JP5266490B2 - High density oxidation of materials - Google Patents

High density oxidation of materials Download PDF

Info

Publication number
JP5266490B2
JP5266490B2 JP2007243997A JP2007243997A JP5266490B2 JP 5266490 B2 JP5266490 B2 JP 5266490B2 JP 2007243997 A JP2007243997 A JP 2007243997A JP 2007243997 A JP2007243997 A JP 2007243997A JP 5266490 B2 JP5266490 B2 JP 5266490B2
Authority
JP
Japan
Prior art keywords
oxide
light
oxidation method
irradiated
density oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007243997A
Other languages
Japanese (ja)
Other versions
JP2009072694A (en
Inventor
昌幸 大越
成美 井上
Original Assignee
防衛省技術研究本部長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 防衛省技術研究本部長 filed Critical 防衛省技術研究本部長
Priority to JP2007243997A priority Critical patent/JP5266490B2/en
Publication of JP2009072694A publication Critical patent/JP2009072694A/en
Application granted granted Critical
Publication of JP5266490B2 publication Critical patent/JP5266490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、材料の酸化法及びデバイス作製法に係り、特に固体材料、液体材料、溶液材料乃至は液体中に分散させた材料などの被酸化材料に、波長190nm以下の光を照射することにより、従来困難とされてきた高品質の酸化物を低温域の条件下で形成することが可能な材料の高密度酸化法に関する。 The present invention relates to a material oxidation method and a device manufacturing method, and in particular, by irradiating a material to be oxidized such as a solid material, a liquid material, a solution material, or a material dispersed in a liquid with light having a wavelength of 190 nm or less. relates to a high-density oxidation of the material capable of forming a high quality oxide which has been considered difficult conventionally under conditions of low temperature range.

近年、種々のエレクトロニクス、オプトエレクトロニクス、フォトニクスなどの分野において、高品質の酸化物は必要不可欠である。現在、高品質の酸化物を作製する場合は、被酸化物を雰囲気を高温状態として高温条件下において形成することが多い。   In recent years, high quality oxides are indispensable in various fields such as electronics, optoelectronics and photonics. At present, when a high-quality oxide is manufactured, the oxide is often formed under a high temperature condition with an atmosphere at a high temperature.

しかしながら、上述したように酸化物を作製するためには、高温条件下で形成するため、酸化物を用いるデバイスの大きさや重さ、性能や形成位置などを制限していた。従って、従来のよりも低温域で高品質の酸化物を形成する手法の確立が望まれていた。   However, as described above, in order to produce an oxide, since it is formed under a high temperature condition, the size, weight, performance, formation position, and the like of a device using the oxide are limited. Accordingly, it has been desired to establish a method for forming a high-quality oxide at a lower temperature than in the prior art.

そこで、本発明は上記問題点に鑑みてなされたものであって、高品質の酸化物を従来よりも低温域の条件下で位置選択的乃至は空間選択的に形成できる材料の高密度酸化法を提供することを目的とする。 Accordingly, the present invention has been made in view of the above problems, and a high-density oxidation method for a material capable of forming a high-quality oxide in a position-selective or space-selective manner under conditions of a lower temperature than in the past. The purpose is to provide.

本発明のその他の目的や新規の特徴は後述の実施の形態において明らかにする。   Other objects and novel features of the present invention will be clarified in embodiments described later.

上記目的を達成するため、請求項1記載の材料の高密度酸化法は、所望のマスクを被覆した被酸化物であるアルミニウム薄膜に対して溶融除去が行われるエネルギー密度以下のエネルギー密度のF2 レーザを照射し、前記アルミニウム薄膜における前記マスクで被覆されていない被照射部分のみが前記レーザにより酸化アルミニウム層に改質されることを特徴としている。 In order to achieve the above object, the high-density oxidation method for a material according to claim 1 is an F 2 having an energy density equal to or lower than an energy density at which melting removal is performed on an aluminum thin film that is an oxide covered with a desired mask. Only the irradiated portion of the aluminum thin film that is not covered with the mask is modified into an aluminum oxide layer by the laser.

本発明によれば、高品質の酸化物を従来よりも低温域の条件下で位置選択的乃至は空間選択的に形成することにより、酸化物を基礎とした高機能デバイスの作製法を確立でき、エレクトロニクス、オプトエレクトロニクス及びフォトニクス分野でのデバイス作製の基盤技術として利用可能であるなど多機能マイクロ/ ナノデバイス作製のための必要不可欠な技術となる。また本発明は、これら分野にとどまらず、今後マイクロ・ナノマシーニング技術を利用して発展するデバイス作製の分野に多大に利用可能である。   According to the present invention, it is possible to establish a method for manufacturing a high-performance device based on an oxide by forming a high-quality oxide in a position-selective manner or a space-selective manner under a temperature range lower than that in the past. It can be used as a basic technology for device fabrication in the electronics, optoelectronics, and photonics fields. The present invention is not limited to these fields, and can be used greatly in the field of device fabrication, which will be developed using micro / nano machining technology in the future.

以下、本発明に係る材料の高密度酸化法及びデバイスを実施するための最良の形態について、添付する図面を参照しながら詳細に説明する。図1(a)〜(c)は本発明に係る第1形態の材料の高密度酸化法を説明するための概略説明図であり、図2(a)〜(c)は本発明に係る第2形態の材料の高密度酸化法を説明するための概略説明図であり、図3(a)、(b)は本発明に係る材料の高密度酸化法の他の実施例を説明するための概略説明図であり、図4は本発明に係る材料の高密度酸化法によって形成された酸化アルミニウム薄膜の実験結果を示す写真である。   BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out a high-density oxidation method and device according to the present invention will be described in detail with reference to the accompanying drawings. FIGS. 1A to 1C are schematic explanatory views for explaining the high-density oxidation method of the material of the first form according to the present invention, and FIGS. It is a schematic explanatory drawing for demonstrating the high-density oxidation method of the material of 2 forms, FIG. 3 (a), (b) is for demonstrating the other Example of the high-density oxidation method of the material which concerns on this invention. FIG. 4 is a schematic explanatory view, and FIG. 4 is a photograph showing experimental results of an aluminum oxide thin film formed by a high-density oxidation method of a material according to the present invention.

まず、図1を参照しながら、本発明に係る第1形態の材料の高密度酸化法について説明する。第1形態の材料の高密度酸化法は、波長190nm以下の光を、例えばアルミニウム、チタン、鉄、スズ、亜鉛からなる金属薄膜、セラミクス、半導体、生体材料、高分子材料などで構成される被酸化固体材料1に照射する場合の実験概略構成であり、図1(a)に示すように、所望のマスク2を被覆した被酸化固体材料1の表面に波長190nm以下の光3を照射する。そして、光3が露光された部分のみが高品質の酸化物4に改質される。   First, the high-density oxidation method of the material according to the first embodiment of the present invention will be described with reference to FIG. The high-density oxidation method of the material of the first form is a method in which light having a wavelength of 190 nm or less is irradiated with a metal thin film made of, for example, aluminum, titanium, iron, tin, or zinc, a ceramic, a semiconductor, a biomaterial, or a polymer material. This is a schematic configuration of an experiment when irradiating the oxidized solid material 1, and as shown in FIG. 1A, the surface of the oxidized solid material 1 covered with a desired mask 2 is irradiated with light 3 having a wavelength of 190 nm or less. Only the portion exposed to the light 3 is modified to a high quality oxide 4.

また、190nm以下の光3を出射するレーザ出力装置(不図示)の出力が使用環境や機器劣化などの要因により出力が通常よりも弱い場合は、図1(b)に示すように光3を集光する集光レンズ5で所定出力になるまで集光しながら出力調整を行った状態でマスク2を被覆した被酸化固体材料1の表面に光3を照射する。そして、光3が露光された部分のみが高品質の酸化物4に改質される。   If the output of a laser output device (not shown) that emits light 3 of 190 nm or less is weaker than usual due to factors such as the use environment and equipment deterioration, the light 3 is emitted as shown in FIG. Light 3 is irradiated onto the surface of the solid material 1 to be oxidized, which is covered with the mask 2, in a state where output adjustment is performed while condensing until a predetermined output is obtained by the condenser lens 5. Only the portion exposed to the light 3 is modified to a high quality oxide 4.

さらに、マスク2を被覆せずに被酸化固体材料1の所望の箇所に酸化物4を形成する場合は、図1(c)に示すように、被酸化固体材料1の表面に光3が集光レンズ5を介して集光照射する。そして、光3が集光照射された部分のみが高品質の酸化物4に改質される。   Furthermore, when the oxide 4 is formed at a desired location of the oxidizable solid material 1 without covering the mask 2, the light 3 is collected on the surface of the oxidizable solid material 1 as shown in FIG. Condensed and irradiated through the optical lens 5. Only the portion irradiated with the light 3 is reformed into a high quality oxide 4.

次に、図2を参照しながら、本発明に係る第2形態の材料の高密度酸化法について説明する。第2形態の材料の高密度酸化法は、波長190nm以下の光を、例えば被酸化物を含有する液体材料、被酸化物が溶解した溶液材料乃至は液体中に被酸化物を分散させたコロイド状材料などの被酸化液体材料6に照射する場合の実験概略構成であり、図2(a)に示すように容器7に入れた被酸化液体材料6に波長190nm以下の光3を照射する。そして、光3が照射された部分の被酸化物のみが高品質の酸化物4に改質される。   Next, the high-density oxidation method of the material according to the second embodiment of the present invention will be described with reference to FIG. The high-density oxidation method of the material of the second form is a colloid in which light having a wavelength of 190 nm or less is applied, for example, a liquid material containing an oxide, a solution material in which the oxide is dissolved, or a liquid in which the oxide is dispersed. This is a schematic configuration of an experiment in the case of irradiating the oxidizable liquid material 6 such as a sheet-like material, and irradiates the oxidizable liquid material 6 placed in the container 7 with light 3 having a wavelength of 190 nm or less as shown in FIG. Only the portion of the oxide irradiated with the light 3 is modified to a high quality oxide 4.

また、190nm以下の光3を出射するレーザ出力装置(不図示)の出力が使用環境や機器劣化などの要因により出力が通常よりも弱い場合は、図2(b)に示すように光3を集光する集光レンズ5で所定出力になるまで集光しながら出力調整を行った状態で、被酸化液体材料6に光3を照射する。そして、光3が照射された部分の被酸化物のみが高品質の酸化物4に改質される。   When the output of a laser output device (not shown) that emits light 3 of 190 nm or less is weaker than usual due to factors such as the use environment or equipment deterioration, the light 3 is emitted as shown in FIG. The liquid 3 to be oxidized is irradiated with the light 3 in a state where the output adjustment is performed while condensing until the predetermined output is obtained by the condensing lens 5 that collects the light. Only the portion of the oxide irradiated with the light 3 is modified to a high quality oxide 4.

さらに、被酸化液体材料6の所望の箇所(例えば被酸化液体材料6の表面)に酸化物4を形成する場合は、図2(c)に示すように、被酸化液体材料6の表面に光3が集光レンズ5を介して集光照射する。そして、光3が集光照射された部分のみが高品質の酸化物4に改質される。   Further, when the oxide 4 is formed at a desired location of the oxidizable liquid material 6 (for example, the surface of the oxidizable liquid material 6), light is applied to the surface of the oxidizable liquid material 6 as shown in FIG. 3 condenses and irradiates through a condensing lens 5. Only the portion irradiated with the light 3 is reformed into a high quality oxide 4.

なお、上記第2形態における図2(c)の構成の場合、被酸化液体材料6若しくはレーザ出力装置を精密に三次元的に微動可能な構成とすることで、結果的にレーザ3が精密に三次元的に走査されるため、酸化物4を位置選択的乃至は空間選択的に形成することが可能となる。   In the case of the configuration of FIG. 2C in the second embodiment, the liquid 3 to be oxidized or the laser output device can be finely moved three-dimensionally, so that the laser 3 can be precisely adjusted. Since the scanning is performed three-dimensionally, the oxide 4 can be formed in a position selective manner or a space selective manner.

このように、上述した第1形態の材料の高密度酸化法では、波長190nm以下の光3を被酸化固体材料1に照射することにより、被酸化固体材料1の表面を位置選択的に高品質の酸化物に改質することができる。従って、従来のような高温条件下で酸化させる必要がなく、酸化物4を容易に形成することができる。   As described above, in the above-described high-density oxidation method of the material of the first form, the surface of the solid material 1 to be oxidized is selectively high-quality by irradiating the solid material 1 with light 3 having a wavelength of 190 nm or less. The oxide can be modified. Therefore, it is not necessary to oxidize under high temperature conditions as in the prior art, and the oxide 4 can be easily formed.

また、第2形態の材料の高密度酸化法では、波長190nm以下の光3を被酸化液体材料6に照射することにより、被酸化液体材料1の表面乃至は内部に高品質の酸化物に改質することができる。従って、第1形態の酸化法と同様に、従来のような高温条件下で酸化させる必要がなく、酸化物4を位置選択的乃至は空間選択的に容易に形成することができる。   Further, in the high-density oxidation method of the material of the second form, the liquid 3 to be oxidized is irradiated with light 3 having a wavelength of 190 nm or less, so that the surface or the inside of the liquid material 1 to be oxidized is changed to a high quality oxide. Can be quality. Therefore, as in the oxidation method of the first embodiment, it is not necessary to oxidize under high temperature conditions as in the prior art, and the oxide 4 can be easily formed in a position selective manner or a space selective manner.

ところで、上述した第1形態の材料の高密度酸化法では、被酸化固体材料1の表面側(図中上方向)から光3を照射した構成で説明したが、これに限定されることはなく、例えば図3(a)に示すように190nm以下の光3を透過可能な透過性基体8に被酸化固体材料1を形成し、裏面側(図中下方向)から光3を照射する構成でもよい。   By the way, in the high-density oxidation method of the material of the first form described above, the structure in which the light 3 is irradiated from the surface side (upward direction in the figure) of the solid material 1 to be oxidized has been described, but the present invention is not limited to this. For example, as shown in FIG. 3A, the oxidizable solid material 1 is formed on a transparent substrate 8 capable of transmitting light 3 having a wavelength of 190 nm or less, and the light 3 is irradiated from the back side (downward in the figure). Good.

また、図3(b)に示すように、既存の薄膜乃至は薄膜形成法により基体9上に被酸化固体材料1を薄膜状に形成し、この被酸化固体材料1全体に波長190nm以下の光3を照射させて全て酸化物4に改質する。そして、再度既存の薄膜乃至は薄膜形成法を用いて形成した酸化物4の表面に被酸化固体材料1を薄膜状に形成して光3を照射して酸化物4に改質し、酸化物4を積層させていくことで、所望の厚さの酸化物4を容易に形成することができる。   Further, as shown in FIG. 3B, the oxidizable solid material 1 is formed in a thin film on the substrate 9 by an existing thin film or thin film formation method, and light having a wavelength of 190 nm or less is formed on the oxidizable solid material 1 as a whole. 3 is irradiated to reform all oxides 4. Then, the oxidizable solid material 1 is formed in the form of a thin film on the surface of the oxide 4 formed by using the existing thin film or thin film formation method again, and irradiated with light 3 to be modified to the oxide 4. By stacking 4, the oxide 4 having a desired thickness can be easily formed.

以下、上述した材料の高密度酸化法について、実施例に基づき説明する。なお、下記の各実施例は、本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することは何れも本発明の技術的範囲に含まれるものである。   Hereinafter, the high-density oxidation method of the material described above will be described based on examples. It should be noted that each of the following embodiments is not of a nature that limits the present invention, and any design changes that fall within the spirit of the preceding and following descriptions are within the technical scope of the present invention.

〔実施例〕
上述した第1形態における材料の高密度酸化法の実験概略構成において、光3として波長157nmのF2 レーザを用いた。レーザ照射部分でのエネルギー密度は、約50mJ/cm2 /pulse一定とした。また、パルス繰り返し周波数は10Hz一定とした。被酸化固体材料1はシリカガラス基板上に真空蒸着によって形成されたアルミニウム薄膜(膜厚約10nm)を用い、実験は大気中で行った。
〔Example〕
In the experimental schematic configuration of the high density oxidation method of the material in the first embodiment described above, an F 2 laser having a wavelength of 157 nm was used as the light 3. The energy density in the laser irradiation part was fixed to about 50 mJ / cm 2 / pulse. The pulse repetition frequency was constant at 10 Hz. As the solid material 1 to be oxidized, an aluminum thin film (film thickness of about 10 nm) formed by vacuum deposition on a silica glass substrate was used, and the experiment was performed in the air.

上記条件において、光3であるF2 レーザが照射された領域は、透明性を有する酸化アルミニウム(Al2 3 )層に改質された。そして、この改質された層の化学組成及び結合状態は、X線光電子分光により分析した結果、形成された酸化物4である酸化アルミニウム層が、酸或いはアルカリに対して耐性があることがわかった。 Under the above conditions, the region irradiated with the F 2 laser as the light 3 was modified to an aluminum oxide (Al 2 O 3 ) layer having transparency. The chemical composition and bonding state of the modified layer were analyzed by X-ray photoelectron spectroscopy. As a result, it was found that the aluminum oxide layer, which was the oxide 4 formed, was resistant to acid or alkali. It was.

従って、アルミニウム薄膜を位置選択的に改質した後、酸或いはアルカリで化学エッチングすることにより、図4に示すように基板上の任意の位置に透明性酸化アルミニウム膜を選択的に形成することができた。   Therefore, after selectively modifying the aluminum thin film, a transparent aluminum oxide film can be selectively formed at an arbitrary position on the substrate as shown in FIG. 4 by chemical etching with acid or alkali. did it.

本発明の材料の高密度酸化法によって作製されるデバイスは、被酸化固体材料1若しくは被酸化液体材料6に、波長190nm以下の光を照射することにより、従来困難とされてきた高品質の酸化物を従来よりも低温域の条件下において位置選択的乃至は空間選択的に形成することが可能となる。この結果、エレクトロニクス、オプトエレクトロニクス或いはフォトニクス分野でのデバイス作製に適用可能になるなど、その用途は 電気、電子のみならずあらゆる分野で有用である。   The device manufactured by the high-density oxidation method of the material according to the present invention irradiates the oxidizable solid material 1 or the oxidizable liquid material 6 with light having a wavelength of 190 nm or less. An object can be formed in a position-selective manner or a space-selective manner under conditions of a lower temperature range than in the past. As a result, it can be applied to device fabrication in the electronics, optoelectronics, or photonics fields, and its use is useful not only in electrical and electronic fields but also in all fields.

以上、本願発明における最良の形態について説明したが、この形態による記述及び図面により本発明が限定されることはない。すなわち、この形態に基づいて当業者等によりなされる他の形態、実施例及び運用技術等はすべて本発明の範疇に含まれることは勿論である。   As mentioned above, although the best form in this invention was demonstrated, this invention is not limited with the description and drawing by this form. That is, it is a matter of course that all other forms, examples, operation techniques, and the like made by those skilled in the art based on this form are included in the scope of the present invention.

(a)〜(c) 本発明に係る第1形態の材料の高密度酸化法を説明するための概略説明図である。(A)-(c) It is a schematic explanatory drawing for demonstrating the high-density oxidation method of the material of the 1st form which concerns on this invention. (a)〜(c) 本発明に係る第2形態の材料の高密度酸化法を説明するための概略説明図である。(A)-(c) It is a schematic explanatory drawing for demonstrating the high-density oxidation method of the material of the 2nd form which concerns on this invention. (a)、(b) 本発明に係る材料の高密度酸化法の他の実施例を説明するための概略説明図である。(A), (b) It is a schematic explanatory drawing for demonstrating the other Example of the high-density oxidation method of the material which concerns on this invention. 本発明に係る材料の高密度酸化法によって形成された酸化アルミニウム薄膜の実験結果を示す写真である。It is a photograph which shows the experimental result of the aluminum oxide thin film formed by the high-density oxidation method of the material which concerns on this invention.

符号の説明Explanation of symbols

1 被酸化固体材料
2 マスク
3 光
4 酸化物
5 集光レンズ
6 被酸化液体材料
7 容器
8 透過性基体
9 基体
DESCRIPTION OF SYMBOLS 1 Oxidized solid material 2 Mask 3 Light 4 Oxide 5 Condensing lens 6 Oxidized liquid material 7 Container 8 Transparent base 9 Base

Claims (1)

所望のマスクを被覆した被酸化物であるアルミニウム薄膜に対して溶融除去が行われるエネルギー密度以下のエネルギー密度のF2 レーザを照射し、前記アルミニウム薄膜における前記マスクで被覆されていない被照射部分のみが前記レーザにより酸化アルミニウム層に改質されることを特徴とする材料の高密度酸化法。 Only an irradiated portion of the aluminum thin film that is not covered with the mask is irradiated with an F 2 laser having an energy density equal to or lower than an energy density at which the aluminum thin film that is an oxide covered with a desired mask is melted and removed. Is modified to an aluminum oxide layer by the laser.
JP2007243997A 2007-09-20 2007-09-20 High density oxidation of materials Active JP5266490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007243997A JP5266490B2 (en) 2007-09-20 2007-09-20 High density oxidation of materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007243997A JP5266490B2 (en) 2007-09-20 2007-09-20 High density oxidation of materials

Publications (2)

Publication Number Publication Date
JP2009072694A JP2009072694A (en) 2009-04-09
JP5266490B2 true JP5266490B2 (en) 2013-08-21

Family

ID=40608249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243997A Active JP5266490B2 (en) 2007-09-20 2007-09-20 High density oxidation of materials

Country Status (1)

Country Link
JP (1) JP5266490B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572815B2 (en) * 2012-11-01 2014-08-20 防衛省技術研究本部長 Method and device for forming iron having corrosion resistance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234359A (en) * 1986-04-04 1987-10-14 Seiko Instr & Electronics Ltd Manufacture of thin film resistor
JP2759125B2 (en) * 1988-05-19 1998-05-28 ニチコン株式会社 Method for producing metal oxide and metal oxide thin film by excimer laser
JP2005272189A (en) * 2004-03-24 2005-10-06 Japan Science & Technology Agency Method for producing oxide semiconductor thin film by irradiation with ultraviolet radiation
JP4729704B2 (en) * 2005-10-20 2011-07-20 国立大学法人名古屋大学 Method for producing metal oxide film

Also Published As

Publication number Publication date
JP2009072694A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
JP5554838B2 (en) Laser processing method
KR102337969B1 (en) Method for producing glass substrate, and plate-like glass
JP6374360B2 (en) EUV mask and manufacturing method thereof
TW201233480A (en) Laser processing method
JP2009176926A (en) Through wiring substrate and manufacturing method thereof
KR20140142382A (en) Method for patterning graphene using laser
JP2007157659A (en) Forming method of wiring pattern of organic el element and forming device of organic el element
JP5266490B2 (en) High density oxidation of materials
KR101942110B1 (en) Laser processing method
JP4284889B2 (en) Optical waveguide, optical wiring board, electric / optical mixed circuit board, and optical waveguide manufacturing method
US8835215B2 (en) Method for forming superior local conductivity in self-organized nanodots of transparent conductive film by femtosecond laser
JP4296281B2 (en) Method for modifying compound containing Si-O-Si bond and device fabrication method
US20050247923A1 (en) Semiconductor nano-structure and method of forming the same
Shin et al. Photoresist-free lithographic patterning of solution-processed nanostructured metal thin films
JP2010050428A (en) Method for producing mis laminated structure, and mis laminated structure
JP2012020303A (en) Grooving method for laminated substrate
US20220250961A1 (en) Method and apparatus for additively forming an optical component
JP4691664B2 (en) Internal reforming method and device for compound containing Si-O-Si bond
JP4929469B2 (en) Light emitting element manufacturing method using compound containing Si-O-Si bond
TWI536441B (en) Laser processing method
JP4977859B2 (en) Light emitting film forming method and light emitting element using laser ablation
JP4547501B2 (en) Conductivity control method, device manufacturing method and device of transparent conductive material
JP2018202508A (en) Manufacturing method of substrate with three-dimensional structure
JP4783900B2 (en) Method of forming film on substrate and device manufacturing method
KR102056791B1 (en) Method for manufacturing silicon pattern using silica substrate and device manufactured by the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350