JP5268109B2 - Seismic isolation / vibration isolation device - Google Patents

Seismic isolation / vibration isolation device Download PDF

Info

Publication number
JP5268109B2
JP5268109B2 JP2009069375A JP2009069375A JP5268109B2 JP 5268109 B2 JP5268109 B2 JP 5268109B2 JP 2009069375 A JP2009069375 A JP 2009069375A JP 2009069375 A JP2009069375 A JP 2009069375A JP 5268109 B2 JP5268109 B2 JP 5268109B2
Authority
JP
Japan
Prior art keywords
permanent magnet
superconductor
layer
seismic isolation
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009069375A
Other languages
Japanese (ja)
Other versions
JP2010223284A (en
Inventor
理 津田
高太郎 濱島
剛 谷貝
高之 山田
健治 安井
伸泰 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Okumura Corp
Original Assignee
Tohoku University NUC
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Okumura Corp filed Critical Tohoku University NUC
Priority to JP2009069375A priority Critical patent/JP5268109B2/en
Publication of JP2010223284A publication Critical patent/JP2010223284A/en
Application granted granted Critical
Publication of JP5268109B2 publication Critical patent/JP5268109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seismic isolation/vibration control device in the horizontal direction using superconductors. <P>SOLUTION: A three-layer structured lowermost layer of the seismic isolation/vibration control device is configured having permanent magnet rows 212A, 212B disposed on steel plates 210A, 210B vertically installed on supporting bases 214A, 214B. The superconductors 222A, 222B are disposed inside a low-temperature container 220 opposing the permanent magnet rows 212A, 212B. Further, on the upper surface of the low-temperature container, a permanent magnet row 226 is disposed on a steel sheet 224. This is the structure of an intermediate layer of the seismic isolation/vibration control device including the structure of the interior and the upper surface of the low-temperature container. A superconductor 232 is disposed in the low-temperature container 230 on the intermediate layer opposing the permanent magnet row 226. This is the structure of an uppermost layer. Surfaces of the permanent magnet rows and the superconductors facing with each other on a lowermost layer to the intermediate layer are disposed in the vertical direction, and opposed in the horizontal direction (radial type). A levitation force is designed to be obtained from magnetic stiffness between the facing permanent magnet rows and the superconductors. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、超電導体と永久磁石による磁気浮上現象を、振動伝達の排除(無振化)に利用した、建物や装置に対する免震・除振装置に関するものである。   The present invention relates to a seismic isolation / vibration isolation device for a building or a device, which utilizes a magnetic levitation phenomenon caused by a superconductor and a permanent magnet for eliminating vibration transmission (vibration-free).

超電導体の磁気浮上を免震や除振に用いることは従来からも行われていた。発明者らも、永久磁石と超電導体で構成される3層構造を有しており、永久磁石と超電導体を鉛直方向に向かい合わせることにより安定浮上を実現した「アキシャル型」というべき水平方向の免振装置を提案した(特許文献1参照)。
この「アキシャル型」免振装置の概略構成を、図1を用いて説明する。アキシャル型免振装置100は、永久磁石列112と超電導体122,永久磁石列126と超電導体132を各層の間で鉛直方向(上下方向)に向かい合わせることで、鉛直方向の磁気浮上を生じさせる3層構造を有している。
図1に示すように、磁性体である鉄板110上の永久磁石列112A,112B(最下層)と、低温容器120内の超電導体122A,122B(中間層)とが、磁気浮上を生じる永久磁石列と超電導体の組み合わせを構成している。さらに、低温容器120上の磁性体である鉄板124と永久磁石列126(中間層)と低温容器130内の超電導体132(最上層)とで、磁気浮上が生じる永久磁石列と超電導体の組み合わせを構成している。超電導体122,132は、液体窒素128,134により冷却されている。冷却するために用いる冷却剤は、使用する超電導体により選択する。
The use of superconductor magnetic levitation for seismic isolation and vibration isolation has been practiced in the past. The inventors also have a three-layer structure composed of a permanent magnet and a superconductor, and the horizontal direction that should be called an “axial type” that realizes stable levitation by facing the permanent magnet and the superconductor in the vertical direction. A vibration isolator was proposed (see Patent Document 1).
A schematic configuration of the “axial type” vibration isolator will be described with reference to FIG. The axial type vibration isolator 100 causes the magnetic levitation in the vertical direction by causing the permanent magnet row 112 and the superconductor 122 and the permanent magnet row 126 and the superconductor 132 to face each other in the vertical direction (vertical direction) between the layers. It has a three-layer structure.
As shown in FIG. 1, permanent magnets 112 </ b> A and 112 </ b> B (lowermost layer) on the iron plate 110, which is a magnetic material, and superconductors 122 </ b> A and 122 </ b> B (intermediate layer) in the cryogenic vessel 120 cause magnetic levitation. It constitutes a combination of rows and superconductors. Further, a combination of a permanent magnet array and a superconductor in which magnetic levitation is generated by the iron plate 124, the permanent magnet array 126 (intermediate layer), and the superconductor 132 (uppermost layer) in the low temperature container 130, which are magnetic bodies on the low temperature container 120. Is configured. Superconductors 122 and 132 are cooled by liquid nitrogen 128 and 134. The coolant used for cooling is selected according to the superconductor to be used.

永久磁石列112A,Bと永久磁石列126は、図1(a),(b)に示すように、複数の永久磁石をレール状に配列した構成であり、レール方向(長手方向)の変位に対して超電導体の経験磁場が変化しないように、均一の磁場を発生するように配列する必要がある。さらに、永久磁石列112A,Bと永久磁石列126とは、図1(a),(b)の上から見た図で示すように、複数の永久磁石で構成された列は互いに直角になるように配置されている。
この構造により、最上層は、最下層の水平方向の振動に対して免震が得られている。
上述の「アキシャル型」の免振装置においては、浮上力は、超電導体と永久磁石列間のギャップに反比例するため、大きな浮上力を得るには、ギャップを可能な限り小さくすることが望ましい。
しかし、実際のシステムでは超電導体を冷却する必要があり、これには断熱層を有する低温容器120,130が必要となる。このため、低温容器の表面と永久磁石列間のギャップは更に小さくなり、大きな浮上力を得ようとすると、ギャップの確保が非常に困難となるという問題点があった。また、鉛直方向振動に対し層間が衝突する恐れもある。
As shown in FIGS. 1A and 1B, the permanent magnet rows 112A and 112B and the permanent magnet row 126 have a configuration in which a plurality of permanent magnets are arranged in a rail shape, and are displaced in the rail direction (longitudinal direction). On the other hand, it is necessary to arrange so as to generate a uniform magnetic field so that the empirical magnetic field of the superconductor does not change. Further, the permanent magnet rows 112A and 112B and the permanent magnet row 126 are arranged at right angles to each other as shown in FIGS. 1A and 1B as viewed from above. Are arranged as follows.
With this structure, the uppermost layer is isolated from the horizontal vibration of the lowermost layer.
In the above-mentioned “axial type” vibration isolator, the levitation force is inversely proportional to the gap between the superconductor and the permanent magnet array. Therefore, in order to obtain a large levitation force, it is desirable to make the gap as small as possible.
However, in an actual system, it is necessary to cool the superconductor, which requires the cryogenic containers 120 and 130 having a heat insulating layer. For this reason, the gap between the surface of the cryocontainer and the permanent magnet row is further reduced, and there is a problem that it is very difficult to secure the gap if a large levitation force is to be obtained. In addition, the layers may collide against vertical vibration.

特開2008−38972号公報JP 2008-38972 A

本発明の目的は、上述の所謂「アキシャル型」の超電導体を用いた水平方向の免振装置の問題点を解消した水平方向の免震・除振装置を提供するものである。   An object of the present invention is to provide a horizontal seismic isolation / vibration isolation device that solves the problems of the horizontal vibration isolation device using the so-called “axial” superconductor.

上述した目的を達成するために、本発明は、磁気浮上を利用した免震・除振装置であって、少なくとも3層構造を有しており、最下層と中間層との間、及び中間層と最上層との間は、磁石列と超電導体との間の磁気浮上により、接触せずに向かい合っており、2つの層に設置されている前記磁石列は、磁場の一様な方向が互いに直交するように配置され、前記3層構造の少なくとも1つの層間で、磁石列と超電導体の向かい合っている面が鉛直方向になるように配置されており、該層間の磁石列と超電導体が水平方向に向かい合っていることを特徴とする。
前記超電導体は、すべて前記中間層に設置することもできる。この構成により、超電導体を冷却する構成が簡単になる。
また、前記磁石列と超電導体の向かい合っている面が鉛直方向となるように配置されている磁石列と超電導体が複数あり、該磁石列と超電導体を水平方向に交互に配置することもできる。このようにすると、磁石の両面からの磁力線を有効に利用することができる。
さらに、前記磁石列と超電導体の向かい合わせに加えて、少なくとも1層間に、磁石の同じ磁極同士を鉛直方向に向かい合った構成を備えることもできる。これにより、磁石同士の反発力を、鉛直方向の浮上力に利用することができる。
本発明の免震・除振装置の一態様においては、鉛直面内に拡がる第1側面を有する第1層と、第1側面に対向する鉛直面内に拡がる第2側面を有する第2層と、第1側面または第2側面の一方に、水平方向に磁場を略一様にして設けられた磁石と、第1側面または第2側面の他方に、前記磁石に対向して設けられた超電導体とを備え、第1側面と第2側面が、前記磁石と前記超電導体との間の磁気浮上により、非接触状態に保たれていることを特徴とする。
第1側面と第2側面は、鉛直面内に拡がるものであるが、これは厳密に鉛直線を含む面を意味するものではなく、鉛直方向の変位があった場合にも両者の非接触状態が確保できる程度の傾きを許容するものである。また、水平方向に磁場を略一様にするとの表現における水平方向とは、この方向における免震あるいは除振が可能となる程度に重力ポテンシャルの差異が無視できる方向をいう。さらに、この表現による略一様とは、実装上の事情に基づく磁場の空間的揺らぎを許容した上で、一様とみなせる程度をいう。
後で説明する図2の例においては、第1層と第2層の組み合わせは、最下層と中間層との組み合わせ、または、最下層と中間層及び最上層との組み合わせに相当するとみなせる。さらに、本免震・除振装置には、第1側面と第2側面との対面方向の変位に対し、免震あるいは除振を行う構成を、第1側面と第2側面とは別の面に設けることができる。この構造は、例えば、第1層内あるいは第2層内にさらに層構造を設けることにより、つまり、合計3層またはそれよりも多層の層構造として、それらの層間に磁気浮上を利用した免震・除振構造を設けることで実現可能である。
なお、本発明にかかる免震・除振装置においては、磁石は、永久磁石により構成してもよいし、電磁石によって構成してもよい。また、磁場を一様にする構成は、磁石の形状によって実現してもよいし、複数の磁石を並べた磁石列によって実現してもよい。さらに、本発明にかかる免震・除振装置においては、バネ、ゴム、油圧などの力学的な振動吸収体を併用して、水平方向あるいは鉛直方向の変位に対する免震あるいは除振の効果を高めることができる。
In order to achieve the above-described object, the present invention is a seismic isolation / vibration isolation device using magnetic levitation, which has at least a three-layer structure, between the lowermost layer and the intermediate layer, and the intermediate layer. And the uppermost layer face each other without contact due to magnetic levitation between the magnet array and the superconductor, and the magnet arrays installed in the two layers have a uniform magnetic field direction with respect to each other. Arranged so as to be orthogonal to each other, the magnet array and the superconductor are arranged in a vertical direction between at least one layer of the three-layer structure. It is characterized by facing each other.
All of the superconductors can be installed in the intermediate layer. This configuration simplifies the configuration for cooling the superconductor.
Further, there are a plurality of magnet arrays and superconductors arranged so that the facing surfaces of the magnet array and the superconductor are in the vertical direction, and the magnet arrays and the superconductor can be alternately arranged in the horizontal direction. . If it does in this way, the magnetic force line from both surfaces of a magnet can be used effectively.
Furthermore, in addition to the facing of the magnet array and the superconductor, a configuration in which the same magnetic poles of the magnets face each other in the vertical direction can be provided between at least one layer. Thereby, the repulsive force of magnets can be utilized for the levitation | floating force of a perpendicular direction.
In one aspect of the seismic isolation / vibration isolation device of the present invention, a first layer having a first side surface extending in a vertical plane, and a second layer having a second side surface extending in a vertical plane facing the first side surface, , A magnet provided on one of the first side surface or the second side surface with a substantially uniform magnetic field in the horizontal direction, and a superconductor provided on the other side of the first side surface or the second side surface facing the magnet. The first side surface and the second side surface are maintained in a non-contact state by magnetic levitation between the magnet and the superconductor.
The first side surface and the second side surface extend in the vertical plane, but this does not strictly mean a plane including a vertical line, and both are in a non-contact state even when there is a vertical displacement. In this case, an inclination of a degree that can be secured is allowed. In addition, the horizontal direction in the expression that the magnetic field is made substantially uniform in the horizontal direction means a direction in which the difference in gravitational potential can be ignored to such an extent that seismic isolation or vibration isolation is possible in this direction. Furthermore, “substantially uniform” in this expression refers to a degree that can be regarded as uniform after allowing spatial fluctuation of the magnetic field based on mounting circumstances.
In the example of FIG. 2 described later, the combination of the first layer and the second layer can be considered to correspond to the combination of the lowermost layer and the intermediate layer, or the combination of the lowermost layer, the intermediate layer, and the uppermost layer. Further, the seismic isolation / vibration isolation device has a configuration for performing seismic isolation or vibration isolation with respect to the displacement in the facing direction between the first side surface and the second side surface. Can be provided. This structure is, for example, provided by further providing a layer structure in the first layer or the second layer, that is, as a total of three or more layers, a seismic isolation using magnetic levitation between those layers.・ It can be realized by providing a vibration isolation structure.
In the seismic isolation / vibration isolation device according to the present invention, the magnet may be constituted by a permanent magnet or an electromagnet. Moreover, the structure which makes a magnetic field uniform may be implement | achieved by the shape of a magnet, and may be implement | achieved by the magnet row | line | column which arranged the several magnet. Furthermore, in the seismic isolation / vibration isolation device according to the present invention, a mechanical vibration absorber such as a spring, rubber, or hydraulic pressure is used in combination to enhance the effect of isolation or vibration isolation against horizontal or vertical displacement. be able to.

本発明は、発明者らが以前に提案したアキシャル型免振装置と同様に3層構造ではあるが、少なくとも1つの層間の磁石列と超電導体の向かい合っている面を鉛直方向に配置し、磁石列と超電導体が水平方向に向かい合っているもの(ラディアル型)であり、浮上力を向かい合っている永久磁石列と超電導体間の磁気剛性から得ようとするものである。
このため、磁石列と超電導体間のギャップを小さくしたまま、大きな鉛直方向ギャップと大きな浮上力を同時に確保することが可能となる。また、鉛直方向のギャップを自由に設定することが可能となる。
さらに、本発明のラディアル型免震・除振装置では、例えば、最下層では磁石列を配置する面を鉛直方向にしているため、それが壁となり2層目以上の構造の逸脱の恐れがない。
Although the present invention has a three-layer structure like the axial type vibration isolator previously proposed by the inventors, the magnet array between at least one layer and the surface facing the superconductor are arranged in the vertical direction, and the magnet The array and the superconductor face each other in the horizontal direction (radial type), and the levitation force is obtained from the magnetic rigidity between the permanent magnet array and the superconductor facing each other.
For this reason, it is possible to simultaneously ensure a large vertical gap and a large levitation force while keeping the gap between the magnet array and the superconductor small. In addition, the vertical gap can be set freely.
Furthermore, in the radial type seismic isolation / vibration isolation device of the present invention, for example, since the surface on which the magnet array is arranged is in the vertical direction in the lowermost layer, it becomes a wall and there is no risk of deviation of the structure of the second layer or higher .

従来の免振装置の概略構成を示す図である。 (a)最下層を上から見た図 (b)中間層を上から見た図It is a figure which shows schematic structure of the conventional vibration isolator. (A) The bottom layer is seen from above (b) The middle layer is seen from above 本発明の免震・除振装置の構成の概略を示す図である。 (a)最下層の支持台から上を、右又は左から見た図 (b)中間層を上から見た図It is a figure which shows the outline of a structure of the seismic isolation and vibration isolator of this invention. (A) View from above, from the right or left, from the lowermost support stand (b) View from above the intermediate layer 本発明の免震・除振装置の他の構成を示す図である。 (a)最上層を下から見た図It is a figure which shows the other structure of the seismic isolation and vibration isolator of this invention. (A) Top view of the top layer 本発明の免震・除振装置の別の構成の概略を示す図である。It is a figure which shows the outline of another structure of the seismic isolation and vibration isolator of this invention.

図面を参照して、本発明の実施形態を詳細に説明する。
上述したように、従来のアキシャル型の免震・除振装置では、例えば最下層と中間層の複数の永久磁石を並べた永久磁石列と超電導体間の鉛直方向のギャップを確保できないため、層間(永久磁石列・超電導体用低温容器間)が鉛直振動により接触し、安定継続運転(安定継続浮上)が困難となる可能性があった。
また、超電導体は低温容器内に設置されるため、大きな浮上力を得ようとして永久磁石列と超電導体間の距離を小さくしようとすると、低温容器表面と永久磁石列間のギャップの確保が困難となり、鉛直方向振動に対し衝突する恐れがある。このため、免震・除振装置の継続運転に不可欠となる継続安定浮上の実現が困難となる。逆に、低温容器表面と永久磁石列間のギャップを確保しようとする(ギャップを大きくしようとする)と、永久磁石列と超電導体間のギャップが大きくなり、大きな浮上力が得られなくなる。
Embodiments of the present invention will be described in detail with reference to the drawings.
As described above, in the conventional axial type seismic isolation / vibration isolation device, for example, a vertical gap between a superconductor and a permanent magnet array in which a plurality of permanent magnets in the lowermost layer and an intermediate layer are arranged cannot be secured. There is a possibility that stable continuous operation (stable continuous levitation) may become difficult due to contact between the permanent magnet array and the superconducting cryogenic container due to vertical vibration.
Also, since the superconductor is installed in the cryocontainer, it is difficult to secure a gap between the surface of the cryocontainer and the permanent magnet array if the distance between the permanent magnet array and the superconductor is made small in order to obtain a large levitation force. And there is a risk of collision with vertical vibration. For this reason, it becomes difficult to realize continuous stable levitation, which is indispensable for continuous operation of the seismic isolation / vibration isolation device. Conversely, if an attempt is made to secure a gap between the surface of the cryocontainer and the permanent magnet array (an attempt to increase the gap), the gap between the permanent magnet array and the superconductor becomes large, and a large levitation force cannot be obtained.

図2は、従来の「アキシャル型」免震・除振装置に対して、本発明の「ラディアル型」というべき3層構造の免震・除振装置の概略構成を示す図である。
図2において、支持台214A,214Bに支持され、鉛直方向に設置された鉄板210A,Bには、永久磁石列212A,212Bが配置されて、本発明の3層構造の最下層の構造が構成されている。永久磁石列212A,永久磁石列212Bの水平方向に向かい合って、低温容器220内に超電導体222A,超電導体222Bが設置されている。さらに、低温容器の上面には、鉄板224上に永久磁石列226が配置されている。これらの低温容器内及び上面の構成を含めて、本発明の免震・除振装置の中間層の構造である。なお、超電導体222A,超電導体222Bは、冷却するために液体窒素228等に浸されている。
永久磁石列226に向かい合って、その上(鉛直方向)に、低温容器230内に超電導体232を配置している。これが最上層の構造である。超電導体232も、冷却するために液体窒素234等に浸されている。
FIG. 2 is a view showing a schematic configuration of a three-layer structure seismic isolation / vibration isolation device that should be a “radial type” of the present invention, compared to a conventional “axial type” seismic isolation / isolation isolation device.
In FIG. 2, permanent magnet rows 212A and 212B are arranged on the iron plates 210A and B supported by the support bases 214A and 214B and installed in the vertical direction, and the lowest layer structure of the three-layer structure of the present invention is configured. Has been. A superconductor 222A and a superconductor 222B are installed in the cryogenic vessel 220 so as to face the horizontal direction of the permanent magnet row 212A and the permanent magnet row 212B. Further, a permanent magnet row 226 is disposed on the iron plate 224 on the upper surface of the cryogenic container. The structure of the intermediate layer of the seismic isolation / vibration isolation device of the present invention, including the configuration of these cryogenic containers and the upper surface, is shown. Note that the superconductor 222A and the superconductor 222B are immersed in liquid nitrogen 228 or the like for cooling.
A superconductor 232 is arranged in the cryogenic vessel 230 so as to face the permanent magnet row 226 and above (in the vertical direction). This is the top layer structure. Superconductor 232 is also immersed in liquid nitrogen 234 or the like for cooling.

永久磁石列212A,212Bは、図2の奥行方向(長手方向)に一様な磁場を形成し、鉛直方向(上下方向)は超電導体222A,222Bに対して保持力を得るため磁場が変化するように、複数の永久磁石を並べている。永久磁石列226は、図2の右左方向(長手方向)に一様な磁場を形成するように、永久磁石を並べている。そして、永久磁石列212A,Bと永久磁石列226とは、水平面上では直角となるそれぞれの方向(即ち、図2では奥行と左右)に一様な磁場を形成するように配置されている。   The permanent magnet arrays 212A and 212B form a uniform magnetic field in the depth direction (longitudinal direction) in FIG. 2, and the magnetic field changes in the vertical direction (vertical direction) to obtain a holding force for the superconductors 222A and 222B. In this way, a plurality of permanent magnets are arranged. In the permanent magnet row 226, permanent magnets are arranged so as to form a uniform magnetic field in the right-left direction (longitudinal direction) in FIG. The permanent magnet rows 212A and 212B and the permanent magnet row 226 are arranged so as to form a uniform magnetic field in each direction (that is, depth and left and right in FIG. 2) that are perpendicular to each other on the horizontal plane.

図2(a)は、永久磁石列212A,Bを左右から見た図であり、図2(b)は、永久磁石列226を上から見た永久磁石列の一例の図である。図示した例では、それぞれの永久磁石列212A,212B,226の長手方向は、永久磁石のN極同士,S極同士が並ぶように4列に配列されており、同極の磁石が並ぶ方向(長手方向)に対しては磁場が一様になる。しかしながら、永久磁石を4列に並べた方向(長手方向を横切る方向)には、磁極がN,S、N,Sと変化している。   2A is a view of the permanent magnet rows 212A and 212B as viewed from the left and right, and FIG. 2B is an example of the permanent magnet row when the permanent magnet row 226 is viewed from above. In the illustrated example, the longitudinal direction of each of the permanent magnet rows 212A, 212B, and 226 is arranged in four rows so that the N poles and the S poles of the permanent magnets are arranged, and the direction in which magnets of the same polarity are arranged ( The magnetic field is uniform with respect to the longitudinal direction. However, the magnetic poles are changed to N, S, N, and S in the direction in which the permanent magnets are arranged in four rows (the direction crossing the longitudinal direction).

このため、振動がきても、一様な磁場の方向には超電導体の経験磁場が変化しないため、その方向に対して超電導体は振動を伝達しない。したがって、従来の3層の免振装置と同様に、水平方向の振動に対して免震や除振が行われる。
最下層の永久磁石列212A,永久磁石列212Bと中間層の超電導体222A,超電導体222Bで、水平方向に磁気浮上を生じている。水平方向に向かい合っているので、鉛直方向の振動に対するギャップを考慮する必要はない。
このような3層構造の免震・除振装置としたので、最下層の永久磁石列212A,Bと中間層の超電導体222A,Bの水平方向のギャップを小さくして得た大きな浮上力と、最下層と中間層との大きな鉛直方向のギャップを同時に確保することができる。
また、鉛直方向のギャップを任意に設定することができ、中間層と最下層との衝突を回避することができる。
さらに、大きな水平方向の振動に対して、鉛直方向に構成された永久磁石列があるので、中間層が最下層から逸脱することはない。
For this reason, even if vibration occurs, the empirical magnetic field of the superconductor does not change in the direction of the uniform magnetic field, so the superconductor does not transmit vibration in that direction. Therefore, as with the conventional three-layer vibration isolator, the vibration isolation and vibration isolation are performed with respect to the horizontal vibration.
Magnetic levitation occurs in the horizontal direction in the lowermost permanent magnet row 212A and permanent magnet row 212B and the superconductor 222A and superconductor 222B in the intermediate layer. Since they face each other in the horizontal direction, there is no need to consider a gap for vertical vibration.
Since such a three-layer seismic isolation / vibration isolation device is used, a large levitation force obtained by reducing the horizontal gap between the lowermost permanent magnet arrays 212A and 212B and the intermediate superconductors 222A and 222B A large vertical gap between the lowermost layer and the intermediate layer can be secured at the same time.
Further, the gap in the vertical direction can be arbitrarily set, and collision between the intermediate layer and the lowermost layer can be avoided.
Furthermore, since there is a permanent magnet array configured in the vertical direction with respect to large horizontal vibrations, the intermediate layer does not deviate from the lowest layer.

なお、図2に示した免震・除振装置の構成は、これに限るものではない。最下層と中間層との間の永久磁石列と超電導体を、左右に1対ずつ示しているが、例えば、左右の永久磁石列に対応して、複数の超電導体を設けてもよく、さらに左右にある永久磁石列と超電導体の組み合わせを複数設けてもよい。
さらに、中間層と最上層との間の永久磁石列や超電導体を複数設けてもよい。
図2では、最下層と中間層との間で永久磁石列や超電導体が設置されている面を水平方向に対向させているが、この構成はどれか1つの層間に用いればよく、また、2層間ともこの構成としてもよい。
また、超電導体を冷却するために、冷却装置等を用いてもよい。
In addition, the structure of the seismic isolation / vibration isolator shown in FIG. 2 is not restricted to this. The permanent magnet row and the superconductor between the lowermost layer and the intermediate layer are shown as a pair on the left and right. For example, a plurality of superconductors may be provided corresponding to the left and right permanent magnet rows. A plurality of combinations of the left and right permanent magnet arrays and superconductors may be provided.
Further, a plurality of permanent magnet arrays and superconductors between the intermediate layer and the uppermost layer may be provided.
In FIG. 2, the surface on which the permanent magnet array and the superconductor are installed is opposed in the horizontal direction between the lowermost layer and the intermediate layer, but this configuration may be used between any one of the layers, Both layers may have this configuration.
A cooling device or the like may be used to cool the superconductor.

このような構造の免震・除振装置は、近年、急速に高精度化や高性能化が進んでいる半導体デバイス製造システムや極微小領域計測システム等で問題となる歩行振動・交通振動・機械振動等の常時微振動の水平方向の振動を除去するために適しているのである。   The seismic isolation / vibration isolation device with such a structure is a walking vibration / traffic vibration / machine that is a problem in semiconductor device manufacturing systems and ultra-small area measurement systems, etc., whose accuracy and performance are rapidly increasing in recent years. It is suitable for removing horizontal vibrations such as vibrations that are always fine.

[他の実施形態]
図3に、他の構成の免震・除振装置を示す。図3において、冷凍機350とコールド・ステージ354をつなぐ接続ホース352を明示的に示している。さらに、図3の免震・除振装置は、図2における中間層の永久磁石列226と最上層の超電導体232との関係が逆に配置されており、中間層の低温容器320中に超電導体322Cとして配置されている。これは、低温容器内に配置する必要がある超電導体322A,超電導体322B,超電導体322Cを1つの中間層の低温容器320中に集めているためである。超電導体322A,超電導体322B,超電導体322Cは、冷凍機350でコールド・ステージ354を介して、超電導状態を維持するように冷却されている。
[Other Embodiments]
FIG. 3 shows a seismic isolation / vibration isolation device having another configuration. In FIG. 3, a connection hose 352 connecting the refrigerator 350 and the cold stage 354 is explicitly shown. Further, in the seismic isolation / vibration isolation device shown in FIG. 3, the relationship between the middle layer permanent magnet row 226 and the uppermost superconductor 232 in FIG. Arranged as body 322C. This is because the superconductor 322A, the superconductor 322B, and the superconductor 322C that need to be arranged in the low temperature container are collected in the low temperature container 320 of one intermediate layer. The superconductor 322A, the superconductor 322B, and the superconductor 322C are cooled by the refrigerator 350 through the cold stage 354 so as to maintain a superconducting state.

また、図3に示すように、最下層の永久磁石列312A,312Bの鉛直方向(上下方向)は、磁化の方向が90度づつ変化するハルバッハ(Halbach)配列であり、奥行方向の磁場は一様である。鉛直方向(上下方向)をハルバッハ配列とする理由は、超電導体の保持力を高めるためである。なお、最上層の永久磁石列332も、図3(a)の下から見た図に示すように、奥行方向をハルバッハ配列としてもよい。最上層の永久磁石列の左右方向(長手方向)の磁場は一様とする必要がある。
その他の構成は、図2に示した3層の免震・除振装置の構成と同様である。
この免震・除振装置では、中間層に超電導体を集めているので、冷却は中間層のみに対して行えばよく、構成を簡素化できる。
なお、冷凍機350は、図3では最下層に設置しているが、中間層に設置すると、低温容器320との接続ホース352が外れにくくなる。
In addition, as shown in FIG. 3, the vertical direction (vertical direction) of the lowermost permanent magnet rows 312A and 312B is a Halbach array in which the magnetization direction changes by 90 degrees, and the magnetic field in the depth direction is one. It is like. The reason why the vertical direction (vertical direction) is the Halbach array is to increase the holding power of the superconductor. Note that the uppermost permanent magnet row 332 may also have a Halbach array in the depth direction as shown in the view from the bottom of FIG. The magnetic field in the left-right direction (longitudinal direction) of the uppermost permanent magnet row needs to be uniform.
Other configurations are the same as those of the three-layer seismic isolation / vibration isolation device shown in FIG.
In this seismic isolation / vibration isolation device, since superconductors are collected in the intermediate layer, the cooling may be performed only on the intermediate layer, and the configuration can be simplified.
In addition, although the refrigerator 350 is installed in the lowest layer in FIG. 3, if it installs in an intermediate | middle layer, the connection hose 352 with the cryogenic container 320 will become difficult to remove | deviate.

[別の実施形態]
図4は別の構成の免震・除振装置400を横から見た構造を示している。この免震・除振装置は、最下層構造体410の底面412に、鉛直に設置されている複数の永久磁石列414を有しており、その複数の永久磁石列414の間に、中間層420の鉛直方向に複数の超電導体421及び422を支持体423中に有する構造体を設置している(図4(a),(b),(c)参照)。
中間層420の上部の鉄板426上に永久磁石列427を配置し、それと対向して、最上層430の超電導体434A,434Bを配置している。
図示されているように、最下層の永久磁石列と中間層の超電導体が、左右方向(水平方向)に交互に組み合わされているので、最下層に配置している永久磁石列の両面から出ている磁力線を有効に利用して、中間層の超電導体を磁気浮上させることができる。
[Another embodiment]
FIG. 4 shows the structure of another seismic isolation / vibration isolation device 400 as seen from the side. This seismic isolation / vibration isolation device has a plurality of vertically arranged permanent magnet rows 414 on the bottom surface 412 of the lowermost layer structure 410 and an intermediate layer between the plurality of permanent magnet rows 414. A structure having a plurality of superconductors 421 and 422 in a support 423 is installed in the vertical direction 420 (see FIGS. 4A, 4B, and 4C).
A permanent magnet row 427 is arranged on the iron plate 426 on the upper part of the intermediate layer 420, and superconductors 434A and 434B of the uppermost layer 430 are arranged opposite to the permanent magnet row 427.
As shown in the figure, the lowermost permanent magnet array and the intermediate superconductor are alternately combined in the left-right direction (horizontal direction). By effectively utilizing the magnetic field lines, the superconductor of the intermediate layer can be magnetically levitated.

なお、永久磁石列414は、奥行方向の磁場は一様であり、鉛直方向は、例えば、図3の最下層の永久磁石列312と同様に、ハルバッハ配列である。中間層420の奥行方向に、複数の超電導体を有する構造体を設置してもよい。
また、中間層420の永久磁石列427も奥行方向はハルバッハ配列であり、左右方向は磁場が一様である。
さらに、中間層420には、その最下部に永久磁石424を配置しており、永久磁石424は、最下層410の永久磁石列414の最上部と反発するように磁極を対峙している。これにより、最下層410と中間層420との間の鉛直方向の浮上力を得ている。
また、最上層430には、その下の面には、永久磁石436A,436B,436Cを配置しており、この永久磁石436A,436B,436Cは、中間層の永久磁石列427の相対する永久磁石と同じ磁極同士が向き合うように配置されている。これにより、中間層420と最上層430との間の鉛直方向の浮上力を得ている。
この様に永久磁石の同極同士を鉛直方向に向き合わせた構成で、鉛直方向の浮上力を得て、永久磁石と超電導体を対向させた構成による水平方向の免震や除振と組み合わせることもできる(ハイブリッド型)。
なお、永久磁石の同極同士の鉛直方向の向き合わせは、どの層間でも設けることは可能であり、例えば、図2や図3に示した免震・除振装置にも適用することができる。
The permanent magnet row 414 has a uniform magnetic field in the depth direction, and the vertical direction is, for example, a Halbach array, similar to the lowermost permanent magnet row 312 in FIG. A structure having a plurality of superconductors may be installed in the depth direction of the intermediate layer 420.
The permanent magnet row 427 of the intermediate layer 420 also has a Halbach array in the depth direction and a uniform magnetic field in the left-right direction.
Furthermore, a permanent magnet 424 is disposed at the lowermost part of the intermediate layer 420, and the permanent magnet 424 opposes the magnetic poles so as to repel the uppermost part of the permanent magnet row 414 of the lowermost layer 410. Thereby, the vertical levitation force between the lowermost layer 410 and the intermediate layer 420 is obtained.
The uppermost layer 430 is provided with permanent magnets 436A, 436B, and 436C on the lower surface. The permanent magnets 436A, 436B, and 436C are permanent magnets opposed to the permanent magnet row 427 of the intermediate layer. Are arranged so that the same magnetic poles face each other. Thus, a vertical levitation force between the intermediate layer 420 and the uppermost layer 430 is obtained.
In this way, with the configuration where the same poles of the permanent magnets face each other in the vertical direction, the vertical levitation force is obtained, and combined with the horizontal seismic isolation and vibration isolation by the configuration in which the permanent magnet and the superconductor face each other. (Hybrid type).
Note that the same orientation of the permanent magnets in the vertical direction can be provided between any layers, and can be applied to, for example, the seismic isolation / vibration isolation device shown in FIGS.

100:従来の免振装置
110:鉄板
112A,112B:永久磁石列
120:低温容器
122A,122B:超電導体
124:鉄板
126:永久磁石列
128:液体窒素
130:低温容器
132:超電導体
134:液体窒素

200:本願の免震・除振装置
210A,210B:鉄板
212A,212B:永久磁石列
214A,214B:支持台
220:低温容器
222A,222B:超電導体
224:鉄板
226:永久磁石列
228A,228B:液体窒素
230:低温容器
232:超電導体
234:液体窒素

300:他の免震・除振装置
310A,310B:鉄板
312A,312B:永久磁石列
314A,314B:支持台
320:低温容器
322A,322B,322C:超電導体
332:永久磁石列
334:鉄板
336:上板
350:冷凍機
352:接続ホース
354: コールド・ステージ

400:別の免震・除振装置
410:最下層構造
412:鉄板
414:永久磁石列
420:中間層構造
421,422:超電導体
423:支持台
424:永久磁石
425:支持板
426:鉄板
427:永久磁石列
430:最上層構造
432:支持板
434A,434B:超電導体
436A,436B,436C:永久磁石
100: Conventional vibration isolator 110: Iron plates 112A, 112B: Permanent magnet row 120: Low temperature vessel 122A, 122B: Superconductor 124: Iron plate 126: Permanent magnet row 128: Liquid nitrogen 130: Low temperature vessel 132: Superconductor 134: Liquid nitrogen

200: Seismic isolation / vibration isolation device 210A, 210B of the present application: Iron plates 212A, 212B: Permanent magnet rows 214A, 214B: Support base 220: Low temperature vessel 222A, 222B: Superconductor 224: Iron plate 226: Permanent magnet rows 228A, 228B: Liquid nitrogen 230: Low temperature vessel 232: Superconductor 234: Liquid nitrogen

300: Other seismic isolation / vibration isolation devices 310A, 310B: Iron plates 312A, 312B: Permanent magnet rows 314A, 314B: Support base 320: Cryogenic containers 322A, 322B, 322C: Superconductor 332: Permanent magnet row 334: Iron plate 336: Upper plate 350: Refrigerator 352: Connection hose 354: Cold stage

400: Another seismic isolation / vibration isolation device 410: Lowermost layer structure 412: Iron plate 414: Permanent magnet row 420: Intermediate layer structure 421, 422: Superconductor 423: Support base 424: Permanent magnet 425: Support plate 426: Iron plate 427 : Permanent magnet row 430: Top layer structure 432: Support plates 434A, 434B: Superconductors 436A, 436B, 436C: Permanent magnets

Claims (4)

磁気浮上を利用した免震・除振装置であって、
少なくとも3層構造を有しており、
最下層と中間層との間、及び中間層と最上層との間は、磁石列と超電導体との間の磁気浮上により、接触せずに向かい合っており、
2つの層に設置されている前記磁石列は、磁場の一様な方向が互いに直交するように配置され、
前記3層構造の少なくとも1つの層間で、磁石列と超電導体の向かい合っている面が鉛直方向になるように配置されており、
該層間の磁石列と超電導体が水平方向に向かい合っていることを特徴とする水平方向の免震・除振装置。
A seismic isolation / vibration isolation device using magnetic levitation,
Has at least a three-layer structure,
The bottom layer and the middle layer, and the middle layer and the top layer face each other without contact due to magnetic levitation between the magnet array and the superconductor,
The magnet rows installed in two layers are arranged such that the uniform directions of the magnetic fields are orthogonal to each other,
Between the at least one layer of the three-layer structure, the facing surfaces of the magnet array and the superconductor are arranged in a vertical direction,
A horizontal seismic isolation / vibration isolation device characterized in that the magnet array between the layers and the superconductor face each other in the horizontal direction.
請求項に記載の免震・除振装置において、
前記超電導体は、すべて前記中間層に設置されていることを特徴とする免震・除振装置。
In the seismic isolation / vibration isolation device according to claim 1 ,
A seismic isolation / vibration isolation device, wherein all the superconductors are installed in the intermediate layer.
請求項に記載の免震・除振装置において、
前記磁石列と超電導体の向かい合っている面が鉛直方向となるように配置されている磁石列と超電導体が複数あり、該磁石列と超電導体が水平方向に交互に配置されていることを特徴とする免震・除振装置。
In the seismic isolation / vibration isolation device according to claim 1 ,
There are a plurality of magnet arrays and superconductors arranged such that the facing surfaces of the magnet array and the superconductor are in the vertical direction, and the magnet arrays and the superconductor are alternately arranged in the horizontal direction. Seismic isolation and vibration isolation equipment.
請求項のいずれかに記載の免震・除振装置において、
前記磁石列と超電導体の向かい合わせに加えて、少なくとも1つの層間に、磁石の同じ磁極同士を鉛直方向に向かい合った構成を備えることを特徴とする免震・除振装置。
In the seismic isolation / vibration isolation device according to any one of claims 1 to 3 ,
A seismic isolation / vibration isolation device comprising a configuration in which the same magnetic poles of magnets face each other in the vertical direction between at least one layer in addition to facing the magnet array and the superconductor.
JP2009069375A 2009-03-23 2009-03-23 Seismic isolation / vibration isolation device Active JP5268109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009069375A JP5268109B2 (en) 2009-03-23 2009-03-23 Seismic isolation / vibration isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009069375A JP5268109B2 (en) 2009-03-23 2009-03-23 Seismic isolation / vibration isolation device

Publications (2)

Publication Number Publication Date
JP2010223284A JP2010223284A (en) 2010-10-07
JP5268109B2 true JP5268109B2 (en) 2013-08-21

Family

ID=43040700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009069375A Active JP5268109B2 (en) 2009-03-23 2009-03-23 Seismic isolation / vibration isolation device

Country Status (1)

Country Link
JP (1) JP5268109B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105805208A (en) * 2016-05-18 2016-07-27 浙江工业职业技术学院 Magnetic type shock absorption device of mechanical equipment
JP7201187B2 (en) 2019-05-10 2023-01-10 ダイキン工業株式会社 Method for producing fluorinated iodinated organic compound

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356709B1 (en) 2012-07-30 2014-02-04 한국과학기술원 Hybrid vibration isolator using voice coil motor with halbach magnet array
KR20190036675A (en) 2017-09-28 2019-04-05 주식회사 씨엔씨알 The seismic damping device of the server rack
KR102182414B1 (en) 2020-04-16 2020-11-24 주식회사 씨엔씨알 The seismic damping device using sliding fricition
CN111519480A (en) * 2020-05-29 2020-08-11 四川高新轨道交通产业技术研究院 Magnetic suspension turnout halbach permanent magnetism electric vortex vibration suppression structure
CN112343196B (en) * 2020-10-10 2022-05-17 广东省建筑设计研究院有限公司 Multistage variable damping attenuator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302452A (en) * 1991-05-30 1993-11-16 Kumagai Gumi Co Ltd Earthquake free construction for building
US5542506A (en) * 1991-12-03 1996-08-06 University Of Houston-University Park Magnet-superconductor systems for controlling and influencing relative motion
JP3007796U (en) * 1994-05-11 1995-02-28 中銀観光株式会社 Side wall magnetic levitation structure
JPH08326839A (en) * 1995-06-05 1996-12-10 Nippon Steel Corp Superconductive-magnetically floating type vibration removing device
JP4923247B2 (en) * 2006-08-03 2012-04-25 国立大学法人東北大学 Isolation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105805208A (en) * 2016-05-18 2016-07-27 浙江工业职业技术学院 Magnetic type shock absorption device of mechanical equipment
JP7201187B2 (en) 2019-05-10 2023-01-10 ダイキン工業株式会社 Method for producing fluorinated iodinated organic compound

Also Published As

Publication number Publication date
JP2010223284A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP5268109B2 (en) Seismic isolation / vibration isolation device
KR100779827B1 (en) Linear motor and linear moving stage device
EP3032137B1 (en) Halbach array and magnetic suspension damper using same
US6184596B1 (en) Stage construction incorporating magnetically levitated movable stage
KR101932999B1 (en) Vibration isolator
US20150211575A1 (en) Driving device and bearing including the same
EP3611046B1 (en) Hybrid electrodynamic levitation system
KR20180021673A (en) Cryogenic holding devices and related magnetic levitation vehicles and systems
CN112054649A (en) Magnetic suspension motion platform
Zhang et al. Research on a low stiffness passive magnetic levitation gravity compensation system with opposite stiffness cancellation
Zhang et al. Modeling and optimization of a large-load magnetic levitation gravity compensator
JP5198358B2 (en) Superconducting magnet device
JPH05302452A (en) Earthquake free construction for building
US20220034363A1 (en) Hts bearing and flywheel systems and methods
CN110880888A (en) Two-dimensional permanent magnet array type magnetic suspension gravity compensator
JP4940428B2 (en) Non-contact magnetic levitation method using magnetic material and non-contact magnetic levitation apparatus using the same
KR20070106742A (en) Magnetic levitation device
JP4923247B2 (en) Isolation device
JPS63249403A (en) Magnetic levitation device
JP2003004041A (en) Fly wheel type super conductivity magnetic bearing and its system
JP4984242B2 (en) Stationary earthquake source using electromagnetic coil
JPH04351343A (en) Antiseismic device
JP2012229026A (en) Seismic isolation device for low-temperature liquefied gas tank
CN103795296B (en) A kind of levitation planar motor
JP3911064B2 (en) Air slide device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130501

R150 Certificate of patent or registration of utility model

Ref document number: 5268109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250