JP5270928B2 - Resistance welding method for steel bars - Google Patents

Resistance welding method for steel bars Download PDF

Info

Publication number
JP5270928B2
JP5270928B2 JP2008043908A JP2008043908A JP5270928B2 JP 5270928 B2 JP5270928 B2 JP 5270928B2 JP 2008043908 A JP2008043908 A JP 2008043908A JP 2008043908 A JP2008043908 A JP 2008043908A JP 5270928 B2 JP5270928 B2 JP 5270928B2
Authority
JP
Japan
Prior art keywords
weld
welding
steel bar
resistance welding
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008043908A
Other languages
Japanese (ja)
Other versions
JP2009202164A (en
Inventor
誠 奥地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuji Kensan Co Ltd
Original Assignee
Okuji Kensan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuji Kensan Co Ltd filed Critical Okuji Kensan Co Ltd
Priority to JP2008043908A priority Critical patent/JP5270928B2/en
Publication of JP2009202164A publication Critical patent/JP2009202164A/en
Application granted granted Critical
Publication of JP5270928B2 publication Critical patent/JP5270928B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforcement Elements For Buildings (AREA)

Description

本発明は、棒鋼の抵抗溶接方法、例えば、住宅用基礎鉄筋の溶接などに用いるのに適した棒鋼のスポット溶接などの抵抗溶接方法に関する。さらに詳しくは、焼き戻し工程を必要とせずに硬度および靭性に優れた溶接部を形成することのできる棒鋼の抵抗溶接方法に関する。   The present invention relates to a resistance welding method for a steel bar, for example, a resistance welding method such as spot welding of a steel bar suitable for use in welding a basic reinforcing bar for a house. More specifically, the present invention relates to a resistance welding method for steel bars that can form a welded portion having excellent hardness and toughness without requiring a tempering step.

スポット溶接などの抵抗溶接は抵抗発熱によって金属を溶接する方法であり、溶接電流によって溶接部が急熱急冷する溶接熱サイクルを辿り溶接熱影響部が母材よりも硬い組織となる。住宅基礎鉄筋などのような炭素を含有する棒鋼では、このような急熱急冷による焼き入れ効果が得られるが、これと共に溶接部の靭性(伸び)が劣化するという弊害も併発する。鉄筋コンクリート構造は鉄筋により引張り力を負担させるものであり、靭性が劣化すると、主筋の脆性破壊が発生しやすくなり危険である。   Resistance welding, such as spot welding, is a method of welding metals by resistance heating, and follows a welding heat cycle in which the weld is rapidly heated and cooled by the welding current, and the weld heat affected zone becomes a structure harder than the base metal. Steel bars containing carbon, such as housing foundation rebar, can provide such a quenching effect due to rapid heating and quenching, but this also causes the adverse effect that the toughness (elongation) of the welded portion deteriorates. The reinforced concrete structure bears a tensile force by the reinforcing bars, and when the toughness deteriorates, the main bars are liable to be brittlely broken, which is dangerous.

そこで、従来においては、焼き入れ状態の棒鋼の溶接部に焼き戻しを行い、溶接部の硬度を低下させる代わりに所定の靭性を溶接部に付与し、棒鋼が脆性破壊を起こさないようにしている。特許文献1、2においては、主筋とあばら筋の溶接部の溶接強度が、あばら筋降伏点強度以上となるように大きな溶接電流を用いてスポット溶接を行い、溶接時間と同程度の冷却時間を置き、しかる後に溶接電流の70%の電流を溶接部に流すことによって、溶接部の焼き戻しを行い、これによって、溶接部の靭性を確保している。   Therefore, conventionally, tempering is performed on the welded portion of the hardened steel bar, and instead of reducing the hardness of the welded part, a predetermined toughness is imparted to the welded part so that the steel bar does not cause brittle fracture. . In Patent Documents 1 and 2, spot welding is performed using a large welding current so that the weld strength of the main bar and stirrup welds is equal to or greater than the stirrup yield point strength, and the cooling time is approximately the same as the welding time. After that, by passing a current of 70% of the welding current through the welded portion, the welded portion is tempered, thereby ensuring the toughness of the welded portion.

このような鉄筋のスポット溶接方法では、溶接部の強度を高めるために急熱急冷によって焼き入れ状態になった溶接部に焼き戻しの処理を施すことによって所望の靭性を確保するようにしている。この焼き入れ、焼き戻し技術にあっては、焼き入れからの急冷、焼き戻しからの徐冷など、生産性を制約する要素が多く、抵抗溶接の生産タクト下でこのような温度管理を実現するためには優れた技術と高度な生産管理が必要である。   In such a spot welding method for reinforcing bars, desired toughness is ensured by performing a tempering process on a welded part that has been quenched by rapid heating and quenching in order to increase the strength of the welded part. In this quenching and tempering technology, there are many factors that restrict productivity, such as rapid cooling from quenching and gradual cooling from tempering, and such temperature control is realized under the production cycle of resistance welding. In order to achieve this, excellent technology and advanced production management are required.

ここで、特許文献3には、高張力鋼板の連続冷却変態曲線に基づき目標冷却曲線を事前に記憶保持し、抵抗溶接時には、高張力鋼板の溶接部の温度低下速度が、記憶保持されている目標冷却曲線に一致するように温度低下速度を制御する溶接装置および溶接方法が開示されている。
特許第365833号公報 特開2006−346745号公報 特開2003−285193号公報
Here, in Patent Document 3, the target cooling curve is stored and held in advance based on the continuous cooling transformation curve of the high-tensile steel plate, and the temperature decrease rate of the welded portion of the high-tensile steel plate is stored and held during resistance welding. Disclosed are a welding apparatus and a welding method for controlling a temperature decrease rate so as to match a target cooling curve.
Japanese Patent No. 365833 JP 2006-346745 A JP 2003-285193 A

本発明の課題は、目標冷却曲線を予め記憶保持することなく、また、焼き戻し工程を必要とせずに、硬度および靭性に優れた溶接部を形成することのできる棒鋼の抵抗溶接方法を提案することにある。   An object of the present invention is to propose a resistance welding method for a steel bar that can form a welded portion having excellent hardness and toughness without previously storing and holding a target cooling curve and without requiring a tempering step. There is.

上記の課題を解決するために、本発明の棒鋼の抵抗溶接方法は、
炭素含有量が0.2%〜2%の範囲内にある溶接対象の棒鋼の溶接部に溶接電流を印加する溶接工程と、
急熱状態の前記溶接部が急冷して焼入れ状態にならないように、当該溶接部に対して入熱制御を行うことにより当該溶接部を徐冷する徐冷工程とを有しており、
溶接対象の前記棒鋼は、鉄筋コンクリート製の梁あるいは柱に用いる鉄筋であり、
前記徐冷工程では、前記溶接部の溶接熱サイクルにおける1070K(800℃)から770K(500℃)までの間の冷却時間が少なくとも4.5秒となるように、前記入熱制御を行うことを特徴としている。
In order to solve the above problems, the resistance welding method of the steel bar of the present invention is:
A welding process in which a welding current is applied to a weld portion of a steel bar to be welded having a carbon content within a range of 0.2% to 2%;
A slow cooling step of gradually cooling the weld by performing heat input control on the weld so that the rapidly heated weld is not quenched and quenched .
The steel bar to be welded is a rebar used for a reinforced concrete beam or column,
In the slow cooling step, the heat input control is performed so that a cooling time from 1070 K (800 ° C.) to 770 K (500 ° C.) in a welding heat cycle of the welded portion is at least 4.5 seconds. It is a feature.

本発明では、溶接工程の後に焼き入れのための急冷による鉄筋溶接部の組織変化を待たずに、入熱制御を行うことにより急熱状態の棒鋼溶接部を徐冷している。急熱状態の棒鋼溶接部を入熱制御により徐冷することにより、すなわち、急熱状態の溶接部が第1温度である1070K(800℃)から第2温度である770K(500℃)まで冷却するために要する時間を遅らせることにより、得られた溶接部に所望の強度および靭性を確保できることが確認された。したがって、本発明の方法によれば、急冷(焼き入れ)、焼き戻しの制御が不要となり、制御が容易になる。また、焼き戻し時間が不要なので、棒鋼の抵抗溶接作業の生産性も向上する。さらには、目標冷却曲線に沿って冷却速度をフィードバック制御する場合に比べて、第1温度から第2温度までの時間を管理するだけでよいので、制御管理も容易になる。 In the present invention, the rapidly heated bar steel welded portion is gradually cooled by performing heat input control without waiting for the structural change of the rebar welded portion due to quenching for quenching after the welding process. By rapidly cooling the rapidly heated steel bar welded portion by heat input control, that is, the rapidly heated welded portion is cooled from the first temperature of 1070 K (800 ° C.) to the second temperature of 770 K (500 ° C.). It was confirmed that the desired strength and toughness can be ensured in the obtained welded part by delaying the time required for this. Therefore, according to the method of the present invention, control of rapid cooling (quenching) and tempering becomes unnecessary, and control becomes easy. Further, since tempering time is not required, the productivity of resistance welding work of the steel bar is improved. Furthermore, as compared with the case where the cooling rate is feedback-controlled along the target cooling curve, it is only necessary to manage the time from the first temperature to the second temperature, so that control management becomes easy.

一般の鋼材溶接部のミクロ組織は溶接熱サイクルの約1070K(800℃)から770K(500℃)の冷却時間によってほぼ決まる。この物性は溶接用CCT図(連続冷却変態図)として知られている。溶接用CCT図から棒鋼溶接部の硬度、組織などを分析することにより、使用する棒鋼の溶接部として最も適した硬度および靭性が備わった組織状態が得られる溶接プロセスの冷却速度を推定できる。したがって、目標冷却曲線を記憶保持しなくても、上記の範囲の温度低下に要する時間幅を溶接対象の棒鋼の組成などに応じて適切に設定しておき、設定した時間幅以上となるように入熱制御を行うことにより、所望の硬度および靭性が備わった棒鋼溶接部を得ることができる。   The microstructure of a general steel weld is largely determined by the cooling time of about 1070 K (800 ° C.) to 770 K (500 ° C.) of the welding heat cycle. This physical property is known as a welding CCT diagram (continuous cooling transformation diagram). By analyzing the hardness, structure and the like of the welded portion of the steel bar from the CCT diagram for welding, it is possible to estimate the cooling rate of the welding process that can obtain a structural state having the most suitable hardness and toughness as the welded part of the steel bar used. Therefore, even if the target cooling curve is not stored, the time width required for the temperature decrease in the above range is appropriately set according to the composition of the steel bar to be welded and the time width is equal to or greater than the set time width. By performing heat input control, a steel bar weld with desired hardness and toughness can be obtained.

本発明の棒鋼の抵抗溶接方法は、前記徐冷工程の前記入熱制御において、前記溶接部に徐冷用電流を所定の形態で印加することを特徴としている。一定値の電流をパルス状に繰り返し溶接部に加えることにより、あるいは、漸増、漸減する値の電流を溶接部に加えることにより、棒鋼溶接部が急冷しないように制御することができる。   The steel bar resistance welding method of the present invention is characterized in that, in the heat input control of the slow cooling step, a slow cooling current is applied to the welded portion in a predetermined form. By repeatedly applying a constant current to the welded portion in a pulsed manner, or by applying a current having a gradually increasing or gradually decreasing value to the welded portion, it is possible to control the steel bar welded portion from being rapidly cooled.

本発明の棒鋼の抵抗溶接方法は鉄筋コンクリート製の梁あるいは柱に用いる鉄筋に用いる。例えば、住宅用基礎鉄筋として用いる主筋とあばら筋の溶接に用いるのに適している。 The method of resistance welding steel bar of the present invention is Ru used reinforcing bars used in reinforced concrete beams or columns. For example, it is suitable for use in welding a main bar and a stirrup used as a basic reinforcing bar for housing.

接用CCT図および本発明者等の実験により、1070Kから770Kまでの冷却に少なくとも約4.5秒を要する冷却速度となるように入熱制御を行うことにより、所望の硬度および靭性が備わった鉄筋溶接部が得られることを確認した。 Experiments such as welding for CCT diagram and the present inventors, by performing the heat input controlled so that the cooling rate needed at least about 4.5 seconds to cool down to 770K from 1070K, provided the desired hardness and toughness It was confirmed that a rebar weld was obtained.

また、徐冷後の前記溶接部の硬度がHv400未満となるように、前記入熱制御を行うことにより、所望の靭性を備えた鉄筋溶接部が得られることを確認した。   Moreover, it confirmed that the reinforcing bar weld part with the desired toughness was obtained by performing the said heat input control so that the hardness of the said weld part after slow cooling might be less than Hv400.

本発明の棒鋼の抵抗溶接方法によれば、溶接電流印加後の急冷(焼き入れ)による溶接部組織の変化を待つ必要がなく、また、焼き入れ後の焼き戻し工程も不要になる。したがって、焼き入れに起因する鉄筋溶接部の特性劣化を抑制でき、生産管理も容易になり、また、焼き戻し時間が不要になるので棒鋼の溶接作業の生産性も向上する。   According to the resistance welding method of a steel bar of the present invention, it is not necessary to wait for a change in the weld structure due to rapid cooling (quenching) after applying a welding current, and a tempering step after quenching is not necessary. Therefore, it is possible to suppress the deterioration of the characteristics of the reinforcing bar weld due to the quenching, the production management is facilitated, and the tempering time is not required, so that the productivity of the bar steel welding operation is improved.

以下に、図面を参照して、本発明を適用した棒鋼の抵抗溶接方法の実施の形態を説明する。   DESCRIPTION OF EMBODIMENTS Embodiments of a resistance welding method for steel bars to which the present invention is applied will be described below with reference to the drawings.

本発明者等は、図1に示すように、基礎鉄筋として一般的に用いられている主筋1(D22:SD345)とあばら筋2(D10:SD205A)のスポット溶接実験を行った。溶接工程では溶接電流として11000Aのパルス状のものを用いた。徐冷工程では、溶接電流印加後における鉄筋溶接部3における溶接部表面温度が800℃から500℃になるまでの冷却時間を4.5秒(サンプル1)、2.8秒(サンプル2)および1.9秒(サンプル3)となるように入熱制御を行った。各サンプル1、2および3について、鉄筋溶接部3における網目状の領域における硬度測定と、主筋の引張り試験を行った。   As shown in FIG. 1, the present inventors conducted a spot welding experiment of a main reinforcement 1 (D22: SD345) and a stirrup reinforcement 2 (D10: SD205A) that are generally used as basic reinforcing bars. In the welding process, a 11000 A pulsed welding current was used. In the slow cooling step, the cooling time until the weld surface temperature in the reinforcing bar weld 3 after the welding current application is changed from 800 ° C. to 500 ° C. is 4.5 seconds (sample 1), 2.8 seconds (sample 2) and Heat input control was performed so as to be 1.9 seconds (sample 3). About each sample 1, 2, and 3, the hardness measurement in the mesh-shaped area | region in the reinforcement welding part 3 and the tension test of the main reinforcement were performed.

図2(a)は本発明の方法を採用したサンプル1についての溶接部表面温度の変化を示すグラフであり、図2(b)は引張り試験の結果を示す写真であり、図3は硬度測定の結果を示す硬さ分布図である。引張り試験の結果、鉄筋溶接部3は健全であり、延性破断面が観測された。また、硬度測定の結果、硬度の最大値はHv350未満であることが確認され、硬度の平均値はHv290程度であった。   FIG. 2 (a) is a graph showing changes in the weld surface temperature for Sample 1 employing the method of the present invention, FIG. 2 (b) is a photograph showing the results of a tensile test, and FIG. 3 is a hardness measurement. It is a hardness distribution figure which shows the result. As a result of the tensile test, the reinforcing bar weld 3 was sound and a ductile fracture surface was observed. As a result of hardness measurement, it was confirmed that the maximum value of hardness was less than Hv350, and the average value of hardness was about Hv290.

図4(a)はサンプル2についての溶接部表面温度の変化を示すグラフであり、図4(b)は引張り試験の結果を示す写真であり、図5は硬度測定の結果を示す硬さ分布図である。引張り試験の結果、脆性破壊および延性破壊の中間の性状を呈する破断面が観測された。硬度測定の結果、硬度の最大値はHv400〜425の範囲にあることが確認され、硬度の平均値はHv400程度であった。   4A is a graph showing changes in the weld surface temperature for Sample 2, FIG. 4B is a photograph showing the results of a tensile test, and FIG. 5 is a hardness distribution showing the results of hardness measurement. FIG. As a result of the tensile test, a fracture surface having properties intermediate between brittle fracture and ductile fracture was observed. As a result of hardness measurement, it was confirmed that the maximum value of hardness was in the range of Hv400 to 425, and the average value of hardness was about Hv400.

図6(a)はサンプル3についての溶接部表面温度の変化を示すグラフであり、図6(b)は引張り試験の結果を示す写真であり、図7は硬度測定の結果を示す硬さ分布図である。引張り試験の結果、鉄筋溶接部3において脆性破断面が観測された。すなわち、破断面には脆性破壊面特有のシェブロンパターンが確認された。硬度測定の結果、硬度の最大値はHv500に近い限界硬度であり、硬度の平均値もHv500に近いことが確認された。   FIG. 6A is a graph showing the change in the weld surface temperature for Sample 3, FIG. 6B is a photograph showing the result of the tensile test, and FIG. 7 is a hardness distribution showing the result of the hardness measurement. FIG. As a result of the tensile test, a brittle fracture surface was observed in the reinforcing bar weld 3. That is, a chevron pattern peculiar to a brittle fracture surface was confirmed on the fracture surface. As a result of the hardness measurement, it was confirmed that the maximum value of hardness was a limit hardness close to Hv500, and the average value of hardness was also close to Hv500.

[実験例1]
図8は、上記のサンプル1と同一の主筋およびあばら筋をスポット溶接した場合における実験データを示す説明図である。溶接電流は11000Aとし、実験例1−1においては徐冷工程における800℃から500℃までに要する冷却時間Δt8/5を3.6秒とし、10個のサンプルについて実験した。実験例1−2においては冷却時間Δt8/5を6.8秒として同じく10個のサンプルについて実験した。実験例1−2が本発明の方法によるものである。
[Experimental Example 1]
FIG. 8 is an explanatory diagram showing experimental data when spot welding is performed on the same main bars and stirrups as in sample 1 described above. The welding current was 11000 A, and in Experiment 1-1, the cooling time Δt8 / 5 required from 800 ° C. to 500 ° C. in the slow cooling process was 3.6 seconds, and 10 samples were tested. In Experimental Example 1-2, the same experiment was performed on 10 samples with a cooling time Δt8 / 5 of 6.8 seconds. Experimental Example 1-2 is based on the method of the present invention.

[実験例2]
図9は、上記のサンプル1と同一の主筋およびあばら筋をスポット溶接した場合における実験データを示す説明図である。溶接電流は13300Aとし、実験例2−1においては徐冷工程における800℃から500℃までに要する冷却時間Δt8/5を3.5秒とし、10個のサンプルについて実験した。実験例2−2においては冷却時間Δt8/5を4.0秒として同じく10個のサンプルについて実験した。実験例2−3においては冷却時間Δt8/5を5.2秒とし同じく10個のサンプルについて実験した。実験例2−3が本発明の方法によるものである。
[Experiment 2]
FIG. 9 is an explanatory diagram showing experimental data when spot welding is performed on the same main bar and stirrup as in sample 1 described above. The welding current was 13300 A, and in Experiment 2-1, the cooling time Δt8 / 5 required from 800 ° C. to 500 ° C. in the slow cooling process was set to 3.5 seconds, and experiments were performed on 10 samples. In Experimental Example 2-2, ten samples were similarly tested with a cooling time Δt8 / 5 of 4.0 seconds. In Experimental Example 2-3, a cooling time Δt8 / 5 was set to 5.2 seconds, and ten samples were similarly tested. Experimental Example 2-3 is based on the method of the present invention.

(その他の実施の形態)
上記の各例は鉄筋コンクリート構造に用いられる鉄筋のスポット溶接についてのものであるが、本発明は、炭素含有量が0.2%〜2%の範囲内の低合金鋼かなる棒鋼の抵抗溶接方法として用いることができる。
(Other embodiments)
Each of the above examples relates to spot welding of reinforcing bars used in reinforced concrete structures, but the present invention is a resistance welding method for steel bars made of low alloy steel having a carbon content in the range of 0.2% to 2%. Can be used as

主筋とあばら筋のスポット溶接部分を示す説明図である。It is explanatory drawing which shows the spot welding part of a main reinforcement and a stirrup. (a)は本発明の方法を採用したサンプル1についての溶接部表面温度の変化を示すグラフであり、(b)はサンプル1についての引張り試験の結果を示す写真である。(A) is a graph which shows the change of the weld surface temperature about the sample 1 which employ | adopted the method of this invention, (b) is a photograph which shows the result of the tension test about the sample 1. FIG. サンプル1の硬度測定の結果を示す硬さ分布図である。6 is a hardness distribution diagram showing the results of hardness measurement of Sample 1. FIG. (a)はサンプル2についての溶接部表面温度の変化を示すグラフであり、(b)はサンプル2についての引張り試験の結果を示す写真である。(A) is a graph which shows the change of the weld surface temperature about the sample 2, (b) is a photograph which shows the result of the tension test about the sample 2. サンプル2の硬度測定の結果を示す硬さ分布図である。6 is a hardness distribution diagram showing the results of hardness measurement of sample 2. FIG. (a)はサンプル3についての溶接部表面温度の変化を示すグラフであり、(b)はサンプル3についての引張り試験の結果を示す写真である。(A) is a graph which shows the change of the welding part surface temperature about the sample 3, (b) is a photograph which shows the result of the tension test about the sample 3. サンプル3の硬度測定の結果を示す硬さ分布図である。6 is a hardness distribution diagram showing the results of hardness measurement of sample 3. FIG. 主筋およびあばら筋をスポット溶接した実験例1における実験データを示す説明図である。It is explanatory drawing which shows the experimental data in Experimental example 1 which carried out the spot welding of the main reinforcement and the stirrup. 主筋およびあばら筋をスポット溶接した実験例2における実験データを示す説明図である。It is explanatory drawing which shows the experimental data in Experimental example 2 which carried out the spot welding of the main reinforcement and the stirrup.

符号の説明Explanation of symbols

1 主筋
2 あばら筋
3 鉄筋溶接部
1 Main bar 2 Staggered bar 3 Reinforcing bar weld

Claims (3)

炭素含有量が0.2%〜2%の範囲内にある溶接対象の棒鋼の溶接部に溶接電流を印加する溶接工程と、
急熱状態の前記溶接部が急冷して焼入れ状態にならないように、当該溶接部に対して入熱制御を行うことにより当該溶接部を徐冷する徐冷工程とを有しており、
溶接対象の前記棒鋼は、鉄筋コンクリート製の梁あるいは柱に用いる鉄筋であり、
前記徐冷工程では、前記溶接部の溶接熱サイクルにおける1070K(800℃)から770K(500℃)までの間の冷却時間が少なくとも4.5秒となるように、前記入熱制御を行うことを特徴とする棒鋼の抵抗溶接方法。
A welding process in which a welding current is applied to a weld portion of a steel bar to be welded having a carbon content within a range of 0.2% to 2%;
A slow cooling step of gradually cooling the weld by performing heat input control on the weld so that the rapidly heated weld is not quenched and quenched .
The steel bar to be welded is a rebar used for a reinforced concrete beam or column,
In the slow cooling step, the heat input control is performed so that a cooling time from 1070 K (800 ° C.) to 770 K (500 ° C.) in a welding heat cycle of the welded portion is at least 4.5 seconds. A resistance welding method for steel bars.
請求項1に記載の棒鋼の抵抗溶接方法において、
前記徐冷工程では、徐冷後の前記溶接部の硬度がHv400未満となるように、前記入熱制御を行うことを特徴とする棒鋼の抵抗溶接方法。
In the resistance welding method of the steel bar according to claim 1,
In the slow cooling step, the heat input control is performed so that the hardness of the welded portion after slow cooling is less than Hv400 .
請求項1または2に記載の棒鋼の抵抗溶接方法において、
前記徐冷工程の前記入熱制御では、前記溶接部に徐冷用電流を印加することを特徴とする棒鋼の抵抗溶接方法。
In the resistance welding method of the steel bar according to claim 1 or 2,
In the heat input control of the slow cooling step, a current for slow cooling is applied to the welded portion, and the resistance welding method for the steel bar is characterized in that:
JP2008043908A 2008-02-26 2008-02-26 Resistance welding method for steel bars Expired - Fee Related JP5270928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008043908A JP5270928B2 (en) 2008-02-26 2008-02-26 Resistance welding method for steel bars

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008043908A JP5270928B2 (en) 2008-02-26 2008-02-26 Resistance welding method for steel bars

Publications (2)

Publication Number Publication Date
JP2009202164A JP2009202164A (en) 2009-09-10
JP5270928B2 true JP5270928B2 (en) 2013-08-21

Family

ID=41144957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008043908A Expired - Fee Related JP5270928B2 (en) 2008-02-26 2008-02-26 Resistance welding method for steel bars

Country Status (1)

Country Link
JP (1) JP5270928B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5808150B2 (en) * 2011-05-24 2015-11-10 株式会社ビー・アール・エス Setting method of welding current used for spot welding of reinforcing bars
JP2013019240A (en) * 2011-07-14 2013-01-31 Showa Engineering Kk Welded reinforcement unit for foundation
JP5995162B2 (en) * 2012-04-23 2016-09-21 国立大学法人九州工業大学 Method of welding quench-hardening metal plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980702216A (en) * 1995-02-15 1998-07-15 레이 파라비 Electrical resistance determination and control method
JPH09241787A (en) * 1996-03-08 1997-09-16 Hitachi Metals Ltd Welded composite member and welding method
JP2002103054A (en) * 2000-09-29 2002-04-09 Nippon Steel Corp Method for spot welding of high strength steel plate
JP2003285193A (en) * 2002-03-25 2003-10-07 Nissan Motor Co Ltd Welding device and welding method
JP4454575B2 (en) * 2005-05-16 2010-04-21 三栄商事株式会社 Spot welding method for shear reinforcement

Also Published As

Publication number Publication date
JP2009202164A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
KR101979558B1 (en) Resistance spot welding method
Mellouli et al. Hardness effect on thermal fatigue damage of hot-working tool steel
Akhtar et al. Evolution of microstructure during welding simulation of boron modified P91 steel
JP5205167B2 (en) Resistance welding method and resistance welding system for steel bar
CN104046918A (en) High Performance Material For Coiled Tubing Applications And The Method Of Producing The Same
Kromm et al. Residual stress engineering by low transformation temperature alloys—state of the art and recent developments
JP5270928B2 (en) Resistance welding method for steel bars
US20060021682A1 (en) Ultratough high-strength weldable plate steel
EP2006398B1 (en) Process for producing steel material
JP2022046474A (en) Steel product and method of producing the same
Grum et al. Possibility of introducing laser surfacing into maintenance service of die-casting dies
JP2007138289A (en) Thick high strength hot rolled steel plate and its production method
JP2007031735A (en) Hot-forged component having excellent delayed fracture resistance, and method for producing the same
JP5484135B2 (en) Austenite + martensite duplex stainless steel sheet and method for producing the same
Laitila et al. Effect of forced cooling after welding on CGHAZ mechanical properties of a martensitic steel
US11060156B2 (en) Method of manufacturing welded structure of ferritic heat-resistant steel and welded structure of ferritic heat-resistant steel
JP4959167B2 (en) Thermal processing method for steel sheet
JP2003129178A (en) High-strength pc steel bar superior in delayed fracture characteristic
JP2005048271A (en) Method for welding high-carbon steel material
Poliak et al. Aspects of thermomechanical processing of 3rd generation advanced high strength steels
JP5187151B2 (en) Thick steel plate excellent in bending workability by linear heating and its manufacturing method
Zai et al. Microstructure and Mechanical Properties of Inertia‐Friction‐Welded Fe–Cr–Ni–Mo High‐Strength Steel
Chakraborty et al. Influence of finish rolling temperature and molybdenum addition on strengthening of low carbon niobium steels—a computational and experimental study
Farahat et al. Severe Plastic Deformation of Large‐Scale Nb‐Microalloyed Steel Billet by Multi‐Directional Forging Process
JP4733950B2 (en) Linear heating deformation method of steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130510

R150 Certificate of patent or registration of utility model

Ref document number: 5270928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees