成形体用プロピレン系樹脂組成物を押出発泡させて得られることを特徴とする発泡成形体。A foam molded article obtained by extrusion foaming the propylene-based resin composition for a foam molded article according to any one of claims 1 to 5. 請求項1〜5の何れかに記載の発泡成形体用プロピレン系樹脂組成物を、押出発泡成形することを特徴とする発泡成形体の製造方法。A method for producing a foam molded article, comprising subjecting the propylene-based resin composition for foam molded article according to any one of claims 1 to 5 to extrusion foam molding.
JP2008067545A 2008-03-17 2008-03-17 Propylene resin composition for foam molded article and foam molded article thereof Expired - Fee Related JP5270935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067545A JP5270935B2 (en) 2008-03-17 2008-03-17 Propylene resin composition for foam molded article and foam molded article thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067545A JP5270935B2 (en) 2008-03-17 2008-03-17 Propylene resin composition for foam molded article and foam molded article thereof

Publications (2)

Publication Number Publication Date
JP2009221356A JP2009221356A (en) 2009-10-01
JP5270935B2 true JP5270935B2 (en) 2013-08-21

Family

ID=41238471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067545A Expired - Fee Related JP5270935B2 (en) 2008-03-17 2008-03-17 Propylene resin composition for foam molded article and foam molded article thereof

Country Status (1)

Country Link
JP (1) JP5270935B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8552116B2 (en) * 2009-10-13 2013-10-08 Kaneka Corporation Polypropylene resin, polypropylene resin composition, and foam-injection-molded article
JP6323036B2 (en) * 2014-02-03 2018-05-16 東レ株式会社 Foam

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925351A (en) * 1995-07-11 1997-01-28 Sekisui Chem Co Ltd Foamable polyolefin resin composition, foamable polypropylene resin composition, and production of foam
JP2001114919A (en) * 1999-10-13 2001-04-24 Sekisui Chem Co Ltd Polyolefin resin crosslinked foamed item
JP2002053691A (en) * 2000-08-09 2002-02-19 Toray Ind Inc Cross-linked polyolefin-based thermoplastic resin foam
WO2006075491A1 (en) * 2005-01-12 2006-07-20 Kaneka Corporation Pre-expanded polypropylene resin particle and molded object obtained by in-mold expansion

Also Published As

Publication number Publication date
JP2009221356A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
EP1899415B1 (en) Propylene polymers having broad molecular weight distribution
JP7391516B2 (en) Propylene polymer composition and method for producing the same
JP4999462B2 (en) Propylene resin extruded foam
JP7300839B2 (en) Propylene-based polymer composition and expanded molded product thereof
WO2010119883A1 (en) Propylene polymer resin composition
JP2014083770A (en) Ethylene based polymer and resin composition for foam blow molding
CN103665584A (en) Propylene-ethylene high-melt-strength polypropylene foamed board or sheet and preparation method thereof
EP2358796B1 (en) Foamed polyolefin composition
JP5270935B2 (en) Propylene resin composition for foam molded article and foam molded article thereof
JP2012092332A (en) Resin composition for injection molding
JP2006045268A (en) Polypropylene resin foam for covering
JP2018109105A (en) Propylene-based resin composition and foamed body of the same
JP5365396B2 (en) Foamed hollow molding
JP2003089735A (en) Polypropylene resin composition and container
JP2009275153A (en) Extrusion-foamed non-crosslinked polyethylene article
JP4085673B2 (en) Propylene polymer composition and foam molded article obtained using the same
JP2013057023A (en) Foamed container
WO2002032985A1 (en) Foamed blends of propylene-based polymers
JP2003253065A (en) Propylene resin composition for foaming, foamed sheet and manufacturing process therefor
JP2018109106A (en) Propylene-based resin composition and foamed body of the same
JP2006045356A (en) Polypropylene resin cylindrical foam
JP2011162731A (en) Abs resin composition for foaming and expanded molding
US6710130B2 (en) Propylene polymer composition and its foam moldings
JP5365395B2 (en) Foamed hollow molding
JP2001261869A (en) Polypropylene-based resin composition for blow holding, and container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5270935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees