JP5266872B2 - Variable speed control device for induction motor - Google Patents

Variable speed control device for induction motor Download PDF

Info

Publication number
JP5266872B2
JP5266872B2 JP2008132610A JP2008132610A JP5266872B2 JP 5266872 B2 JP5266872 B2 JP 5266872B2 JP 2008132610 A JP2008132610 A JP 2008132610A JP 2008132610 A JP2008132610 A JP 2008132610A JP 5266872 B2 JP5266872 B2 JP 5266872B2
Authority
JP
Japan
Prior art keywords
voltage
output
frequency
equation
boost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008132610A
Other languages
Japanese (ja)
Other versions
JP2009284616A (en
Inventor
勝之 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2008132610A priority Critical patent/JP5266872B2/en
Publication of JP2009284616A publication Critical patent/JP2009284616A/en
Application granted granted Critical
Publication of JP5266872B2 publication Critical patent/JP5266872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the occurrence of ripple torque when shifted from DC braking to a normal operation. <P>SOLUTION: Voltage Vd* which is set in a boost voltage setting part 5 is set to be d-axis voltage and voltage Vq* generated in a V/f setting part 4 is set to be q-axis voltage. Thus, voltage for DC braking and boost voltage are output at a phase delayed from voltage whose V/f is constant and which is output in proportion to an operation frequency by 90 degrees, or a synthetic value of voltage whose V/f is constant and which is output in proportion to the operation frequency and boost voltage reduced in proportion to the operation frequency is output at the phase whose V/f is constant and which is output in proportion to the operation frequency by 90 degrees so that the synthetic value is (linearly) output in proportion to the operation frequency. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、V/f一定制御方式のインバータによる誘導電動機の可変速制御装置に係り、特にブースト電圧の出力方式に関する。   The present invention relates to a variable speed control device for an induction motor using an inverter of a constant V / f control system, and more particularly to a boost voltage output system.

誘導電動機(以下IMと略記)をインバータで可変速運転する方式の一つにV/f一定制御方式がある。これはIMの一次電圧(インバータの出力電圧)と出力周波数を一定の関係に保ちながら可変速駆動する方式で、図6に示すように、IMをT形等価回路で示した場合の一次インピーダンスの影響が無視できるとすれば、励磁リアクタンスに流れる電流を周波数によらず一定とでき、可変速運転の全域ですべりに比例したトルクを確保できる。   One of the methods of variable speed operation of an induction motor (hereinafter abbreviated as IM) with an inverter is a V / f constant control method. This is a method of variable speed driving while maintaining a constant relationship between the primary voltage of the IM (the output voltage of the inverter) and the output frequency. As shown in FIG. 6, the primary impedance of the IM is shown as a T-type equivalent circuit. If the influence can be ignored, the current flowing through the excitation reactance can be made constant regardless of the frequency, and a torque proportional to the slip can be secured throughout the variable speed operation.

しかし運転周波数が低く、一次電圧が小さくなるにしたがってIM内部の一次インピーダンスとインバータ出力端子からモータ端子までの間の配線のインピーダンスの主に抵抗成分の影響は無視できなくなり、十分な励磁電流を確保できず、トルク不足になる場合がある。この対策として、図6の一次誘起電圧E1と出力周波数を一定の関係に保つという考え方に立ち、低速運転領域での出力電圧をブースト制御することが行われている。   However, as the operating frequency decreases and the primary voltage decreases, the influence of the resistance component mainly on the primary impedance inside the IM and the impedance of the wiring from the inverter output terminal to the motor terminal can no longer be ignored, and sufficient excitation current is secured. It may not be possible and torque may be insufficient. As a countermeasure, boosting control of the output voltage in the low speed operation region is performed based on the idea of keeping the primary induced voltage E1 and the output frequency in a fixed relationship in FIG.

図7は、基底周波数を60Hzとし、0Hzで定格電圧の10%ブーストした場合の例を示す。基本となるV/f一定電圧Voは式(1)、ブーストしたい電圧Vbは式(2)で与えられ、これらを加算した電圧が出力電圧(一次相電圧)V1となる。   FIG. 7 shows an example in which the base frequency is 60 Hz and the rated voltage is boosted by 10% at 0 Hz. The basic V / f constant voltage Vo is given by equation (1), the voltage Vb to be boosted is given by equation (2), and the sum of these is the output voltage (primary phase voltage) V1.

Vo=(Vbase/Fbase)*Fout …式(1)
Vb=(Vb−set/Fbase)*(Fbase−Fout) …式(2)
V1=Vo+Vb …式(3)
ただし、Vbaseは基底周波数における出力電圧(モータ定格電圧と同じ)、Vb−setはブースト電圧設定値(0Hzでの出力電圧)、Fbaseは基底周波数、Foutは運転周波数である。
Vo = (Vbase / Fbase) * Fout (1)
Vb = (Vb−set / Fbase) * (Fbase−Fout) Equation (2)
V1 = Vo + Vb (3)
However, Vbase is the output voltage at the base frequency (same as the motor rated voltage), Vb-set is the boost voltage set value (output voltage at 0 Hz), Fbase is the base frequency, and Fout is the operating frequency.

このトルクブースト方式では、一次誘起電圧E1と出力周波数を一定の関係に保つことはできないが、低周波数領域におけるトルクを確保する目的は十分に達成できるため、多くの汎用インバータで一般的に適用されている技術である(例えば、特許文献1、特許文献2参照)。   In this torque boost method, the primary induced voltage E1 and the output frequency cannot be kept in a fixed relationship, but the purpose of securing the torque in the low frequency region can be sufficiently achieved, so that it is generally applied to many general-purpose inverters. (See, for example, Patent Document 1 and Patent Document 2).

図8はブースト電圧を付加した制御装置の回路構成図を示す。主回路は、順変換回路(整流回路)1と逆変換回路(インバータ)2で構成され、周波数と電圧を制御した出力を誘導電動機3に供給する。制御回路は、周波数に比例した基本の電圧式(1)によるV/f設定分と、周波数の関数として演算される式(2)によるブースとしたい電圧Vbを加算し、トルク指令Vq*とし、励磁電流指令Vd*はゼロで固定する。 FIG. 8 shows a circuit configuration diagram of a control device to which a boost voltage is added. The main circuit is composed of a forward conversion circuit (rectifier circuit) 1 and an inverse conversion circuit (inverter) 2, and supplies an output in which the frequency and voltage are controlled to the induction motor 3. The control circuit adds the V / f setting by the basic voltage equation (1) proportional to the frequency and the voltage Vb to be set as the booth by the equation (2) calculated as a function of the frequency to obtain the torque command Vq * , The excitation current command Vd * is fixed at zero.

図8では、周波数指令f*からV/f設定部4で周波数fに比例した制御電圧Voを発生し、ブースト電圧設定部5で周波数fに比例したブースト電圧Vbを発生し、これら電圧を加算してトルク指令Vq*とする。積分回路6は、周波数指令f*を積分して基準位相θ*を求める。回転座標変換部7は、トルク指令Vq*と励磁電流指令Vd*から基準位相θ*をもつ二相/三相変換した電圧指令Vu*、Vv*、Vw*を発生する。コンパレータ回路8は電圧指令Vu*、Vv*、Vw*を比較入力とし、三角波発生回路9を比較基準としてPWM波形のゲート信号を得、デットタイム作成回路10によりデットタイムを生成したドライブ信号でインバータ2のスイッチング素子をオン/オフ制御する。
特開平7−163188号公報 特開平6−165583号公報
In FIG. 8, the control voltage Vo proportional to the frequency f is generated from the frequency command f * by the V / f setting unit 4, the boost voltage Vb proportional to the frequency f is generated by the boost voltage setting unit 5, and these voltages are added. The torque command is Vq * . Integrating circuit 6 obtains the reference phase theta * by integrating the frequency command f *. The rotation coordinate conversion unit 7 generates voltage commands Vu * , Vv * , and Vw * that are two-phase / three-phase converted having a reference phase θ * from the torque command Vq * and the excitation current command Vd * . The comparator circuit 8 receives the voltage commands Vu * , Vv * and Vw * as comparison inputs, obtains a PWM waveform gate signal using the triangular wave generation circuit 9 as a comparison reference, and inverts the drive signal generated by the dead time generation circuit 10 with a dead time. On / off control of the two switching elements is performed.
JP-A-7-163188 JP-A-6-165585

IMの可変速駆動においても周波数指令f*を0とし、直流制動をかける場合がある。この場合、一次電圧V1と電流I1の関係は、図9の(a)に示す状態から(b)に示す状態になり、同位相になる。 In the variable speed drive of IM, the frequency command f * may be set to 0 and DC braking may be applied. In this case, the relationship between the primary voltage V1 and the current I1 changes from the state shown in FIG. 9A to the state shown in FIG. 9B and has the same phase.

この直流制動時には、前記の式(2)で与えるブースト電圧Vbは、本来励磁電流を確保する目的で印加されるべきであるが、従来方式の式(1)と同位相で出力する方式では、直流制動から通常の運転に移行した直後の電流位相I1が、式(1)で与えられるV/f一定の電圧V1と同位相となってしまい、モータが回転を始める瞬間に励磁電流位相が電圧軸から90度程度遅れる位相に大きく変動するため、脈動トルクを発生する場合がある。   At the time of this DC braking, the boost voltage Vb given by the above equation (2) should be applied for the purpose of originally securing the excitation current, but in the method of outputting in the same phase as the equation (1) of the conventional method, The current phase I1 immediately after the transition from DC braking to normal operation becomes the same phase as the constant V / f voltage V1 given by the equation (1), and the excitation current phase becomes the voltage at the moment when the motor starts rotating. Since it fluctuates greatly in the phase delayed about 90 degrees from the axis, pulsating torque may be generated.

本発明の目的は、直流制動から通常運転に移行するときの脈動トルクの発生を小さくした誘導電動機の可変速制御装置を提供することにある。   An object of the present invention is to provide a variable speed control device for an induction motor in which generation of pulsation torque when shifting from DC braking to normal operation is reduced.

本発明は、前記の課題を解決するため、直流制動のための電圧とブースト電圧を、V/f一定で運転周波数に比例して出力する電圧より90度遅れた位相で出力させ、且つ運転周波数に応じて低減させるブースト電圧の合成値が、運転周波数に応じて(直線的に)出力されるようにしたもので、以下の構成を特徴とする。 In order to solve the above-mentioned problem, the present invention outputs a voltage for DC braking and a boost voltage at a phase delayed by 90 degrees from a voltage output in proportion to the operation frequency at a constant V / f , and the operation frequency. The combined value of the boost voltage to be reduced according to the frequency is output (linearly) according to the operating frequency, and has the following configuration.

誘導電動機をV/f一定制御方式で可変速駆動し、低速運転領域での出力電圧をブースト制御するインバータ装置において、
V/f一定で運転周波数に比例して出力する電圧V0に対して90度の位相遅れで、且つ周波数上昇に応じて低減させるブースト電圧Vdを出力する制御回路を設け、この制御回路からの出力が、前記電圧V0とブースト電圧Vdの和の電圧V1が運転周波数の増加に追従して直線的に上昇するよう構成したことを特徴とする。
In the inverter device that drives the induction motor at a variable speed with a constant V / f control method and boosts the output voltage in the low speed operation region,
A control circuit is provided that outputs a boost voltage Vd that is 90 degrees behind the voltage V0 that is output in proportion to the operating frequency at a constant V / f and that is reduced in response to a frequency increase. However, the voltage V1 which is the sum of the voltage V0 and the boost voltage Vd is configured to rise linearly following the increase in the operating frequency.

前記制御回路は、電圧V0を下記(1)式で表現し、ブースト電圧Vdを(2)式で表現し、(1)式からθをθ=sin−1(V0/V1)で求め、このθを(2)式に代入することでブースト電圧Vdを求めることを特徴とする。The control circuit expresses the voltage V0 by the following equation (1), expresses the boost voltage Vd by the equation (2), obtains θ from the equation (1) by θ = sin−1 (V0 / V1), The boost voltage Vd is obtained by substituting θ into the equation (2).
V0=V1*sinθ…… (1)  V0 = V1 * sinθ …… (1)
Vd=V1*cosθ…… (2)  Vd = V1 * cosθ (2)

以上のとおり、本発明によれば、直流制動のための電圧とブースト電圧を、V/f一定で運転周波数に比例して出力する電圧より90度遅れた位相で出力する方式、または、V/f一定で運転周波数に比例して出力する電圧と、運転周波数に比例して低減させるブースト電圧の合成値が、運転周波数に比例して(直線的に)出力されるように、V/f一定で運転周波数に比例して出力する電圧より90度遅れた位相で出力する方式とするため、直流制動から通常運転に移行する間の出力電圧V1と励磁電流位相の連続性を確保でき、これにより始動時や回転方向が切り替わるタイミングで発生するトルク脈動を小さくできる。   As described above, according to the present invention, the voltage for DC braking and the boost voltage are output at a phase delayed by 90 degrees from the voltage output at a constant V / f in proportion to the operating frequency, or V / f Constant V / f so that the composite value of the voltage output in proportion to the operating frequency at a constant f and the boost voltage to be reduced in proportion to the operating frequency is output (linearly) in proportion to the operating frequency. Therefore, the output voltage V1 and the excitation current phase during the transition from the DC braking to the normal operation can be secured. Torque pulsation that occurs at the time of start-up or when the rotation direction is switched can be reduced.

(実施形態1)
図1は、本発明の実施形態を示す可変速制御装置の回路構成図である。同図が図8と異なる部分は、ブースト電圧設定部5の出力電圧Vbを磁束指令Vd*とする点にある。これにより、直流制動から通常運転に移行する間の電圧と電流位相の連続性を確保したブースト電圧制御を得る。
(Embodiment 1)
FIG. 1 is a circuit configuration diagram of a variable speed control apparatus showing an embodiment of the present invention. 8 differs from FIG. 8 in that the output voltage Vb of the boost voltage setting unit 5 is used as a magnetic flux command Vd * . Thereby, the boost voltage control which ensures the continuity of the voltage and the current phase during the transition from the direct current braking to the normal operation is obtained.

図2の(a)に直流制動時の電圧出力V1を示すように、式(2)で示したブーストしたい電圧Vbを、式(1)のVo出力軸から90度遅れの軸に出力する。   As shown in FIG. 2 (a), the voltage output V1 at the time of DC braking is output to the axis that is delayed by 90 degrees from the Vo output axis in the expression (1).

これを実現するため、図1では2相/3相変換回路7のq軸側には周波数に比例した基本の電圧である式(1)のV/f設定分(トルク指令Vq*)を出力し、ブースとしたい電圧Vbを周波数の関数式(2)によりd軸側(q軸に対し90度遅れ)に出力する。 In order to realize this, in FIG. 1, the V / f setting (torque command Vq * ) of the formula (1), which is a basic voltage proportional to the frequency, is output to the q-axis side of the two-phase / three-phase conversion circuit 7. Then, the voltage Vb desired to be used as a booth is output to the d-axis side (90 degrees delayed from the q-axis) according to the frequency function formula (2).

こうすることにより、直流制動時の電流I1を電圧出力軸から90度遅れの軸方向に流すことができ、図2の(b)に通常運転時の電圧V1と電圧I1を示すように、通常運転時の励磁電流位相との連続性が確保できる。このため脈動トルクの発生を抑制することができる。出力電圧V1は図2の(b)より、V1=(Vo2+Vb21/2、ただし、Voは式(1)、Vbは式(2)により算出できる。 By doing so, the current I1 during DC braking can flow in the axial direction 90 degrees behind the voltage output shaft. As shown in FIG. 2B, the voltage V1 and the voltage I1 during normal operation are Continuity with the excitation current phase during operation can be ensured. For this reason, generation | occurrence | production of pulsation torque can be suppressed. The output voltage V1 is V1 = (Vo 2 + Vb 2 ) 1/2 from FIG. 2B, where Vo can be calculated by equation (1) and Vb can be calculated by equation (2).

図3は、本実施形態を適用した、基底周波数60Hz、ブースト設定10%の場合の電圧V1,Vo,Vbの周波数特性を示し、制動状態(周波数が0)から加速するときの電圧変化は滑らかになり、脈動トルクの発生を抑制できることがわかる。   FIG. 3 shows the frequency characteristics of the voltages V1, Vo, and Vb when the base frequency is 60 Hz and the boost setting is 10% to which this embodiment is applied, and the voltage change is smooth when accelerating from the braking state (frequency is 0). It turns out that generation | occurrence | production of pulsation torque can be suppressed.

(実施形態2)
実施形態1の方式により、直流制動時から通常運転に移行する間の電圧と電流位相の連続性は確保できるが、合成された電圧V1は運転周波数の増加と共に急激にVoに近づいてしまう。このため電圧ブーストが十分に行われず、トルク不足になることが予測される。
(Embodiment 2)
Although the continuity of the voltage and the current phase during the transition from the DC braking to the normal operation can be ensured by the method of the first embodiment, the synthesized voltage V1 suddenly approaches Vo as the operation frequency increases. For this reason, it is predicted that the voltage boost is not sufficiently performed and the torque is insufficient.

このトルク不足を改善するため、本実施形態では、出力電圧V1と運転周波数の関係は従来方式通り(図7の一点鎖線)となるように、電圧軸から90度遅れの軸にブーストのために必要な電圧Vd(図4の(b)参照)を出力する方式を提案する。なお、電圧Vdは運転周波数Foutに応じて下記の手順(S1)〜(S6)で求める。   In order to improve this torque shortage, in this embodiment, for the boost to the axis that is delayed by 90 degrees from the voltage axis so that the relationship between the output voltage V1 and the operating frequency is as in the conventional method (the dashed line in FIG. 7). A method for outputting the necessary voltage Vd (see FIG. 4B) is proposed. The voltage Vd is obtained by the following procedures (S1) to (S6) according to the operating frequency Fout.

(S1)電圧軸に出力する基本となるV/f一定の電圧を決定する。   (S1) A constant V / f voltage to be output to the voltage axis is determined.

Vo=(Vbase/Fbase)*Fout …式(1)
(S2)ブーストしたい電圧を決定する。
Vo = (Vbase / Fbase) * Fout (1)
(S2) A voltage to be boosted is determined.

Vb=(Vb−set/Fbase)*(Fbase−Fout) …式(2)
(S3)最終的に出力したい電圧の絶対値を決定する。
Vb = (Vb−set / Fbase) * (Fbase−Fout) Equation (2)
(S3) The absolute value of the voltage to be finally output is determined.

V1=(V0 2 +Vb 2 1/2 …式(3)´
(S4)電圧軸に出力すべき電圧V0と、電圧軸から90度遅れの軸に出力すべき電圧Vbは、次のようにも表現できる。
V1 = (V0 2 + Vb 2 ) 1/2 Formula (3) ′
(S4) The voltage V0 to be output to the voltage axis and the voltage Vb to be output to the axis 90 degrees behind the voltage axis can be expressed as follows.

Vo=V1*sinθ …式(4)
Vd=V1*cosθ …式(5)
(S5)式(4)からθを求める。
Vo = V1 * sin θ (4)
Vd = V1 * cos θ (5)
(S5) θ is obtained from equation (4).

θ=sin−1(Vo/V1) …式(6) (S6)式(6)を式(5)に代入することで、Vdを決定する。       θ = sin−1 (Vo / V1) (6) (S6) Vd is determined by substituting equation (6) into equation (5).

本実施形態によれば、図5に電圧−周波数特性を示すように、ブースト電圧を従来方式通り確保でき、直流制動時から通常運転に移行する間の電圧V1と励磁電流位相の連続性も確保できる。   According to this embodiment, as shown in the voltage-frequency characteristics in FIG. 5, the boost voltage can be ensured as in the conventional method, and the continuity of the voltage V1 and the excitation current phase is ensured during the transition from DC braking to normal operation. it can.

本発明の実施形態1を示す可変速制御装置の回路構成図。The circuit block diagram of the variable speed control apparatus which shows Embodiment 1 of this invention. 直流制動時と通常運転時の電圧、電流ベクトル図。Voltage and current vector diagram during DC braking and normal operation. 実施形態1の電圧−周波数特性図。FIG. 3 is a voltage-frequency characteristic diagram of the first embodiment. 直流制動時と通常運転時の電圧、電流ベクトル図。Voltage and current vector diagram during DC braking and normal operation. 実施形態2の電圧−周波数特性図。FIG. 6 is a voltage-frequency characteristic diagram of the second embodiment. 誘導機のT形等価回路。T type equivalent circuit of induction machine. ブースト電圧の例。Example of boost voltage. 従来の可変速制御装置の回路構成図。The circuit block diagram of the conventional variable speed control apparatus. 直流制動時と通常運転時の従来の電圧、電流ベクトル図。Conventional voltage and current vector diagrams during DC braking and normal operation.

符号の説明Explanation of symbols

1 順変換回路(整流回路)
2 逆変換回路(インバータ)
3 誘導電動機
4 V/f設定部
5 ブースト電圧設定部
6 積分回路
7 回転座標変換部
8 コンパレータ回路
9 三角波発生回路
10 デットタイム作成回路
1 Forward conversion circuit (rectifier circuit)
2 Inverse conversion circuit (inverter)
DESCRIPTION OF SYMBOLS 3 Induction motor 4 V / f setting part 5 Boost voltage setting part 6 Integration circuit 7 Rotation coordinate conversion part 8 Comparator circuit 9 Triangular wave generation circuit 10 Dead time creation circuit

Claims (2)

誘導電動機をV/f一定制御方式で可変速駆動し、低速運転領域での出力電圧をブースト制御するインバータ装置において、
V/f一定で運転周波数に比例して出力する電圧V0に対して90度の位相遅れで、且つ周波数上昇に応じて低減させるブースト電圧Vdを出力する制御回路を設け、この制御回路からの出力が、前記電圧V0とブースト電圧Vdの和の電圧V1が運転周波数の増加に追従して直線的に上昇するよう構成したことを特徴とする誘導電動機の可変速制御装置。
In the inverter device that drives the induction motor at a variable speed with a constant V / f control method and boosts the output voltage in the low speed operation region,
A control circuit is provided that outputs a boost voltage Vd that is 90 degrees behind the voltage V0 that is output in proportion to the operating frequency at a constant V / f and that is reduced in response to a frequency increase. However, the variable speed control device for an induction motor is configured such that the voltage V1 which is the sum of the voltage V0 and the boost voltage Vd rises linearly following the increase in operating frequency .
前記制御回路は、電圧V0を下記(1)式で表現し、ブースト電圧Vdを(2)式で表現し、(1)式からθをθ=sin−1(V0/V1)で求め、このθを(2)式に代入することでブースト電圧Vdを求めることを特徴とする請求項1記載の誘導電動機の可変速制御装置。
V0=V1*sinθ…… (1)
Vd=V1*cosθ…… (2)
The control circuit expresses the voltage V0 by the following equation (1), expresses the boost voltage Vd by the equation (2), obtains θ from the equation (1) by θ = sin−1 (V0 / V1), 2. The variable speed control device for an induction motor according to claim 1, wherein the boost voltage Vd is obtained by substituting θ into the equation (2) .
V0 = V1 * sinθ …… (1)
Vd = V1 * cosθ (2)
JP2008132610A 2008-05-21 2008-05-21 Variable speed control device for induction motor Expired - Fee Related JP5266872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008132610A JP5266872B2 (en) 2008-05-21 2008-05-21 Variable speed control device for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008132610A JP5266872B2 (en) 2008-05-21 2008-05-21 Variable speed control device for induction motor

Publications (2)

Publication Number Publication Date
JP2009284616A JP2009284616A (en) 2009-12-03
JP5266872B2 true JP5266872B2 (en) 2013-08-21

Family

ID=41454469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132610A Expired - Fee Related JP5266872B2 (en) 2008-05-21 2008-05-21 Variable speed control device for induction motor

Country Status (1)

Country Link
JP (1) JP5266872B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312245B (en) * 2013-06-24 2016-08-10 珠海格力电器股份有限公司 Motor controller and motor control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2867397B2 (en) * 1988-11-29 1999-03-08 松下電器産業株式会社 Inverter device for motor drive
JPH07163188A (en) * 1993-11-30 1995-06-23 Meidensha Corp Torque boost controller for induction motor

Also Published As

Publication number Publication date
JP2009284616A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
US9490738B2 (en) Sensorless motor drive vector control
JP5772029B2 (en) Sensorless brushless motor drive device
JP5916526B2 (en) Power converter control device and multi-winding motor drive device
JP5505042B2 (en) Neutral point boost DC-three-phase converter
US11218107B2 (en) Control device for power converter
US9444384B2 (en) Direct torque control motor controller with transient current limiter
US9407189B2 (en) Direct torque control motor controller with torque ripple reduction
JP5375715B2 (en) Neutral point boost DC-three-phase converter
WO2016006386A1 (en) Control device and control method for vehicle dynamo
JP7280170B2 (en) Motor control device, motor control method, hybrid system, boost converter system, electric power steering system
JP4706344B2 (en) Control device for synchronous motor
JP2014150655A (en) Inverter device and control method therefor, and motor drive system
KR101693426B1 (en) Apparatus for controlling interior permanent magnet synchronous motor
JPH0974800A (en) Control apparatus for ac motor
JP2007221920A (en) Converter controller and converter control method
CN112567620B (en) Inverter device
JP5266872B2 (en) Variable speed control device for induction motor
WO2021200389A1 (en) Motor control device, motor system, and motor control method
JP2005124305A (en) Two-phase modulation control type inverter device
JP2011142752A (en) Gate drive circuit
JP6925513B2 (en) Motor drive and air conditioner
JP2005269722A (en) Motor drive controller
JP2021090238A (en) Control device
JP2006020399A (en) Controller of brushless motor
JP6681266B2 (en) Electric motor control device and electric vehicle equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5266872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees