JP5269543B2 - 医用画像処理装置、超音波診断装置、及び医用画像処理プログラム - Google Patents

医用画像処理装置、超音波診断装置、及び医用画像処理プログラム Download PDF

Info

Publication number
JP5269543B2
JP5269543B2 JP2008272227A JP2008272227A JP5269543B2 JP 5269543 B2 JP5269543 B2 JP 5269543B2 JP 2008272227 A JP2008272227 A JP 2008272227A JP 2008272227 A JP2008272227 A JP 2008272227A JP 5269543 B2 JP5269543 B2 JP 5269543B2
Authority
JP
Japan
Prior art keywords
image data
display
unit
region
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008272227A
Other languages
English (en)
Other versions
JP2010099193A (ja
Inventor
恭子 佐藤
仁 山形
康太 青柳
俊介 佐藤
武博 江馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Toshiba Medical Systems Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp, Toshiba Medical Systems Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP2008272227A priority Critical patent/JP5269543B2/ja
Publication of JP2010099193A publication Critical patent/JP2010099193A/ja
Application granted granted Critical
Publication of JP5269543B2 publication Critical patent/JP5269543B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Description

この発明は、被検体内の部位を焼灼した後に、焼灼対象である部位において焼灼されていない領域を検出する医用画像処理装置、超音波診断装置、及び医用画像処理プログラムに関する。
肝癌は、癌疾患による死亡者数(2004年)の約10%(約18,000人)を占め、その数は増加の傾向にある。また、肝癌における5年生存率(1993−1996年)は、膵臓癌の5%に次いで、17%と全癌のなかで2番目に低い値となっている。このように、肝癌の予後が比較的悪いため、診断と治療とに対する社会的な要請が強い。
腫瘍の診断には、超音波診断装置、MRI装置、又はX線CT装置などの医用画像診断装置が用いられる。腫瘍の治療として、ラジオ波焼灼法(Radio−Frequency Ablation;RFA)や、強力エネルギー集束超音波法(High Intensity Focused Ultrasound;HIFU)などの低浸襲治療法が施行されている。なお、HIFUは、集束超音波法(Focused Ultrasound;FUS)と称される場合もある。RFAによる焼灼治療においては、超音波診断装置によって腫瘍などの病変部の超音波画像を取得し、術者がその超音波画像によって病変部の位置を確認しながら、穿刺針を病変部に穿刺することで病変部を焼灼する(例えば特許文献1)。
低浸襲治療法によって腫瘍などの病変部を焼灼した後、医用画像診断装置によって術後の病変部の画像を取得し、その画像に基づいて治療効果の判定を行っている。例えば、超音波診断装置を用いて2次元のBモード画像を取得し、そのBモード画像に基づいて病変部の診断を行っている。また、X線CT装置を用いて断層像を取得し、その断層像に基づいて病変部の診断を行っている。
特開2007−215672号公報
従来技術においては、焼灼治療の直後に、超音波画像によって治療効果の判定と診断とを行うことができなかった。そのため、焼灼治療後、数十分から数日経過した後に、医用画像診断装置によって術後の病変部の画像を取得し、その画像に基づいて治療効果の判定と診断とを行っていた。すなわち、RFAにより焼灼を行うと、焼灼で生じる水蒸気によって超音波画像上では腫瘍周辺の形態が不明瞭になるため、その超音波画像に基づいて焼灼範囲を判別することができない。水蒸気がおおよそ脱気されて、焼灼終了後から治療効果の判定を行える状態になるまでに、少なくとも15分程度の時間を必要とする。また、焼灼後15分程度経過した後に撮像した画像においても、焼灼対象である病変部において焼灼されていない領域(未焼灼領域)を正確に確認することは困難である。そのため、従来においては、焼灼治療後、数時間から数週間経過した後にCT画像を撮像し、そのCT画像によって未焼灼領域を確認していた。CT検査において未焼灼領域が発見された場合、再度、焼灼を行う必要があるため、再度、超音波診断装置を用いて焼灼対象の位置と形状とを確認し、穿刺経路を再確認する必要がある。また、再度の焼灼前に、穿刺経路を決定するために参照される超音波画像を取得する断面の位置を、術者が見つける必要がある。その断面の位置を見つけるための操作が煩雑であり、時間を要する問題がある。以上のように、再焼灼の計画及び実施のためには多くの作業と時間とが必要となるため、患者と術者とに負担がかかっていた。
この発明は上記の問題点を解決するものであり、焼灼を行った後に、焼灼対象における未焼灼領域をより正確に特定することが可能な医用画像処理装置、超音波診断装置、及び医用画像処理プログラムを提供することを目的とする。
請求項1に記載の発明は、被検体内の焼灼対象部位を焼灼する前において、造影剤が注入された前記被検体を超音波で撮影することで取得された、撮影された時間がそれぞれ異なる複数のボリュームデータを含む第1の4D造影画像データと、前記焼灼した後において、造影剤が注入された前記被検体を超音波で撮影することで取得された、撮影された時間がそれぞれ異なる複数のボリュームデータを含む第2の4D造影画像データと、を記憶する記憶手段と、前記記憶手段に記憶されている前記第1の4D造影画像データに基づいて、各ボクセルにおける画素値の第1の時間変化を求め、前記第1の時間変化に基づいて前記焼灼対象部位の位置を特定する第1画像処理手段と、前記記憶手段に記憶されている前記第2の4D造影画像データに基づいて、各ボクセルにおける画素値の第2の時間変化を求め、前記第2の時間変化に基づいて焼灼済みの焼灼領域の位置を特定する第2画像処理手段と、前記第1の4D造影画像データに表わされている前記被検体の部位と、前記第2の4D造影画像データに表わされている前記被検体の部位との位置を合わせる位置合わせ手段と、前記位置合わせされた前記第2の4D造影画像データにおいて前記焼灼対象部位の位置を特定し、前記位置が特定された焼灼対象部位のうち前記焼灼領域以外の領域を未焼灼領域として特定する未焼灼領域特定手段と、前記第2の4D造影画像データに含まれるボリュームデータに基づいて表示用画像データを生成する表示画像生成手段と、表示手段に対して前記表示用画像データに基づく表示用画像を表示させ、かつ、前記表示用画像において前記未焼灼領域を識別可能にして表示させる表示制御手段と、を有することを特徴とする医用画像処理装置である。
また、請求項2に記載の発明は、請求項1に記載の医用画像処理装置であって、前記焼灼領域の位置と前記未焼灼領域の位置とに基づいて、再度焼灼を行う再焼灼領域の位置を特定し、前記再焼灼領域を焼灼するための穿刺針が通る再穿刺経路の位置を求める補正手段を更に有し、前記表示制御手段は、前記表示用画像において前記未焼灼領域と前記再穿刺経路とを識別可能にして前記表示手段に表示させることを特徴とする。
また、請求項6に記載の発明は、請求項2又は請求項3のいずれかに記載の医用画像処理装置であって、前記位置合わせ手段は、前記第2の4D造影画像データが取得された後において超音波によって新たに撮影された2次元の断層像データを受け付けて、前記断層像データに表わされている前記被検体の部位と、前記第2の4D造影画像データに表わされている前記被検体の部位との位置を合わせることで、前記断層像データが取得された前記被検体における位置に対応する前記第2の4D造影画像データにおける位置を更に求め、前記表示画像生成手段は、前記第2の4D造影画像データに含まれるボリュームデータに基づいて、前記断層像データが取得された前記被検体における位置に対応する位置における画像データを前記表示用画像データとして生成し、前記断層像データが取得された前記被検体における位置に対して穿刺針が通る方向が推定穿刺経路として推定されており、前記表示制御手段は、前記表示手段に対して前記断層像データに基づく断層像と前記表示用画像データに基づく表示用画像とを表示させ、かつ、前記断層像と前記表示用画像とにおいて、前記再穿刺経路と前記推定穿刺経路とを識別可能にして表示させることを特徴とする。
また、請求項7に記載の発明は、被検体内の焼灼対象部位を焼灼する前において、造影剤が注入された前記被検体を超音波で撮影することで、撮影された時間がそれぞれ異なる複数のボリュームデータを含む第1の4D造影画像データを取得し、前記焼灼した後において、造影剤が注入された前記被検体を超音波で撮影することで、撮影された時間がそれぞれ異なる複数のボリュームデータを含む第2の4D造影画像データを取得する撮影手段と、前記撮影手段により撮影された前記第1の4D造影画像データに基づいて、各ボクセルにおける画素値の第1の時間変化を求め、前記第1の時間変化に基づいて前記焼灼対象部位の位置を特定する第1画像処理手段と、前記撮影手段により撮影された前記第2の4D造影画像データに基づいて、各ボクセルにおける画素値の第2の時間変化を求め、前記第2の時間変化に基づいて焼灼済みの焼灼領域の位置を特定する第2画像処理手段と、前記第1の4D造影画像データに表わされている前記被検体の部位と、前記第2の4D造影画像データに表わされている前記被検体の部位との位置を合わせる位置合わせ手段と、前記位置合わせされた前記第2の4D造影画像データにおいて前記焼灼対象部位の位置を特定し、前記位置が特定された焼灼対象部位のうち前記焼灼領域以外の領域を未焼灼領域として特定する未焼灼領域特定手段と、前記第2の4D造影画像データに含まれるボリュームデータに基づいて表示用画像データを生成する表示画像生成手段と、表示手段に対して前記表示用画像データに基づく表示用画像を表示させ、かつ、前記表示用画像において前記未焼灼領域を識別可能にして表示させる表示制御手段と、を有することを特徴とする超音波診断装置である。
また、請求項8に記載の発明は、コンピュータに、被検体内の焼灼対象部位を焼灼する前において、造影剤が注入された前記被検体を超音波で撮影することで取得された、撮影された時間がそれぞれ異なる複数のボリュームデータを含む第1の4D造影画像データを受け付けて、前記第1の4D造影画像データに基づいて、各ボクセルにおける画素値の第1の時間変化を求め、前記第1の時間変化に基づいて前記焼灼対象部位の位置を特定する第1画像処理機能と、前記焼灼した後において、造影剤が注入された前記被検体を超音波で撮影することで取得された、撮影された時間がそれぞれ異なる複数のボリュームデータを含む第2の4D造影画像データを受け付けて、前記第2の4D造影画像データに基づいて、各ボクセルにおける画素値の第2の時間変化を求め、前記第2の時間変化に基づいて焼灼済みの焼灼領域の位置を特定する第2画像処理機能と、前記第1の4D造影画像データに表わされている前記被検体の部位と、前記第2の4D造影画像データに表わされている前記被検体の部位との位置を合わせる位置合わせ機能と、前記位置合わせされた前記第2の4D造影画像データにおいて前記焼灼対象部位の位置を特定し、前記位置が特定された焼灼対象部位のうち前記焼灼領域以外の領域を未焼灼領域として特定する未焼灼領域特定機能と、前記第2の4D造影画像データに含まれるボリュームデータに基づいて表示用画像データを生成する表示画像生成機能と、表示装置に対して前記表示用画像データに基づく表示用画像を表示させ、かつ、前記表示用画像において前記未焼灼領域を識別可能にして表示させる表示制御機能と、を実行させることを特徴とする医用画像処理プログラムである。
この発明によると、焼灼前に取得された第1の4D造影画像データに基づいて焼灼対象部位の位置を特定し、焼灼後に取得された第2の4D造影画像データに基づいて焼灼領域の位置を特定し、第1の4D造影画像データと第2の4D造影画像データとを対象として画像の位置合わせを行うことで、第2の4D造影画像データにおいて焼灼対象部位の位置を特定することができる。そして、焼灼対象部位の位置と焼灼領域の位置とに基づいて、第2の4D造影画像データにおいて、未焼灼領域の位置を特定することが可能となる。このように、この発明によると、焼灼後に取得された第2の4D造影画像データにおいて、未焼灼領域の位置をより正確に特定することが可能となる。第2の4D造影画像データが焼灼直後に取得されたデータであっても、第2の4D造影画像データにおいて、未焼灼領域の位置をより正確に特定することが可能となる。
また、この発明によると、焼灼領域の位置と未焼灼領域の位置とに基づいて再穿刺経路の位置を求め、その再穿刺経路を表示することで、再焼灼するための穿刺針の経路を視覚的に術者に提供することが可能となる。
また、この発明によると、再穿刺経路と推定穿刺経路とを表示することで、再穿刺経路からの穿刺経路のずれを視覚的に術者に提供することが可能となる。
[第1の実施の形態]
この発明の第1実施形態に係る医用画像処理装置について図1を参照して説明する。図1は、この発明の第1実施形態に係る医用画像処理装置を示すブロック図である。
(超音波診断装置100)
超音波診断装置100は超音波プローブを有して、被検体に超音波を送信し、被検体からの反射波を受信し、その反射波に基づいて超音波画像データを生成する。超音波診断装置100にて取得された超音波画像データは、医用画像処理装置1に出力されて、画像記憶部2に記憶される。例えば、超音波診断装置100は、被検体の3次元領域を超音波で撮影することで、撮影された時間が異なる複数のボリュームデータを取得し、画像記憶部2は、超音波診断装置100によって取得された複数のボリュームデータを記憶する。また、超音波プローブには、穿刺針を支持して被検体への穿刺針の刺入を補助する穿刺アダプターが設置されている。焼灼治療を行う際には、その穿刺アダプターによって穿刺針を支持しながら、術者が穿刺針を被検体に刺入して焼灼治療を行う。
この実施形態では、いわゆる造影撮影を行う。点滴又は血管注射によって被検体内に注入された造影剤は血流に乗って体内を移動し、目的臓器に達する。造影剤が浸透する際の造影効果の有無又は程度の違いを観察し、また、造影された部分の形状を観察することにより、病変又は臓器の異常を発見することができる。この実施形態では、肝臓を撮影対象部位とし、肝腫瘍を焼灼対象部位として、RFA法を用いた焼灼治療を1例にして説明する。なお、肝腫瘍領域がこの発明の「焼灼対象部位」の1例に相当する。具体的には、焼灼治療前(術前)に、超音波診断装置100によって造影撮影を行うことで、撮影された時間が異なる複数のボリュームデータを取得する。さらに、焼灼治療後(術後)に、超音波診断装置100によって造影撮影を行うことで、撮影された時間が異なる複数のボリュームデータを取得する。術前の撮影と術後の撮影とにおいて、被検体に注入された造影剤は肝臓に流入する。その間、超音波診断装置100は撮影しているため、造影剤が肝臓に流入する様子が表された複数のボリュームデータを取得することができる。造影撮影によって取得された画像データにおいては、血管や腫瘍内部を表す画素の輝度値が強調される。
ここで、造影剤の濃染の時間変化を表す曲線を、Time−Density Curve(以下、「TDC」と称する)と称する。例えば、各部位における輝度値(画素値)の時間変化を表す曲線をTDCとする。TDCにおいては、組織に造影剤が流入した場合にその組織の輝度値が大きくなる。そのため、輝度値の大きさが造影剤の濃染の状態を表している。従って、各部位における輝度値の時間変化を表すTDCは、各部位における造影剤の濃染の時間変化(造影剤の濃染過程)を表していることになる。
また、焼灼治療後(術後)においては、焼灼された腫瘍は造影剤によって濃染されない。そのため、術前と術後とにおいて、腫瘍の輝度値(画素値)の時間変化が著しく異なる。すなわち、腫瘍においては、Time−Density Curveの形状が、術前と術後とで著しく異なる。この実施形態に係る医用画像処理装置1は、造影剤の濃染領域の時間変化を用いて、超音波画像において各部位の領域を特定する。
(医用画像処理装置1)
医用画像処理装置1は、画像記憶部2と、術前画像処理部10と、術後画像処理部20と、合成画像処理部30と、画像出力部40とを備えている。医用画像処理装置1は、超音波診断装置100にて取得された超音波画像データに基づいて、焼灼対象の部位において焼灼されていない領域(以下、「未焼灼領域」と称する場合がある)を特定する。例えば、医用画像処理装置1は、焼灼治療前(術前)に取得された画像に表わされた各部位の位置と、焼灼治療後(術後)において取得された画像に表わされた各部位の位置とを合わせ、さらに、焼灼対象の部位において焼灼されていない領域(未焼灼領域)を特定する。なお、この実施形態における被検体の部位には、病変部位も含まれるものとする。例えば、血管や肝実質などの他、肝腫瘍や焼灼された後の腫瘍もこの実施形態の部位に含まれるものとする。
(画像記憶部2)
画像記憶部2は、超音波診断装置100による造影撮影によって取得された、撮影された時間が異なる複数のボリュームデータを記憶する。造影撮影によって取得された複数のボリュームデータであって、撮影された時間が異なる複数のボリュームデータを、「4D造影画像データ」と称する。例えば、焼灼治療前(術前)に超音波診断装置100によって造影撮影を行うことで、焼灼治療前における4D造影画像データを取得する。同様に、焼灼治療後(術後)に超音波診断装置100によって造影撮影を行うことで、焼灼治療後における4D造影画像データを取得する。術前と術後とにおいてそれぞれ取得された4D造影画像データは、画像記憶部2に記憶される。なお、術前に取得された4D造影画像データには、超音波診断装置100において、術前に取得された画像であることを示す識別情報が付帯されている。同様に、術後に取得された4D造影画像データには、超音波診断装置100において、術後に取得された画像であることを示す識別情報が付帯されている。これにより、識別情報に基づいて、術前又は術後に取得された4D造影画像データを画像記憶部2から読み出すことができる。
なお、画像記憶部9がこの発明の「記憶手段」の1例に相当する。また、焼灼治療前(術前)に取得された4D造影画像データを「第1の4D造影画像データ」と称し、焼灼治療後(術後)に取得された4D造影画像データを「第2の4D造影画像データ」と称する。また、超音波診断装置100がこの発明の「撮影手段」の1例に相当する。
(術前画像処理部10)
術前画像処理部10は、術前画像入力部11と、第1カーブ作成部12と、第1分類部13と、第1平均カーブ作成部14と、第1領域特定部15とを備えている。術前画像処理部10は、焼灼治療前(術前)に取得された第1の4D造影画像データに基づいて、各部位のTime−Density Curve(TDC)を求め、そのTDCに基づいて、第1の4D造影画像データに表わされた各部位の位置を特定する。以下、術前画像処理部10の各部について説明する。
術前における肝臓のTDCモデルの一般例と、術後における肝臓のTDCモデルの一般例とを図2を参照して説明する。図2は、時間に対する各部位の輝度の変化を表すグラフ(TDC)を示す図である。図2(a)に、術前における肝臓のTDCモデルの一般例を示し、図2(b)に、術後における肝臓のTDCモデルの一般例を示す。図2(a)と図2(b)とにおいて、横軸が時間を示し、縦軸が画像の輝度を示している。図2(a)において、第1TDCモデル201は、焼灼治療前(術前)において、血管における輝度値(画素値)の一般的な時間変化を表している。すなわち、第1TDCモデル201は、術前において、血管における造影剤の一般的な濃染過程を表している。また、第1TDCモデル202は、術前において、正常な肝実質における輝度値の一般的な時間変化を表している。また、第1TDCモデル203は、術前において、肝腫瘍における輝度値の一般的な時間変化を表している。一方、図2(b)において、第2TDCモデル301は、焼灼治療後(術後)において、血管における輝度値の一般的な時間変化を表している。また、第2TDCモデル302は、術後において、正常な肝実質における輝度値の一般的な時間変化を表している。また、第2TDCモデル303は、術後において、焼灼された肝腫瘍(焼灼領域)における輝度値の一般的な時間変化を表している。第1TDCモデル201〜203と、第2TDCモデル301〜303とは、例えば統計的に求められたグラフである。
図2(a)と図2(b)とに示すように、第1TDCモデル201と第2TDCモデル301とは、ほぼ同じ形状のグラフとなっており、形状が著しく異なることはない。このように、血管においては、濃染の過程が術前と術後とで著しく異なることはなく、ほぼ一致する。同様に、第1TDCモデル202と第2TDCモデル302とは、ほぼ同じ形状のグラフとなっており、形状が著しく異なることはない。このように、正常な肝実質においては、濃染の過程が術前と術後とで著しく異なることはない。血管においては、造影開始時(早期相)で輝度値が最大となり、時間とともに緩やかに輝度値が小さくなる。また、正常な肝実質においては、造影開始から60〜70秒以降(門脈相以降)で輝度値が最大になり、その直後に輝度値が小さくなって元の大きさに下がる。
一方、第1TDCモデル203と第2TDCモデル303とを比べると、形状が著しく異なっている。すなわち、術前と術後とでは、腫瘍における造影剤の濃染の過程は著しく異なっている。術前では、早期相で輝度値が最大となり、直後に急激に輝度値が小さくなる。一方、術後では、焼灼によって組織が破壊されているため造影剤の濃染が発生せず、その結果、輝度値は変化しない。
図2に示す一般的に推定される各部位のTDCモデルは、医用画像処理装置1に設置された図示しない記憶部に予め記憶されている。なお、各部位のTDCモデルには、各部位を示す識別情報と、術前又は術後を示す識別情報とが付帯されている。これにより、識別情報に基づいて、術前又は術後における各部位のTDCモデルを記憶部から読み出すことができる。
(術前画像入力部11)
術前画像入力部11は、焼灼治療前(術前)に取得された第1の4D造影画像データを画像記憶部2から読み込み、第1の4D造影画像データを第1カーブ作成部12と位置合わせ部31とに出力する。
(第1カーブ作成部12)
第1カーブ作成部12は、焼灼治療前(術前)に取得された第1の4D造影画像データを術前画像入力部11から受けて、第1の4D造影画像データに含まれるボリュームデータを構成する各ボクセルのTDCを求める。すなわち、第1カーブ作成部12は、第1の4D造影画像データに含まれる各時間におけるボリュームデータに基づいて、ボリュームデータを構成する各ボクセルの輝度値(画素値)の時間変化をボクセルごとに求める。この輝度値の時間変化が、術前におけるボクセルのTDCとして定義される。第1カーブ作成部12によって作成された術前における各ボクセルのTDCを「第1TDC」と称する。そして、第1カーブ作成部12は、術前における各ボクセルの第1TDCを、第1分類部13に出力する。なお、第1カーブ作成部12は、術前における各ボクセルの第1TDCに、術前に取得された画像に基づくデータであることを示す識別情報を付帯させる。なお、第1カーブ作成部12によって求められた輝度値の時間変化が、この発明の「第1の時間変化」の1例に相当する。
また、各部位における輝度値(輝度値)の変化率の時間変化を表す曲線をTDCとしても良い。この場合、第1カーブ作成部12は、各ボクセルにおける輝度値の変化率の時間変化を求め、変化率の時間変化を表す曲線を、各ボクセルのTDCとして定義する。この実施形態では1例として、輝度値の時間変化を表す曲線をTDCとして、各処理について説明する。
(第1分類部13)
第1分類部13は、焼灼治療前(術前)における各ボクセルの第1TDCを類似するカーブごとに分類する。類似するカーブごとに分類する方法は、公知の方法を用いれば良い。例えば、第1分類部13は、各ボクセルの第1TDCをフィッティングさせ、輝度値(曲線の形状)の差異が所定の範囲内に含まれる第1TDCを類似するカーブとして分類する。
(第1平均カーブ作成部14)
第1平均カーブ作成部14は、焼灼治療前(術前)の第1TDCについて、分類ごとに第1TDCの輝度値(画素値)の平均値を求めることで、輝度値の平均値を有する第1平均TDCを分類ごとに求める。これにより、第1平均カーブ作成部14は、輝度値が平均値となる第1平均TDCを、術前の第1TDCについて求める。そして、第1平均カーブ作成部14は、術前における各第1平均TDCを第1領域特定部15に出力する。
(第1領域特定部15)
第1領域特定部15は、一般的に推定される各部位の第1TDCモデルを図示しない記憶部から読み込み、焼灼治療前(術前)の各第1平均TDCと、術前の各部位における一般的な第1TDCモデルとを比較して、術前の各第1平均TDCがいずれの部位におけるTDCに該当するかを判断する。この判断によって、第1領域特定部15は、各第1平均TDCを各部位に分類する。
具体的には、第1領域特定部15は、焼灼治療前(術前)における各第1平均TDCが、図2(a)に示す血管における第1TDCモデル201、正常肝実質における第1TDCモデル202、又は肝腫瘍における第1TDCモデル203のうち、いずれの第1TDCモデルに該当するかを判断する。この判断により、術前における各第1平均TDCを、部位ごとに分類することができる。
例えば、第1領域特定部15は、各第1平均TDCが示す曲線の特徴を特定し、一般的に推定される第1TDCモデルが示す曲線の特徴を特定する。そして、第1領域特定部15は、各第1平均TDCが示す曲線の特徴と、一般的に推定される第1TDCモデルが示す曲線の特徴とを比べることで、各第1平均TDCがいずれの第1TDCモデルに該当するかを判断する。例えば、第1領域特定部15は、各第1平均TDCと、各部位の第1TDCモデルとを比較して、各第1平均TDCがそれぞれ類似する第1TDCモデルを特定することで、各第1平均TDCがいずれの部位の第1TDCモデルに該当するかを判断する。1例として、第1領域特定部15は、所定時相間における輝度値の変化量を各第1平均TDCについて求め、さらに、所定時相間における輝度値の変化量を各第1TDCモデルについて求める。そして、第1領域特定部15は、各第1平均TDCの変化量と第1TDCモデルの変化量との差を求め、変化量の差が所定値以内に含まれる第1平均TDCを、その第1TDCモデルに類似するTDCとする。このようにして、第1領域特定部15は、各第1平均TDCに類似する第1TDCモデルを特定する。なお、各第1平均TDCと、第1TDCモデルとの類似度の分析は、公知の類似評価関数を用いて行っても良い。
以上のように、各第1平均TDCを部位ごとに分類することで、第1領域特定部15は、各ボクセルが、血管、正常肝実質、又は肝腫瘍のうち、いずれの部位に該当するかを判断する。この判断によって、第1領域特定部15は、各ボクセルが表す部位を特定する。例えば、ある第1平均TDCが、血管における第1TDCモデル201に該当すると判断された場合、その第1平均TDCに属する各ボクセルは、血管の領域を表していることになる。また、別の第1平均TDCが、肝腫瘍における第1TDCモデル203に該当すると判断された場合、その第1平均TDCに属する各ボクセルは、肝腫瘍の領域を表していることになる。このように、第1領域特定部15は、各ボクセルを、血管、正常肝実質、又は肝腫瘍のうち、いずれかの部位に分類することで、3次元空間における血管の位置(座標)、正常肝実質の位置(座標)、及び肝腫瘍の位置(座標)を特定する。
そして、第1領域特定部15は、各ボクセルの位置に、該当する部位を示す識別情報を割り当てる。具体的には、第1領域特定部15は、第1平均TDCが血管の第1TDCモデルに該当するボクセルの位置に、血管を示す識別情報を割り当てる。また、第1領域特定部15は、第1平均TDCが肝腫瘍の第1TDCモデルに該当するボクセルの位置に、肝腫瘍を示す識別情報を割り当てる。さらに、第1領域特定部15は、第1平均TDCが正常肝実質の第1TDCモデルに該当するボクセルの位置に、正常肝実質を示す識別情報を割り当てる。さらに、第1領域特定部15は、第1平均TDCが、血管、肝腫瘍、及び正常肝実質のいずれにも該当しないボクセルの位置に、非画像領域(処理対象外の領域)を示す識別情報を割り当てる。非画像領域は、画像の位置合わせに用いられない画像領域を表している。これにより、3次元のボリュームデータを構成する各ボクセルに、部位を示す識別情報が割り当てられて、各ボクセルが部位ごとに分類される。
例えば、識別情報として数値を用いる。1例として、血管を表す数値(識別情報)を「0」とし、肝腫瘍を表す数値を「1」とし、正常肝実質を表す数値を「2」とし、非画像領域を表す数値を「−1」とする。そして、第1領域特定部15は、第1平均TDCが血管の第1TDCモデルに該当するボクセルの位置に、血管を示す数値「0」を割り当てる。また、第1領域特定部15は、第1平均TDCが肝腫瘍の第1TDCモデルに該当するボクセルの位置に、肝腫瘍を示す数値「1」を割り当てる。また、第1領域特定部15は、第1平均TDCが正常肝実質の第1TDCモデルに該当するボクセルの位置に、正常肝実質を示す数値「2」を割り当てる。さらに、第1領域特定部15は、第1平均TDCが、血管、肝腫瘍、及び正常肝実質のいずれにも該当しないボクセルの位置に、非画像領域を示す数値「−1」を割り当てる。
以上のように、第1領域特定部15は、部位を示す識別情報を各ボクセルの位置に割り当てることで、部位を示す識別情報が各ボクセルの位置に割り当てられた3次元の部位情報(以下、「第1部位情報」と称する場合がある)を作成する。第1領域特定部15は、術前における3次元の部位情報を作成する。この実施形態では、ボリュームデータを構成する各ボクセルに部位を示す識別情報を割り当てているため、3次元の第1部位情報は、3次元空間における血管の位置(座標)、正常肝実質の位置(座標)、及び肝腫瘍の位置(座標)を表している。第1部位情報において、数値「0」が割り当てられている領域が血管の領域を示し、数値「1」が割り当てられている領域が肝腫瘍の領域を示し、数値「2」が割り当てられている領域が正常肝実質の領域を示している。また、数値「−1」が割り当てられている領域が非画像領域を示している。第1領域特定部15は、術前における第1部位情報を、位置合わせ部31と未焼灼領域特定部32とに出力する。なお、術前画像処理部10が、この発明の「第1画像処理手段」の1例に相当する。
(術後画像処理部20)
術後画像処理部20は、術後画像入力部21と、第2カーブ作成部22と、第2分類部23と、第2平均カーブ作成部24と、第2領域特定部25とを備えている。術後画像処理部20は、焼灼治療後(術後)に取得された第2の4D造影画像データに基づいて、各部位のTDCを求め、そのTDCに基づいて、第2の4D造影画像データに表わされた各部位の位置を特定する。以下、術後画像処理部20の各部について説明する。
(術後画像入力部21)
術後画像入力部21は、焼灼治療後(術後)に取得された第2の4D造影画像データを画像記憶部2から読み込み、第2の4D造影画像データを第2カーブ作成部22と位置合わせ部31とに出力する。
(第2カーブ作成部22)
第2カーブ作成部22は、焼灼治療後(術後)に取得された第2の4D造影画像データを術後画像入力部21から受けて、第2の4D造影画像データに含まれるボリュームデータを構成する各ボクセルのTDCを求める。すなわち、第2カーブ作成部22は、第2の4D造影画像データに含まれる各時間におけるボリュームデータに基づいて、ボリュームデータを構成する各ボクセルの輝度値(画素値)の時間変化をボクセルごとに求める。この輝度値の時間変化が、術後におけるボクセルのTDCとして定義される。第2カーブ作成部22によって作成された術後における各ボクセルのTDCを「第2TDC」と称する。そして、第2カーブ作成部22は、術後における各ボクセルの第2TDCを、第2分類部23に出力する。なお、第2カーブ作成部22は、術後における各ボクセルの第2TDCに、術後に取得された画像に基づくデータであることを示す識別情報を付帯させる。なお、第2カーブ作成部22によって求められた輝度値の時間変化が、この発明の「第2の時間変化」の1例に相当する。
また、各部位における輝度値(輝度値)の変化率の時間変化を表す曲線をTDCとしても良い。この場合、第2カーブ作成部22は、各ボクセルにおける輝度値の変化率の時間変化を求め、変化率の時間変化を表す曲線を、各ボクセルのTDCとして定義する。この実施形態では1例として、輝度値の時間変化を表す曲線をTDCとして、各処理について説明する。
(第2分類部23)
第2分類部23は、焼灼治療後(術後)における各ボクセルの第2TDCを類似するカーブごとに分類する。類似するカーブごとに分類する方法は、公知の方法を用いれば良い。例えば、第2分類部23は、各ボクセルの第2TDCをフィッティングさせ、輝度値(曲線の形状)の差異が所定の範囲内に含まれる第2TDCを類似するカーブとして分類する。
(第2平均カーブ作成部24)
第2平均カーブ作成部24は、焼灼治療後(術後)の第2TDCについて、分類ごとに第2TDCの輝度値(画素値)の平均値を求めることで、輝度値の平均値を有する第2平均TDCを分類ごとに求める。これにより、第2平均カーブ作成部24は、輝度値が平均値となる第2平均TDCを、術後の第2TDCについて求める。そして、第2平均カーブ作成部24は、術後における各第2平均TDCを第2領域特定部25に出力する。
(第2領域特定部25)
第2領域特定部25は、一般的に推定される各部位の第2TDCモデルを図示しない記憶部から読み込み、焼灼治療後(術後)の各第2平均TDCと、術後の各部位における一般的な第2TDCモデルとを比較して、術後の各第2平均TDCがいずれの部位におけるTDCに該当するかを判断する。この判断によって、第2領域特定部25は、各第2平均TDCを各部位に分類する。
具体的には、第2領域特定部25は、焼灼治療後(術後)における各第2平均TDCが、図2(b)に示す血管における第2TDCモデル301、正常肝実質における第2TDCモデル302、又は肝腫瘍(焼灼領域)における第2TDCモデル303のうち、いずれの第2TDCモデルに該当するかを判断する。この判断により、術後における各第2平均TDCを、部位ごとに分類することができる。
例えば、第2領域特定部25は、各第2平均TDCが示す曲線の特徴を特定し、一般的に推定される第2TDCモデルが示す曲線の特徴を特定する。そして、第2領域特定部25は、各第2平均TDCが示す曲線の特徴と、一般的に推定される第2TDCモデルが示す曲線の特徴とを比べることで、各第2平均TDCがいずれの第2TDCモデルに該当するかを判断する。例えば、第2領域特定部25は、各第2平均TDCと、各部位の第2TDCモデルとを比較して、各第2平均TDCがそれぞれ類似する第2TDCモデルを特定することで、各第2平均TDCがいずれの部位の第2TDCモデルに該当するかを判断する。1例として、第2領域特定部25は、所定時相間における輝度値の変化量を各第2平均TDCについて求め、さらに、所定時相間における輝度値の変化量を各第2TDCモデルについて求める。そして、第2領域特定部25は、各第2平均TDCの変化量と第2TDCモデルの変化量との差を求め、変化量の差が所定値以内に含まれる第2平均TDCを、その第2TDCモデルに類似するTDCとする。このようにして、第2領域特定部25は、各第2平均TDCに類似する第2TDCモデルを特定する。なお、各第2平均TDCと、第2TDCモデルとの類似度の分析は、公知の類似評価関数を用いて行っても良い。
以上のように、各第2平均TDCを部位ごとに分類することで、第2領域特定部25は、各ボクセルが、血管、正常肝実質、又は肝腫瘍(焼灼領域)のうち、いずれかの部位に該当するかを判断する。この判断によって、第2領域特定部25は、各ボクセルが表す部位を特定する。例えば、ある第2平均TDCが、血管における第2TDCモデル301に該当すると判断された場合、その第2平均TDCに属する各ボクセルは、血管の領域を表していることになる。また、別の第2平均TDCが、肝腫瘍(焼灼領域)における第2TDCモデル303に該当すると判断された場合、その第2平均TDCに属する各ボクセルは、肝腫瘍(焼灼領域)を表していることになる。このように、第2領域特定部25は、各ボクセルを、血管、正常肝実質、又は肝腫瘍(焼灼領域)のうち、いずれかの部位に分類することで、3次元空間における血管の位置(座標)、正常肝実質の位置(座標)、及び肝腫瘍(焼灼領域)の位置(座標)を特定する。
そして、第2領域特定部25は、各ボクセルの位置に、該当する部位を示す識別情報を割り当てる。具体的には、第2領域特定部25は、第2平均TDCが血管の第2TDCモデルに該当するボクセルの位置に、血管を示す識別情報を割り当てる。また、第2領域特定部25は、第2平均TDCが肝腫瘍(焼灼領域)の第2TDCモデルに該当するボクセルの位置に、肝腫瘍(焼灼領域)を示す識別情報を割り当てる。さらに、第2領域特定部25は、第2平均TDCが正常肝実質の第2TDCモデルに該当するボクセルの位置に、正常肝実質を示す識別情報を割り当てる。さらに、第2領域特定部25は、第2平均TDCが、血管、肝腫瘍(焼灼領域)、及び正常肝実質のいずれにも該当しないボクセルの位置に、非画像領域(処理対象外の領域)を示す識別情報を割り当てる。これにより、3次元のボリュームデータを構成する各ボクセルに、部位を示す識別情報が割り当てられて、各ボクセルが部位ごとに分類される。
上述した第1領域特定部15と同様に、第2領域特定部25は、第2平均TDCが血管の第2TDCモデルに該当するボクセルの位置に、血管を示す数値「0」を割り当てる。また、第2領域特定部25は、第2平均TDCが肝腫瘍(焼灼領域)の第2TDCモデルに該当するボクセルの位置に、肝腫瘍(焼灼領域)を示す数値「1」を割り当てる。また、第2領域特定部25は、第2平均TDCが正常肝実質の第2TDCモデルに該当するボクセルの位置に、正常肝実質を示す数値「2」を割り当てる。さらに、第2領域特定部25は、第2平均TDCが、血管、肝腫瘍(焼灼領域)、及び正常肝実質のいずれにも該当しないボクセルの位置に、非画像領域を示す数値「−1」を割り当てる。
以上のように、第2領域特定部25は、部位を示す識別情報を各ボクセルの位置に割り当てることで、部位を示す識別情報が各ボクセルの位置に割り当てられた3次元の部位情報(以下、「第2部位情報」と称する場合がある)を作成する。第2領域特定部25は、術後における3次元の部位情報を作成する。この実施形態では、ボリュームデータを構成する各ボクセルに部位を示す識別情報を割り当てているため、3次元の第2部位情報は、3次元空間における血管の位置(座標)、正常肝実質の位置(座標)、及び肝腫瘍(焼灼領域)の位置(座標)を表している。第2部位情報において、数値「0」が割り当てられている領域が血管の領域を示し、数値「1」が割り当てられている領域が肝腫瘍(焼灼領域)を示し、数値「2」が割り当てられている領域が正常肝実質の領域を示している。また、数値「−1」が割り当てられている領域が非画像領域を示している。なお、肝腫瘍の領域においては、術前と術後とで輝度値(画素値)が変化するが、肝腫瘍以外の領域においては、術前と術後とで輝度値(画素値)は変化しない。第2領域特定部25は、術後における第2部位情報を、位置合わせ部31と未焼灼領域特定部32とに出力する。なお、術後画像処理部20が、この発明の「第2画像処理手段」の1例に相当する。
(合成画像処理部30)
合成画像処理部30は、位置合わせ部31と未焼灼領域特定部32とを備えている。合成画像処理部30は、焼灼治療前(術前)に取得された第1の4D造影画像データに表わされた各部位の位置と、焼灼治療後(術後)に取得された第2の4D造影画像データに表わされた各部位の位置とを合わせ、さらに、術後のボリュームデータにおいて未焼灼領域を特定する。以下、合成画像処理部30の各部について説明する。
(位置合わせ部31)
位置合わせ部31は、焼灼治療前(術前)に取得された第1の4D造影画像データを術前画像入力部11から受け、焼灼治療後(術後)に取得された第2の4D造影画像データを術後画像入力部21から受ける。さらに、位置合わせ部31は、術前における各部位の位置を示す第1部位情報を第1領域特定部15から受け、術後における各部位の位置を示す第2部位情報を第2領域特定部25から受ける。そして、位置合わせ部31は、第1部位情報が示す各部位の位置と第2部位情報が示す各部位の位置とに従って、第1の4D造影画像データに含まれる各ボリュームデータに表わされた各部位の位置と、第2の4D造影画像データに含まれる各ボリュームデータに表わされた各部位の位置とを合わせる。
この位置合わせにおいて、位置合わせ部31は、画像の位置合わせの対象に適さない領域を除いて、位置合わせを行う。例えば、位置合わせ部31は、TDCの形状が術前と術後とにおいてほぼ一致する部位以外の部位の領域を除いて、画像の位置合わせを行う。TDCの形状が術前と術後とにおいてほぼ一致する部位以外の部位では、輝度値(画素値)が著しく変化するため、画像の位置合わせの対象に適さない。そのため、輝度値が著しく変化する部位の領域を除いて、画像の位置合わせを行う。
この実施形態では、位置合わせ部31は、肝腫瘍に分類された領域を位置合わせの対象から除外する。例えば図2に示すように、肝腫瘍においては、術前と術後とでTDCの形状が著しく異なるため、その形状がほぼ一致することはない。そのため、肝腫瘍に分類されたボクセルを画像の位置合わせの対象から除外して、画像の位置合わせを行う。また、位置合わせ部31は、非画像領域に分類されたボクセルを画像の位置合わせの対象から除外して、画像の位置合わせを行う。この実施形態では、位置合わせ部31は、第1の4D造影画像データに含まれるボリュームデータと、第2の4D造影画像データに含まれるボリュームデータとに対してMI法(Mutual infomation法)を適用して画像の位置合わせを行う。MI法は、文献:Mutimodality Image Registration by Maximization of Mutual Information(1997)に記載されている公知の方法を用いれば良い。例えば、特開2004−509723号公報、特開2007−54636号公報に記載されている方法を用いれば良い。なお、位置合わせ部31が、この発明の「位置合わせ手段」の1例に相当する。
RFAを用いた焼灼治療では、上述したように、焼灼の前後において焼灼対象部位の形態が著しく変化する。そのため、形態情報を用いた位置合わせ方法では、画像の位置合わせの精度を向上させることが困難である。これに対して、MI法を用いた位置合わせ方法では、画像に表わされた組織の輪郭が不明瞭であっても、画像が類似していれば、画像の位置合わせを比較的精度良く行うことができる。しかしながら、焼灼の前後において、焼灼対象部位の像の輝度値が著しく変化して、画像が類似しなくなるため、MI法を適用しても、画像の位置合わせを精度良く行うことは困難である。
これに対して、この実施形態に係る医用画像処理装置1によると、各ボクセルのTDCを作成して、各部位の造影濃染の特徴を用いることで、各部位の位置と形態とを特定することが可能となる。そして、画像の位置合わせに適さない領域を位置合わせ処理から除外することで、術前と術後とで画像の一部が変化している場合であっても、より正確に複数の画像の位置合わせを行うことが可能となる。具体的には、肝腫瘍の領域を除外して術前の画像の位置と術後の画像の位置とを合わせることで、術前と術後とで腫瘍の輝度値が変化している場合であっても、術前の画像の位置と術後の画像の位置とをより正確に合わせることが可能となる。すなわち、この実施形態に係る医用画像処理装置1によると、輝度値が著しく変化する領域を除いて位置合わせを行うため、形態情報を必要としないMI法を用いた画像の位置合わせが可能となり、その結果、より正確に画像の位置合わせが可能となる。
(未焼灼領域特定部32)
未焼灼領域特定部32は、焼灼治療後(術後)に取得された第2の4D造影画像データに含まれる各ボリュームデータにおいて、焼灼されていない領域(未焼灼領域)の位置を特定する。
まず、未焼灼領域特定部32は、術前に取得された第1の4D造影画像データから作成された第1部位情報が示す肝腫瘍領域の位置に基づいて、画像の位置合わせ後における術後の第2の4D造影画像データに含まれる各ボリュームデータにおける肝腫瘍領域の位置を特定する。すなわち、術前に取得された第1の4D造影画像データに基づく第1部位情報によって、術前における肝腫瘍領域の位置は特定されている。また、位置合わせ部31によって、第1の4D造影画像データに含まれる各ボリュームデータに表わされた各部位の位置と、第2の4D造影画像データに含まれる各ボリュームデータに表わされた各部位の位置とが合わされている。従って、未焼灼領域特定部32は、第1部位情報が示す肝腫瘍領域の位置に基づいて、画像の位置合わせ後における第2の4D造影画像データに含まれる各ボリュームデータにおける肝腫瘍領域の位置を特定することができる。
次に、未焼灼領域特定部32は、上記の処理で特定された第2の4D造影画像データにおける肝腫瘍領域の位置と、第2の4D造影画像データから作成された第2部位情報が示す肝腫瘍(焼灼領域)の位置とに基づいて、第2の4D造影画像データに含まれる各ボリュームデータにおいて、焼灼されていない領域(未焼灼領域)の位置を特定する。具体的には、未焼灼領域特定部32は、第2の4D造影画像データにおいて特定された肝腫瘍領域から第2部位情報が示す焼灼領域を除いた領域を、肝腫瘍領域において焼灼されていない領域(未焼灼領域)として特定する。これにより、第2の4D造影画像データに含まれる各ボリュームデータにおいて、未焼灼領域の位置が特定される。
従来においては、焼灼治療の直後に取得された超音波画像データから未焼灼領域を特定することは困難であったが、この実施形態に係る医用画像処理装置1によると、術前の肝腫瘍領域の位置と術後の焼灼領域の位置とに基づいて、位置合わせ後の第2の4D造影画像データに含まれる各ボリュームデータにおいて、未焼灼領域の位置を特定することが可能となる。
未焼灼領域特定部32は、3次元空間における未焼灼領域の位置を示す座標情報を表示制御部42に出力する。また、未焼灼領域特定部32は、3次元空間における焼灼領域の位置を示す座標情報を表示制御部42に出力する。なお、未焼灼領域特定部32が、この発明の「未焼灼領域特定手段」の1例に相当する。
(画像出力部40)
画像出力部40は、表示画像生成部41と、表示制御部42と、ユーザインターフェース(UI)44と、を備えている。
(表示画像生成部41)
表示画像生成部41は、ボリュームデータを受けて、そのボリュームデータに画像処理を施すことで表示用の画像データを生成する。例えば、表示画像生成部41は、ボリュームデータにボリュームレンダリングを施すことで、組織が立体的に表わされた3次元画像データを生成する。また、表示画像生成部41は、ボリュームデータにMPR(Multi Planar Reconstruction)処理を施すことで、任意の断面における画像データ(MPR画像データ)を生成しても良い。そして、表示画像生成部41は、3次元画像データやMPR画像データなどの医用画像データを表示制御部42に出力する。なお、表示画像生成部41が、この発明の「表示画像生成手段」の1例に相当する。
(表示制御部42)
表示制御部42は、表示画像生成部41にて生成された3次元画像データに基づく3次元画像や、MPR画像データに基づくMPR画像などの医用画像を表示部45に表示させる。
この実施形態においては、表示画像生成部41は、第2の4D造影画像データに含まれるボリュームデータを術後画像入力部21から受けて、そのボリュームデータに画像処理を施すことで表示用の画像データを生成する。例えば、表示画像生成部41は、術後のボリュームデータにボリュームレンダリングを施すことで、術後の3次元画像データを生成する。また、表示画像生成部41は、術後のボリュームデータにMPR処理を施すことで、術後のMPR画像データを生成しても良い。そして、表示画像生成部41は、術後の3次元画像データやMPR画像データなどの医用画像データを表示制御部42に出力する。表示制御部42は、術後の3次元画像やMPR画像を表示部45に表示させる。
(マーカ生成部43)
表示制御部42は、マーカ生成部43を備えている。マーカ生成部43は、未焼灼領域の位置を示す座標情報を未焼灼領域特定部32から受けて、未焼灼領域の形状を表すマーカを示すデータを生成する。また、マーカ生成部43は、焼灼領域の位置を示す座標情報を未焼灼領域特定部32から受けて、焼灼領域の形状を表すマーカを示すデータを生成する。そして、表示制御部42は、マーカ生成部43によって生成されたマーカを、術後の医用画像上に重ねて表示部45に表示させる。この実施形態では、表示制御部42は、未焼灼領域の位置を示す座標情報に従って、未焼灼領域の形状を表すマーカを、術後の医用画像において特定された未焼灼領域の位置に重ねて表示部45に表示させる。また、表示制御部42は、焼灼領域の位置を示す座標情報に従って、焼灼領域の形状を表すマーカを、術後の医用画像において特定された焼灼領域の位置に重ねて表示部45に表示させる。このように、表示制御部42は、術後の医用画像において未焼灼領域を識別可能にして表示部45に表示させる。
例えば、操作者が操作部46を用いて、術後のボリュームデータにおける所望の断面の位置を指定する。操作部46にて指定された断面の位置を示す座標情報が、ユーザインターフェース(UI)44から表示画像生成部41と表示制御部42とに出力される。表示画像生成部41は、操作部46にて指定された断面の位置を示す座標情報をユーザインターフェース(UI)44から受けて、術後のボリュームデータにMPR処理を施すことで、指定された断面におけるMPR画像データを生成し、そのMPR画像データを表示制御部42に出力する。表示制御部42は、術後のMPR画像データに基づくMPR画像を表示部45に表示させる。一方、マーカ生成部43は、操作部46にて指定された断面の位置を示す座標情報をユーザインターフェース(UI)44から受けて、未焼灼領域を示す座標情報に基づいて、指定された断面における未焼灼領域の形状を表すマーカを示すデータを生成する。また、マーカ生成部43は、焼灼領域を示す座標情報に基づいて、指定された断面における焼灼領域の形状を表すマーカを示すデータを生成する。表示制御部42は、未焼灼領域を示す座標情報に従って、未焼灼領域の形状を表すマーカを、術後のMPR画像において特定された未焼灼領域の位置に重ねて表示部45に表示させる。また、表示制御部42は、焼灼領域を示す座標情報に従って、焼灼領域の形状を表すマーカを、術後のMPR画像において特定された焼灼領域の位置に重ねて表示部45に表示させる。
また、表示画像生成部41は、術前に取得された第1の4D造影画像データに含まれるボリュームデータを術前画像入力部11から受けて、そのボリュームデータにボリュームレンダリングやMPR処理を施しても良い。そして、表示制御部42は、術前の医用画像と術後の医用画像とを並べて表示部45に表示させても良い。
1例として、表示画像生成部41は、術前に取得された第1の4D造影画像データの各ボリュームデータにMPR処理を施すことで、各時相のMPR画像データを生成する。同様に、表示画像生成部41は、術後に取得された第2の4D造影画像データの各ボリュームデータにMPR処理を施すことで、各時相のMPR画像データを生成する。このとき、表示画像生成部41は、位置合わせ部31によって行われた画像の位置合わせに従って、術前のボリュームデータの位置と術後のボリュームデータの位置とを合わせてMPR処理を施すことで、術前と術後とで位置が一致するMPR画像データを生成する。そして、表示制御部42は、位置が合わされた術前のMPR画像と術後のMPR画像とを並べて表示部45に表示させる。表示制御部42は、各時相における術前のMPR画像と術後のMPR画像とを、時相の順番に表示部45に表示させる。
ここで、表示部45に表示される画像の1例を図3に示す。図3は、表示部に表示される画像の1例を示す図である。画像400は、術前に取得されたMPR画像であり、画像410は、術後に取得されたMPR画像である。このように、表示制御部42は、術前の画像400と術後の画像410とを並べて表示部45に表示させる。また、表示制御部42は、マーカ生成部43によって生成された焼灼領域411の形状を表すマーカを、術後の画像410において特定された焼灼領域の位置に重ねて表示部45に表示させ、さらに、未焼灼領域412の形状を表すマーカを、術後の画像410において特定された未焼灼領域の位置に重ねて表示部45に表示させる。
ユーザインターフェース(UI)44は、表示部45と操作部46とを備えている。表示部45は、CRTや液晶ディスプレイなどのモニタで構成され、画面上に3次元画像やMPR画像が表示される。操作部46は、ジョイスティックやトラックボールなどのポインティングデバイス、スイッチ、各種ボタン、又はキーボードなどで構成されている。
なお、術前画像処理部10は、図示しないCPUと、ROM、RAM、HDDなどの図示しない記憶装置とによって構成されている。記憶装置には、術前画像処理部10の機能を実行するための術前画像処理プログラムが記憶されている。術前画像処理プログラムには、術前画像入力部11の機能を実行するための術前画像入力プログラム、第1カーブ作成部12の機能を実行するための第1カーブ作成プログラム、第1分類部13の機能を実行するための第1分類プログラム、第1平均カーブ作成部14の機能を実行するための第1平均カーブ作成プログラム、及び、第1領域特定部15の機能を実行するための第1領域特定プログラムが含まれている。そして、CPUが術前画像処理プログラムに含まれる各プログラムを実行することで、術前画像処理部10の各部の機能を実行する。
また、術後画像処理部20は、図示しないCPUと、ROM、RAM、HDDなどの図示しない記憶装置とによって構成されている。記憶装置には、術後画像処理部20の機能を実行するための術後画像処理プログラムが記憶されている。術後画像処理プログラムには、術後画像入力部21の機能を実行するための術後画像入力プログラム、第2カーブ作成部22の機能を実行するための第2カーブ作成プログラム、第2分類部23の機能を実行するための第2分類プログラム、第2平均カーブ作成部24の機能を実行するための第2平均カーブ作成プログラム、及び、第2領域特定部25の機能を実行するための第2領域特定プログラムが含まれている。そして、CPUが術後画像処理プログラムに含まれる各プログラムを実行することで、術後画像処理部20の各部の機能を実行する。
また、合成画像処理部30は、図示しないCPUと、ROM、RAM、HDDなどの図示しない記憶装置とによって構成されている。記憶装置には、合成画像処理部30の機能を実行するための合成画像処理プログラムが記憶されている。合成画像処理プログラムには、位置合わせ部31の機能を実行するための位置合わせプログラムと、未焼灼領域特定部32の機能を実行するための未焼灼領域特定プログラムとが含まれている。そして、CPUが合成画像処理プログラムに含まれる各プログラムを実行することで、合成画像処理部30の各部の機能を実行する。
また、表示画像生成部41と表示制御部42とは、図示しないCPUと、ROM、RAM、HDDなどの図示しない記憶装置とによって構成されている。記憶装置には、表示画像生成部41の機能を実行するための表示画像生成プログラムと、表示制御部42の機能を実行するための表示制御プログラムとが記憶されている。また、表示制御プログラムには、マーカ生成部43の機能を実行するためのマーカ生成プログラムが記憶されている。そして、CPUが表示画像生成プログラムを実行することで、表示画像生成部41の機能を実行し、表示制御プログラムを実行することで、表示制御部42の機能を実行する。
なお、術前画像処理プログラム、術後画像処理プログラム、合成画像処理プログラム、表示画像生成プログラム、及び、表示制御プログラムによって、この発明の「医用画像処理プログラム」の1例を構成する。
(動作)
次に、第1実施形態に係る医用画像処理装置1による一連の動作について図4を参照して説明する。図4は、この発明の第1実施形態に係る医用画像処理装置による一連の動作を示すフローチャートである。
(ステップS01)
まず、術前画像入力部11は、焼灼治療前(術前)に取得された第1の4D造影画像データを画像記憶部2から読み込み、第1の4D造影画像データを第1カーブ作成部12に出力する。
(ステップS02)
第1カーブ作成部12は、第1の4D造影画像データに含まれる各時間のボリュームデータに基づいて、各ボクセルの輝度値(画素値)の時間変化をボクセルごとに求めることで、各ボクセルの第1TDCを作成する。
(ステップS03)
第1分類部13は、各ボクセルの第1TDCを類似するカーブごとに分類し、第1平均カーブ作成部14は、分類ごとに第1TDCの輝度値(画素値)の平均値を求めることで、輝度値の平均値を有する第1平均TDCを分類ごとに求める。そして、第1領域特定部15は、各第1平均TDCと、術前の各部位における一般的な第1TDCモデルとを比較して、各第1平均TDCがいずれの部位におけるTDCに該当するかを判断する。この判断によって、第1領域特定部15は、各ボクセルを、血管、正常肝実質、又は肝腫瘍のうち、いずれかの部位に分類することで、3次元空間における血管の位置、正常肝実質の位置、及び肝腫瘍の位置を特定する。そして、第1領域特定部15は、部位を示す識別情報を各ボクセルの位置に割り当てることで、部位を示す識別情報が各ボクセルの位置に割り当てられた3次元の第1部位情報を作成する。
(ステップS04)
一方、術後画像入力部21は、焼灼治療後(術後)に取得された第2の4D造影画像データを画像記憶部2から読み込み、第2の4D造影画像データを第2カーブ作成部22に出力する。
(ステップS05)
第2カーブ作成部22は、第2の4D造影画像データに含まれる各時間のボリュームデータに基づいて、各ボクセルの輝度値(画素値)の時間変化をボクセルごとに求めることで、各ボクセルの第2TDCを作成する。
(ステップS06)
第2分類部23は、各ボクセルの第2TDCを類似するカーブごとに分類し、第2平均カーブ作成部24は、分類ごとに第2TDCの輝度値(画素値)の平均値を求めることで、輝度値の平均値を有する第2平均TDCを分類ごとに求める。そして、第2領域特定部25は、各第2平均TDCと、術前の各部位における一般的な第2TDCモデルとを比較して、各第2平均TDCがいずれの部位におけるTDCに該当するかを判断する。この判断によって、第2領域特定部25は、各ボクセルを、血管、正常肝実質、又は肝腫瘍(焼灼領域)のうち、いずれかの部位に分類することで、3次元空間における血管の位置、正常肝実質の位置、及び肝腫瘍(焼灼領域)の位置を特定する。そして、第2領域特定部25は、部位を示す識別情報を各ボクセルの位置に割り当てることで、部位を示す識別情報が各ボクセルの位置に割り当てられた3次元の第2部位情報を作成する。
(ステップS07)
位置合わせ部31は、第1部位情報が示す各部位の位置と第2部位情報が示す各部位の位置とに従って、第1の4D造影画像データに含まれる各ボリュームデータに表わされた各部位の位置と、第2の4D造影画像データに含まれる各ボリュームデータに表わされた各部位の位置とを、MI法によって合わせる。この位置合わせにおいて、位置合わせ部31は、TDCの形状が術前と術後とにおいて著しく変化する肝腫瘍領域を除いて、術前の画像と術後の画像との位置を合わせる。
(ステップS08)
未焼灼領域特定部32は、第1部位情報が示す肝腫瘍領域の位置に基づいて、画像の位置合わせ後における第2の4D造影画像データに含まれる各ボリュームデータにおける肝腫瘍領域の位置を特定する。
(ステップS09)
そして、未焼灼領域特定部32は、第2の4D造影画像データにおける肝腫瘍領域から第2部位情報が示す焼灼領域を除いた領域を、肝腫瘍領域において焼灼されていない領域(未焼灼領域)として特定する。これにより、第2の4D造影画像データに含まれる各ボリュームデータにおいて、未焼灼領域の位置が特定される。
(ステップS10)
操作者は操作部46を用いて、術後のボリュームデータにおける所望の断面の位置を指定する。表示画像生成部41は、第2の4D造影画像データに含まれる各ボリュームデータを術後画像入力部21から受けて、各ボリュームデータにMPR処理を施すことで、指定された断面における各時相のMPR画像データを生成する。一方、マーカ生成部43は、指定された断面における未焼灼領域の形状を表すマーカを示すデータを生成する。また、マーカ生成部43は、その断面における焼灼領域の形状を表すマーカを示すデータを生成する。
(ステップS11)
表示制御部42は、表示画像生成部41によって生成された術後のMPR画像を表示部45に表示させる。さらに、表示制御部42は、未焼灼領域を示す座標情報に従って、未焼灼領域の形状を表すマーカを、術後のMPR画像において特定された未焼灼領域の位置に重ねて表示部45に表示させる。また、表示制御部42は、焼灼領域を示す座標情報に従って、焼灼領域の形状を表すマーカを、術後のMPR画像において特定された焼灼領域の位置に重ねて表示部45に表示させる。このように、画像における未焼灼領域と焼灼領域とを、操作者に識別可能にして表示する。
例えば図3に示すように、表示制御部42は、術後の画像410(MPR画像)を表示部45に表示させ、さらに、焼灼領域411の形状を表すマーカと未焼灼領域412の形状を表すマーカとを、画像410上に重ねて表示部45に表示させる。
以上のように、第1実施形態に係る医用画像処理装置1によると、各ボクセルのTDCを作成して、各部位の造影濃染の特徴を用いることで、各部位の位置と形状とを特定することが可能となる。そして、画像の位置合わせに適さない肝腫瘍領域を位置合わせ処理から除外することで、術雨と術後とで画像の一部が変化している場合であっても、術前の画像に表わされた部位の位置と、術後の画像に表わされた部位の位置とを、より正確に合わせることが可能となる。そして、術前における第1の4D造影画像データに基づいて肝腫瘍領域の位置を特定し、術後における第2の4D造影画像データに基づいて焼灼領域の位置を特定することで、術前の肝腫瘍領域の位置と術後の焼灼領域の位置とに基づいて、位置合わせ後の第2の4D造影画像データに含まれる各ボリュームデータにおいて、未焼灼領域の位置をより正確に特定することが可能となる。第2の4D造影画像データが焼灼治療の直後に取得された画像データであっても、その第2の4D造影画像データにおいて、未焼灼領域の位置をより正確に特定することが可能となる。
このように、第1実施形態に係る医用画像処理装置1によると、焼灼治療の直後に、超音波診断装置によって取得された画像から未焼灼領域の位置をより正確に特定することが可能となる。そして、その未焼灼領域の位置を術後の医用画像上で表示することで、操作者に未焼灼領域を認識させることが可能となる。そのことにより、焼灼治療の直後に、術者は、焼灼治療の効果を判定することが可能となるため、術者による焼灼治療の効果の判定を支援することが可能となる。例えば、焼灼治療の直後において、穿刺針を被検体に刺入したままの状態で、未焼灼領域の位置を特定して焼灼治療の効果を判定することができるため、焼灼治療の直後において、焼灼治療を再度行うことが可能となる。
なお、医用画像処理装置1と超音波診断装置100とを備えた超音波診断装置によっても、この実施形態に係る医用画像処理装置1と同じ作用と効果を奏することができる。医用画像処理装置1と超音波診断装置100とによって、この発明の「超音波診断装置」の1例を構成する。
[第2の実施の形態]
次に、この発明の第2実施形態に係る医用画像処理装置について図5を参照して説明する。図5は、この発明の第2実施形態に係る医用画像処理装置を示すブロック図である。
第2実施形態に係る医用画像処理装置1Aは、焼灼治療が行われた後に、焼灼領域と未焼灼領域とに基づいて、未焼灼領域を再度焼灼するための再穿刺の経路を求める。
第2実施形態に係る医用画像処理装置1Aは、第1実施形態に係る医用画像処理装置1と同様に、画像記憶部2と、術前画像処理部10と、術後画像処理部20と、合成画像処理部30と、画像出力部40とを備えている。さらに、第2実施形態に係る医用画像処理装置1Aは、補正部50を備えている。そして、第2実施形態に係る医用画像処理装置1Aは、第1実施形態に係る医用画像処理装置1と同様に、焼灼治療前(術前)に取得された画像に表わされた各部位の位置と、焼灼治療後(術後)において取得された画像に表わされた各部位の位置とを合わせ、焼灼対象の部位において焼灼されていない領域(未焼灼領域)を特定する。さらに、第2実施形態に係る医用画像処理装置1Aは、焼灼領域の位置と未焼灼領域の位置とに基づき、術後の画像において、未焼灼領域を再度焼灼するための再穿刺の経路を求める。補正部50以外の構成は、第1実施形態に係る医用画像処理装置1の構成と同じであるため、補正部50について説明する。
第1実施形態に係る医用画像処理装置1と同様に、医用画像処理装置1Aは、腫瘍領域の位置、焼灼領域の位置、及び未焼灼領域の位置を特定する。第2実施形態においては、第2領域特定部25は、3次元空間における焼灼領域の位置を示す座標情報を補正部50に出力する。また、未焼灼領域特定部32は、3次元空間における未焼灼領域の位置を示す座標情報を補正部50に出力する。
(補正部50)
補正部50は、先端位置推定部51と、重心検出部52と、再焼灼領域特定部53と、穿刺経路決定部54と、補正情報算出部55とを備えている。補正部50は、焼灼領域の位置と未焼灼領域の位置とに基づいて、術後の画像において再穿刺を行う経路を求める。以下、補正部50の各部について図6を参照して説明する。図6は、再穿刺の経路を求めるための処理を説明するための図である。
(先端位置推定部51)
先端位置推定部51は、3次元空間における焼灼領域の位置を示す座標情報を第2領域特定部25から受け付ける。そして、先端位置推定部51は、3次元空間における焼灼領域の重心を求め、その重心の位置を、穿刺針の先端の現在における位置として推定する。例えば図6に示すように、先端位置推定部51は、第2領域特定部25によって特定された焼灼領域510の重心511を求める。この焼灼領域510は、現在の焼灼治療によって焼灼された領域である。焼灼領域510は、穿刺針によって焼灼された領域であるため、先端位置推定部51は、焼灼領域510の重心511の位置を、現在における穿刺針の先端の位置として推定する。先端位置推定部51は、3次元空間における穿刺針の先端の位置を示す座標情報を再焼灼領域特定部53に出力する。穿刺針が病変部に穿刺されている状態であっても、超音波画像上には穿刺針は明確に表わされず、穿刺針を超音波画像において確認することが困難である。そのため、この実施形態では、先端位置推定部51が、焼灼領域510の重心511を求め、その重心511を穿刺針の現在の先端位置と推定する。
(重心検出部52)
重心検出部52は、3次元空間における未焼灼領域の位置を示す座標情報を未焼灼領域特定部32から受け付ける。重心検出部52は、3次元空間における未焼灼領域の重心の位置を求める。例えば図6に示すように、重心検出部52は、未焼灼領域特定部32によって特定された未焼灼領域520の重心521を求める。この未焼灼領域520は、現在の焼灼治療によって焼灼されなかった領域である。重心検出部52は、3次元空間における未焼灼領域の重心の位置を示す座標情報を再焼灼領域特定部53に出力する。
(再焼灼領域特定部53)
再焼灼領域特定部53は、先端位置推定部51によって推定された穿刺針の先端位置と、重心検出部52によって求められた未焼灼領域の重心の位置とを結ぶ補正線の位置を求める。例えば図6に示すように、再焼灼領域特定部53は、焼灼領域510の重心511(穿刺針の先端位置)と、未焼灼領域520の重心521とを結ぶ補正線530の位置を求める。そして、再焼灼領域特定部53は、補正線530上の点を中心とする領域であって、未焼灼領域520を含む球状の領域の位置を求める。この球状の領域を、再穿刺において焼灼される焼灼領域(再焼灼領域)であると推定する。なお、再焼灼領域特定部53は、未焼灼領域520よりも僅かに大きさが大きい球状の領域を、再焼灼領域であると推定する。この大きさは、操作者が操作部46を用いて任意に変更できるようにしても良い。例えば図6に示すように、再焼灼領域特定部53は、補正線530上の点を中心とする領域であって、未焼灼領域520を含む球状の領域540を、再穿刺において焼灼される焼灼領域(再焼灼領域)であると推定する。そして、再焼灼領域特定部53は、領域540の中心541を、再穿刺における焼灼領域の中心とする。再焼灼領域特定部53は、再穿刺における焼灼領域の中心541の座標情報を穿刺経路決定部54に出力する。
(穿刺経路決定部54)
穿刺経路決定部54は、3次元空間における再焼灼領域の中心の座標情報を再焼灼領域特定部53から受け付け、さらに、3次元空間における穿刺針の穿刺口の座標情報を術後画像入力部21から取得する。穿刺針の穿刺口は、被検体の体表において穿刺針が刺入している位置である。超音波診断装置100に設置されている超音波プローブには、穿刺針を支持するための穿刺アダプターが設置されている。穿刺針はその穿刺アダプターに設置されているため、3次元空間における超音波プローブと穿刺針が通る方向との相対的な位置は一定である。すなわち、3次元空間における超音波プローブと穿刺経路との相対的な位置は一定である。また、ボリュームデータにおける超音波プローブの位置は、超音波診断装置100にて特定されている。超音波プローブに対する穿刺経路の相対的な位置が一定であるため、ボリュームデータにおける穿刺経路の位置と穿刺口の位置とは、超音波診断装置100にて特定されている。従って、超音波診断装置100にて、第1の4D造影画像データと第2の4D造影画像データに、ボリュームデータにおける穿刺経路の位置を示す座標情報と穿刺口の位置を示す座標情報とが付帯されて、第1の4D造影画像データと第2の4D造影画像データとが画像記憶部2に記憶される。
穿刺経路決定部54は、第2の4D造影画像データに付帯された穿刺口の座標情報を術後画像入力部21から取得し、再穿刺における再焼灼領域の中心と穿刺口とを結ぶ線分の位置を求め、その線分を再焼灼経路に決定する。例えば図6に示すように、穿刺経路決定部54は、再穿刺における領域540(再焼灼領域)の中心541と穿刺口550とを結ぶ線分の位置を求め、その線分を再穿刺経路570に決定する。また、穿刺経路決定部54は、現在の焼灼領域の重心511と穿刺口550とを結ぶ線分の位置を求め、その線分を現在の穿刺経路560として推定する。そして、穿刺経路決定部54は、3次元空間における現在の穿刺経路560の位置を示す座標情報と、3次元空間における再穿刺経路570の位置を示す座標情報とを補正情報算出部55に出力する。
未焼灼領域520を含む領域540(再焼灼領域)が、本来、焼灼されるべき領域である。そのため、この実施形態では、現在の焼灼領域510の重心511と、未焼灼領域520の重心521と、未焼灼領域520とに基づいて、再穿刺における再焼灼領域(領域540)を求める。そして、再焼灼領域の中心541と穿刺口550とを結んだ線分を再穿刺経路とすることで、本来焼灼されるべき領域の中心に向かった再穿刺経路の位置を求めることができる。
(補正情報算出部55)
補正情報算出部55は、現在の穿刺経路560の位置と再穿刺経路570の位置とに基づいて、現在の穿刺経路560の位置と再穿刺経路570の位置との差を、穿刺の補正情報として求める。例えば、補正情報算出部55は、現在の穿刺経路560と再穿刺経路570との間の角度を補正角度として求める。また、補正情報算出部55は、再穿刺経路570に基づいて、体表から穿刺針を刺入する深さを補正距離として求める。補正情報算出部55は、補正角度と補正距離とを表示制御部42に出力する。また、補正情報算出部55は、現在の穿刺経路560の位置を示す座標情報と、再穿刺経路570の位置を示す座標情報とを表示制御部42に出力する。
なお、補正部50がこの発明の「補正手段」の1例に相当する。
(表示画像生成部41)
表示画像生成部41は、第1実施形態と同様に、第2の4D造影画像データに含まれるボリュームデータを術後画像入力部21から受けて、そのボリュームデータに画像処理を施すことで表示用の画像データを生成する。例えば、操作者が操作部46を用いて、術後のボリュームデータにおける所望の断面の位置を指定すると、表示画像生成部41は、術後のボリュームデータにMPR処理を施すことで、指定された断面におけるMPR画像データを生成する。表示制御部42は、術後のMPR画像データに基づくMPR画像を表示部45に表示させる。
また、表示制御部42は、補正角度と補正距離とを含む補正情報を補正情報算出部55から受けて、その補正情報の値を術後のMPR画像とともに表示部45に表示させる。
(マーカ生成部43)
一方、マーカ生成部43は、3次元空間における現在の穿刺経路の位置を示す座標情報と、3次元空間における再穿刺経路の位置を示す座標情報とを、補正情報算出部55から受け付ける。マーカ生成部43は、3次元空間における現在の穿刺経路の座標情報に基づいて、操作部46にて指定された断面に現在の穿刺経路を投影し、指定された断面に投影された現在の穿刺経路を表すマーカを示すデータを生成する。また、マーカ生成部43は、3次元空間における再穿刺経路の座標情報に基づいて、操作部46にて指定された断面に再穿刺経路を投影し、指定された断面に投影された再穿刺経路を表すマーカを示すデータを生成する。そして、表示制御部42は、指定された断面に投影された現在の穿刺経路を示す座標情報に従って、指定された断面に投影された現在の穿刺経路を表すマーカを、術後のMPR画像に重ねて表示部45に表示させる。また、表示制御部42は、指定された断面に投影された再穿刺経路を示す座標情報に従って、指定された断面に投影された再穿刺経路を表すマーカを、術後のMPR画像に重ねて表示部45に表示させる。このように、表示制御部42は、術後のMPR画像において、現在の穿刺経路と再穿刺経路とを識別可能にして表示部45に表示させる。
例えば図6に示すように、表示制御部42は、術後のMPR画像500を表示部45に表示させる。さらに、表示制御部42は、指定された断面において現在の穿刺経路560を表すマーカをMPR画像500に重ねて表示部45に表示させる。また、表示制御部42は、指定された断面において再穿刺経路570を表すマーカをMPR画像500に重ねて表示部45に表示させる。
第1実施形態と同様に、マーカ生成部43は、未焼灼領域の位置を示す座標情報に基づいて、操作部46にて指定された断面における未焼灼領域の形状を表すマーカを示すデータを生成しても良い。また、マーカ生成部43は、焼灼領域の位置を示す座標情報に基づいて、操作部46にて指定された断面における焼灼領域の形状を表すマーカを示すデータを生成しても良い。さらに、マーカ生成部43は、再焼灼領域の位置を示す座標情報を補正部50から受け付けて、操作部46にて指定された断面における再焼灼領域の形状を表すマーカを示すデータを生成しても良い。表示制御部42は、未焼灼領域の位置を示す座標情報に従って、未焼灼領域の形状を表すマーカを、術後のMPR画像において特定された未焼灼領域の位置に重ねて表示部45に表示させる。また、表示制御部42は、焼灼領域の位置を示す座標情報に従って、焼灼領域の形状を表すマーカを、術後のMPR画像において特定された焼灼領域の位置に重ねて表示部45に表示させる。さらに、表示制御部42は、再焼灼領域の位置を示す座標情報に従って、再焼灼領域の形状を表すマーカを、術後のMPR画像において特定された再焼灼領域の位置に重ねて表示部45に表示させる。例えば図6に示すように、表示制御部42は、現在の焼灼領域510の形状を表すマーカと、未焼灼領域520の形状を表すマーカと、再焼灼領域(領域540)の形状を表すマーカとを、術後のMPR画像に重ねて表示部45に表示させる。なお、現在の焼灼領域の形状を表すマーカ、未焼灼領域の形状を表すマーカ、及び再焼灼領域の形状を表すマーカを、すべて表示しなくても良い。
なお、補正部50は、図示しないCPUと、ROM、RAM、HDDなどの図示しない記憶装置とによって構成されている。記憶装置には、補正部50の機能を実行するための補正プログラムが記憶されている。補正プログラムには、先端位置推定部51の機能を実行するための先端位置推定プログラム、重心検出部52の機能を実行するための重心検出プログラム、再焼灼領域特定部53の機能を実行するための再焼灼領域特定プログラム、穿刺経路決定部54の機能を実行するための穿刺経路決定プログラム、及び、補正情報算出部55の機能を実行するための補正情報算出プログラムが含まれている。そして、CPUが補正プログラムに含まれる各プログラムを実行することで、補正部50の各部の機能を実行する。
(動作)
次に、第2実施形態に係る医用画像処理装置1Aによる一連の動作について図7を参照して説明する。図7は、この発明の第2実施形態に係る医用画像処理装置による一連の動作を示すフローチャートである。
焼灼治療を行った後、第1実施形態に係る医用画像処理装置1と同様に、医用画像処理装置1Aは、第1の4D造影画像データと第2の4D造影画像データとに基づいて、腫瘍領域の位置、焼灼領域の位置、及び未焼灼領域の位置を特定する。
(ステップS20)
先端位置推定部51は、3次元空間における焼灼領域の位置を示す座標情報を第2領域特定部25から読み込む。
(ステップS21)
そして、先端位置推定部51は、3次元空間における焼灼領域の重心を求め、その重心の位置を、穿刺針の先端の現在における位置として推定する。例えば図6に示すように、先端位置推定部51は、現在の焼灼領域510の重心511を求め、その重心511の位置を、現在における穿刺針の先端の位置として推定する。
(ステップS22)
一方、重心検出部52は、3次元空間における未焼灼領域の位置を示す座標情報を未焼灼領域特定部32から読み込む。
(ステップS23)
そして、重心検出部52は、3次元空間における未焼灼領域の重心の位置を求める。例えば図6に示すように、重心検出部52は、未焼灼領域520の重心521を求める。
(ステップS24)
再焼灼領域特定部53は、焼灼領域510の重心511(穿刺針の先端位置)と、未焼灼領域520の重心521とを結ぶ補正線530の位置を求める。
(ステップS25)
さらに、再焼灼領域特定部53は、補正線530上の点を中心とする領域であって、未焼灼領域520を含む球状の領域540の位置を求め、その球状の領域を、再穿刺において焼灼される再焼灼領域であると推定する。そして、再焼灼領域特定部53は、再焼灼領域(領域540)の中心541を、再穿刺における焼灼領域の中心とする。
(ステップS26)
穿刺経路決定部54は、穿刺口の座標情報を術後画像入力部21から取得し、再穿刺における再焼灼領域(領域540)の中心541と、穿刺口550とを結ぶ線分の位置を求め、その線分を再穿刺経路570に決定する。また、穿刺経路決定部54は、現在の焼灼領域の重心511と穿刺口550とを結ぶ線分の位置を求め、その線分を現在の穿刺経路560として推定する。そして、補正情報算出部55は、現在の穿刺経路560の位置と再穿刺経路570の位置とに基づいて、現在の穿刺経路560と再穿刺経路570との間の角度を補正角度として求める。また、補正情報算出部55は、再穿刺経路570の位置に基づいて、穿刺を刺入する深さを補正距離として求める。
(ステップS27)
操作者は操作部46を用いて、術後のボリュームデータにおける所望の断面の位置を指定する。表示画像生成部41は、第2の4D造影画像データに含まれる各ボリュームデータを術後画像入力部21から受けて、各ボリュームデータにMPR処理を施すことで、指定された断面における各時相のMPR画像データを生成する。一方、マーカ生成部43は、3次元空間における現在の穿刺経路の座標情報に基づいて、指定された断面に現在の穿刺経路を投影し、指定された断面に投影された現在の穿刺経路を表すマーカを示すデータを生成する。また、マーカ生成部43は、3次元空間における再穿刺経路の座標情報に基づいて、指定された断面に再穿刺経路を投影し、指定された断面に投影された再穿刺経路を表すマーカを示すデータを生成する。
(ステップS28)
そして、表示制御部42は、術後のMPR画像データに基づくMPR画像を表示部45に表示させる。また、表示制御部42は、指定された断面に投影された現在の穿刺経路を表すマーカと、指定された断面に投影された再穿刺経路を表すマーカとを、術後のMPR画像に重ねて表示部45に表示させる。例えば図6に示すように、表示制御部42は、術後のMPR画像500を表示部45に表示させ、さらに、再穿刺経路570を表すマーカと、現在の穿刺経路560を表すマーカとをMPR画像500に重ねて表示部45に表示させる。また、表示制御部42は、補正角度と補正距離とを含む補正情報を表示部45に表示させても良い。
以上のように、第2実施形態に係る医用画像処理装置1Aによると、焼灼治療の直後に未焼灼領域を特定し、現在の焼灼領域の位置と未焼灼領域の位置とに基づいて、本来、焼灼されるべき領域(再焼灼領域)を特定し、その領域を焼灼するための再穿刺経路を特定して表示することが可能となる。このように、術者は、焼灼治療の直後において再穿刺経路を確認することが可能となる。これにより、現在の穿刺経路から再穿刺経路に、穿刺経路を容易に補正することが可能となるため、再穿刺の位置を決定するための作業が簡易になる。その結果、作業時間を軽減することができるため、術者と患者との負担を軽減することが可能となる。例えば、焼灼治療の直後において、穿刺針を被検体に刺入したままの状態で、再穿刺経路を確認することができるため、焼灼治療の直後において、穿刺針の位置を容易に補正して、焼灼治療を再度行うことが可能となる。
なお、医用画像処理装置1Aと超音波診断装置100とを備えた超音波診断装置によっても、この実施形態に係る医用画像処理装置1Aと同じ作用と効果を奏することができる。
[第3の実施の形態]
次に、この発明の第3実施形態に係る医用画像処理装置について図8を参照して説明する。図8は、この発明の第3実施形態に係る医用画像処理装置のブロック図である。
第3実施形態に係る医用画像処理装置1Bは、焼灼治療が行われた後、未焼灼領域を再度焼灼する場合に、再穿刺の経路と穿刺針の位置とを表示することで、再穿刺経路に対する穿刺針の相対的な位置を術者に提供する。これにより、医用画像処理装置1Bは、超音波プローブの位置を再穿刺すべき位置に誘導させる。
第3実施形態に係る医用画像処理装置1Bは、第2実施形態に係る医用画像処理装置1Aと同様に、画像記憶部2と、術前画像処理部10と、術後画像処理部20と、合成画像処理部30と、画像出力部40と、補正部50とを備えている。さらに、第3実施形態に係る医用画像処理装置1Bは、第3画像入力部60を備えている。
医用画像処理装置1Bは、第2実施形態に係る医用画像処理装置1Aと同様に、腫瘍領域の位置、焼灼領域の位置、未焼灼領域の位置、及び未焼灼領域を再度焼灼するための再穿刺経路の位置を求める。焼灼治療を再度行うときに、超音波診断装置100にて2次元の断層像データを取得し、医用画像処理装置1Bは、その断層像データをリアルタイムに取得する。医用画像処理装置1Bは、その断層像データが取得された被検体における断面と同じ位置の断面におけるMPR画像データを、術後の第2の4D造影画像データから生成する。そして、医用画像処理装置1Bは、リアルタイムに取得されている断層像と、術後のMPR画像とを並べて表示部に表示する。このとき、再穿刺経路と穿刺針の位置とを画像上に表示することで、再穿刺経路に対する穿刺針の相対的な位置を術者に提供する。術者は、再穿刺経路と穿刺針との位置関係を参照して、超音波プローブを再穿刺すべき位置に移動させることが可能となる。
また、上述したように、超音波診断装置100に設置されている超音波プローブには、穿刺針を支持するための穿刺アダプターが設置されている。穿刺針はその穿刺アダプターに設置されているため、3次元空間における超音波プローブと穿刺針が通る方向との相対的な位置は一定である。すなわち、3次元空間における超音波プローブと穿刺針が通る穿刺経路との相対的な位置は一定である。また、リアルタイムに取得されている断層像データにおける超音波プローブの位置は、超音波診断装置100にて特定されている。すなわち、断層像データが取得された断面に対する超音波プローブの位置は、超音波診断装置100にて特定されている。超音波プローブに対する穿刺経路の相対的な位置が一定であるため、断層像データが取得された断面に対する穿刺経路の3次元空間における相対的な位置は、超音波診断装置100にて特定されている。従って、超音波診断装置100にて、リアルタイムに取得されている断層像データに、断層像データが取得された断面に対する穿刺経路の相対的な位置を示す座標情報が付帯されて、第3画像入力部60に出力される。これにより、被検体の体表上で超音波プローブを移動させた場合であっても、断層像データが取得された断面に対する穿刺経路の相対的な位置は特定されているため、移動先の断面の位置に基づいて、移動先における穿刺経路の位置を推定することができる。以下、現在の超音波プローブの位置(断層像データが取得される断面の位置)から推定される穿刺経路を「推定穿刺経路」と称する。この推定穿刺経路は、被検体に刺入している穿刺針の位置を表していると推定される。
(第3画像入力部60)
第3画像入力部60は、超音波診断装置100にて取得されている2次元の断層像データをリアルタイムに受け付けて、断層像データを位置合わせ部31と表示制御部42とに出力する。
(位置合わせ部31)
位置合わせ部31は、術後に取得された第2の4D造影画像データに含まれる任意の時相に取得されたボリュームデータと、リアルタイムに取得されている断層像データとを対象として、MI法によって画像の位置合わせを行う。任意の時相は操作者が操作部46を用いて指定することができる。また、位置合わせ部31は、予め設定された時相に取得されたボリュームデータを対象として位置合わせを行っても良い。このように、位置合わせ部31は、画像の位置合わせを行うことで、術後のボリュームデータにおいて断層像データが取得された断面の位置を特定する。以下、位置合わせ部31によって特定された断面を、「表示断面」と称する。この表示断面の位置は、断層像データが取得された断面の位置と同じであるため、表示断面には、断層像データが取得された断面を含むものとする。そして、位置合わせ部31は、その表示断面の位置を示す座標情報を表示画像生成部41に出力する。
(表示画像生成部41)
表示画像生成部41は、表示断面の位置を示す座標情報を位置合わせ部31から受け付けて、第2の4D造影画像データに含まれる任意の時相におけるボリュームデータにMPR処理を施すことで、位置合わせ部31によって特定された表示断面におけるMPR画像データを生成する。
表示制御部42は、リアルタイムに取得されている断層像データを第3画像入力部60から受け付けて、その断層像データに基づく断層像を表示部45にリアルタイムに表示させる。さらに、表示制御部42は、表示画像生成部41によって生成されたMPR画像データに基づくMPR画像を、断層像と並べて表示部45に表示させる。
(マーカ生成部43)
また、マーカ生成部43は、第2実施形態と同様に、3次元空間における再穿刺経路の位置を示す座標情報を補正情報算出部55から受け付ける。マーカ生成部43は、表示断面の位置を示す座標情報を表示画像生成部41から受け付けて、3次元空間における再穿刺経路の座標情報に基づいて、表示断面に再穿刺経路を投影し、表示断面に投影された再穿刺経路を表すマーカを示すデータを生成する。さらに、マーカ生成部43は、断層像データが取得された断面に対する推定穿刺経路の位置を示す座標情報を第3画像入力部60から受け付ける。マーカ生成部43は、3次元空間における推定穿刺経路の座標情報に基づいて、断層像データが取得された断面(表示断面)に推定穿刺経路を投影し、その表示断面に投影された推定穿刺経路を表すマーカを示すデータを生成する。
表示制御部42は、表示断面に投影された再穿刺経路を示す座標情報に従って、表示断面に投影された再穿刺経路を表すマーカを、リアルタイムに取得されている断層像と術後のMPR画像とに重ねて表示部45に表示させる。また、表示制御部42は、表示断面に投影された推定穿刺経路を示す座標情報に従って、表示断面に投影された推定穿刺経路を表すマーカを、リアルタイムに取得されている断層像と術後のMPR画像とに重ねて表示部45に表示させる。このように、表示制御部42は、リアルタイムに取得されている断層像と術後のMPR画像とにおいて、再穿刺経路と推定穿刺経路とを識別可能にして表示部45に表示させる。
また、マーカ生成部43は、未焼灼領域の位置を示す座標情報に基づいて、表示断面における未焼灼領域の形状を表すマーカを示すデータを生成しても良い。表示制御部42は、表示断面における未焼灼領域の位置を示す座標情報に従って、未焼灼領域の形状を表すマーカを、リアルタイムに取得されている断層像と術後のMPR画像とに重ねて表示部45に表示させる。
(3断面表示)
また、表示画像生成部41は、表示断面の位置を示す座標情報を位置合わせ部31から受け付けて、その表示断面に直交する2つの断面であって、互いに直交する2つの断面の位置を求める。これにより、表示画像生成部41は、互いに直交する3つの断面を定義する。例えば、表示画像生成部41は、断層像データが取得された断面(表示断面)をアキシャル面と定義し、そのアキシャル面に直交するとともに、互いに直交するサジタル面とコロナル面とを定義する。このように、表示画像生成部41は、互いに直交するアキシャル面、サジタル面、及びコロナル面を定義する。そして、表示画像生成部41は、第2の4D造影画像データに含まれる任意の時相におけるボリュームデータにMPR処理を施すことで、アキシャル面におけるMPR画像データ、サジタル面におけるMPR画像データ、及びコロナル面におけるMPR画像データを生成する。
表示制御部42は、リアルタイムに取得されている断層像と、アキシャル面におけるMPR画像と、サジタル面におけるMPR画像と、コロナル面におけるMPR画像と並べて表示部45に表示させる。
また、マーカ生成部43は、アキシャル面の位置を示す座標情報、サジタル面の位置を示す座標情報、及びコロナル面の位置を示す座標情報を表示画像生成部41から受け付ける。マーカ生成部43は、3次元空間における再穿刺経路の座標情報に基づいて、アキシャル面(表示断面)に再穿刺経路を投影し、アキシャル面に投影された再穿刺経路を表すマーカを示すデータを生成する。同様に、マーカ生成部43は、サジタル面に再穿刺経路を投影し、サジタル面に投影された再穿刺経路を表すマーカを示すデータを生成する。さらに、マーカ生成部43は、コロナル面に再穿刺経路を投影し、コロナル面に投影された再穿刺経路を表すマーカを示すデータを生成する。同様に、マーカ生成部43は、3次元空間における推定穿刺経路の座標情報に基づいて、アキシャル面、サジタル面、及びコロナル面にそれぞれ推定穿刺経路を投影することで、それぞれの面に投影された推定穿刺経路を表すマーカを示すデータを生成する。
表示制御部42は、再穿刺経路を表すマーカと推定穿刺経路を表すマーカとを、リアルタイムに取得されている断層像と、アキシャル面におけるMPR画像と、サジタル面におけるMPR画像と、コロナル面におけるMPR画像とにそれぞれ重ねて表示部45に表示させる。
ここで、画像の表示例について図9を参照して説明する。図9は、リアルタイムに取得される断層像と術後のMPR画像とを示す図である。表示制御部42は、リアルタイムに取得される断層像610と、アキシャル面における術後のMPR画像620と、サジタル面における術後のMPR画像630と、コロナル面における術後のMPR画像640とを表示部45に表示させる。また、表示制御部42は、術後のボリュームデータに基づく3次元画像600を表示部45に表示させる。表示制御部42は、その画像600において、断層像610が取得されている断面601の位置を表示する。この断面601は、現在、超音波によって走査されている断面を表している。
表示制御部42は、各画像上に、再穿刺経路を表すマーカと、推定穿刺経路を表すマーカとを重ねて表示部45に表示させる。例えば、表示制御部42は、アキシャル面において再穿刺経路を表すマーカ621と、アキシャル面において推定穿刺経路を表すマーカ622とを、アキシャル面におけるMPR画像620に重ねて表示部45に表示させる。同様に、表示制御部42は、サジタル面において再穿刺経路を表すマーカ631と、サジタル面において推定穿刺経路を表すマーカ632とを、サジタル面におけるMPR画像630に重ねて表示部45に表示させる。同様に、表示制御部42は、コロナル面において再穿刺経路を表すマーカ641と、コロナル面において推定穿刺経路を表すマーカ642とを、コロナル面におけるMPR画像640に重ねて表示部45に表示させる。
また、表示制御部42は、未焼灼領域を表すマーカ623、633、643を、それぞれ対応するMPR画像620、630、640に重ねて表示部45に表示させる。
また、表示制御部42は、未焼灼領域を表すマーカ611と、推定穿刺経路を表すマーカ612とを、リアルタイムに取得されている断層像610に重ねて表示部45に表示させる。図9に示す例では、再穿刺経路を表すマーカを断層像610に重ねて表示していないが、再穿刺経路を表すマーカを断層像610に重ねて表示しても良い。
推定穿刺経路を表すマーカ622、632、642は、現在の穿刺針の位置を表しているものと推定される。術者は、再穿刺経路を表すマーカ621、631、641と推定穿刺経路を表すマーカ622、632、642とを見比べることで、現在の穿刺経路のずれを視覚的に把握することができる。
超音波診断装置100に設置された超音波プローブを移動させることで、異なる断面における断層像データが取得される。第3画像入力部60は、新たに取得された断層像データをリアルタイムに取得し、表示制御部42は、新たに取得された断層像データに基づく断層像をリアルタイムに表示部45に表示させる。さらに、超音波プローブの移動に伴って、被検体における断面の位置が変わるため、表示画像生成部41は、新たな断面の位置に従って、第2の4D造影画像データに含まれるボリュームデータに基づいて、アキシャル面におけるMPR画像データ、サジタル面におけるMPR画像データ、及びコロナル面におけるMPR画像データを生成する。表示制御部42は、新たに生成された各面におけるMPR画像データに基づくMPR画像を表示部45に表示させる。さらに、マーカ生成部43は、超音波プローブの移動に伴って、推定穿刺経路を表すマーカを示すデータと、再穿刺経路を表すマーカを示すデータを生成する。すなわち、超音波プローブの移動に伴って被検体における断面の位置が変わるため、マーカ生成部43は、新たな断面の位置に従って、アキシャル面におけるマーカを示すデータ、サジタル面におけるマーカを示すデータ、及びコロナル面におけるマーカを示すデータを生成する。表示制御部42は、新たに生成されたマーカを各画像上に重ねて表示部45に表示させる。このように、第3実施形態に係る医用画像処理装置1Bは、超音波プローブの移動に追従して、リアルタイムに取得される断層像、術後のMPR画像、推定穿刺経路を表すマーカの位置、及び、再穿刺経路を表すマーカの位置を更新して表示部45に表示させる。超音波プローブの移動に伴って、推定穿刺経路を表すマーカの表示位置は移動する。そのため、術者は、再穿刺経路を表すマーカと推定穿刺経路を表すマーカとを参照して、推定穿刺経路を表すマーカが再穿刺経路を表すマーカに重なるように超音波プローブを移動させることで、焼灼すべき位置に穿刺針を移動させることが可能となる。
なお、マーカ生成部43は、アキシャル面、サジタル面、及びコロナル面のそれぞれにおける穿刺口や未焼灼領域を表すマーカを生成し、表示制御部42は、各マーカを各面におけるMPR画像上に重ねて表示部45に表示させても良い。例えば図9に示すように、表示制御部42は、穿刺口を表すマーカ624、634、644を、それぞれ対応するMPR画像620、630、640に重ねて表示部45に表示させる。
また、第2実施形態に係る医用画像処理装置1Aと同様に、補正情報算出部55は、再穿刺経路と推定穿刺経路との間の補正角度と補正距離とを求めても良い。この場合、表示制御部42は、補正角度と補正距離とを断層像とMPR画像とともに表示部45に表示させる。
(動作)
次に、第3実施形態に係る医用画像処理装置1Bによる一連の動作について図10を参照して説明する。図10は、この発明の第3実施形態に係る医用画像処理装置による一連の動作を示すフローチャートである。
焼灼治療を行った後、第1実施形態に係る医用画像処理装置1Aと同様に、医用画像処理装置1Bは、第1の4D造影画像データと第2の4D造影画像データとに基づいて、腫瘍領域の位置、焼灼領域の位置、未焼灼領域の位置、及び未焼灼領域を再度焼灼するための再穿刺経路の位置を求める。そして、焼灼治療を再度行うときに、超音波診断装置100にて2次元の断層像データを取得する。
(ステップS30)
第3画像入力部60は、超音波診断装置100にて取得された断層像データをリアルタイムに受け付けて、断層像データを位置合わせ部31と表示制御部42とに出力する。
(ステップS31)
一方、位置合わせ部31は、術後に取得された第2の4D造影画像データに含まれる任意の時相に取得されたボリュームデータを術後画像入力部21から読み込む。
(ステップS32)
位置合わせ部31は、術後のボリュームデータとリアルタイムに取得されている断層像データとを対象として、MI法による画像の位置合わせを行う。この位置合わせによって、位置合わせ部31は、術後のボリュームデータにおいて断層像データが取得された表示断面の位置を特定する。
(ステップS33)
表示画像生成部41は、第2の4D造影画像データに含まれる任意の時相におけるボリュームデータにMPR処理を施すことで、表示断面におけるMPR画像データを生成する。一方、マーカ生成部43は、3次元空間における再穿刺経路の座標情報に基づいて、表示断面に再穿刺経路を投影し、表示断面に投影された再穿刺経路を表すマーカを示すデータを生成する。また、マーカ生成部43は、3次元空間における推定穿刺経路の座標情報を第3画像入力部60から受け付けて、表示断面に推定穿刺経路を投影し、表示断面に投影した推定穿刺経路を表すマーカを示すデータを生成する。
また、表示画像生成部41は、表示断面をアキシャル面と定義して、互いに直交するアキシャル面、サジタル面、及びコロナル面を定義し、各面におけるMPR画像データを生成しても良い。この場合、マーカ生成部43は、3次元空間における再穿刺経路の座標情報に基づいて、アキシャル面、サジタル面、及びコロナル面にそれぞれ再穿刺経路を投影することで、それぞれの面に投影された再穿刺経路を表すマーカを示すデータを生成する。同様に、マーカ生成部43は、3次元空間における推定穿刺経路の座標情報に基づいて、アキシャル面、サジタル面、及びコロナル面にそれぞれ推定穿刺経路を投影することで、それぞれの面に投影された推定穿刺経路を表すマーカを示すデータを生成する。
(ステップS34)
そして、表示制御部42は、リアルタイムに取得された断層像と、術後のMPR画像とを並べて表示部45に表示させる。さらに、表示制御部42は、再穿刺経路を表すマーカと推定穿刺経路を表すマーカとを、断層像と術後のMPR画像とにそれぞれ重ねて表示部45に表示させる。
(ステップS35)
そして、術者は、再穿刺経路を表すマーカと推定穿刺経路を表すマーカとを見比べることで、穿刺経路のずれを視覚的に把握し、超音波プローブを移動させるか否かを判断する。
(ステップS36)
再穿刺経路を表すマーカと推定穿刺経路を表すマーカとの間にずれがあると判断した場合(ステップS35、Yes)、術者は超音波プローブを被検体の体表上で移動させる。そして、超音波診断装置100は、移動先の断面における断層像データを取得する。医用画像処理装置1Bは、上述したステップS32からステップS34までの処理を実行する。超音波プローブの移動に伴ってステップS32からステップS34までの処理を実行することで、医用画像処理装置1Bは、超音波プローブの移動に追従して、リアルタイムに取得される断層像、術後のMPR画像、推定穿刺経路を表すマーカの位置、及び、再穿刺経路を表すマーカの位置を更新して表示部45に表示させる。術者は、再穿刺経路を表すマーカと推定穿刺経路を表すマーカとを参照して、推定穿刺経路を表すマーカが再穿刺経路を表すマーカに重なるように超音波プローブを移動させる。そして、再穿刺経路を表すマーカと推定穿刺経路を表すマーカとが重なって、マーカの間にずれがないと判断するまで超音波プローブを被検体の体表上で移動させることで、再焼灼すべき位置に穿刺針を設置することが可能となる。
以上のように、第3実施形態に係る医用画像処理装置1Bによると、焼灼治療の直後に、未焼灼領域の位置と再穿刺経路の位置とを特定して、再穿刺経路を表すマーカと推定穿刺経路を表すマーカとを表示することが可能となる。術者は、再穿刺経路を表すマーカと推定穿刺経路を表すマーカとを見比べることで、穿刺経路のずれを視覚的に把握することができる。そのことにより、術者は、推定穿刺経路を表すマーカが、再穿刺経路を表すマーカに重なるように超音波プローブを移動させることで、再焼灼すべき位置に超音波プローブを移動させて、再焼灼すべき位置に穿刺針を設置することが可能となる。このように、第3実施形態に係る医用画像処理装置1Bによると、画像上に表示した推定穿刺経路と再穿刺経路とに基づいて、超音波プローブを穿刺すべき位置に誘導させることができるため、焼灼治療を効率良く行うことが可能となる。
なお、医用画像処理装置1Bと超音波診断装置100とを備えた超音波診断装置によっても、この実施形態に係る医用画像処理装置1Bと同じ作用と効果を奏することができる。
この発明の第1実施形態に係る医用画像処理装置を示すブロック図である。 時間に対する各部位の輝度の変化を表すグラフ(TDC)を示す図である。 超音波画像上において、焼灼領域と未焼灼領域とを示す図である。 この発明の第1実施形態に係る医用画像処理装置による一連の動作を示すフローチャートである。 この発明の第2実施形態に係る医用画像処理装置を示すブロック図である。 再穿刺の経路を求めるための処理を説明するための図である。 この発明の第2実施形態に係る医用画像処理装置による一連の動作を示すフローチャートである。 この発明の第3実施形態に係る医用画像処理装置を示すブロック図である。 リアルタイムに取得される断層像と術後のMPR画像とを示す図である。 この発明の第3実施形態に係る医用画像処理装置による一連の動作を示すフローチャートである。
符号の説明
1、1A、1B 医用画像処理装置
2 画像記憶部
10 術前画像処理部
11 術前画像入力部
12 第1カーブ作成部
13 第1分類部
14 第1平均カーブ作成部
15 第1領域特定部
20 術後画像処理部
21 術後画像入力部
22 第2カーブ作成部
23 第2分類部
24 第2平均カーブ作成部
25 第2領域特定部
30 合成画像処理部
31 位置合わせ部
32 未焼灼領域特定部
40 画像出力部
41 表示画像生成部
42 表示制御部
43 マーカ生成部
44 ユーザインターフェース(UI)
45 表示部
46 操作部
50 補正部
51 先端位置推定部
52 重心検出部
53 再焼灼領域特定部
54 穿刺経路決定部
55 補正情報算出部
60 第3画像入力部
100 超音波診断装置

Claims (8)

  1. 被検体内の焼灼対象部位を焼灼する前において、造影剤が注入された前記被検体を超音波で撮影することで取得された、撮影された時間がそれぞれ異なる複数のボリュームデータを含む第1の4D造影画像データと、前記焼灼した後において、造影剤が注入された前記被検体を超音波で撮影することで取得された、撮影された時間がそれぞれ異なる複数のボリュームデータを含む第2の4D造影画像データと、を記憶する記憶手段と、
    前記記憶手段に記憶されている前記第1の4D造影画像データに基づいて、各ボクセルにおける画素値の第1の時間変化を求め、前記第1の時間変化に基づいて前記焼灼対象部位の位置を特定する第1画像処理手段と、
    前記記憶手段に記憶されている前記第2の4D造影画像データに基づいて、各ボクセルにおける画素値の第2の時間変化を求め、前記第2の時間変化に基づいて焼灼済みの焼灼領域の位置を特定する第2画像処理手段と、
    前記第1の4D造影画像データに表わされている前記被検体の部位と、前記第2の4D造影画像データに表わされている前記被検体の部位との位置を合わせる位置合わせ手段と、
    前記位置合わせされた前記第2の4D造影画像データにおいて前記焼灼対象部位の位置を特定し、前記位置が特定された焼灼対象部位のうち前記焼灼領域以外の領域を未焼灼領域として特定する未焼灼領域特定手段と、
    前記第2の4D造影画像データに含まれるボリュームデータに基づいて表示用画像データを生成する表示画像生成手段と、
    表示手段に対して前記表示用画像データに基づく表示用画像を表示させ、かつ、前記表示用画像において前記未焼灼領域を識別可能にして表示させる表示制御手段と、
    を有することを特徴とする医用画像処理装置。
  2. 前記焼灼領域の位置と前記未焼灼領域の位置とに基づいて、再度焼灼を行う再焼灼領域の位置を特定し、前記再焼灼領域を焼灼するための穿刺針が通る再穿刺経路の位置を求める補正手段を更に有し、
    前記表示制御手段は、前記表示用画像において前記未焼灼領域と前記再穿刺経路とを識別可能にして前記表示手段に表示させることを特徴とする請求項1に記載の医用画像処理装置。
  3. 前記焼灼を行うために前記被検体に刺入された穿刺針の前記被検体の体表上における穿刺口の位置が、前記第2の4D造影画像データにおいて特定されており、
    前記補正手段は、前記焼灼領域の重心位置を求め、前記未焼灼領域の重心位置を求め、前記2つの重心位置を結ぶ線上の点を中心とする領域であって、前記未焼灼領域を含む領域の位置を前記再焼灼領域の位置として特定し、前記穿刺口の位置を示す情報を受けて、前記再焼灼領域の中心位置と前記穿刺口の位置とを結ぶ経路を前記再穿刺経路の位置として特定することを特徴とする請求項2に記載の医用画像処理装置。
  4. 前記補正手段は、前記焼灼領域の重心位置と前記穿刺口の位置とを結ぶ経路を、前記焼灼領域を焼灼したときに前記穿刺針が通った穿刺経路として更に特定し、
    前記表示制御手段は、前記表示用画像において前記未焼灼領域と前記再穿刺経路と前記穿刺経路とを識別可能にして前記表示手段に表示させることを特徴とする請求項3に記載の医用画像処理装置。
  5. 前記補正手段は、前記穿刺経路と前記再穿刺経路との間の角度を更に求め、
    前記表示制御手段は、前記角度の値を前記表示手段に更に表示させることを特徴とする請求項4に記載の医用画像処理装置。
  6. 前記位置合わせ手段は、前記第2の4D造影画像データが取得された後において超音波によって新たに撮影された2次元の断層像データを受け付けて、前記断層像データに表わされている前記被検体の部位と、前記第2の4D造影画像データに表わされている前記被検体の部位との位置を合わせることで、前記断層像データが取得された前記被検体における位置に対応する前記第2の4D造影画像データにおける位置を更に求め、
    前記表示画像生成手段は、前記第2の4D造影画像データに含まれるボリュームデータに基づいて、前記断層像データが取得された前記被検体における位置に対応する位置における画像データを前記表示用画像データとして生成し、
    前記断層像データが取得された前記被検体における位置に対して穿刺針が通る方向が推定穿刺経路として推定されており、
    前記表示制御手段は、前記表示手段に対して前記断層像データに基づく断層像と前記表示用画像データに基づく表示用画像とを表示させ、かつ、前記断層像と前記表示用画像とにおいて、前記再穿刺経路と前記推定穿刺経路とを識別可能にして表示させることを特徴とする請求項2又は請求項3のいずれかに記載の医用画像処理装置。
  7. 被検体内の焼灼対象部位を焼灼する前において、造影剤が注入された前記被検体を超音波で撮影することで、撮影された時間がそれぞれ異なる複数のボリュームデータを含む第1の4D造影画像データを取得し、前記焼灼した後において、造影剤が注入された前記被検体を超音波で撮影することで、撮影された時間がそれぞれ異なる複数のボリュームデータを含む第2の4D造影画像データを取得する撮影手段と、
    前記撮影手段により撮影された前記第1の4D造影画像データに基づいて、各ボクセルにおける画素値の第1の時間変化を求め、前記第1の時間変化に基づいて前記焼灼対象部位の位置を特定する第1画像処理手段と、
    前記撮影手段により撮影された前記第2の4D造影画像データに基づいて、各ボクセルにおける画素値の第2の時間変化を求め、前記第2の時間変化に基づいて焼灼済みの焼灼領域の位置を特定する第2画像処理手段と、
    前記第1の4D造影画像データに表わされている前記被検体の部位と、前記第2の4D造影画像データに表わされている前記被検体の部位との位置を合わせる位置合わせ手段と、
    前記位置合わせされた前記第2の4D造影画像データにおいて前記焼灼対象部位の位置を特定し、前記位置が特定された焼灼対象部位のうち前記焼灼領域以外の領域を未焼灼領域として特定する未焼灼領域特定手段と、
    前記第2の4D造影画像データに含まれるボリュームデータに基づいて表示用画像データを生成する表示画像生成手段と、
    表示手段に対して前記表示用画像データに基づく表示用画像を表示させ、かつ、前記表示用画像において前記未焼灼領域を識別可能にして表示させる表示制御手段と、
    を有することを特徴とする超音波診断装置。
  8. コンピュータに、
    被検体内の焼灼対象部位を焼灼する前において、造影剤が注入された前記被検体を超音波で撮影することで取得された、撮影された時間がそれぞれ異なる複数のボリュームデータを含む第1の4D造影画像データを受け付けて、前記第1の4D造影画像データに基づいて、各ボクセルにおける画素値の第1の時間変化を求め、前記第1の時間変化に基づいて前記焼灼対象部位の位置を特定する第1画像処理機能と、
    前記焼灼した後において、造影剤が注入された前記被検体を超音波で撮影することで取得された、撮影された時間がそれぞれ異なる複数のボリュームデータを含む第2の4D造影画像データを受け付けて、前記第2の4D造影画像データに基づいて、各ボクセルにおける画素値の第2の時間変化を求め、前記第2の時間変化に基づいて焼灼済みの焼灼領域の位置を特定する第2画像処理機能と、
    前記第1の4D造影画像データに表わされている前記被検体の部位と、前記第2の4D造影画像データに表わされている前記被検体の部位との位置を合わせる位置合わせ機能と、
    前記位置合わせされた前記第2の4D造影画像データにおいて前記焼灼対象部位の位置を特定し、前記位置が特定された焼灼対象部位のうち前記焼灼領域以外の領域を未焼灼領域として特定する未焼灼領域特定機能と、
    前記第2の4D造影画像データに含まれるボリュームデータに基づいて表示用画像データを生成する表示画像生成機能と、
    表示装置に対して前記表示用画像データに基づく表示用画像を表示させ、かつ、前記表示用画像において前記未焼灼領域を識別可能にして表示させる表示制御機能と、
    を実行させることを特徴とする医用画像処理プログラム。
JP2008272227A 2008-10-22 2008-10-22 医用画像処理装置、超音波診断装置、及び医用画像処理プログラム Expired - Fee Related JP5269543B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008272227A JP5269543B2 (ja) 2008-10-22 2008-10-22 医用画像処理装置、超音波診断装置、及び医用画像処理プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008272227A JP5269543B2 (ja) 2008-10-22 2008-10-22 医用画像処理装置、超音波診断装置、及び医用画像処理プログラム

Publications (2)

Publication Number Publication Date
JP2010099193A JP2010099193A (ja) 2010-05-06
JP5269543B2 true JP5269543B2 (ja) 2013-08-21

Family

ID=42290369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008272227A Expired - Fee Related JP5269543B2 (ja) 2008-10-22 2008-10-22 医用画像処理装置、超音波診断装置、及び医用画像処理プログラム

Country Status (1)

Country Link
JP (1) JP5269543B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5867401B2 (ja) * 2011-04-05 2016-02-24 コニカミノルタ株式会社 超音波診断装置、及び、超音波診断画像の出力方法
WO2014073649A1 (ja) * 2012-11-09 2014-05-15 株式会社東芝 穿刺支援装置
JP2014113481A (ja) 2012-11-16 2014-06-26 Toshiba Corp 超音波診断装置及び画像処理方法
JP6157864B2 (ja) * 2013-01-31 2017-07-05 東芝メディカルシステムズ株式会社 医用画像診断装置及び穿刺術支援装置
KR102329113B1 (ko) * 2014-10-13 2021-11-19 삼성전자주식회사 초음파 영상 장치 및 초음파 영상 장치의 제어 방법
JP6641696B2 (ja) * 2015-02-05 2020-02-05 富士通株式会社 画像表示装置、画像表示プログラム及び画像表示方法
EP3537983B1 (en) * 2016-11-14 2020-07-15 Koninklijke Philips N.V. System and method for characterizing liver perfusion of contrast agent flow
CN115153839B (zh) * 2022-06-07 2024-01-09 康达洲际医疗器械有限公司 一种基于dsa的微创消融路径获取方法与系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567967B2 (ja) * 2003-12-25 2010-10-27 株式会社東芝 超音波診断装置
US7833221B2 (en) * 2004-10-22 2010-11-16 Ethicon Endo-Surgery, Inc. System and method for treatment of tissue using the tissue as a fiducial
JP2006136441A (ja) * 2004-11-11 2006-06-01 Toshiba Corp 超音波照射装置及び超音波照射方法
US7681579B2 (en) * 2005-08-02 2010-03-23 Biosense Webster, Inc. Guided procedures for treating atrial fibrillation
US20080154131A1 (en) * 2006-12-20 2008-06-26 General Electric Company Methods for enhancement of visibility of ablation regions

Also Published As

Publication number Publication date
JP2010099193A (ja) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5269543B2 (ja) 医用画像処理装置、超音波診断装置、及び医用画像処理プログラム
US11622815B2 (en) Systems and methods for providing proximity awareness to pleural boundaries, vascular structures, and other critical intra-thoracic structures during electromagnetic navigation bronchoscopy
CN110811835B (zh) 计算机断层扫描增强的荧光透视系统、装置及其使用方法
JP6395995B2 (ja) 医療映像処理方法及び装置
JP6404713B2 (ja) 内視鏡手術におけるガイド下注入のためのシステム及び方法
JP5478832B2 (ja) 医用画像処理装置、及び医用画像処理プログラム
WO2014073649A1 (ja) 穿刺支援装置
JP5134316B2 (ja) 医用画像診断装置
JP4786307B2 (ja) 画像処理装置
WO2005092198A1 (en) System for guiding a medical instrument in a patient body
JP2018509957A (ja) 組織アブレーションを支援するための装置及び方法
JP2017070362A (ja) 超音波診断装置及び医用画像診断装置
KR20130109838A (ko) 병변 진단 지원 장치와 방법
JP6745998B2 (ja) 手術を誘導する画像を提供するシステム
KR101862133B1 (ko) 바늘 삽입형 중재시술 로봇 장치
JP2003339644A (ja) 臓器の切除領域抽出表示装置
US20230263577A1 (en) Automatic ablation antenna segmentation from ct image
JP6188379B2 (ja) 医用画像処理装置、医用画像処理システム、医用画像診断装置
WO2015087203A1 (en) Imaging systems and methods for monitoring treatment of tissue lesions
Paolucci et al. Ultrasound based planning and navigation for non-anatomical liver resections–an Ex-Vivo study
CN116650079A (zh) 用于ct活检的辅助规划方法及相关装置
WO2011083412A1 (en) Biopsy planning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5269543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees