JP5265206B2 - Vasodilator - Google Patents

Vasodilator Download PDF

Info

Publication number
JP5265206B2
JP5265206B2 JP2008006162A JP2008006162A JP5265206B2 JP 5265206 B2 JP5265206 B2 JP 5265206B2 JP 2008006162 A JP2008006162 A JP 2008006162A JP 2008006162 A JP2008006162 A JP 2008006162A JP 5265206 B2 JP5265206 B2 JP 5265206B2
Authority
JP
Japan
Prior art keywords
pulsed light
blood vessel
intensity pulsed
irradiation
catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008006162A
Other languages
Japanese (ja)
Other versions
JP2008194455A (en
Inventor
恒憲 荒井
絵里子 中谷
岳洋 岩▲崎▼
智 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nipro Corp
Keio University
Original Assignee
Nipro Corp
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nipro Corp, Keio University filed Critical Nipro Corp
Priority to JP2008006162A priority Critical patent/JP5265206B2/en
Publication of JP2008194455A publication Critical patent/JP2008194455A/en
Application granted granted Critical
Publication of JP5265206B2 publication Critical patent/JP5265206B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/26Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N2005/0602Apparatus for use inside the body for treatment of blood vessels

Abstract

It is intended to provide an apparatus for dilating the vascular wall with the use of a high-intensity pulsed light. A vasodilator with the use of high-intensity pulsed light irradiation comprising a high-intensity pulsed light irradiation system, which is a high-intensity pulsed light irradiation system capable of generating steam bubbles in a vessel and having a high-intensity pulsed light generation unit, a high-intensity pulsed light transfer unit and a unit of irradiating the high-intensity pulsed light in a vessel, whereby steam bubbles are generated in the vessel by the irradiation with the high-intensity pulsed light and thus the vascular wall is spread and the vessel is dilated due to the function of the vapor bubbles.

Description

本発明は、高強度パルス光照射により血管内で水蒸気泡を発生させ、該水蒸気泡の作用により血管壁を伸展させ血管を拡張させる装置に関する。   The present invention relates to an apparatus for generating a water vapor bubble in a blood vessel by irradiation with high-intensity pulsed light, expanding a blood vessel wall by the action of the water vapor bubble, and expanding the blood vessel.

心筋梗塞や狭心症の治療のためにバルーン付きのカテーテルである拡張バルーンカテーテルを血管の狭窄部分等の病変部に挿入し、血管の病変部を押し広げ拡張させる血管形成術が広く普及している(非特許文献1を参照)。   Angioplasty that inserts an expansion balloon catheter, which is a catheter with a balloon, into a lesion such as a stenosis of a blood vessel to expand and expand the lesion of a blood vessel for the treatment of myocardial infarction and angina is widely used. (See Non-Patent Document 1).

また、バルーンを加熱することにより血管部の病変部に熱を加え血管形成術を施行するフォトサーモダイナミックバルーンも報告されていた(特許文献1を参照)。   A photothermodynamic balloon has also been reported in which an angioplasty is performed by applying heat to a lesioned part of a blood vessel by heating the balloon (see Patent Document 1).

バルーンカテーテルは、バルーンにより血管壁を押し広げている間のみ血管を拡張することができるに過ぎず、病変部を長期間にわたって拡張させるためには、バルーンを用いて拡張させた病変部をステントを用いて押し広げておく必要があった。   The balloon catheter can only expand the blood vessel while the vessel wall is being expanded by the balloon. In order to expand the lesion over a long period of time, the stent can be used to expand the lesion expanded using the balloon. It was necessary to use and spread out.

また、バルーンカテーテルは、外径が大きく適用できる血管は冠状動脈等ある程度の太さのある血管に限定されていた。また、バルーンを拡張させた場合、血管の狭窄部から圧力を受け、バルーンの位置が病変部からずれてしまう等、円滑な治療が困難な場合があった。   In addition, the balloon catheter has a large outer diameter and can be applied to blood vessels with a certain thickness such as coronary arteries. Further, when the balloon is expanded, there are cases where smooth treatment is difficult, for example, pressure is received from the stenosis of the blood vessel and the position of the balloon is displaced from the lesion.

一方、血管形成術の一方法として、レーザ光等の高強度パルス光を用いる方法も開発されている。例えば、血管中でレーザ光を照射して、音圧波を誘起させ、音圧波のエネルギーにより血管形成を行なう方法があった(特許文献2を参照)。一方、血管中のレーザ光照射による泡形成により血管がダメージを受けるという報告もあった(非特許文献2を参照)。   On the other hand, a method using high-intensity pulsed light such as laser light has been developed as a method of angioplasty. For example, there has been a method of irradiating a laser beam in a blood vessel to induce a sound pressure wave and forming a blood vessel by the energy of the sound pressure wave (see Patent Document 2). On the other hand, there was a report that the blood vessel is damaged by the bubble formation by laser light irradiation in the blood vessel (see Non-Patent Document 2).

特開平09-084879号公報JP 09-084879 A 特開2004-357792号公報JP 2004-357792 A モートンJ.カーン編著、「心臓カテーテルハンドブック」、第2版、株式会社 メディカル・サイエンス・インターナショナル、2004年4月21日p.407-451Edited by Morton J. Kahn, “Cardiac Catheter Handbook”, 2nd edition, Medical Science International, Inc., April 21, 2004, p.407-451 アシュレイ・ジェイ・ウェルヒ(ASHLEY J.WELCH)他編、「オプティカル・サーマル レスポンス オブ レーザ イラディエイテッド ティッシュー(OPTICAL-THERMAL RESPONSE OF LASER IRRADIATED TISSUE)」、(米国)、プレナム・プレス(PRENUM PRESS)、1995年、p.732-740ASHLEY J. WELCH et al., “OPTICAL-THERMAL RESPONSE OF LASER IRRADIATED TISSUE”, (US), Plenum Press, 1995 Year, p.732-740

本発明は、高強度パルス光を利用して血管壁を拡張させる装置の提供を目的とする。   An object of the present invention is to provide an apparatus for expanding a blood vessel wall using high-intensity pulsed light.

本発明者らは、液体中でレーザを照射した場合に、水蒸気泡が発生する現象に着目し、血管内で水蒸気泡を発生させることにより、水蒸気泡により血管が拡張し得ることを見出した。本発明者等は、レーザにより水蒸気泡を発生させ血管を拡張させる方法についてさらに鋭意検討を行い、レーザの照射条件により水蒸気泡が血管壁に加える圧力が変動し、なおかつレーザにより血管壁が加熱され、血管壁に含まれるコラーゲンの配向が変化することにより、血管壁の拡張状態を維持することができることを見出し、本発明を完成させるに至った。   The present inventors paid attention to a phenomenon in which water vapor bubbles are generated when laser is irradiated in a liquid, and found that the blood vessels can be expanded by the water vapor bubbles by generating the water vapor bubbles in the blood vessel. The inventors of the present invention have made further studies on a method of expanding a blood vessel by generating water vapor bubbles with a laser, and the pressure applied to the blood vessel wall by the water vapor bubbles varies depending on the irradiation condition of the laser, and the blood vessel wall is heated by the laser. The inventors have found that the expanded state of the blood vessel wall can be maintained by changing the orientation of the collagen contained in the blood vessel wall, and have completed the present invention.

すなわち、本発明は以下のとおりである。
[1] 血管内で水蒸気泡を発生しうる高強度パルス光照射手段であって、高強度パルス光発生手段、高強度パルス光伝送手段及び高強度パルス光を血管内に照射する手段を有する高強度パルス光照射手段を含み、高強度パルス光照射により血管内で水蒸気泡を発生させ、該水蒸気泡の作用により血管壁を伸展させ血管を拡張させる高強度パルス光照射による血管拡張装置。
[2] 水蒸気泡の作用により血管壁に圧力及び熱が加えられ、血管壁のコラーゲン繊維の配向が揃う、[1]の高強度パルス光照射による血管拡張装置。
[3] 血管壁に加えられる圧力が0.1〜5.0atmであり、温度が60℃以上である、[1]又は[2]の高強度パルス光照射による血管拡張装置。
[4] 高強度パルス光伝送手段が光伝送ファイバーである[1]又は[2]の高強度パルス光照射による血管拡張装置。
[5] バルーンを有しないカテーテルを含む装置であり、カテーテル内に高強度パルス光を伝送する光伝送ファイバーが備えられた[1]〜[4]のいずれかの高強度パルス光照射による血管拡張装置。
[6] 高強度パルス光照射手段の照射部の位置がカテーテル遠位端より内部に位置している[5]の高強度パルス光照射による血管拡張装置。
[7] 高強度パルス光照射手段の照射部の位置がカテーテル遠位端より0.5〜5mm内部に位置している[6]の高強度パルス光照射による血管拡張装置。
[8] 光伝送ファイバーの遠位端部付近にX線不透視マーカーを有する[1]〜[7]のいずれかの高強度パルス光照射による血管拡張装置。
[9] カテーテルの遠位端部付近にX線不透視マーカーを有する[1]〜[8]のいずれかの高強度パルス光照射による血管拡張装置。
[10] 血管の狭窄部位に適用し血管の狭窄部位を拡張するための[1]〜[9]のいずれかの高強度パルス光照射による血管拡張装置。
[11] 少なくとも10分間血管の拡張を維持し得る[1]〜[10]のいずれかの高強度パルス光照射による血管拡張装置。
[12] 永続的に血管の拡張を維持し得る[11]の高強度パルス光照射による血管拡張装置。
[13] 高強度パルス光の波長が1〜3μmの範囲にある、[1]〜[12]のいずれかの高強度パルス光照射による血管拡張装置。
[14] 高強度パルス光が、パルスレーザである[1]〜[13]のいずれかの高強度パルス光照射による血管拡張装置。
[15] 高強度パルス光照射のパルス幅が50μs〜1msである[1]〜[14]のいずれかの高強度パルス光照射による血管拡張装置。
[16] 少なくとも25回、100回以下の高強度パルス光照射を繰り返し、血管を拡張させる[1]〜[15]のいずれかの高強度パルス光照射による血管拡張装置。
[17] 少なくとも50回、100回以下の高強度パルス光照射を繰り返し、血管を拡張させる[16]の高強度パルス光照射による血管拡張装置。
[18] 血管内で水蒸気泡を発生しうる高強度パルス光照射手段、高強度パルス光発生手段及び高強度パルス光伝送手段を含み、高強度パルス光照射により血管内で水蒸気泡を発生させ、該水蒸気泡の作用により血管壁を伸展させ血管を拡張させる高強度パルス光照射による血管拡張装置の制御方法であって、血管内で発生する水蒸気泡の大きさ及び形状並びに血管壁に加えられる熱を変化させるために、血管拡張装置の制御手段が高強度パルス光照射手段を制御して高強度パルス光の強度及び照射回数を変化させる工程を行なう、制御方法。
[19] 血管内で水蒸気泡を発生しうる高強度パルス光照射手段、高強度パルス光発生手段及び高強度パルス光伝送手段を含み、高強度パルス光照射により血管内で水蒸気泡を発生させ、該水蒸気泡の作用により血管壁を伸展させ血管を拡張させる高強度パルス光照射による血管拡張装置の制御方法であって、高強度パルス光照射手段の照射部の位置とカテーテル遠位端の距離を調節して、発生する水蒸気泡の形状および圧力を制御する、制御方法。
That is, the present invention is as follows.
[1] High-intensity pulsed light irradiation means capable of generating water vapor bubbles in a blood vessel, comprising high-intensity pulsed light generation means, high-intensity pulsed light transmission means, and means for irradiating high-intensity pulsed light into the blood vessel A blood vessel dilation device using high-intensity pulsed light irradiation that includes an intensity pulsed light irradiation unit, generates water vapor bubbles in a blood vessel by high-intensity pulsed light irradiation, and expands the blood vessel wall by the action of the water vapor bubbles.
[2] The vasodilator using high-intensity pulsed light irradiation according to [1], wherein pressure and heat are applied to the blood vessel wall by the action of water vapor bubbles, and the orientation of collagen fibers in the blood vessel wall is aligned.
[3] The vasodilator by high-intensity pulsed light irradiation according to [1] or [2], wherein the pressure applied to the blood vessel wall is 0.1 to 5.0 atm and the temperature is 60 ° C. or higher.
[4] The vasodilator by high-intensity pulsed light irradiation according to [1] or [2], wherein the high-intensity pulsed light transmission means is an optical transmission fiber.
[5] A device including a catheter having no balloon, and is provided with an optical transmission fiber for transmitting high-intensity pulsed light in the catheter, thereby expanding blood vessels by irradiation with high-intensity pulsed light according to any one of [1] to [4] apparatus.
[6] The vasodilator by high-intensity pulsed light irradiation according to [5], wherein the position of the irradiation part of the high-intensity pulsed light irradiation means is located inside the distal end of the catheter.
[7] The vasodilator by high-intensity pulsed light irradiation according to [6], wherein the position of the irradiation part of the high-intensity pulsed light irradiation means is located within 0.5 to 5 mm from the distal end of the catheter.
[8] The vasodilator by high-intensity pulsed light irradiation according to any one of [1] to [7], which has a radiopaque marker near the distal end of the optical transmission fiber.
[9] The vasodilator by high-intensity pulsed light irradiation according to any one of [1] to [8], which has an X-ray opaque marker near the distal end of the catheter.
[10] The vasodilator by high-intensity pulsed light irradiation according to any one of [1] to [9], which is applied to a stenosis site of a blood vessel to expand the stenosis site of the blood vessel.
[11] The vasodilator by high-intensity pulsed light irradiation according to any one of [1] to [10], which can maintain vasodilation for at least 10 minutes.
[12] The vasodilator using high-intensity pulsed light irradiation according to [11], which can permanently maintain vasodilation.
[13] The vasodilator by high-intensity pulsed light irradiation according to any one of [1] to [12], wherein the wavelength of the high-intensity pulsed light is in the range of 1 to 3 μm.
[14] The vasodilator by high-intensity pulsed light irradiation according to any one of [1] to [13], wherein the high-intensity pulsed light is a pulsed laser.
[15] The vasodilator by high-intensity pulsed light irradiation according to any one of [1] to [14], wherein the pulse width of high-intensity pulsed light irradiation is 50 μs to 1 ms.
[16] The vasodilator using high-intensity pulsed light irradiation according to any one of [1] to [15], wherein the blood vessel is expanded by repeating irradiation with high-intensity pulsed light at least 25 times and 100 times or less.
[17] The vasodilator using high-intensity pulsed light irradiation according to [16], wherein the blood vessel is expanded by repeating irradiation with high-intensity pulsed light at least 50 times and not more than 100 times.
[18] Including high-intensity pulsed light irradiation means capable of generating water vapor bubbles in the blood vessel, high-intensity pulsed light generation means, and high-intensity pulsed light transmission means, A method of controlling a vasodilator by irradiation with high-intensity pulsed light that expands a blood vessel by expanding the blood vessel wall by the action of the water vapor bubble, the size and shape of the water vapor bubble generated in the blood vessel and the heat applied to the blood vessel wall A control method in which the control means of the vasodilator controls the high-intensity pulsed light irradiation means to change the intensity of the high-intensity pulsed light and the number of times of irradiation.
[19] A high-intensity pulsed light irradiation unit capable of generating water vapor bubbles in a blood vessel, a high-intensity pulsed light generation unit, and a high-intensity pulsed light transmission unit. A method for controlling a vasodilator by high-intensity pulsed light irradiation that expands a blood vessel wall and expands a blood vessel by the action of the water vapor bubbles, wherein the distance between the irradiation part position of the high-intensity pulsed light irradiation means and the distal end of the catheter is determined. A control method for adjusting and controlling the shape and pressure of the generated water vapor bubbles.

本発明の装置を用いれば、血管内で発生する水蒸気泡の圧力により血管の病変部を正確に且つ安全に拡張することができ、血管形成術を施行することができる。本発明の装置を用いる際、照射する高強度パルス光の強度や照射回数を制御することにより、血管壁のコラーゲンの変性の程度を制御することができ、変性の程度により血管が拡張状態を保持する時間をコントロールすることができる。さらに、本発明の装置において血管内に挿入するのは細い光伝送ファイバーのみで足りるので、従来のバルーンカテーテルを用いた方法では不可能であった、細い血管に対しても血管形成術を施術することが可能である。   If the apparatus of this invention is used, the lesioned part of the blood vessel can be expanded accurately and safely by the pressure of water vapor bubbles generated in the blood vessel, and angioplasty can be performed. When the apparatus of the present invention is used, the degree of collagen degeneration on the blood vessel wall can be controlled by controlling the intensity of the high-intensity pulsed light and the number of times of irradiation, and the blood vessel maintains an expanded state depending on the degree of degeneration. You can control the time to do. Furthermore, since only a thin optical transmission fiber is required to be inserted into the blood vessel in the apparatus of the present invention, an angioplasty is performed even on a thin blood vessel, which was impossible with a conventional method using a balloon catheter. It is possible.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は高強度パルス光を利用した血管形成術のための血管拡張装置である。血管形成術は、例えば、狭心症患者や心筋梗塞患者における血管狭窄部位において施術される。   The present invention is a vasodilator for angioplasty using high-intensity pulsed light. Angioplasty is performed, for example, at a vascular stenosis site in an angina patient or a myocardial infarction patient.

本発明の装置は、少なくとも、血管内に高強度パルス光を照射する高強度パルス光照射手段を含み、さらに高強度パルス光照射部を血管中の拡張させるべき血管形成術施術部位まで誘導するためのカテーテルを含んでいてもよい。図1に本発明の装置の該略図を示す。   The apparatus of the present invention includes at least high-intensity pulsed light irradiation means for irradiating a high-intensity pulsed light into a blood vessel, and further guides the high-intensity pulsed light irradiation unit to an angioplasty site to be expanded in the blood vessel. Other catheters may be included. FIG. 1 shows a schematic diagram of the apparatus of the present invention.

前記高強度パルス光照射手段は、高強度パルス光発生手段(高強度パルス光源)、高強度パルス光を血管中に伝送する手段、高強度パルス光を血管内に照射する手段(照射部位)等を含み、高強度パルス光を伝送する部分は光伝送用ファイバーである。   The high-intensity pulsed light irradiation means includes high-intensity pulsed light generation means (high-intensity pulsed light source), means for transmitting high-intensity pulsed light into the blood vessel, means for irradiating high-intensity pulsed light into the blood vessel (irradiation site), etc. A portion for transmitting high-intensity pulsed light is an optical transmission fiber.

高強度パルス光を血管内に照射する手段は、光伝送用ファイバーの遠位端に高強度パルス光照射部として設けられる。高強度パルス光照射部には、プリズム等のパルス光照射角度を変化させるための部材を配設してもよいが、通常は特別な部材は必要なく光ファイバーの遠位端が高強度パルス光照射部として作用し得る。   The means for irradiating the high-intensity pulsed light into the blood vessel is provided as a high-intensity pulsed light irradiation unit at the distal end of the optical transmission fiber. The high-intensity pulsed light irradiation unit may be provided with a member such as a prism for changing the pulsed light irradiation angle, but usually no special member is required, and the distal end of the optical fiber is irradiated with high-intensity pulsed light. Can act as a part.

本発明の装置が任意に含む血管カテーテルは本発明の装置の一部を血管内に挿入するための筒であり、装置の一部を目的の部位に移動させるときのガイドとして用いられる。カテーテルは、通常用いられているものを使用することができ、その径等は限定されず、治療しようとする血管の太さに応じて適宜設計することができる。本発明の装置は、カテーテル内に高強度パルス光伝送用の光ファイバーが1本あれば足りるのでカテーテルの径も細くでき、例えば、カテーテルシース部分の直径は、2mm以下である。   The vascular catheter optionally included in the apparatus of the present invention is a tube for inserting a part of the apparatus of the present invention into a blood vessel, and is used as a guide when moving a part of the apparatus to a target site. As the catheter, a commonly used catheter can be used, and its diameter and the like are not limited, and can be appropriately designed according to the thickness of the blood vessel to be treated. Since the apparatus of the present invention only requires one optical fiber for transmitting high-intensity pulse light in the catheter, the diameter of the catheter can be reduced. For example, the diameter of the catheter sheath portion is 2 mm or less.

また、本発明の装置において、カテーテルの存在は任意であり、光伝送用ファイバーのみを血管に挿入してもよい。この場合のファイバーをベアファイバーという。   In the device of the present invention, the presence of the catheter is optional, and only the optical transmission fiber may be inserted into the blood vessel. The fiber in this case is called bare fiber.

従って、従来のバルーンカテーテルでは挿入が不可能であった細い血管にも挿入することができ、細い血管において血管形成術を施行することができる。従来の方法で血管形成術の対象としていたのは、外頸動脈、冠動脈、腎動脈、胸骨動脈、浅大腿動脈、膝下動脈等の太い動脈であったが、本発明の装置を用いれば、これらの動脈のみならず、内径2.5mm程度以下のより細い血管も治療することができる。   Therefore, it can be inserted into a thin blood vessel that could not be inserted with a conventional balloon catheter, and an angioplasty can be performed in the thin blood vessel. The target of angioplasty in the conventional method is a thick artery such as the external carotid artery, coronary artery, renal artery, sternum artery, superficial femoral artery, and knee joint artery. It is possible to treat not only arteries but also thinner blood vessels with an inner diameter of about 2.5 mm or less.

さらに、本発明の装置は、高強度パルス光照射部の位置をモニタするためのマーカーを備えていてもよい。該マーカーとしては、X線不透視マーカーを用いればよい。外部からX線透視下で観察することにより、高強度パルス光照射部の存在位置がわかり、該照射部を治療部位に位置させることが可能になる。X線不透視マーカーとしては、X線に不透過性の金属を用いることができ、生体への親和性という観点から白金、金、イリジウム等やこれらの合金が好ましい。X線不透視マーカーは、本発明の装置がカテーテルを含む場合は、例えばカテーテルの遠位端部に1個以上設ければよい。また、本発明の装置がカテーテルを含まない場合は、例えば光伝送ファイバーの遠位端部に1個以上設ければよい。   Furthermore, the apparatus of this invention may be equipped with the marker for monitoring the position of a high intensity | strength pulsed light irradiation part. As the marker, an X-ray opaque marker may be used. By observing with X-ray fluoroscopy from the outside, the existence position of the high-intensity pulsed light irradiation unit can be known, and the irradiation unit can be positioned at the treatment site. As a radiopaque marker, a metal that is opaque to X-rays can be used, and platinum, gold, iridium, and the like, and alloys thereof are preferable from the viewpoint of affinity for a living body. When the device of the present invention includes a catheter, one or more radiopaque markers may be provided at the distal end of the catheter, for example. When the device of the present invention does not include a catheter, for example, one or more may be provided at the distal end of the optical transmission fiber.

高強度パルス光には、レーザ及びオプティカルパラメトリックオッシレーター(OPO; Optical Parametric Oscillator)により発生するパルス光が含まれる。   The high-intensity pulsed light includes pulsed light generated by a laser and an optical parametric oscillator (OPO).

レーザ発生手段は、通常のレーザ発生装置を用いることができ、レーザ種は水の吸収係数が10〜1000cm-1、好ましくは10〜100cm-1である波長帯のレーザならば限定されず、希土類イオンを用いた固体レーザ又はXeClエキシマーレーザ等を用いることができる。また、レーザの発振波長は、0.3〜3μm、好ましくは1.5〜3μm、さらに好ましくは1.5〜2.5μm、さらに好ましくは水の吸収波長極大(1.9μm)近傍の波長である。レーザは、レーザを発生させる元素のイオンと該イオンを保持する母材の種類で表されるが、元素として希土類に属するHo(ホロニウム)、Tm(ツリウム)、Er(エルビウム)、Nd(ネオジム)等が挙げられ、このうちHo及びTmが好ましい。母材としてはYAG、YSGG、YVO等が挙げられる。例えば、Ho:YAGレーザ、Tm:YAGレーザ、Ho:YSGGレーザ、Tm:YSGGレーザ、Ho:YVOレーザ、Tm:YVOレーザ及びXeClエキシマーレーザ(発振波長308nm)等を用いることができる。この中でもレーザの発振波長が水の吸収波長極大(1.9μm)近傍に存在するHo:YAGレーザ(発振波長2.1μm)、Tm:YAGレーザ(発振波長2.01μm)等が好ましい。 As the laser generating means, a normal laser generating device can be used, and the laser species is not limited as long as it is a laser having a wavelength band in which the water absorption coefficient is 10 to 1000 cm −1 , preferably 10 to 100 cm −1 , and rare earth A solid-state laser using ions, a XeCl excimer laser, or the like can be used. The oscillation wavelength of the laser is 0.3 to 3 μm, preferably 1.5 to 3 μm, more preferably 1.5 to 2.5 μm, and more preferably a wavelength in the vicinity of the maximum absorption wavelength of water (1.9 μm). The laser is represented by the element ions that generate the laser and the type of the base material that holds the ions. Ho (holonium), Tm (thulium), Er (erbium), Nd (neodymium) belonging to rare earths as elements. Of these, Ho and Tm are preferred. Examples of the base material include YAG, YSGG, and YVO. For example, Ho: YAG laser, Tm: YAG laser, Ho: YSGG laser, Tm: YSGG laser, Ho: YVO laser, Tm: YVO laser, and XeCl excimer laser (oscillation wavelength 308 nm) can be used. Among these, Ho: YAG laser (oscillation wavelength 2.1 μm), Tm: YAG laser (oscillation wavelength 2.01 μm), etc., in which the oscillation wavelength of the laser exists in the vicinity of the maximum absorption wavelength of water (1.9 μm) are preferable.

レーザ発生装置として、例えば、LASER1-2-3 SCHWARTZ(ELECTRO-OPTICS社製)等が挙げられる。   Examples of the laser generator include LASER1-2-3 SCHWARTZ (manufactured by ELECTRO-OPTICS).

オプティカルパラメトリックオッシレーター(OPO; Optical Parametric Oscillator)は、連続的にパルス光の波長を変化させることができ、水の吸収係数が10〜1000cm-1である波長帯のパルス光を選択すればよい。例えば0.3〜3μm、好ましくは1.5〜3μm、さらに好ましくは1.5〜2.5μm、さらに好ましくは水の吸収波長極大(1.9μm)近傍の波長を選択すればよい。 An optical parametric oscillator (OPO) can continuously change the wavelength of pulsed light, and may select pulsed light having a wavelength band in which the water absorption coefficient is 10 to 1000 cm −1 . For example, the wavelength may be selected in the vicinity of 0.3 to 3 μm, preferably 1.5 to 3 μm, more preferably 1.5 to 2.5 μm, and more preferably water absorption wavelength maximum (1.9 μm).

高強度パルス光の照射強度は限定されず、対象とする血管の太さや病変部の重篤度に応じて適宜決定すればよいが、好ましくは1〜2J/pulse、さらに好ましくは1.2〜1.6J/pulseである。高強度パルス光のパルス幅も限定されないが、10ns〜1ms、好ましくは300μs〜400μsである。なお、パルス幅は半値全幅で示される。   The irradiation intensity of the high-intensity pulsed light is not limited and may be appropriately determined according to the thickness of the target blood vessel and the severity of the lesion, but is preferably 1 to 2 J / pulse, more preferably 1.2 to 1.6 J. / pulse. The pulse width of the high-intensity pulsed light is not limited, but is 10 ns to 1 ms, preferably 300 μs to 400 μs. The pulse width is indicated by the full width at half maximum.

高強度パルス光の繰り返し照射回数が多くなるほど、コラーゲンの変性程度が大きくなり、血管壁が拡張状態を保持する時間が長くなる。繰り返し照射回数は、10回〜1000回であり、好ましくは25回以上100回以下、さらに好ましくは50回以上100回以下である。血管壁が拡張を維持している時間は少なくとも10分間であり、好ましくは少なくとも1時間、さらに好ましくは永続的である。例えば、高強度で10回以上照射すれば、少なくとも10分間程度の拡張状態を維持し得る。   The greater the number of repeated irradiations of high-intensity pulsed light, the greater the degree of collagen denaturation and the longer the time during which the blood vessel wall remains in an expanded state. The number of repeated irradiations is 10 to 1000 times, preferably 25 to 100 times, more preferably 50 to 100 times. The time that the vessel wall remains dilated is at least 10 minutes, preferably at least 1 hour, more preferably permanent. For example, if irradiated at high intensity 10 times or more, the expanded state can be maintained for at least about 10 minutes.

高強度パルス光を血管内へ伝送する手段には、カテーテルの遠位端部付近に位置する、高強度パルス光を照射する手段(高強度パルス光照射部)及び高強度パルス光を高強度パルス光発生装置から該高強度パルス光照射手段に伝送する高強度パルス光伝送用ファイバーが含まれる。本明細書において「遠位端部付近」とは、高強度パルス光発生装置と連結された端部(近位端部)の反対側の端部に近い部分を意味し、遠位端部及び遠位端部から数十cm程度の部分を指す。   The means for transmitting high-intensity pulsed light into the blood vessel includes means for irradiating high-intensity pulsed light (high-intensity pulsed light irradiation part) located near the distal end of the catheter and high-intensity pulsed light as high-intensity pulsed light. A high-intensity pulsed light transmission fiber that is transmitted from the light generator to the high-intensity pulsed light irradiation means is included. As used herein, “near the distal end” means a portion near the end opposite to the end (proximal end) connected to the high-intensity pulsed light generator, It refers to a portion of about several tens of centimeters from the distal end.

石英ファイバーは、その一端で高強度パルス光発生装置と連結し、もう一端で高強度パルス光照射手段(高強度パルス光照射部)と連結している。本発明で用いられる石英ファイバーは、直径0.05〜0.3mm程度のきわめて細いものから、可視的な太さのものまで、そのままで血管中に挿入されるか、あるいはカテーテルの中に収めて血管中に挿入され、高強度パルス光エネルギーを伝送できる限り、広く種々の径のものを用いることができる。   One end of the quartz fiber is connected to a high-intensity pulsed light generator, and the other end is connected to high-intensity pulsed light irradiation means (high-intensity pulsed light irradiation unit). The quartz fiber used in the present invention is inserted into a blood vessel as it is, from a very thin fiber having a diameter of about 0.05 to 0.3 mm to a visible thickness, or placed in a catheter and placed in a blood vessel. A wide variety of diameters can be used as long as they are inserted and can transmit high-intensity pulsed light energy.

高強度パルス光照射手段は、血管内に高強度パルス光を照射するための手段であり、体外の高強度パルス光発生装置(高強度パルス光源)で発生し、高強度パルス光伝送用ファイバー内を血管に沿って伝送されてきた高強度パルス光が血管内に照射され血液中に水蒸気泡が形成されるように照射する。この際、高強度パルス光照射の方向は限定されない。また、上述のように高強度パルス光伝送用ファイバーは複数本分散して存在してもよい。ファイバーの直径は、好ましくは100μm〜1000μmの間である。   The high-intensity pulsed light irradiation means is a means for irradiating the blood vessel with high-intensity pulsed light, and is generated by a high-intensity pulsed light generator (high-intensity pulsed light source) outside the body. The high-intensity pulsed light transmitted along the blood vessel is irradiated into the blood vessel so that water vapor bubbles are formed in the blood. At this time, the direction of irradiation with high-intensity pulsed light is not limited. Further, as described above, a plurality of high-intensity pulsed light transmission fibers may be dispersed. The diameter of the fiber is preferably between 100 μm and 1000 μm.

拡張させる血管壁の範囲(長さ)は、高強度パルス光を照射して発生する水蒸気泡の形状を制御することにより、変動させることができる。水蒸気泡の形状は、血管の進む方向の大きさを縦、血管の進む方向に垂直な方向を横とした場合に、横方向により広がった形状の水蒸気泡の方がより、横方向に大きな圧力を発生することができ、確実に血管壁を拡張させることができる。従って、本発明の装置により発生させる水蒸気泡は、横方向に広がったマッシュルーム形状又は西洋なし形状が好ましい。発生させる水蒸気泡は、高強度パルス光照射方向に対する横方向の長さが、縦方向の長さに対して1/2以上の大きさの水蒸気泡が好ましく、さらに縦方向の長さと同じか又は大きい水蒸気泡が好ましい。さらに、血管壁を過大に拡張させて血管壁に損傷を与えることのない程度の大きさの水蒸気泡が好ましく、このためには高強度パルス光照射方向に対する横方向の長さが、血管の内径の2倍以下の大きさである水蒸気泡が好ましく、さらに血管の内径よりも小さい水蒸気泡が好ましい。   The range (length) of the blood vessel wall to be expanded can be varied by controlling the shape of water vapor bubbles generated by irradiating high-intensity pulsed light. The shape of the water vapor bubbles is such that when the size of the blood vessel is in the vertical direction and the direction perpendicular to the blood vessel is in the horizontal direction, the shape of the water vapor bubbles spreading in the horizontal direction is greater than the pressure in the horizontal direction. And the blood vessel wall can be reliably expanded. Therefore, the steam bubbles generated by the apparatus of the present invention preferably have a mushroom shape or a western shape that spreads in the lateral direction. The generated steam bubbles are preferably steam bubbles having a length in the transverse direction with respect to the direction of irradiation with high-intensity pulsed light that is 1/2 or more of the length in the longitudinal direction, and are the same as the length in the longitudinal direction or Large steam bubbles are preferred. Further, a water vapor bubble having a size that does not cause excessive damage to the blood vessel wall by over-expanding the blood vessel wall is preferable. Water vapor bubbles having a size of 2 times or less of these are preferable, and water vapor bubbles smaller than the inner diameter of the blood vessel are more preferable.

具体的には、発生させる水蒸気泡は、上記定義による横方向の長さが縦方向の長さの50%〜500%、好ましくは75%〜500%、さらに好ましくは100%〜500%であることが望ましい。さらに、横方向の長さは治療しようとする血管の太さにより異なるが、好ましくは血管の内径の10%〜200%、好ましくは10%〜150%、さらに好ましくは10%〜100%である。例えば、冠状大動脈の場合、血管の内径は、約3mmであるので、水蒸気泡の横方向の長さを、約0.3〜6mm、好ましくは0.3〜4.5mm、さらに好ましくは0.1〜3mmにすればよい。   Specifically, the generated water vapor bubbles have a length in the horizontal direction as defined above of 50% to 500%, preferably 75% to 500%, more preferably 100% to 500% of the length in the vertical direction. It is desirable. Further, the lateral length varies depending on the thickness of the blood vessel to be treated, but is preferably 10% to 200%, preferably 10% to 150%, more preferably 10% to 100% of the inner diameter of the blood vessel. . For example, in the case of the coronary aorta, since the inner diameter of the blood vessel is about 3 mm, the lateral length of the water vapor bubbles is about 0.3 to 6 mm, preferably 0.3 to 4.5 mm, more preferably 0.1 to 3 mm. .

上記のように適切な拡張圧を発生させ得る水蒸気泡を発生させるには、高強度パルス光伝送手段の遠位端にある高強度パルス光照射手段の位置とカテーテル遠位端の位置関係を調節すればよい。高強度パルス光照射手段の照射部の位置がカテーテル遠位端よりも外に出ている場合、水蒸気泡の大きさ、形状等については、ベアファイバーを用いた場合と同じである。高強度パルス光照射手段の位置がカテーテル遠位端より数mm内部に位置している状態で高強度パルス光を照射することをカテーテル内照射法と呼ぶ。一方、ベアファイバーの状態で照射することをベア照射法と呼ぶ。高強度パルス光照射手段がカテーテル中に引っ込んでいた場合、高強度パルス光照射手段の直ぐ前方のカテーテル内部で水蒸気泡が発生し、エクスパンドしながらカテーテル内部を外部に向かって進みかつカテーテルから外に出る。この際、カテーテル遠位端の内部の形状等を変えることによっても、カテーテル外部であって血管内で発生する水蒸気泡の形状を調節することができる。水蒸気泡の形状を調節することにより、横方向に発生する圧力を調節することができる。   In order to generate water vapor bubbles that can generate an appropriate expansion pressure as described above, the positional relationship between the position of the high-intensity pulsed light irradiation means at the distal end of the high-intensity pulsed light transmission means and the distal end of the catheter is adjusted. do it. When the position of the irradiation part of the high-intensity pulsed light irradiation means is outside the distal end of the catheter, the size, shape, etc. of the water vapor bubbles are the same as when using bare fibers. Irradiation with high-intensity pulsed light in a state where the position of the high-intensity pulsed light irradiation means is located within a few mm from the distal end of the catheter is called intra-catheter irradiation. On the other hand, irradiation in a bare fiber state is called a bare irradiation method. When the high-intensity pulsed light irradiation means is retracted into the catheter, water vapor bubbles are generated inside the catheter immediately in front of the high-intensity pulsed light irradiation means, and the inside of the catheter proceeds outward while expanding and out of the catheter. Get out. At this time, the shape of water vapor bubbles generated outside the catheter and in the blood vessel can also be adjusted by changing the shape or the like inside the distal end of the catheter. The pressure generated in the lateral direction can be adjusted by adjusting the shape of the water vapor bubbles.

例えば、光ファイバー先端の高強度パルス光照射部をカテーテル遠位端部より数mm内部に位置させることにより、より適切な形状の水蒸気泡を発生させることができ、その結果、より高い拡張圧を血管壁に作用させることができる。光ファイバー先端の高強度パルス光照射部は、カテーテル先端部に対して、0.5〜5mm、好ましくは1〜3mm、さらに好ましくは、1〜2mmカテーテル内部に位置していることが望ましい。また、カテーテル遠位端内部の形状によっても、水蒸気泡の形状を調節することができ、結果的に血管壁に作用する拡張圧を調節することができる。高強度パルス光照射部がカテーテル内部に存在する場合、水蒸気泡はカテーテル内部で発生し、エクスパンドしながらカテーテル内部から外部に出て行くが、この際、カテーテル内部において水蒸気泡が外部に向かうときに水蒸気泡のカテーテル進行方向へエクスパンドする速度を抑えることにより、水蒸気泡がカテーテル進行方向へエクスパンドするのを抑制し、気泡の前面の辺縁が後方に回り込み、その結果傘状の横方向へよりエクスパンドした水蒸気泡を発生させることができる。このためには、例えばカテーテル遠位端内部に水蒸気泡の縦方向へのエクスパンドを抑制し得る凸部を設けたり、溝を設けたり、また連続する凹凸部を設ければよい。また、カテーテル遠位端部において、先端部ほど内径が広がるように構造を変化させてもよい。   For example, by placing the high-intensity pulsed light irradiation part at the tip of the optical fiber within a few millimeters from the distal end of the catheter, it is possible to generate a more appropriately shaped water vapor bubble, and as a result, a higher expansion pressure can be applied to the blood vessel. Can act on the wall. It is desirable that the high-intensity pulsed light irradiation part at the tip of the optical fiber is located within the catheter 0.5 to 5 mm, preferably 1 to 3 mm, more preferably 1 to 2 mm with respect to the catheter tip. Also, the shape of the water vapor bubble can be adjusted by the shape inside the distal end of the catheter, and as a result, the expansion pressure acting on the blood vessel wall can be adjusted. When the high-intensity pulsed light irradiation part exists inside the catheter, water vapor bubbles are generated inside the catheter and go out from the inside of the catheter while expanding. At this time, when the water vapor bubbles go outside in the catheter, Suppressing the speed at which the water vapor bubble expands in the catheter travel direction prevents the water vapor bubble from expanding in the catheter travel direction, and the front edge of the air bubble wraps around the rear, resulting in a more umbrella-shaped lateral expansion. Water vapor bubbles can be generated. For this purpose, for example, a convex portion that can suppress the expansion of water vapor bubbles in the vertical direction, a groove, or a continuous uneven portion may be provided inside the distal end of the catheter. Further, the structure may be changed at the distal end portion of the catheter so that the inner diameter of the distal end portion increases.

また、カテーテル照射法の場合、高強度パルス光照射部が血管壁に接触した状態での照射を防ぐことができるので、より安全に血管拡張を行うことができる。   In the case of the catheter irradiation method, irradiation with the high-intensity pulsed light irradiation unit in contact with the blood vessel wall can be prevented, so that blood vessel dilation can be performed more safely.

また、同じ強度の高強度パルス光を照射しても、光伝送ファイバーの高強度パルス光照射部とカテーテル先端部の位置を変えることにより、発生する拡張圧の大きさも異なってくる。例えば、光伝送用ファイバーの高強度パルス光照射部とカテーテル先端部の位置が離れるほど、すなわち高強度パルス光照射部がカテーテル内部に引っ込んでいるほど、同じエネルギーの高強度パルス光を照射しても、発生する拡張圧は高くなる。カテーテルや光伝送ファイバーの太さ等により、適宜光照射部の位置を調整し、適切な拡張圧を発生させることができる。   Further, even when high-intensity pulsed light having the same intensity is irradiated, the magnitude of the expansion pressure generated varies depending on the positions of the high-intensity pulsed light irradiation part of the optical transmission fiber and the catheter tip part. For example, as the position of the high-intensity pulsed light irradiation part of the fiber for optical transmission and the tip of the catheter are separated, that is, as the high-intensity pulsed light irradiation part is retracted inside the catheter, the high-intensity pulsed light of the same energy is irradiated. However, the generated expansion pressure becomes high. An appropriate expansion pressure can be generated by appropriately adjusting the position of the light irradiation unit according to the thickness of the catheter or the optical transmission fiber.

また、カテーテル先端部と高強度パルス光照射部の位置関係だけではなく、該位置関係と照射する高強度パルス光の強度の組み合わせによっても、拡張圧は変化する。   Further, the expansion pressure changes not only by the positional relationship between the catheter tip and the high-intensity pulsed light irradiation unit but also by the combination of the positional relationship and the intensity of the high-intensity pulsed light to be irradiated.

従って、本発明は照射する高強度パルス光の強度を変えるとともに、高強度パルス光の照射部とカテーテル先端部の位置を変え、又はカテーテル遠位端部の内部の構造を変えることにより、発生する水蒸気泡の大きさ及び/又は形状を調節し、血管壁を拡張させる拡張圧の発生を調節し得る装置である。   Therefore, the present invention is generated by changing the intensity of the high-intensity pulsed light to be irradiated, changing the position of the irradiation part of the high-intensity pulsed light and the catheter tip, or changing the structure inside the catheter distal end. It is a device capable of adjusting the size and / or shape of water vapor bubbles to adjust the generation of expansion pressure that dilates the blood vessel wall.

血液に直接高強度パルス光が照射されると、その部分の赤血球破壊などが生じることからその部分の血液を生理食塩水等で置換しておくのが望ましい。このような液体として、生理食塩水の他、透析液などの輸液等が用いられる。この場合、本発明の治療用装置のカテーテル内に送液手段を組込み、該送液手段を用いて生理食塩水等を血管内の高強度パルス光が照射される部分、すなわち高強度パルス光照射部分の照射部近傍に注入すればよい。送液手段は、カテーテル内に設けられた送液流路、送液流路の遠位端に設けられた注入口、流路とつながった液リザーバー、送液用ポンプ等から構成される。送液流路は、例えばカテーテル内にルーメンを設け該ルーメンを送液流路としてもよいし、またカテーテル内に別途流路用チューブを設けてもよい。この場合、血管内に高強度パルス光が照射され水蒸気泡が発生し始める局所的な血液部分を生理食塩水等で置換するため、高強度パルス光照射手段の高強度パルス光を血管内に照射する部分と送液手段の注入口は互いに近接した位置に存在する必要がある。例えば、カテーテル内にルーメンを設けその中に高強度パルス光伝送用ファイバーを通すと共に、ルーメン内を通って生理食塩水等が送液されるようにすればよい。送液する生理食塩水等の量は限定されないが、フラッシュ液を注入して血管内腔を観察する内視鏡を使用するときの送液量の1/10〜1/1000程度の量で足りる。例えば、内視鏡で血管内腔を観察するときにフラッシュ液を注入する方法では、1〜2mL/秒のフラッシュ液を注入する必要があるが、本発明で注入する量は1mL/分程度で足りる。この程度の送液ならば、血液の流れを阻害することもなく末梢への酸素供給は確保できる。   When high-intensity pulsed light is directly applied to blood, the portion of red blood cells is destroyed, and therefore it is desirable to replace that portion of blood with physiological saline or the like. As such a liquid, an infusion solution such as a dialysis solution is used in addition to physiological saline. In this case, a liquid feeding means is incorporated in the catheter of the treatment apparatus of the present invention, and a physiological saline or the like is irradiated with high intensity pulsed light in the blood vessel using the liquid feeding means, that is, high intensity pulsed light irradiation. What is necessary is just to inject | pour into the irradiation part vicinity of a part. The liquid feeding means includes a liquid feeding channel provided in the catheter, an injection port provided at a distal end of the liquid feeding channel, a liquid reservoir connected to the channel, a pump for feeding, and the like. For example, a lumen may be provided in the catheter and the lumen may be used as the liquid supply channel, or a separate channel tube may be provided in the catheter. In this case, the high-intensity pulsed light from the high-intensity pulsed light irradiating means is irradiated into the blood vessel in order to replace the local blood part where the high-intensity pulsed light is radiated into the blood vessel and water vapor bubbles start to be generated. And the inlet of the liquid feeding means need to be located at positions close to each other. For example, a lumen may be provided in the catheter, and a high-intensity pulse light transmission fiber may be passed through the lumen, and physiological saline or the like may be sent through the lumen. The amount of physiological saline to be delivered is not limited, but about 1/10 to 1/1000 of the amount delivered when using an endoscope that injects flush solution and observes the lumen of the blood vessel is sufficient. . For example, in the method of injecting the flash solution when observing the lumen of the blood vessel with an endoscope, it is necessary to inject the flash solution of 1 to 2 mL / second, but the injection amount in the present invention is about 1 mL / min. It ’s enough. With this level of liquid delivery, oxygen supply to the periphery can be secured without hindering blood flow.

高強度パルス光を血管内に照射することにより、高強度パルス光の照射部の前面においてエネルギー密度が高くなり、その領域で水蒸気泡が発生し、該気泡が血管内で膨張し、水蒸気泡周囲に存在する血液又は生理食塩水等を押しのける。水蒸気泡の圧力並びに血液又は生理食塩水等の圧力により血管壁が押し拡げられる。本発明の装置により血管壁に加えられる圧力(拡張圧)は、0.1〜5.0atmである。また、同時に高強度パルス光により熱が発生し、血管壁が押し広げられると同時に加熱される。この結果、熱により血管壁中のコラーゲン繊維が変性し、コラーゲン繊維の配向が変化し、血管壁の拡張が長く続く。また、コラーゲンの変性程度が強いと、血管壁の拡張が永続的に続く。但し、コラーゲンの変性が強いとコラーゲンが壊れやすくなり、血管壁の強度が低下する可能性があるので、過度の加熱変性は避けるのが望ましい。さらに、血管拡張にはエラスチンも関与し、気泡の発生による熱と気泡成長の圧力により、コラーゲン繊維が軟化した状態でエラスチン繊維が伸展し、次いでさらなるコラーゲン繊維の熱変性でエラスチン繊維が伸びたまま固定される。コラーゲンおよびエラスチンの変性はヤング率を測定することができる。従って、モデル実験系においてレーザ照射しコラーゲンおよびエラスチンのヤング率を測定し、適切な照射条件を決定することができる。高強度パルス光による血管壁の加熱温度は、60℃以上、好ましくは80℃以上である。照射する高強度パルス光の強度、照射回数等により、コラーゲンの変性の度合いを調節することができる。コラーゲンの変性の度合いが低い場合は、時間と共に拡張した血管壁が元に戻る。この場合は、血管壁を拡張させ血管壁が拡張状態を維持している間に、拡張部分にステントを挿入・留置し、拡張したままの状態の保ってもよい。ステントは、本発明の装置がカテーテルを含む場合は該カテーテルにあらかじめ載せておき、高強度パルス光を照射し、血管壁を拡張させた後に、血管内に留置するようにすればよい。また、本発明の装置がカテーテルを含まず光伝送用ファイバーからなる場合、別のカテーテルを用いて血管内に留置してもよい。なお、ステントとしては、セルフエクスパンダブルタイプ(自己拡張型)を用いるのが好ましい。   By irradiating the high-intensity pulsed light into the blood vessel, the energy density is increased in front of the irradiation part of the high-intensity pulsed light, and water vapor bubbles are generated in the region, the bubbles expand in the blood vessel, and the surroundings of the water vapor bubbles Push away blood or saline that is present in the body. The blood vessel wall is expanded by the pressure of water vapor bubbles and the pressure of blood or physiological saline. The pressure (expansion pressure) applied to the blood vessel wall by the device of the present invention is 0.1 to 5.0 atm. At the same time, heat is generated by the high-intensity pulsed light, and the blood vessel wall is expanded and heated at the same time. As a result, the collagen fibers in the blood vessel wall are denatured by heat, the orientation of the collagen fibers changes, and the blood vessel wall continues to expand for a long time. In addition, when the degree of collagen denaturation is strong, the expansion of the blood vessel wall continues permanently. However, if the denaturation of the collagen is strong, the collagen is easily broken and the strength of the blood vessel wall may be lowered. Therefore, it is desirable to avoid excessive heat denaturation. In addition, elastin is also involved in vasodilation, and the elastin fiber stretches with the collagen fibers softened due to heat generated by the generation of bubbles and the pressure of bubble growth, and then the elastin fibers remain stretched due to further heat denaturation of the collagen fibers. Fixed. The denaturation of collagen and elastin can measure Young's modulus. Accordingly, laser irradiation can be performed in a model experimental system to measure the Young's modulus of collagen and elastin, and appropriate irradiation conditions can be determined. The heating temperature of the blood vessel wall with the high-intensity pulsed light is 60 ° C. or higher, preferably 80 ° C. or higher. The degree of collagen denaturation can be adjusted by the intensity of the high-intensity pulse light to be irradiated, the number of times of irradiation, and the like. When the degree of collagen denaturation is low, the dilated vessel wall is restored over time. In this case, while the blood vessel wall is expanded and the blood vessel wall is maintained in the expanded state, a stent may be inserted and placed in the expanded portion to maintain the expanded state. In the case where the device of the present invention includes a catheter, the stent may be placed in advance on the catheter, irradiated with high-intensity pulsed light to expand the blood vessel wall, and then placed in the blood vessel. In addition, when the device of the present invention is made of an optical transmission fiber without including a catheter, it may be placed in a blood vessel using another catheter. In addition, it is preferable to use a self-expandable type (self-expanding type) as the stent.

図2にレーザ光照射により発生する水蒸気の発生から消滅までの過程を表す図を示す。   FIG. 2 is a diagram showing a process from generation to disappearance of water vapor generated by laser light irradiation.

本発明の血管拡張装置は、例えば狭心症や心筋梗塞患者の血管の狭窄部に適用すればよく、狭窄率が50%以上、好ましくは90%以上の患者に適用すればよい。   The vasodilator of the present invention may be applied to, for example, a stenosis portion of a blood vessel of an angina or myocardial infarction patient, and may be applied to a patient having a stenosis rate of 50% or more, preferably 90% or more.

本発明の装置により拡張される血管の拡張の程度は、対象となる血管の種類や、照射する高強度パルス光の強度や照射回数により変動するが、好ましくは血管壁の内径が1.1倍以上、さらに好ましくは1.3倍以上、特に好ましくは1.5倍以上拡張させることができる。   The degree of expansion of the blood vessel expanded by the apparatus of the present invention varies depending on the type of target blood vessel, the intensity of the high-intensity pulsed light to be irradiated, and the number of times of irradiation, but preferably the inner diameter of the blood vessel wall is 1.1 times or more, More preferably, it can be expanded 1.3 times or more, particularly preferably 1.5 times or more.

なお、高強度パルス光照射は、血流の拍動、すなわち拍動血流に遅延同期するのが望ましい。血流は拍動流であり、血流が流れている、すなわち血流の運動エネルギー(動圧)が大きいときは、水蒸気泡の発生は血圧(静圧)に加えて動圧にも影響をうける。一方、血流が完全に止まってしまうと、血液は非ニュートン性流体であるので、粘性が大きくなりやはり水蒸気泡が発生しにくくなる。従って、拍動血流速が低下してきた時点で(血流が止まる前)に、最適なタイミングがある。これは、心電図からの心拍情報に観察血管に固有の遅延時間を設定することでタイミングを検出できる。この場合、心電図計とレーザ発生装置を電子的に接続し、拍動血流が低下した時点に高強度パルス光が照射されるように、心電図信号を遅延ジェネレータを通して、高強度パルス光発生装置に伝達すればよい。どれくらいの時間遅延をかけるかは、心電図計、遅延ジェネレータ及び高強度パルス光発生装置の組合わせにより適宜決定できる。心電図計から拍動血流が低下した時点に高強度パルス光が照射されるような信号を伝達するタイミングも当業者ならば公知の心周期、大動脈血流速及び心電図の関係から容易に決定できる。   Note that it is desirable that the high-intensity pulsed light irradiation is delayed and synchronized with the pulsation of the blood flow, that is, the pulsating blood flow. Blood flow is a pulsatile flow. When blood flow is flowing, that is, when the kinetic energy (dynamic pressure) of the blood flow is large, the generation of water vapor bubbles affects not only blood pressure (static pressure) but also dynamic pressure. box office. On the other hand, if the blood flow is completely stopped, the blood is a non-Newtonian fluid, so that the viscosity becomes large and water vapor bubbles are hardly generated. Therefore, there is an optimal timing when the pulsatile blood flow rate has decreased (before the blood flow stops). The timing can be detected by setting a delay time specific to the observation blood vessel in the heartbeat information from the electrocardiogram. In this case, the electrocardiogram and the laser generator are electronically connected, and the electrocardiogram signal is passed through the delay generator to the high-intensity pulsed light generator so that the high-intensity pulsed light is emitted when the pulsatile blood flow decreases. Just communicate. How much time delay is applied can be appropriately determined by a combination of an electrocardiograph, a delay generator, and a high-intensity pulsed light generator. A person skilled in the art can easily determine the timing for transmitting a signal such that a high-intensity pulsed light is emitted when the pulsatile blood flow is reduced from the electrocardiograph based on the known relationship between the cardiac cycle, the aortic blood flow velocity, and the electrocardiogram.

例えば、冠状動脈の場合大動脈血流速が大きい収縮期には血液はほとんど流れず、大動脈血流速が小さい拡張期に血液が流れる。従って、冠状動脈の血流速が最大になるのは、心電図におけるT波出現後P波出現の間にあり、高強度パルス光の照射タイミングはP波出現からQRS波消失までの間が望ましい。さらに、本発明の治療用装置のカテーテルに圧覚センサ等を配設し、該センサにより血流の拍動をモニタし、拍動血流が低下した時点に高強度パルス光が照射されるようにしてもよい。この場合も、圧覚センサと高強度パルス光発生装置が電子的に接続され圧覚センサからの信号が遅延を設けて高強度パルス光発生装置に伝えられる。   For example, in the case of coronary arteries, blood hardly flows during the systole when the aortic blood flow rate is large, and blood flows during the diastole when the aortic blood flow rate is small. Therefore, the blood flow velocity in the coronary artery is maximized during the appearance of the P wave after the appearance of the T wave in the electrocardiogram, and the irradiation timing of the high-intensity pulsed light is preferably from the appearance of the P wave to the disappearance of the QRS wave. Furthermore, a pressure sensor or the like is disposed on the catheter of the treatment apparatus of the present invention, and the pulsation of the blood flow is monitored by the sensor so that the high-intensity pulsed light is emitted when the pulsating blood flow is reduced. May be. Also in this case, the pressure sensor and the high intensity pulsed light generator are electronically connected, and a signal from the pressure sensor is transmitted to the high intensity pulsed light generator with a delay.

本発明の装置の使用方法
本発明の装置を使用する際には、高強度パルス光照射部を拡張させる血管部位に導く。本発明の装置が対象とする血管は限定されず、冠状動脈その他これよりも細い血管いずれに対しても適用することができる。本発明の装置中、血管に挿入する部分は、高強度パルス光伝送用光ファイバー1本を中に含む細径カテーテルであれば足りるので、大腿動脈血管等の太い血管からではなく、橈骨動脈等細い血管から挿入することもできる。
Method of using the device of the present invention When using the device of the present invention, the high-intensity pulsed light irradiation section is guided to a blood vessel site to be expanded. The blood vessels targeted by the apparatus of the present invention are not limited, and the present invention can be applied to any coronary artery or other blood vessels thinner than this. In the device of the present invention, the portion to be inserted into the blood vessel may be a small diameter catheter including one optical fiber for transmitting high-intensity pulsed light, so that it is not from a large blood vessel such as a femoral artery blood vessel but a thin artery such as a radial artery. It can also be inserted from a blood vessel.

本発明の装置の高強度パルス光照射部を拡張させる血管部位に導き、全血中で血流を閉止することなく、高強度パルス光を照射すればよい。高強度パルス光照射により、全血中の照射部端で水蒸気泡が発生し、該泡が拡張し、血管壁を押し広げ、拡張させる。この際、上述のように必要に応じ生理食塩水等を血管中の高強度パルス光を照射する部分に少量注入してもよい。   What is necessary is just to irradiate the high intensity | strength pulse light to the blood vessel site | part which expands the high intensity | strength pulse light irradiation part of the apparatus of this invention, and not to close a blood flow in whole blood. By high-intensity pulsed light irradiation, water vapor bubbles are generated at the end of the irradiated portion in whole blood, the bubbles expand, and the blood vessel wall is expanded and expanded. At this time, as described above, a small amount of physiological saline or the like may be injected into the portion of the blood vessel irradiated with the high-intensity pulsed light as described above.

さらに、本発明は血管内で水蒸気泡を発生しうる高強度パルス光照射手段、高強度パルス光発生手段及び高強度パルス光伝送手段を含み、高強度パルス光照射により血管内で水蒸気泡を発生させ、該水蒸気泡の作用により血管壁を伸展させ血管を拡張させる高強度パルス光照射による血管拡張装置を制御する方法を包含する。該方法は、血管内で発生する水蒸気泡の大きさ及び形状並びに血管壁に加えられる熱を変化させるために、血管拡張装置の制御手段が高強度パルス光照射手段を制御して高強度パルス光の強度及び照射回数を変化させる工程を行なうことを含む。この際、あらかじめ拡張しようとする血管の径(内径又は外径)や狭窄が認められる場合の狭窄率を測定し、該測定値に基づいて適切に血管を拡張できるように、高強度パルス光の強度及び照射回数を制御すればよい。また、一旦血管内で高強度パルス光を照射し、血管壁を拡張させ、どの程度拡張したかをモニタし、拡張の程度が足りない場合に、さらに必要な拡張が達成できるように、高強度パルス光の強度及び照射回数を制御してもよい。   Further, the present invention includes high intensity pulsed light irradiation means, high intensity pulsed light generation means and high intensity pulsed light transmission means capable of generating water vapor bubbles in the blood vessel, and generates water vapor bubbles in the blood vessel by high intensity pulsed light irradiation. And a method of controlling a vasodilator by high-intensity pulsed light irradiation that expands a blood vessel wall and expands a blood vessel by the action of the water vapor bubbles. In this method, in order to change the size and shape of water vapor bubbles generated in the blood vessel and the heat applied to the blood vessel wall, the control means of the vasodilator controls the high-intensity pulsed light irradiating means to control the high-intensity pulsed light. Performing a step of changing the intensity and the number of times of irradiation. At this time, the diameter (inner diameter or outer diameter) of the blood vessel to be expanded or the stenosis rate when stenosis is observed are measured in advance, and the high-intensity pulsed light can be appropriately expanded based on the measured value. What is necessary is just to control intensity | strength and the frequency | count of irradiation. In addition, once irradiated with high-intensity pulsed light in the blood vessel, the blood vessel wall is dilated, the degree of dilation is monitored, and if the degree of dilation is insufficient, high intensity can be achieved to achieve further dilation The intensity of the pulsed light and the number of irradiations may be controlled.

本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   The present invention will be specifically described by the following examples, but the present invention is not limited to these examples.

実施例1 ブタ頸動脈を用いたレーザ光照射による血管拡張
ex vivoで血管内に生理食塩水又は血液を流す系を作製し検討に用いた。血管は摘出ブタ頸動脈を用いた。用いた摘出ブタ頸動脈のサイズは、長さ3.5cm、外径4.7mmであった。
Example 1 Vasodilation by laser irradiation using porcine carotid artery
A system that allows physiological saline or blood to flow into blood vessels ex vivo was prepared and used. As the blood vessel, an isolated porcine carotid artery was used. The size of the isolated porcine carotid artery used was 3.5 cm in length and 4.7 mm in outer diameter.

摘出ブタ頸動脈内にコア径600μmの光ファイバーを挿入し、Ho:YAGレーザ発生装置(IH102 (ニーク))を用いてHo:YAGレーザ(波長2.1Oμm)を生理食塩水又は血液を流した血管中で照射した。照射強度は170〜1300J/pulse(1.7〜13W)であり、照射回数は20〜100回、周波数は2.5Hzであった。   An optical fiber with a core diameter of 600μm is inserted into the isolated porcine carotid artery, and a Ho: YAG laser generator (IH102 (Neek)) is used to pass a Ho: YAG laser (wavelength: 2.1 Oμm) into a blood vessel with physiological saline or blood Irradiated with. The irradiation intensity was 170-1300 J / pulse (1.7-13 W), the number of irradiations was 20-100 times, and the frequency was 2.5 Hz.

図3に用いた装置の構成を示す。   FIG. 3 shows the configuration of the apparatus used.

血管外径の変化をフラッシュランプ(日進電子工業社)フォトグラフィにより撮影した。   Changes in blood vessel outer diameter were photographed with a flash lamp (Nisshin Denshi Kogyo) photography.

レーザ光照射前後の血管外径変を測定した。さらに、照射後に血管のHE染色標本を定法で作製し作製し、顕微鏡観察するとともに、偏光顕微鏡にて観察した。   Changes in blood vessel outer diameter before and after laser light irradiation were measured. Further, after irradiation, HE-stained specimens of blood vessels were prepared and prepared by a conventional method, observed with a microscope, and observed with a polarizing microscope.

1.3J/pulseの光強度で、20回照射したところ、血管が拡張しているのが観察された。また、照射終了後も拡張した血管は元に戻らず、少なくとも10分間拡張状態を維持していた。   When irradiated 20 times at a light intensity of 1.3 J / pulse, it was observed that the blood vessels were dilated. In addition, the dilated blood vessels did not return to the original state even after the end of irradiation, and maintained the dilated state for at least 10 minutes.

外径4.7mmの血管が20回の照射により外径6.1mmになるまで拡張した(1.3倍)。拡張された領域(長さ)は、血液の流れ方向に対して約13mmであった。図4にレーザ照射前、20回目の照射中、及び20回照射後の血管の写真を示す。図4Aが照射前の状態、図4Bが20回目の照射中の状態、図4Cが照射後の状態を示す。   A blood vessel with an outer diameter of 4.7mm was expanded to 1.3mm by irradiation 20 times (1.3 times). The expanded area (length) was about 13 mm with respect to the direction of blood flow. FIG. 4 shows photographs of blood vessels before laser irradiation, during 20th irradiation, and after 20th irradiation. 4A shows a state before irradiation, FIG. 4B shows a state during the 20th irradiation, and FIG. 4C shows a state after irradiation.

図5にHE染色血管像を示す。図5Aがレーザ光を照射しなかった血管断面の染色像であり、図5Bが400mJ/pulseの光強度で20回照射した血管断面のHE染色像を示す。図にしめすように、レーザ照射した血管において血管壁の伸展拡張が認められた。   FIG. 5 shows an HE-stained blood vessel image. FIG. 5A shows a stained image of a blood vessel cross section that was not irradiated with laser light, and FIG. 5B shows an HE stained image of a blood vessel cross section irradiated 20 times with a light intensity of 400 mJ / pulse. As shown in the figure, extension and expansion of the blood vessel wall was observed in the blood vessel irradiated with laser.

図6に偏光顕微鏡による観察像を示す。図6Aがレーザ光を照射しなかった血管断面の観察像である。図6B、図6C及び図6Dは、それぞれ0.17J/pulseの強度で20回、0.41J/pulseの強度で20回、0.81J/pulseの強度で20回照射した血管の断面の観察像を示す。   FIG. 6 shows an observation image with a polarizing microscope. FIG. 6A is an observation image of a blood vessel cross section that was not irradiated with laser light. FIG. 6B, FIG. 6C, and FIG. 6D show observation images of a cross section of a blood vessel irradiated 20 times with an intensity of 0.17 J / pulse, 20 times with an intensity of 0.41 J / pulse, and 20 times with an intensity of 0.81 J / pulse, respectively. .

図に示すように、0.41J/pulse以上の強度の光を照射した場合、血管壁の内膜側で熱と圧力の影響により、コラーゲン繊維が伸展し、繊維の配向が揃っていた。   As shown in the figure, when irradiated with light having an intensity of 0.41 J / pulse or more, collagen fibers were stretched and aligned by the influence of heat and pressure on the inner membrane side of the blood vessel wall.

さらに、レーザ光を照射した血管及び照射しない血管について、引張試験で血管の機械特性値を測定した。引張り試験は、自動ステージ(シグマ光機社)で血管を引張り、ロードセル(エー・アンド・ディー社)を用いて応力を計測した。図7に引張試験の方法の概要を示す。図8に引張試験による血管の応力ひずみ線図を示す。   Furthermore, with respect to blood vessels irradiated with laser light and blood vessels not irradiated, mechanical property values of the blood vessels were measured by a tensile test. In the tensile test, a blood vessel was pulled with an automatic stage (Sigma Kogyo Co., Ltd.), and the stress was measured using a load cell (A & D Co.). FIG. 7 shows an outline of the tensile test method. FIG. 8 shows a stress-strain diagram of a blood vessel by a tensile test.

0.8J/pulseの強度での100回照射後、エラスチン領域では照射しなかった血管との差異は認められなかった。一方、コラーゲン領域では、特性が変化していた。この結果は、レーザ照射によりコラーゲンの特性が変化し、血管壁が硬くなる傾向があることを示している。なお、図中、ひずみが1弱までの領域がエラスチンの寄与が大きいエラスチン領域であり、ひずみがそれより大きい、応力ひずみ線の傾きが大きくなる領域がコラーゲンの寄与が大きいコラーゲン領域である。   After 100 irradiations with an intensity of 0.8 J / pulse, there was no difference from the unirradiated blood vessels in the elastin region. On the other hand, the characteristics changed in the collagen region. This result shows that the characteristics of collagen are changed by laser irradiation and the blood vessel wall tends to become hard. In the figure, the region where the strain is less than 1 is the elastin region where the contribution of elastin is large, and the region where the strain is larger and the inclination of the stress strain line is large is the collagen region where the contribution of collagen is large.

さらに、1300J/pulseの強度で100回照射し、照射前、照射直後、照射後1分、3分及び10分の血管壁の拡張の変動を測定した。血管壁の拡張は、撮影した画像から算出した。   Further, irradiation was performed 100 times at an intensity of 1300 J / pulse, and the fluctuations in the expansion of the vascular wall were measured before irradiation, immediately after irradiation, 1 minute, 3 minutes and 10 minutes after irradiation. The expansion of the blood vessel wall was calculated from the captured image.

図9に結果を示す。図9中縦軸は血管外径を示し、横軸は血管の流れ方向の位置を示す。横軸の0は、光伝送ファイバーの先端位置になる。図9に示すように、1300J/pulseの強度で100回照射した場合、10分後でも血管の拡張状態が保持されていた。   FIG. 9 shows the result. In FIG. 9, the vertical axis represents the blood vessel outer diameter, and the horizontal axis represents the position in the blood flow direction. 0 on the horizontal axis is the tip position of the optical transmission fiber. As shown in FIG. 9, when the irradiation was performed 100 times with an intensity of 1300 J / pulse, the dilated state of the blood vessel was maintained even after 10 minutes.

実施例2 カテーテル内照射法におけるレーザ誘起水蒸気泡の検討
Ho:YAGレーザ装置によりベア照射法およびカテーテル内照射法でレーザを照射したときの水中で発生するHo:YAGレーザ誘起水蒸気気泡の動態を調べ、血管壁に与える影響を検討した。
Example 2 Examination of laser-induced water vapor bubbles in intra-catheter irradiation
We investigated the dynamics of Ho: YAG laser-induced water vapor bubbles generated in water when the laser was irradiated by the Ho: YAG laser device using the bare irradiation method and the intra-catheter irradiation method, and the influence on the blood vessel wall was investigated.

Ho:YAGレーザ装置として、 医療用に認可されているHo:YAGレーザ治療装置 (波長2.1μm)(IH102、ニーク、東京)を用意した。一次冷却水冷、二次冷却空冷の閉サイクル冷却システムが一体となっている。レーザ光はコア径600μm、外径1000μmの専用の石英光ファイバー(ファイバーガイド600、ニーク、東京)で伝送した。光ファイバー出射端での最大エネルギーは1300mJ/pulseと、上記のHo:YAGレーザ装置♯1、♯2と比較して高出力であった。繰り返し周波数は、照射対象における熱の影響を少なくするため、このレーザ装置の最低周波数である2.5Hzとした。レーザパルス波形の半値全幅は、出射端でのパルスエネルギーが400mJ/pulseのとき、170μsであった。外部装置のタイミング制御を可能にするため、レーザ励起用フラッシュランプ光をシリコンフォトダイオード(S2281、浜松ホトニクス、静岡)で計測し、電圧を外部に出力した。   As a Ho: YAG laser device, a Ho: YAG laser treatment device (wavelength 2.1 μm) approved for medical use (IH102, Nikke, Tokyo) was prepared. A closed cycle cooling system of primary cooling water cooling and secondary cooling air cooling is integrated. The laser beam was transmitted by a dedicated quartz optical fiber (fiber guide 600, Nikke, Tokyo) with a core diameter of 600 μm and an outer diameter of 1000 μm. The maximum energy at the output end of the optical fiber was 1300 mJ / pulse, which was a higher output than the Ho: YAG laser devices # 1 and # 2. The repetition frequency was set to 2.5 Hz, which is the lowest frequency of this laser device, in order to reduce the influence of heat on the irradiation target. The full width at half maximum of the laser pulse waveform was 170 μs when the pulse energy at the emission end was 400 mJ / pulse. In order to enable timing control of the external device, the laser excitation flash lamp light was measured with a silicon photodiode (S2281, Hamamatsu Photonics, Shizuoka), and the voltage was output to the outside.

発生する気泡は、time-resolved flash photographyにより撮影した。time-resolved flash photographyとは繰り返し起こる高速現象を撮影することができる時間分解撮像法である[T. G. van Leeuwen et al., Lasers Surg Med, vol. 11, pp. 26-34, 1991]。撮影した気泡の写真から気泡の寸法を算出した。気泡は光ファイバーを軸に対称と仮定し、気泡を光ファイバー垂直方向に1ピクセルずつ分割し、その円柱を積分して体積とした。   The generated bubbles were photographed by time-resolved flash photography. Time-resolved flash photography is a time-resolved imaging method that can capture repetitive high-speed phenomena [T. G. van Leeuwen et al., Lasers Surg Med, vol. 11, pp. 26-34, 1991]. The bubble size was calculated from the photographed bubble. The bubble was assumed to be symmetric about the optical fiber, and the bubble was divided pixel by pixel in the vertical direction of the optical fiber, and the cylinder was integrated into the volume.

また、気泡を高速度カメラにより撮影した。高速度カメラは1秒間に数百−数万枚の高速撮影を行い、一現象を高速時間分解で可視化する装置である。512×512ピクセルの解像度で10000フレーム/sの撮影が可能な、高速度カメラ(FASTCAM APX RS、フォトロン、東京)を用いて撮影を行った。0.75倍の対物レンズを取り付けた実体顕微鏡(SZX7、オリンパス、東京)の上に高速度カメラを設置した。恒温槽(縦260mm、横380mm、深さ160mm)を37℃の純水で満たし、水面下約10mmに光ファイバーを水面に平行に設置した。恒温槽水面上方約15mmに対物レンズを設置して気泡を撮影した。メタルハライドランプ(LS-M350、住田光学ガラス、埼玉)を用いて、水面上方約20mmより連続照明を行った。対物レンズとメタルハライドランプの角度は約60°とした。高速度カメラのフレームレートは10000フレーム/s、シャッタースピードは1/30000sに設定した。高速度カメラに撮影開始はディレイジェネレータ(WF1944A、NF回路ブロック、横浜)からのTTL信号により行った。気泡の寸法を撮影した写真から求めた。   Bubbles were taken with a high-speed camera. A high-speed camera is a device that performs high-speed shooting of several hundred to several tens of thousands of images per second and visualizes one phenomenon by high-speed time resolution. Images were taken using a high-speed camera (FASTCAM APX RS, Photoron, Tokyo) that can capture 10,000 frames / s with a resolution of 512 x 512 pixels. A high-speed camera was installed on a stereo microscope (SZX7, Olympus, Tokyo) equipped with a 0.75x objective lens. A thermostatic bath (260 mm long, 380 mm wide, 160 mm deep) was filled with pure water at 37 ° C., and an optical fiber was installed approximately 10 mm below the water surface in parallel with the water surface. An objective lens was installed approximately 15 mm above the water surface of the thermostatic bath to photograph the bubbles. Using a metal halide lamp (LS-M350, Sumita Optical Glass, Saitama), continuous illumination was performed from approximately 20 mm above the water surface. The angle between the objective lens and the metal halide lamp was about 60 °. The frame rate of the high-speed camera was set to 10,000 frames / s, and the shutter speed was set to 1 / 30000s. The high-speed camera started shooting using a TTL signal from a delay generator (WF1944A, NF circuit block, Yokohama). The bubble size was determined from the photograph taken.

光ファイバーは、600μmのものを用いた。繰り返し周波数は2.5Hzとした。光ファイバー出射端でのレーザエネルギーは100−1000mJ/pulseとした。   An optical fiber having a thickness of 600 μm was used. The repetition frequency was 2.5 Hz. The laser energy at the output end of the optical fiber was 100-1000 mJ / pulse.

本発明者らは図10に示すように、光ファイバー先端をカテーテル先端より内側に位置させて照射する方法を報告している[E. Nakatani et al., Proc. of SPIE, vol. 6084, pp. 60840W-6, 2006]。この方法を用いれば、同じレーザエネルギーで気泡の形状を変えることが可能である。この照射法の実験には上記のHo:YAGレーザ装置、コア径600μm、外径1000μmの光ファイバーを使用した。留置針(サーフローF&F 16G×21/2”、テルモ、東京) のカテーテル(外径:1.7mm、内径:1.3mm)先端から1−5mm内側に光ファイバー先端を位置させ、同様に気泡の撮影を行った。繰り返し周波数は2.5Hzとした。光ファイバー出射端でのレーザエネルギーは200−800mJ/pulseとした。以下光ファイバー単体の照射法をベア照射法、カテーテル先端からxmm内側に光ファイバー先端を位置させる照射方法をカテーテル内照射法(xmm)と記述することにする。 As shown in FIG. 10, the present inventors have reported a method of irradiating an optical fiber tip positioned inside the catheter tip [E. Nakatani et al., Proc. Of SPIE, vol. 6084, pp. 60840W-6, 2006]. If this method is used, it is possible to change the bubble shape with the same laser energy. In the experiment of this irradiation method, the above-mentioned Ho: YAG laser device, an optical fiber having a core diameter of 600 μm and an outer diameter of 1000 μm was used. The tip of the optical fiber is positioned 1-5mm from the tip of the catheter (outer diameter: 1.7mm, inner diameter: 1.3mm) of the indwelling needle (Surflow F & F 16G x 2 1/2 ", Terumo, Tokyo). The repetition frequency was 2.5 Hz, the laser energy at the optical fiber exit end was 200-800 mJ / pulse, and the irradiation method for the single optical fiber was the bare irradiation method, and the optical fiber tip was positioned inside xmm from the catheter tip. The method will be described as intracatheter irradiation (xmm).

図11から図15は上記のHo:YAGレーザ装置、コア径600μmの光ファイバーを用いて、照射方法をベア照射法、カテーテル内照射法としたとき、高速度カメラで撮影した気泡の形状の写真の結果を示す。図11にレーザエネルギー400mJ/pulse、ベア照射法のとき高速度カメラで撮影した各時刻における気泡の形状の写真を示す。図12にベア照射法でレーザエネルギーを変化させたときの体積最大時の気泡の形状の写真を示す。図13にレーザエネルギー400mJ/pulse、カテーテル内照射法(3mm)のとき各時刻における気泡の形状の写真を示す。図14にレーザエネルギー400mJ/pulseと一定で、カテーテル内照射法 (1、3、5mm)とカテーテル先端と光ファイバー先端の距離を変化させたときの体積最大時の気泡の形状の写真を示す。比較のため、図14にベア照射法の気泡の形状の写真も示す。図15にカテーテル内照射法(3mm)でレーザエネルギーを変化させたときの体積最大時の気泡の形状の写真を示す。図13および図14より、カテーテル内照射法の場合、気泡の前面の辺縁が後方に回り込んだ傘状の形状であることがわかる。このような気泡の場合、外形から気泡の体積を求めることができない。光ファイバー中心軸に垂直な方向の最大気泡直径を気泡の寸法として用いる。図14より計測した気泡の光ファイバー中心軸に垂直な方向の最大直径は、カテーテル内照射法(3mm)のとき3.7mm、ベア照射法のとき3.4mmであり、光ファイバーに平行方向の最大長さはそれぞれ 2.7mm、3.7mmである。したがって、光ファイバー方向と、垂直方向長さの比は0.7、1.1となり、カテーテル内照射法(3mm)で発生した気泡の形状は、光ファイバー垂直方向に広がった形状である。光ファイバー先端位置の異なる3種類のカテーテル内照射法を比較すると、カテーテル内照射法(3mm)のときが最も光ファイバー垂直方向に広がった形となった。図15より気泡の寸法を計測すると、レーザエネルギーを200、400、800mJ/pulseと変化させたとき、気泡の光ファイバー中心軸に垂直な方向の最大直径はそれぞれ 2.9、3.7、4.5mmと、レーザエネルギーの増加に伴い大きくなった。カテーテル先端と光ファイバー先端の距離の違いによる気泡の動態を比較するため、図16に図11および図13などの気泡の形状の写真より計測した、種々の照射方法の場合の光ファイバー中心軸に垂直な方向の最大気泡直径のレーザ発振開始からの時間変化を示す。Ho:YAGレーザのパルス波形も示す。図16より、例えばカテーテル内照射法(5mm)では、気泡が発生する時刻はベア照射法と比べ100μs遅い。カテーテル先端と光ファイバー先端の距離を大きくした方が、気泡がカテーテル外に到達する時刻が遅くなった。図16より、ベア照射法ではレーザの発振とともに気泡が発生し始めるが、カテーテル内照射法(5mm)ではレーザパルス強度がピーク強度の60%に減衰した時点からカテーテル外に気泡が出現する。図16より、照射方法の違いによる、光ファイバー中心軸に垂直な方向の気泡直径は、カテーテル内照射法(5mm)のときが最も大きい。図17に、図12および図15より計測した、ベア照射法、カテーテル内照射法(3mm)のときの、レーザエネルギーに対する光ファイバー中心軸に垂直な方向の最大気泡直径を示す。同じレーザエネルギーのとき、カテーテル内照射法(3mm)の方がベア照射法に比べて、光ファイバーの中心軸に垂直な方向の最大気泡直径が1.1−1.2倍である。両照射法とも照射エネルギーの増加に伴い最大気泡直径は増加している。   FIGS. 11 to 15 are photographs of the shape of bubbles taken with a high-speed camera when the Ho: YAG laser device and the optical fiber having a core diameter of 600 μm are used and the irradiation method is the bare irradiation method and the intra-catheter irradiation method. Results are shown. FIG. 11 shows a photograph of the shape of the bubble at each time taken with a high-speed camera when the laser energy is 400 mJ / pulse and the bare irradiation method is used. FIG. 12 shows a photograph of the shape of bubbles when the volume is maximum when the laser energy is changed by the bare irradiation method. FIG. 13 shows photographs of the shape of bubbles at each time when the laser energy is 400 mJ / pulse and the intra-catheter irradiation method (3 mm). FIG. 14 shows a photograph of the bubble shape at the time of maximum volume when the laser energy is constant at 400 mJ / pulse, the intra-catheter irradiation method (1, 3, 5 mm), and the distance between the catheter tip and the optical fiber tip is changed. For comparison, FIG. 14 also shows a photograph of the shape of bubbles in the bare irradiation method. FIG. 15 shows a photograph of the shape of bubbles when the volume is maximum when the laser energy is changed by the intra-catheter irradiation method (3 mm). From FIG. 13 and FIG. 14, in the case of the intra-catheter irradiation method, it can be seen that the front edge of the bubble has an umbrella shape around the rear. In the case of such bubbles, the volume of the bubbles cannot be obtained from the outer shape. The maximum bubble diameter in the direction perpendicular to the optical fiber central axis is used as the bubble size. The maximum diameter in the direction perpendicular to the central axis of the optical fiber measured from FIG. 14 is 3.7 mm for the intra-catheter irradiation method (3 mm) and 3.4 mm for the bare irradiation method, and the maximum length in the direction parallel to the optical fiber is They are 2.7mm and 3.7mm respectively. Therefore, the ratio between the optical fiber direction and the length in the vertical direction is 0.7 and 1.1, and the shape of bubbles generated by the intra-catheter irradiation method (3 mm) is a shape spreading in the vertical direction of the optical fiber. When three types of intra-catheter irradiation methods with different optical fiber tip positions were compared, the intra-catheter irradiation method (3 mm) was the most widened in the vertical direction of the optical fiber. When the bubble size is measured from Fig. 15, when the laser energy is changed to 200, 400, and 800 mJ / pulse, the maximum diameter in the direction perpendicular to the optical fiber central axis is 2.9, 3.7, and 4.5 mm, respectively. It became larger with the increase of. In order to compare the dynamics of bubbles due to the difference in the distance between the tip of the catheter and the tip of the optical fiber, it is perpendicular to the central axis of the optical fiber in the case of various irradiation methods, as measured in FIG. The time change from the start of laser oscillation of the maximum bubble diameter in the direction is shown. The pulse waveform of Ho: YAG laser is also shown. From FIG. 16, for example, in the intra-catheter irradiation method (5 mm), the time when bubbles are generated is 100 μs later than the bare irradiation method. Increasing the distance between the tip of the catheter and the tip of the optical fiber delayed the time at which the bubbles reached the outside of the catheter. As shown in FIG. 16, in the bare irradiation method, bubbles start to be generated with laser oscillation, but in the intra-catheter irradiation method (5 mm), bubbles appear outside the catheter when the laser pulse intensity attenuates to 60% of the peak intensity. From FIG. 16, the bubble diameter in the direction perpendicular to the central axis of the optical fiber due to the difference in the irradiation method is the largest in the case of the intra-catheter irradiation method (5 mm). FIG. 17 shows the maximum bubble diameter in the direction perpendicular to the optical fiber central axis with respect to the laser energy in the bare irradiation method and the intra-catheter irradiation method (3 mm) measured from FIGS. When the laser energy is the same, the maximum bubble diameter in the direction perpendicular to the central axis of the optical fiber is 1.1 to 1.2 times greater in the intra-catheter irradiation method (3 mm) than in the bare irradiation method. In both irradiation methods, the maximum bubble diameter increases with increasing irradiation energy.

カテーテル内照射法では、ベア照射法と比較して、光ファイバー垂直方向に広がった形の気泡が生じている。光ファイバー先端をカテーテル内に後退させるほど、ベア照射法と比べ気泡の形状が変わるのはカテーテル内での流体抵抗のためと思われる。光ファイバー中心軸に垂直な方向の気泡直径は、カテーテル内照射法(5mm)のときが最も大きかった。カテーテル先端と光ファイバー先端の距離を大きくした方が、気泡がカテーテル外に到達する時刻が遅くなり、例えばカテーテル内照射法(5mm)では、ベア照射法より100μs遅かった(図16)。気泡の成長速度はベア照射法にて400mJ/pulseの照射の場合、図16の傾きより8.2×10-5m3/sである。この成長速度で気泡が内径1.3×10-3mのカテーテル内前方に進行すると仮定すると、気泡界面がカテーテル内を進行する速度は62m/sと計算できる。したがって、カテーテル内照射法(5mm)の場合、気泡がカテーテル外に到達するまでにかかる時間は約80μsと求められ、上記の100μsの遅れとほぼ一致する。光ファイバーと、カテーテル先端の位置関係だけでなく、光ファイバーの外径とカテーテルの内径の大きさを変化させることにより、気泡の形状をコントロールすることも可能であると考えられる。 In the intra-catheter irradiation method, bubbles that are spread in the vertical direction of the optical fiber are generated as compared with the bare irradiation method. It seems that the bubble shape changes as the tip of the optical fiber is retracted into the catheter as compared with the bare irradiation method because of fluid resistance in the catheter. The bubble diameter in the direction perpendicular to the central axis of the optical fiber was the largest when the intra-catheter irradiation method (5 mm) was used. Increasing the distance between the distal end of the catheter and the distal end of the optical fiber delayed the time at which bubbles reached the outside of the catheter. For example, in the intra-catheter irradiation method (5 mm), it was 100 μs later than the bare irradiation method (FIG. 16). The bubble growth rate is 8.2 × 10 −5 m 3 / s from the inclination of FIG. 16 in the case of 400 mJ / pulse irradiation by the bare irradiation method. Assuming that the bubble travels forward in the catheter having an inner diameter of 1.3 × 10 −3 m at this growth rate, the speed at which the bubble interface travels in the catheter can be calculated as 62 m / s. Therefore, in the case of the intra-catheter irradiation method (5 mm), the time required for the bubbles to reach the outside of the catheter is determined to be about 80 μs, which almost coincides with the above-mentioned delay of 100 μs. It is considered that the shape of the bubble can be controlled by changing not only the positional relationship between the optical fiber and the catheter tip but also the outer diameter of the optical fiber and the inner diameter of the catheter.

図16より、同じレーザエネルギーのときカテーテル内照射法(3mm)はベア照射法と比べて、光ファイバー中心軸に垂直な方向の気泡直径が1.1−1.2倍大きかった。光ファイバー中心軸に垂直な方向の気泡成長の平均加速度を図16より求めた気泡成長速度の曲線の傾きから求めたところ、400mJ/pulse、ベア照射法のとき9.1×104m/s2であり、400mJ/pulse、カテーテル内照射法(3mm)のときは1.7×105m/s2となった。ベア照射法の方が、カテーテル内照射法(3mm)と比べて平均加速度が大きく、血管に及ぼす力は大きいと考えられる。 From FIG. 16, the bubble diameter in the direction perpendicular to the central axis of the optical fiber was 1.1 to 1.2 times larger in the intra-catheter irradiation method (3 mm) at the same laser energy than in the bare irradiation method. The average acceleration of bubble growth in the direction perpendicular to the central axis of the optical fiber was calculated from the slope of the bubble growth rate curve obtained from FIG. 16 and found to be 400 mJ / pulse and 9.1 × 10 4 m / s 2 for the bare irradiation method. , 400 mJ / pulse, and 1.7 × 10 5 m / s 2 in the case of intracatheter irradiation (3 mm). Compared to the intra-catheter irradiation method (3 mm), the bare irradiation method has a larger average acceleration and is considered to have a larger force on the blood vessels.

レーザ光による血管壁の直接加熱
赤外光を直接血管壁に照射したときの影響に関する報告としては、波長800nmのチタンサファイアレーザをラット摘出大動脈リングに照射したところ、2.5℃以上の熱が発生し、血管収縮により11%の張力増加を認めたというものがある[H. Matsuo et al., Lasers in Medical Science, vol. 15, pp. 181-187, 2000]。したがって、Ho:YAGレーザ光を直接血管壁に照射した場合、熱が発生し血管収縮が起こると考えられる。気泡中の水の密度は液体の1/1000以下であるから、吸収係数もより同程度小さい。血管内が血液や生理食塩水で満たされている状態に比べ、気泡が発生すると2.1μm光は気泡中を伝搬し[T. G. van Leeuwen et al., Lasers Surg Med, vol. 11, pp. 26-34, 1991]、血管壁に到達するようになる。図18にレーザ光による血管壁の直接加熱の見積もりの模式図を示す。例えば内径2mmの血管で見積もりを行う(図18(i))。光ファイバーの開口数を0.2とすると、血管内が血液で満たされている状態ではレーザ光はすべて血液に吸収される。4.3で計測した水中での気泡の体積から、血管壁が拡張しないと仮定して血管内の気泡を見積もると、レーザエネルギーが800mJ/pulseのとき、光ファイバー先端から8.0mmまで気泡が発生する(図18C(ii), (iii))。気泡の吸収係数を0とすると光ファイバー先端から3.5mmより前方の血管壁にはレーザ光が直接到達するようになる(図18(iii))。光ファイバー先端から3.5−8.0mmに照射されるエネルギーは約260mJと見積もることができる(図18(iv))。このエネルギーすべてがHo:YAGレーザ光の水への光侵達長である0.3mmまでの血管壁で吸収され発熱すると仮定すると、発熱は6.4℃と計算できる(図18(v))。この発熱では、収縮がおこる可能性がある。
Direct heating of blood vessel wall by laser light As a report on the effects of direct irradiation of the blood vessel wall with infrared light, when a rat-extracted aortic ring was irradiated with a 800 nm wavelength titanium sapphire laser, heat of 2.5 ° C or higher was generated. And 11% increase in tension due to vasoconstriction [H. Matsuo et al., Lasers in Medical Science, vol. 15, pp. 181-187, 2000]. Therefore, when Ho: YAG laser light is directly applied to the blood vessel wall, it is considered that heat is generated and blood vessel contraction occurs. Since the density of water in the bubbles is 1/1000 or less of that of the liquid, the absorption coefficient is about the same. Compared to the condition where blood vessels are filled with blood or saline, 2.1μm light propagates in the bubbles when bubbles are generated [TG van Leeuwen et al., Lasers Surg Med, vol. 11, pp. 26- 34, 1991] and reaches the blood vessel wall. FIG. 18 shows a schematic diagram of estimation of direct heating of the blood vessel wall by laser light. For example, the estimation is performed using a blood vessel having an inner diameter of 2 mm (FIG. 18 (i)). When the numerical aperture of the optical fiber is 0.2, all the laser light is absorbed by blood when the blood vessel is filled with blood. From the volume of bubbles in water measured in 4.3, assuming that the vessel wall does not expand and estimating the bubbles in the vessel, bubbles are generated from the tip of the optical fiber to 8.0 mm when the laser energy is 800 mJ / pulse (Fig. 18C (ii), (iii)). When the bubble absorption coefficient is 0, the laser light directly reaches the blood vessel wall ahead of 3.5 mm from the tip of the optical fiber (FIG. 18 (iii)). The energy irradiated from 3.5 to 8.0 mm from the tip of the optical fiber can be estimated to be about 260 mJ (FIG. 18 (iv)). Assuming that all of this energy is absorbed by the blood vessel wall up to 0.3 mm, which is the light penetration length of Ho: YAG laser light into water, heat generation can be calculated as 6.4 ° C. (FIG. 18 (v)). This heat generation may cause shrinkage.

カテーテル内照射法では気泡がカテーテル外に到達するまで時間がかかり、例えばカテーテル内照射法(5mm)では、図16より、気泡が発生する時刻はベア照射法と比べ100μs遅くなる。ベア照射法ではレーザの発振とともに気泡が発生し始めるが、カテーテル内照射法(5mm)ではレーザパルス波形がピークの60%になってから気泡がカテーテル外に発生し始める。したがってカテーテル内照射法の方が、気泡内から血管壁に直達するレーザエネルギーが小さくなると考えられる。上記のように発熱を見積もる。カテーテル内照射法(5mm)、レーザエネルギー400mJ/pulseの場合、気泡がカテーテル外に発生後のレーザエネルギーは213mJである。このエネルギーのうちカテーテル外に到達するエネルギーは120mJとなる。水中での気泡の体積から、血管壁が拡張しないと仮定して血管内の気泡を見積もると、カテーテル先端から4.4 mmまで気泡が発生する。気泡の吸収係数を0とするとカテーテル先端か1.75mmより前方の血管壁にはレーザ光が直接到達するようになる。カテーテル先端から1.75−4.4mmに照射されるエネルギーは約14mJと見積もることができる。このエネルギーすべてがHo:YAGレーザ光の水への光侵達長である0.3mmまでの血管壁で吸収され発熱すると仮定すると、発熱は0.67℃と計算できる。よって、カテーテル内照射法で発生した気泡では、血管壁に直達するHo:YAGレーザ光がベア照射法に比べ1桁程度小さく、血管発熱とそれに伴う血管収縮が小さいと考えられる。   In the intra-catheter irradiation method, it takes time until the bubbles reach the outside of the catheter. For example, in the intra-catheter irradiation method (5 mm), the time when the bubbles are generated is delayed by 100 μs as compared with the bare irradiation method, as shown in FIG. In the bare irradiation method, bubbles start to be generated with laser oscillation, but in the intra-catheter irradiation method (5 mm), bubbles start to be generated outside the catheter after the laser pulse waveform reaches 60% of the peak. Therefore, it is considered that the laser energy that reaches the blood vessel wall directly from the inside of the bubble is smaller in the intra-catheter irradiation method. Estimate heat generation as described above. In the case of the intra-catheter irradiation method (5 mm) and the laser energy of 400 mJ / pulse, the laser energy after bubbles are generated outside the catheter is 213 mJ. Of this energy, the energy that reaches the outside of the catheter is 120 mJ. If the bubble in the blood vessel is estimated from the volume of the bubble in water assuming that the vessel wall does not expand, the bubble is generated up to 4.4 mm from the catheter tip. If the bubble absorption coefficient is 0, the laser beam directly reaches the tip of the catheter or the blood vessel wall in front of 1.75 mm. The energy irradiated from the catheter tip to 1.75-4.4 mm can be estimated to be about 14 mJ. Assuming that all of this energy is absorbed by the blood vessel wall up to 0.3 mm, the length of penetration of the Ho: YAG laser light into water, heat generation can be calculated as 0.67 ° C. Therefore, in the bubbles generated by the intra-catheter irradiation method, the Ho: YAG laser light that reaches the blood vessel wall is about an order of magnitude smaller than the bare irradiation method, and it is considered that the blood vessel heat generation and the accompanying blood vessel contraction are small.

実施例3 Ho:YAGレーザ誘起水蒸気泡による血管拡張効果
1. Ho:YAGレーザ誘起水蒸気気泡を発生させたときの摘出ブタ頸動脈の拡張
(1) 血管外径の計測
方法 本実施例においては、生理食塩水を灌流液として用いた。
新鮮摘出ブタ頸動脈(東京芝浦臓器、東京)24本を用いた。すべての血管の一部を切り出して計測した血管断面の寸法を図19に示す。血管断面の寸法は内径:0.8−2.5mm、壁厚:0.6−0.9mmであった。今回用いた血管の内径と外径の関係を最小二乗法により求めたところ、相関係数0.93で以下の関係があった。
(内径)=1.1×(外径)−1.9
単位はmmである。以下、計測した血管外径から上記式を用いて内径を推定した。実験系の模式図を図20に示す。血管は摘出時に血流方向の張力が開放され寸法が変化するので、J. Perreeらの実験方法[J. Perreeet al., Am J Pathol, vol. 163, pp. 1743-1750, 2003]と同様に血管を長軸方向に150%伸展させた状態で固定することとした。血管温度37℃、血管内圧45−90mmHg、流量75−100ml/minとなるように血管内を生理食塩水で加温加圧灌流した。この状態での血管外径は2.6−4.8mmであり、推定内径は0.9−3.7mmであった。実験には実施例2で用いた医療用に認可されているHo:YAGレーザ装置を使用した。レーザ光はコア径600μm、外径1000μmの光ファイバーで伝送した。恒温槽を37℃の純水で満たし、水面下約10mmに血管を水面に平行に設置した。Yコネクタでシールしつつ、血管内に光ファイバーを挿入し、Ho:YAGレーザ光を照射した。照射方法は実施例2で述べた、ベア照射法、カテーテル内照射法(1、3、5mm)とした。光ファイバー出射端でのレーザエネルギーは200、400、800mJ/pulseとし、照射は経時的観察を行いながら200回まで行った。血管外形の撮影を実施例2の気泡撮影と同様の方法で、高速度カメラを用いて血管の上方より行った。水面と顕微鏡のレンズの距離は約15mmとした。照明光と水面の距離は約20mm、照明光と顕微鏡のレンズの角度は約60°とした。得られた血管外形の写真より血管外径を求め、上記式より内径を算出した。
Example 3 Vasodilation effect by Ho: YAG laser-induced water vapor bubbles Dilation of the isolated porcine carotid artery when Ho: YAG laser induced water vapor bubbles are generated (1) Measuring method of blood vessel outer diameter In this example, physiological saline was used as a perfusate.
Twenty-four freshly isolated porcine carotid arteries (Tokyo Shibaura Organ, Tokyo) were used. FIG. 19 shows dimensions of a blood vessel cross section measured by cutting out a part of all blood vessels. The dimensions of the blood vessel cross section were an inner diameter of 0.8-2.5 mm and a wall thickness of 0.6-0.9 mm. The relationship between the inner diameter and outer diameter of the blood vessel used this time was obtained by the method of least squares.
(Inner diameter) = 1.1 × (Outer diameter) −1.9
The unit is mm. Hereinafter, the inner diameter was estimated from the measured blood vessel outer diameter using the above formula. A schematic diagram of the experimental system is shown in FIG. Since blood vessels are released from tension in the blood flow direction and their dimensions change at the time of excision, similar to the experimental method of J. Perree et al. [J. Perree et al., Am J Pathol, vol. 163, pp. 1743-1750, 2003] The blood vessels were fixed in a state where they were extended 150% in the long axis direction. The blood vessel was heated and pressurized perfused with physiological saline so that the blood vessel temperature was 37 ° C., the blood pressure was 45-90 mmHg, and the flow rate was 75-100 ml / min. In this state, the blood vessel outer diameter was 2.6-4.8 mm, and the estimated inner diameter was 0.9-3.7 mm. In the experiment, the Ho: YAG laser device approved for medical use used in Example 2 was used. Laser light was transmitted through an optical fiber having a core diameter of 600 μm and an outer diameter of 1000 μm. The thermostatic bath was filled with pure water at 37 ° C., and a blood vessel was placed approximately 10 mm below the water surface in parallel with the water surface. While sealing with a Y connector, an optical fiber was inserted into the blood vessel and irradiated with Ho: YAG laser light. The irradiation method was the bare irradiation method and intra-catheter irradiation method (1, 3, 5 mm) described in Example 2. The laser energy at the output end of the optical fiber was 200, 400, and 800 mJ / pulse, and irradiation was performed up to 200 times while observing with time. The blood vessel outline was imaged from above the blood vessel using a high-speed camera in the same manner as the bubble imaging in Example 2. The distance between the water surface and the microscope lens was about 15 mm. The distance between the illumination light and the water surface was about 20 mm, and the angle between the illumination light and the microscope lens was about 60 °. The outer diameter of the blood vessel was determined from the obtained photograph of the outer shape of the blood vessel, and the inner diameter was calculated from the above formula.

結果
高速度カメラで撮影した1回目のレーザ照射時のレーザ発振開始を起点とする各時刻の血管外形の写真を図21AおよびB、図22AおよびBに示す。図21AおよびB、図22AおよびBはそれぞれベア照射法およびカテーテル内照射法(3mm)を用いた場合であり、レーザエネルギーは400mJ/pulseとした。高速度カメラで撮影した各レーザ照射回数におけるレーザ照射前、照射中、照射後の血管外形の写真を図23AおよびB、図24AおよびBに示す。図23AおよびB、図24AおよびBはそれぞれベア照射法およびカテーテル内照射法(3mm)を用いた場合であり、レーザエネルギーは400mJ/pulseとした。図25、図26に図23、図24の写真より計測した血管の光ファイバーまたはカテーテル先端からの距離に対する血管外径を示す。図25、図26を見ると、血管は一発のレーザ照射ごとに拡張収縮を繰り返すが、一連のレーザ照射後の血管外径は照射前より増加している。図25より、ベア照射法にて、レーザエネルギー400mJ/pulse、200回照射後の血管外径は、光ファイバー先端後方3.0mmから光ファイバー先端前方5.0mmの範囲で初期外径より1.5−2.1mm増加している。最も外径が増加した位置は光ファイバー先端の前方0.4mmの位置であった。図26より、カテーテル内照射法(3mm)にてレーザエネルギー400mJ/pulse、200回照射後の血管外径は、カテーテル先端後方1.5mmからカテーテル先端前方6.0mmの範囲で初期外径より0.4−0.8mm増加している。最も外径が増加した位置はカテーテル先端前方4.3mmの位置であった。図27にベア照射法およびカテーテル内照射法(3mm)の場合のレーザエネルギー400mJ/pulse、200回照射後に血管外径が初期外径と比較して最も増加していた位置における、1回目のレーザ照射中の血管外径の時間変化を示す。カテーテル内照射法(3mm)の場合、気泡がカテーテル外に到達するのに50μs程度かかると考えられるので、レーザ発振後50μsより気泡が成長すると仮定して、血管壁の外側への変位(拡張)の平均速度を計算する。レーザ照射1回目の血管壁の外側への変位(拡張)の平均速度はベア照射法、レーザエネルギー400mJ/pulseのとき3.7m/s、カテーテル内照射法(3mm) 、レーザエネルギー400mJ/pulseのとき3.6m/sとなり、同程度であった。血管壁の外側への変位(拡張)の速度の傾きより加速度を求めると、ベア照射法、レーザエネルギー400mJ/pulseのとき6.0×104m/s2、カテーテル内照射法(3mm) 、レーザエネルギー400mJ/pulseのとき3.1×104m/s2となり、ベア照射法が約2倍大きくなった。血管外径が初期外径と比較してレーザ200回照射後に最も増加していた位置の、各レーザ照射回数における血管外径を図28から図30に示す。血管外径は1回目レーザ照射前の外径(初期外径)で正規化し、平均(n=3)をとった値を表示した。この値を血管外径拡張率と呼ぶことにする。図28はレーザの照射回数に対する血管外径拡張率(ベア照射法、レーザエネルギー変化)を示す。200mJ/pulseの場合200回照射後の血管外径拡張率は1.1であった。200回照射後の推定血管内径は初期の推定血管内径の1.3倍の拡張であった。血管外径拡張率は400mJ/pulseの場合1.4、800mJ/pulseの場合1.2と400mJ/pulseの方が大きい。最終的に到達した血管外径はそれぞれ4.9mm、5.0mmと同程度であった。図29はレーザの照射回数に対する血管外径拡張率(照射方法変化、レーザエネルギー400mJ/pulse一定) を示す。ベア照射法の場合、200回目のパルス中の血管外径拡張率は1.6であり、照射後も血管外径拡張率は1.5と拡張を保持した。このとき200回照射後の推定血管内径は初期の推定血管内径の2.2倍の拡張であった。一方、カテーテル内照射法(5mm)、200回目の照射中は初期外径の1.6倍に拡張したが、照射後は1.2倍になった。このとき200回照射後の推定血管内径は初期の推定血管内径の1.4倍であった。ベア照射法はカテーテル内照射法と比べ、レーザ照射中の最大血管外径とレーザ照射後の血管外径との差が小さく、拡張が保持された。図30はレーザ光の照射回数に対する血管外径拡張率(カテーテル内照射法(3mm)、レーザエネルギー変化) を示す。レーザ200回照射後の血管外径拡張率はどの条件でも1.2−1.3と同程度であった。このときの推定血管内径は初期の推定血管内径の1.6−1.9倍であった。図28から図30において、血管外径拡張率は照射回数とともに大きくなったが、照射100回程度で飽和している。
Results FIGS. 21A and 21B, and FIGS. 22A and 22B show photographs of the blood vessel outline at each time starting from the start of laser oscillation at the time of the first laser irradiation taken by the high-speed camera. FIGS. 21A and B, and FIGS. 22A and B show cases where the bare irradiation method and the intra-catheter irradiation method (3 mm) were used, respectively, and the laser energy was 400 mJ / pulse. FIGS. 23A and 23B and FIGS. 24A and 24B show photographs of blood vessel outlines before, during, and after laser irradiation for each number of times of laser irradiation taken with a high-speed camera. FIGS. 23A and B and FIGS. 24A and B show the cases where the bare irradiation method and the intra-catheter irradiation method (3 mm) were used, respectively, and the laser energy was 400 mJ / pulse. FIG. 25 and FIG. 26 show the blood vessel outer diameter with respect to the distance from the optical fiber or catheter tip of the blood vessel measured from the photographs of FIG. 23 and FIG. 25 and 26, the blood vessel repeats expansion and contraction for each laser irradiation, but the blood vessel outer diameter after a series of laser irradiations is larger than that before irradiation. From Fig. 25, the outer diameter of the blood vessel after irradiation with laser energy of 400mJ / pulse and 200 times with the bare irradiation method increased by 1.5-2.1mm from the initial outer diameter in the range of 3.0mm behind the optical fiber tip to 5.0mm ahead of the optical fiber tip. ing. The position where the outer diameter increased the most was 0.4 mm in front of the tip of the optical fiber. From FIG. 26, the blood vessel outer diameter after irradiation 200 times with laser energy of 400 mJ / pulse by intra-catheter irradiation method (3 mm) is 0.4-0.8 from the initial outer diameter in the range of 1.5 mm behind the catheter tip to 6.0 mm forward of the catheter tip. mm has increased. The position where the outer diameter increased the most was 4.3 mm in front of the catheter tip. FIG. 27 shows the first laser at a position where the outer diameter of the blood vessel increased most compared to the initial outer diameter after 200 times of irradiation with laser energy of 400 mJ / pulse in the case of bare irradiation method and intra-catheter irradiation method (3 mm). The time change of the blood vessel outer diameter during irradiation is shown. In the case of intra-catheter irradiation (3 mm), it is considered that it takes about 50 μs for the bubble to reach the outside of the catheter, so it is assumed that the bubble grows from 50 μs after laser oscillation. Calculate the average speed. The average rate of displacement (expansion) to the outside of the blood vessel wall for the first time of laser irradiation is 3.7 m / s with bare irradiation method, laser energy 400 mJ / pulse, irradiation method with catheter (3 mm), and laser energy 400 mJ / pulse. It was 3.6 m / s, which was similar. Acceleration is obtained from the gradient of the velocity of displacement (dilation) to the outside of the blood vessel wall, the bear irradiation method, 6.0 × 10 4 m / s 2 when the laser energy is 400 mJ / pulse, intracatheter irradiation method (3 mm), laser energy At 400 mJ / pulse, it was 3.1 × 10 4 m / s 2 , and the bare irradiation method was about twice as large. FIG. 28 to FIG. 30 show the blood vessel outer diameter at each number of times of laser irradiation at the position where the blood vessel outer diameter increased most after the laser irradiation 200 times compared with the initial outer diameter. The blood vessel outer diameter was normalized by the outer diameter before the first laser irradiation (initial outer diameter), and the average value (n = 3) was displayed. This value is called the blood vessel outer diameter expansion rate. FIG. 28 shows the blood vessel outer diameter expansion rate (bear irradiation method, laser energy change) with respect to the number of times of laser irradiation. In the case of 200 mJ / pulse, the blood vessel outer diameter expansion rate after 200 irradiations was 1.1. The estimated vessel inner diameter after 200 irradiations was 1.3 times larger than the initial estimated vessel inner diameter. The blood vessel outer diameter expansion rate is 1.4 in the case of 400 mJ / pulse, 1.2 in the case of 800 mJ / pulse, and 400 mJ / pulse is larger. The blood vessel outer diameter finally reached was about 4.9 mm and 5.0 mm, respectively. FIG. 29 shows the blood vessel outer diameter expansion rate (irradiation method change, laser energy 400 mJ / pulse constant) with respect to the number of times of laser irradiation. In the case of the bare irradiation method, the blood vessel outer diameter expansion rate during the 200th pulse was 1.6, and the blood vessel outer diameter expansion rate was maintained at 1.5 after irradiation. At this time, the estimated blood vessel inner diameter after 200 irradiations was an expansion of 2.2 times the initial estimated blood vessel inner diameter. On the other hand, the intra-catheter irradiation method (5 mm) expanded to 1.6 times the initial outer diameter during the 200th irradiation, but 1.2 times after the irradiation. At this time, the estimated blood vessel inner diameter after 200 irradiations was 1.4 times the initial estimated blood vessel inner diameter. Compared with the intra-catheter irradiation method, the bare irradiation method had a smaller difference between the maximum blood vessel outer diameter during laser irradiation and the blood vessel outer diameter after laser irradiation, and the expansion was maintained. FIG. 30 shows the blood vessel outer diameter expansion rate (intracatheter irradiation method (3 mm), laser energy change) with respect to the number of times of laser beam irradiation. The blood vessel outer diameter expansion rate after 200 laser irradiations was about 1.2-1.3 in all conditions. The estimated blood vessel inner diameter at this time was 1.6 to 1.9 times the initial estimated blood vessel inner diameter. In FIG. 28 to FIG. 30, the blood vessel outer diameter expansion rate increases with the number of irradiations, but is saturated at about 100 irradiations.

(2) 血管の機械的特性変化
方法
血管のレーザ照射部位および、非照射部位のヤング率計測を行った。上記のように血管を灌流装置に設置し、血管内レーザ照射を行った。照射方法はベア照射法、カテーテル内照射法(3mm)とした。レーザエネルギーは800mJ/pulse、照射回数は20回または100回を用いた。レーザ照射部位および、非照射部位を長さ約3mmのリング状に切り、自動ステージ(SGSP33-100(x)、シグマ光機、東京) およびコントローラ(SHOT-202、シグマ光機、東京)を用いて0.5mm/sの一定速度で引っ張り、ロードセル(LC-4101、エーアンドデー、東京)で荷重を測定して、応力ひずみ線図を得た。血管壁は低ひずみ領域ではエラスチン繊維、高ひずみ領域ではコラーゲン繊維が加重を分担しているとされている[R. L. Armentano et al., American Journal of Physiology, vol. 260, pp. H1870-H1877, 1991; R. E. Shadwick et al., Journal of Experimental Biology, vol. 202, pp. 3305-3313, 1999]ので、低ひずみ領域のヤング率をエラスチン繊維のヤング率、高ひずみ領域のヤング率をコラーゲン繊維のヤング率と考える。
(2) Mechanical property change method of blood vessel Young's modulus of a blood vessel irradiation site and a non-irradiation site of the blood vessel was measured. As described above, the blood vessel was placed in the perfusion apparatus, and intravascular laser irradiation was performed. The irradiation method was a bare irradiation method and an intra-catheter irradiation method (3 mm). The laser energy was 800 mJ / pulse, and the number of irradiations was 20 or 100 times. Cut the laser irradiated part and non-irradiated part into a ring of about 3 mm in length, and use an automatic stage (SGSP33-100 (x), Sigma Kogyo, Tokyo) and a controller (SHOT-202, Sigma Kogyo, Tokyo) The sample was pulled at a constant speed of 0.5 mm / s and the load was measured with a load cell (LC-4101, A & D, Tokyo) to obtain a stress strain diagram. In the low-strain region, elastin fibers are shared in the blood vessel wall, and in the high-strain region, collagen fibers are said to share the weight [RL Armentano et al., American Journal of Physiology, vol. 260, pp. H1870-H1877, 1991 RE Shadwick et al., Journal of Experimental Biology, vol. 202, pp. 3305-3313, 1999], the Young's modulus of the low strain region is the Young's modulus of the elastin fiber and the Young's modulus of the high strain region is the Young of the collagen fiber. Think of it as a rate.

結果
カテーテル内照射法(3mm)にて、レーザエネルギー800mJ/pulse、100回レーザパルスを照射した場合のレーザ照射部位および、非照射部位の応力ひずみ線図を図31に示す。この応力ひずみ線図の傾きより、エラスチン繊維のヤング率(Ee)およびコラーゲン繊維のヤング率(Ec)を求めた。レーザ照射部位および非照射部位のエラスチン繊維のヤング率(Ee)を図32に、レーザ照射部位および非照射部位のコラーゲン繊維のヤング率(Ec)を図33に示す。レーザ照射条件は照射方法:ベア照射法およびカテーテル内照射法(3mm)、レーザエネルギー:800mJ/pulse一定、レーザパルス照射回数:20回および100回とした。Ee、Ecはともに、レーザ照射部位の方が非照射部位より大きくなった。例えばカテーテル内照射法(3mm)にて、レーザエネルギー800mJ/pulse、100回レーザパルスを照射したとき、レーザ非照射部位のEeは0.11MPaであるのに対して、レーザ照射部位のEeは0.59MPaであった。同じ照射条件のとき、レーザ非照射部位のEcは0.86MPaであるのに対して、レーザ照射部位のEcは1.82MPaであった。本実験のレーザ照射条件の中で、レーザ照射部位のEeが最大となったのはカテーテル内照射法(3mm)にてレーザエネルギー800mJ/pulse、100回レーザパルスを照射したときであった。本実験のレーザ照射条件の中で、レーザ照射部位のEcが最大となったのは、ベア照射法にてレーザエネルギー800mJ/pulse、100回レーザパルスを照射したときであった。
Results FIG. 31 shows stress-strain diagrams of the laser irradiation site and the non-irradiation site when the laser energy is 800 mJ / pulse and the laser pulse is irradiated 100 times by the intra-catheter irradiation method (3 mm). From the slope of this stress strain diagram, the Young's modulus (E e ) of the elastin fiber and the Young's modulus (E c ) of the collagen fiber were determined. FIG. 32 shows the Young's modulus (E e ) of the elastin fiber at the laser irradiation site and the non-irradiation site, and FIG. 33 shows the Young's modulus (E c ) of the collagen fiber at the laser irradiation site and the non-irradiation site. The laser irradiation conditions were as follows: irradiation method: bare irradiation method and intra-catheter irradiation method (3 mm), laser energy: constant 800 mJ / pulse, laser pulse irradiation frequency: 20 times and 100 times. Both E e and E c were larger in the laser irradiated part than in the non-irradiated part. For example, in the intra-catheter irradiation method (3 mm), when the laser energy is irradiated 100 times with a laser energy of 800 mJ / pulse, E e of the laser non-irradiated part is 0.11 MPa, whereas E e of the laser irradiated part is 0.59 MPa. Under the same irradiation conditions, the E c of the laser non-irradiated site was 0.86 MPa, whereas the E c of the laser irradiated site was 1.82 MPa. Among the laser irradiation conditions in this experiment, the maximum E e at the laser irradiation site was obtained when the laser energy was irradiated at a laser energy of 800 mJ / pulse and 100 times of laser pulses by the intra-catheter irradiation method (3 mm). In the laser irradiation conditions of this experiment, the E c of the laser irradiated portion becomes maximum, was when the laser energy 800 mJ / pulse, 100 times the laser pulses at bare irradiation method.

2.家兎大動脈内でHo:YAGレーザ誘起水蒸気気泡を発生させたときの拡張効果:in vivo動物実験
Ho:YAGレーザを血管内で照射したときの血管壁の反応には、種々の因子が寄与していると考えられるため、生体内で実験を行う必要がある。in vivoでのHo:YAGレーザ光照射による血管拡張効果を調べるため、家兎を用いて実験を行った。
2. Expansion effect of Ho: YAG laser-induced water vapor bubbles in the rabbit aorta: in vivo animal experiments
Since various factors are thought to contribute to the reaction of the blood vessel wall when the Ho: YAG laser is irradiated in the blood vessel, it is necessary to conduct experiments in vivo. In order to investigate the vasodilation effect of Ho: YAG laser irradiation in vivo, we conducted experiments using rabbits.

方法
2羽の日本白色種家兎(雄、2.4kg)を用いて実験を行った。家兎の耳介辺縁静脈よりペントバルビタールナトリウムを30mg/kg投与し、全身麻酔をかけた。外科的に露出した大腿動脈をカットダウンし、4Fr.のシース (外径:1.88mm、内径:1.58mm、長さ:250mm) (CS 40P25 TS、メディキット)を逆行性に大動脈まで挿入、留置した。このシースはカテーテル内照射法における留置針のカテーテルで発生した気泡と同じ大きさの気泡が発生するように選んだ。ここで、血管内超音波装置(intravascular ultrasound: IVUS)を用いて家兎大動脈の内径を計測したところ2.0−3.5mmであった。シースの逆止弁ポートより光ファイバー(コア径:600μm、外径:1000μm)を挿入した。シース先端から3mm内側に光ファイバー先端を位置させ照射を行った。以下この照射方法をシース内照射法(3mm)と呼ぶ。レーザエネルギーは100mJ/pulseまたは200mJ/pulseとして、下行大動脈内で20回照射した。レーザ照射直後または1週間後に家兎を犠牲死させ、直後に大動脈を10%ホルマリン灌流固定してから摘出した。血管のHE染色標本を作成した。
Method
The experiment was conducted using two Japanese white varieties (male, 2.4 kg). Pentobarbital sodium was administered at 30 mg / kg from the auricular marginal vein of the rabbit, and general anesthesia was applied. Cut down the surgically exposed femoral artery and insert a 4 Fr. sheath (outer diameter: 1.88 mm, inner diameter: 1.58 mm, length: 250 mm) (CS 40P25 TS, Medikit) retrogradely into the aorta did. This sheath was selected so that bubbles having the same size as bubbles generated in the catheter of the indwelling needle in the intra-catheter irradiation method were generated. Here, the inner diameter of the rabbit aorta was measured using an intravascular ultrasound (IVUS) and found to be 2.0-3.5 mm. An optical fiber (core diameter: 600 μm, outer diameter: 1000 μm) was inserted from the check valve port of the sheath. Irradiation was performed with the optical fiber tip positioned 3 mm inside the sheath tip. Hereinafter, this irradiation method is referred to as an intra-sheath irradiation method (3 mm). The laser energy was 100 mJ / pulse or 200 mJ / pulse, and 20 irradiations were performed in the descending aorta. Rabbits were sacrificed immediately after laser irradiation or one week later, and immediately after the aorta was fixed with 10% formalin perfusion and removed. A blood vessel HE-stained specimen was prepared.

結果
図34AおよびBにin vivoレーザ光照射後の家兎大動脈HE染色標本画像を示す。それぞれ、(a)シース内照射法(3mm)、レーザエネルギー100mJ/pulse、20回照射直後、(b) (a)のコントロール部位、(c) シース内照射法(3mm)、レーザエネルギー100mJ/pulse、20回照射1週間後、(d) (c)のコントロール部位である。(a)では(b)に比べ、中膜の弾性板の伸展が見られる。1週間後の(c)でも(d)に比べて中膜の弾性板が伸展しており、(a)の伸展状態が持続している。(a)、(c)ともに内弾性板は伸展していない。(a)、(c)ともに血管解離は見られない。
Results FIGS. 34A and 34B show rabbit aorta HE-stained specimen images after in vivo laser light irradiation. (A) In-sheath irradiation method (3 mm), laser energy 100 mJ / pulse, immediately after 20 irradiations, (b) (a) control part, (c) In-sheath irradiation method (3 mm), laser energy 100 mJ / pulse 1 week after 20 irradiations, (d) (c) is the control site. In (a), as compared with (b), extension of the elastic plate of the media is seen. In (c) after one week, the elastic membrane of the media is stretched compared to (d), and the stretched state in (a) is maintained. In both (a) and (c), the inner elastic plate is not extended. In both (a) and (c), no vascular dissociation is observed.

3. 考察
(1)Ho:YAGレーザ誘起水蒸気気泡による血管拡張の原理
Ho:YAGレーザ誘起水蒸気気泡により摘出ブタ頸動脈が外径で初期外径の1.1−1.5倍に拡張した。このときの推定血管内径は初期の推定血管内径の1.3−2.2倍であった。本章では健常血管を対象に行ったが、血管形成術は狭窄をきたした血管を対象としているため、この結果を病的な血管にそのまま適応できる訳ではない。短時間加温型血管形成術、Photo-thermo dynamic balloon angioplasty: PTDBAでは約70℃、15sの加温を行いつつ、2atm程度の低圧力で良好な拡張効果が報告されている[T. Arai et al., Proc. of SPIE, vol. 2671, pp. 36-39, 1996; N. Shimazaki et al., Proc. of SPIE, vol. 6424, pp. 642424, 2007等]。このPTDBAによる血管拡張を参考にしながら、Ho:YAGレーザ誘起水蒸気気泡による血管拡張に関して論じる。
3. Discussion (1) Principle of vasodilation by Ho: YAG laser-induced water vapor bubbles
Ho: YAG laser-induced water vapor bubbles expanded the isolated porcine carotid artery with an outer diameter of 1.1-1.5 times the initial outer diameter. The estimated blood vessel inner diameter at this time was 1.3-2.2 times the initial estimated blood vessel inner diameter. In this chapter, we performed healthy blood vessels. However, angioplasty is intended for blood vessels that have become stenotic, and this result cannot be applied directly to pathological blood vessels. A short-time warming angioplasty, Photo-thermo dynamic balloon angioplasty: PTDBA has been reported to have a good dilation effect at a low pressure of about 2 atm while heating at about 70 ° C for 15s [T. Arai et al. al., Proc. of SPIE, vol. 2671, pp. 36-39, 1996; N. Shimazaki et al., Proc. of SPIE, vol. 6424, pp. 642424, 2007, etc.]. With reference to this vasodilation by PTDBA, we discuss vasodilation by Ho: YAG laser-induced water vapor bubbles.

図34の家兎大動脈内でのHo:YAGレーザ照射後のHE染色標本画像は中膜の弾性板の伸展を示している。したがってレーザ照射後のEeの増加は、in vivo、ex vivoの違いはあるが、エラスチン繊維が伸展したためだと考えられる。すなわちHo:YAGレーザ誘起水蒸気気泡で血管壁のエラスチン繊維を伸展固定させることができる。図32においてベア照射法とカテーテル内照射法を比較すると、ベア照射法にて100回照射を行った血管のEeはレーザ非照射部位のEeの3.8倍であるのに対し、カテーテル内照射法は5.4倍と大きく変化している。これはカテーテル内照射法の方がエラスチン繊維の伸展が同程度大きいことを示唆している。実施例2に示すように、カテーテル内照射法はベア照射法に比べ、光ファイバー中心軸に垂直な方向の気泡直径、成長加速度が大きく、拡張圧力の大きな気泡が発生するためと考えられる。PTDBAで摘出ブタ頸動脈を約70℃、15sの加温を行いつつ、2atmの拡張を行った血管のEeは0.16MPaと報告されている[N. Shimazaki et al., Proc. of SPIE, vol.6424, pp. 642424, 2007]。また、コントロール部位のEeは0.11MPaと報告されている。一方、カテーテル内照射法(3mm)にて、レーザエネルギー800mJ/pulse、100回照射を行った血管のEeは0.59MPaであった。このときのレーザ非照射部位のEeは0.11MPaであった。これらの結果をPTDBAの報告と比較すると、Ho:YAGレーザ誘起水蒸気気泡による拡張の方がPTDBAの拡張より、エラスチン繊維の伸展が大きいことを示している。一方、図33において、レーザ照射後にEcが大きくなる原因はコラーゲン繊維の熱変性によるものと考えられる。ベア照射法にてレーザエネルギー800mJ/pulse、100回照射を行った血管のEcは2.8MPa、カテーテル内照射法(3mm)にてレーザエネルギー800mJ/pulse、100回照射を行った血管のEcは1.8MPaであった。レーザ非照射部位のEcはそれぞれ1.0MPa、0.86MPaであった。ベア照射法によりレーザ光照射した血管の方が、カテーテル内照射法のときよりEcが大きくなったことは、熱変性したコラーゲン繊維の割合が多いことを示していると思われる。PTDBAで摘出ブタ頸動脈を約70℃、15sの加温を行いつつ、2atmの拡張を行った血管のEcは1.9MPaと報告されている[N. Shimazaki et al., Proc. of SPIE, vol.6424, pp. 642424, 2007]。このとき、コントロール部位のEcは1.6MPaと報告されている。カテーテル内照射法(3mm)にてレーザ照射を行った血管とPTDBAで加温拡張を行った血管のEcは同程度であり、Ho:YAGレーザ誘起水蒸気気泡による拡張では、エラスチン繊維が伸びたまま固定されるのに十分なコラーゲン繊維の熱変性が生じていると考えられる。実施例2に示したようにHo:YAGレーザ誘起水蒸気気泡による血管拡張時のレーザ光の直接照射および気泡からの熱伝達による温度上昇は、それぞれ6.4℃、0.66℃であり、PTDBAによる約70℃の加温と比較して小さい。それにもかかわらず、同程度の熱変性が加えられていると考えられる。Ho:YAGレーザ誘起水蒸気気泡による拡張では、血管壁の変形によって発生する熱が関与している可能性がある。 The HE-stained specimen image after Ho: YAG laser irradiation in the rabbit aorta in FIG. 34 shows the extension of the elastic plate of the media. Therefore, the increase in E e after laser irradiation is thought to be due to the elastin fiber stretching, although there are differences in vivo and ex vivo. That is, the elastin fibers on the blood vessel wall can be stretched and fixed by Ho: YAG laser-induced water vapor bubbles. In FIG. 32, when the bare irradiation method and the intra-catheter irradiation method are compared, the E e of the blood vessel irradiated 100 times by the bare irradiation method is 3.8 times the E e of the non-laser irradiated region, whereas the intra-catheter irradiation is performed. The law has changed greatly by 5.4 times. This suggests that the extension of elastin fibers is comparable in intracatheter irradiation. As shown in Example 2, it is considered that the intra-catheter irradiation method has a larger bubble diameter and growth acceleration in the direction perpendicular to the central axis of the optical fiber than the bare irradiation method, and bubbles with large expansion pressure are generated. About 70 ° C. The excised porcine carotid artery in PTDBA, while performing the heating of the 15s, E e of the vessel subjected to extension of 2atm is reported to 0.16MPa [N. Shimazaki et al., Proc. Of SPIE, vol.6424, pp. 642424, 2007]. The control site E e is reported to be 0.11 MPa. On the other hand, catheter irradiation at (3 mm), E e of the laser energy 800 mJ / pulse, 100 irradiations were vessel was 0.59 MPa. At this time, E e of the non-laser irradiated portion was 0.11 MPa. Comparing these results with the report of PTDBA, it is shown that the expansion of elastin fibers is larger in the expansion by Ho: YAG laser-induced water vapor bubbles than in the expansion of PTDBA. On the other hand, in FIG. 33, it is considered that the reason why E c increases after laser irradiation is due to thermal denaturation of collagen fibers. Laser energy 800 mJ at Bear irradiation / pulse, 100 times E c of the vessel was irradiated is 2.8 MPa, catheter irradiation method (3 mm) in the laser energy 800 mJ / pulse, 100 irradiations were vessels E c Was 1.8 MPa. The E c of the non-laser irradiated part was 1.0 MPa and 0.86 MPa, respectively. The higher E c in blood vessels irradiated with laser light by the bare irradiation method than in the intra-catheter irradiation method seems to indicate that the proportion of heat-denatured collagen fibers is higher. It has been reported that the E c of the blood vessel expanded by 2 atm while heating the isolated porcine carotid artery with PTDBA at about 70 ° C for 15 s [N. Shimazaki et al., Proc. Of SPIE, vol.6424, pp. 642424, 2007]. At this time, E c of the control site is reported to be 1.6 MPa. E c of the vessel in the vessel and PTDBA subjected to laser irradiation were heated with extension catheter irradiation method (3 mm) is comparable, Ho: The extended by YAG laser-induced vapor bubbles, extended elastin fibers It is considered that sufficient heat denaturation of the collagen fibers has occurred to be fixed as it is. As shown in Example 2, the temperature rise due to direct irradiation of the laser beam by the Ho: YAG laser-induced water vapor bubble and the heat transfer from the bubble was 6.4 ° C. and 0.66 ° C., respectively, and about 70 ° C. by PTDBA. Small compared to the warming. Nevertheless, it is considered that the same degree of heat denaturation is applied. The expansion by Ho: YAG laser-induced water vapor bubbles may involve the heat generated by the deformation of the blood vessel wall.

以上まとめると、Ho:YAGレーザ誘起水蒸気気泡により血管拡張効果が得られる原理は、気泡の発生による熱と気泡成長の圧力により、コラーゲン繊維が軟化した状態でエラスチン繊維が伸展し、次いでさらなるコラーゲン繊維の熱変性でエラスチン繊維が伸びたまま固定されることによると推定された。   In summary, the principle of obtaining a vasodilator effect by Ho: YAG laser-induced water vapor bubbles is that the elastin fibers are stretched while the collagen fibers are softened by the heat generated by the generation of bubbles and the pressure of bubble growth, and then further collagen fibers. It was presumed that the elastin fibers were fixed while stretched by heat denaturation of.

(2) 血管拡張に適した気泡
Ho:YAGレーザ誘起水蒸気気泡では、光ファイバー中心軸に垂直な方向の直径は最大4.5mm程度であり、これにより拡張可能な血管径の上限は規定される。このHo:YAGレーザ誘起水蒸気気泡による血管拡張を応用できる部位は、冠状動脈や膝下動脈になると考えられる。上記の推定した拡張原理に基づくと、血管の内径、壁厚、中膜内のエラスチン繊維・コラーゲン繊維の割合により、拡張に適した気泡の発生方法やレーザ照射条件が変化すると考えられる。具体的には気泡の直径、成長加速度、気泡の発生に伴う熱は、レーザエネルギーおよび照射方法(ベア照射法とカテーテル内照射法)を変えることにより制御することができる。
(2) Bubbles suitable for vasodilation
In the Ho: YAG laser-induced water vapor bubbles, the diameter in the direction perpendicular to the central axis of the optical fiber is about 4.5 mm at the maximum, and this defines the upper limit of the expandable blood vessel diameter. It is considered that the site where vasodilation by this Ho: YAG laser-induced water vapor bubbles can be applied is the coronary artery or the sub-knee artery. Based on the estimated expansion principle, it is considered that the bubble generation method and laser irradiation conditions suitable for expansion vary depending on the inner diameter of the blood vessel, the wall thickness, and the ratio of elastin fibers / collagen fibers in the media. Specifically, the bubble diameter, growth acceleration, and heat generated by the bubble generation can be controlled by changing the laser energy and the irradiation method (bear irradiation method and intra-catheter irradiation method).

カテーテル内照射法は、ベア照射法の場合の血管穿孔の原因となり得る血管壁への光ファイバー先端接触、およびHo:YAGレーザ光の直接照射などの危険を減少させることができる。照射回数に関しては、ベア照射法、カテーテル内照射法ともに、100回程度の照射で血管の拡張率は飽和した(図28から図30参照)。例えばベア照射法にてレーザエネルギー400mJ/pulse、100回の照射の場合1.5、カテーテル内照射法(3mm) にてレーザエネルギー400mJ/pulse、100回の照射の場合1.3の血管外径拡張率が得られている。したがって、過剰な熱入力による副作用を減らすために照射回数は100回以下になると思われる。   Intracatheter irradiation can reduce risks such as optical fiber tip contact to the blood vessel wall and direct irradiation of Ho: YAG laser light, which can cause blood vessel perforation in the case of bare irradiation. Regarding the number of times of irradiation, both the bare irradiation method and the intra-catheter irradiation method saturated the blood vessel dilatation rate after about 100 irradiations (see FIGS. 28 to 30). For example, with a bare irradiation method, a laser energy of 400 mJ / pulse, 1.5 for 100 irradiations, and with an intracatheter irradiation method (3 mm), a laser energy of 400 mJ / pulse, with a 100 irradiations, a blood vessel outer diameter expansion rate of 1.3 is obtained. It has been. Therefore, in order to reduce side effects due to excessive heat input, the number of irradiations is expected to be 100 times or less.

(3) in vivoにおける血管拡張効果
in vivo家兎大動脈ではシース内照射法(3mm)にて、レーザエネルギー100mJ/pulseまたは200mJ/pulse、20回照射を行ったところ、血管壁の伸展所見が見られた。この伸展効果は図34Bで示したように、一週間後も持続していたので、さらに長期の拡張効果も期待されよう。
(3) In vivo vasodilator effect
In vivo rabbit aorta was irradiated with laser energy 100mJ / pulse or 200mJ / pulse 20 times by intra-sheath irradiation method (3mm), and vascular wall stretched findings were observed. As shown in FIG. 34B, this extension effect was maintained even after one week, so that a longer-term expansion effect would be expected.

血管内で発生した気泡について、実施例2で得られた結果をもとに論じる。   The bubbles generated in the blood vessel will be discussed based on the results obtained in Example 2.

レーザエネルギー200mJ/pulseの場合、カテーテル内照射法(3mm)にて水中で発生した気泡の光ファイバー垂直方向の直径は2.86mmであった。血液中での気泡の体積は水中の1.03−1.25倍なので、長さは1.01−1.08倍である。以上より、レーザエネルギー200mJ/pulseの場合、血液中で発生した気泡の光ファイバー垂直方向の直径は2.9−3.1mmであったと推定される。レーザエネルギー100mJ/pulseの場合、同様に血液中で発生した気泡の光ファイバー垂直方向の直径を見積もると1.5−1.6mmとなる。家兎大動脈の内径は2.0−3.5mmであったので、気泡の光ファイバー垂直方向の直径は血管内径に対し、同等以下であったと考えられる。本発明のHo:YAGレーザ誘起水蒸気気泡による血管拡張法では、構造が複雑で高価なバルーンカテーテルを用いず、血流を閉止せずに拡張することができ、細径の光ファイバーとシースのみで治療できる簡便・安価な治療デバイスに発展する可能性がある。   In the case of a laser energy of 200 mJ / pulse, the diameter in the vertical direction of the optical fiber of bubbles generated in water by the intra-catheter irradiation method (3 mm) was 2.86 mm. Since the volume of bubbles in blood is 1.03-1.25 times that in water, the length is 1.01-1.08 times. From the above, when the laser energy is 200 mJ / pulse, it is estimated that the diameter of bubbles generated in the blood in the vertical direction of the optical fiber was 2.9-3.1 mm. Similarly, when the laser energy is 100 mJ / pulse, the diameter of bubbles generated in the blood in the vertical direction of the optical fiber is estimated to be 1.5 to 1.6 mm. Since the inner diameter of the rabbit aorta was 2.0-3.5 mm, the diameter of the bubble in the vertical direction of the optical fiber is considered to be less than or equal to the inner diameter of the blood vessel. With the Ho: YAG laser-induced water vapor bubble method of the present invention, the structure can be expanded without closing the blood flow without using a complicated and expensive balloon catheter, and treatment can be performed using only a thin optical fiber and a sheath. There is a possibility of developing a simple and inexpensive treatment device that can be used.

Ho:YAGレーザ光を200−800mJ/pulse、ベア照射法およびカテーテル内照射法にて200回血管内で照射を行ったところ、Ho:YAGレーザ誘起水蒸気気泡の効果によりex vivoブタ頸動脈で外径1.1−1.5倍の血管拡張効果が得られた。外径と内径の関係から推定した内径は1.3−2.2倍となった。シース内照射法(3mm)にて、100mJ/pulse、20回照射を行ったところ、in vivo家兎大動脈で1週間後も中膜の弾性板が伸展している所見が得られた。Ho:YAGレーザ誘起水蒸気気泡により血管拡張効果が得られる原理は、気泡の発生による熱と気泡成長の圧力により、コラーゲン繊維が軟化した状態でエラスチン繊維が伸展し、次いでさらなるコラーゲン繊維の熱変性でエラスチン繊維が伸びたまま固定されることによると推定された。カテーテル内照射法では、ベア照射法と比較して同程度の拡張率が得られ、光や熱の影響が少なく安全に使用できると考えられる。Ho:YAGレーザ誘起水蒸気気泡による拡張では、構造が複雑で高価なバルーンカテーテルを用いず、血流を閉止せずに拡張することができ、細径の光ファイバーとシースのみで治療できる簡便・安価な治療デバイスに発展する可能性がある。   When 200: 800 mJ / pulse Ho: YAG laser light was irradiated inside the blood vessel 200 times using the bare irradiation method and the intra-catheter irradiation method, the ex vivo porcine carotid artery was exposed by the effect of Ho: YAG laser-induced water vapor bubbles. A vasodilatory effect 1.1 to 1.5 times in diameter was obtained. The inner diameter estimated from the relationship between outer diameter and inner diameter was 1.3-2.2 times. Intrasheath irradiation (3 mm) was performed with 100 mJ / pulse and 20 irradiations, and in vivo rabbit aorta showed that the elastic membrane of the media was extended even after 1 week. The principle that the vasodilation effect is obtained by the Ho: YAG laser-induced water vapor bubbles is that the elastin fibers are stretched while the collagen fibers are softened due to the heat generated by the bubbles and the pressure of the bubble growth, and then further heat denaturation of the collagen fibers. It was estimated that the elastin fiber was fixed while stretched. The intra-catheter irradiation method can achieve the same expansion rate as the bare irradiation method, and can be used safely with less influence of light and heat. Expansion by Ho: YAG laser-induced water vapor bubbles can be performed without closing the blood flow without using a complicated and expensive balloon catheter, and can be treated with only a small diameter optical fiber and sheath. There is potential for development of therapeutic devices.

本発明は、血管の形成術に安全且つ確実に用いることができる。   The present invention can be used safely and reliably for angioplasty.

本発明の装置の概略図である。1 is a schematic view of an apparatus of the present invention. レーザ光照射により発生する水蒸気の発生から消滅までの過程を表す写真である。It is a photograph showing the process from generation | occurrence | production to extinction of the water vapor | steam generate | occur | produced by laser beam irradiation. 実施例で用いた装置の構成を示す図である。It is a figure which shows the structure of the apparatus used in the Example. レーザ光照射前後の血管の状態を示す写真である。AはHo:YAGレーザ照射前、BはHo:YAGレーザを1.3J/pulseで20回照射中、CはHo:YAGレーザを1.3J/pulseで20回照射後の写真である。It is a photograph which shows the state of the blood vessel before and behind laser beam irradiation. A is a photograph before irradiation with Ho: YAG laser, B is irradiation with Ho: YAG laser at 1.3 J / pulse 20 times, and C is a photograph after irradiation with Ho: YAG laser at 1.3 J / pulse 20 times. レーザ光照射前後のHE染色血管像を示す写真である。AはHE染色したコントロール血管断面を示し、BはHo:YAGレーザを400mJ/pulseで20回照射後の慢性期のHE染色した血管断面を示す。2 is a photograph showing HE-stained blood vessel images before and after laser light irradiation. A shows a HE-stained control blood vessel cross-section, and B shows a HE-stained blood vessel cross-section after chronic irradiation with Ho: YAG laser at 400 mJ / pulse 20 times. レーザ光照射前後の偏光顕微鏡による観察像を示す写真である。A〜Dの写真において、右側が血管内膜側であり、左側が外膜側である。Aは健常血管、Bは0.17J/pulseで20回照射した血管、Cは0.41J/pulseで20回照射した血管、Dは0.81J/pulseで20回照射した血管を示す。It is a photograph which shows the observation image by the polarization microscope before and behind laser beam irradiation. In the photographs A to D, the right side is the vascular intima side, and the left side is the adventitia side. A is a healthy blood vessel, B is a blood vessel irradiated 20 times at 0.17 J / pulse, C is a blood vessel irradiated 20 times at 0.41 J / pulse, and D is a blood vessel irradiated 20 times at 0.81 J / pulse. 血管壁の引張試験の方法の概要を示す図である。It is a figure which shows the outline | summary of the method of the tensile test of the blood vessel wall. レーザ光照射前後の引張試験による血管の応力ひずみ線図を示す。The stress-strain diagram of the blood vessel by the tension test before and behind laser beam irradiation is shown. レーザ光照射前後の血管壁拡張の変動を示す図である。It is a figure which shows the fluctuation | variation of the vascular wall expansion before and behind laser beam irradiation. 光ファイバー先端をカテーテル先端より内側に位置させて照射する方法の概要を示す図である。It is a figure which shows the outline | summary of the method of irradiating with the optical fiber front-end | tip located inside a catheter front-end | tip. ベア照射法で照射したときの気泡の形状の写真である。It is a photograph of the shape of a bubble when irradiated by the bear irradiation method. レーザエネルギーを変化させベア照射法で照射したときの気泡の形状の写真である。It is a photograph of the shape of a bubble when laser energy is changed and irradiated by the bare irradiation method. カテーテル内射法で照射したときの気泡の形状の写真である。It is a photograph of the shape of a bubble when it irradiates by the catheter injection method. 光ファイバー先端とカテーテル先端の距離を変え、カテーテル内射法で照射したときの気泡の形状の写真である。It is the photograph of the shape of a bubble when changing the distance of an optical fiber front-end | tip and a catheter front-end | tip, and irradiating by the catheter injection method. レーザエネルギーを変化させカテーテル内照射法で照射したときの気泡の形状の写真である。It is a photograph of the shape of bubbles when laser energy is changed and irradiation is performed by an intra-catheter irradiation method. Ho:YAGレーザ装置を用い、レーザエネルギー400mJ/pulseで照射方法を変化させたときに発生した気泡の光ファイバー中心軸に垂直な方向の最大直径の時間変化(プロット左軸)とHo:YAGレーザのパルス波形(実線、右軸)を示す図である。The time variation of the maximum diameter in the direction perpendicular to the optical fiber central axis of bubbles generated when the irradiation method was changed with a laser energy of 400 mJ / pulse using a Ho: YAG laser device and the Ho: YAG laser It is a figure which shows a pulse waveform (a continuous line, a right axis). レーザエネルギーに対する光ファイバー中心軸に垂直な方向の最大気泡直径を示す図である。It is a figure which shows the largest bubble diameter of the direction perpendicular | vertical to the optical fiber central axis with respect to laser energy. レーザ光による血管壁の直接加熱の見積もり模式図である。It is an estimate schematic diagram of direct heating of a blood vessel wall by laser light. 血管の外径と内径の関係を示す図である。It is a figure which shows the relationship between the outer diameter of a blood vessel, and an internal diameter. ex vivo血管外径変化観察実験の模式図である。It is a schematic diagram of an ex vivo blood vessel outer diameter change observation experiment. ベア照射法でのレーザエネルギー400mJ/pulseの場合の、高速度カメラで撮影した1回目のレーザ照射中の各時刻における血管外形を示す写真である。レーザ発振開始を起点とする矢印は光ファイバー先端の位置を示す。It is the photograph which shows the blood vessel external shape in each time during the laser irradiation of the 1st time image | photographed with the high-speed camera in the case of the laser energy of 400 mJ / pulse by the bare irradiation method. An arrow starting from the start of laser oscillation indicates the position of the tip of the optical fiber. ベア照射法でのレーザエネルギー400mJ/pulseの場合の、高速度カメラで撮影した1回目のレーザ照射中の各時刻における血管外形を示す写真である(図21Aの続き)。レーザ発振開始を起点とする矢印は光ファイバー先端の位置を示す。FIG. 22B is a photograph showing the outer shape of the blood vessel at each time during the first laser irradiation imaged by a high-speed camera when the laser energy is 400 mJ / pulse in the bare irradiation method (continuation of FIG. 21A). An arrow starting from the start of laser oscillation indicates the position of the tip of the optical fiber. カテーテル内照射法(3mm)でのレーザエネルギー400mJ/pulseの場合の、高速度カメラで撮影した1回目のレーザ照射中の各時刻における血管外形を示す写真である。レーザ発振開始を起点とする矢印は光ファイバー先端の位置を示す。3 is a photograph showing the blood vessel outline at each time during the first laser irradiation, which was taken with a high-speed camera, in the case of laser energy of 400 mJ / pulse in the intra-catheter irradiation method (3 mm). An arrow starting from the start of laser oscillation indicates the position of the tip of the optical fiber. カテーテル内照射法(3mm)でのレーザエネルギー400mJ/pulseの場合の、高速度カメラで撮影した1回目のレーザ照射中の各時刻における血管外形を示す写真である(図22Aの続き)。レーザ発振開始を起点とする矢印は光ファイバー先端の位置を示す。It is the photograph which shows the blood vessel external shape in each time during the laser irradiation of the 1st time image | photographed with the high-speed camera in the case of the laser energy of 400 mJ / pulse in the intra-catheter irradiation method (3 mm) (continuation of FIG. 22A). An arrow starting from the start of laser oscillation indicates the position of the tip of the optical fiber. ベア照射法でのレーザエネルギー400mJ/pulseの場合の、高速度カメラで撮影したレーザ照射前、照射中、照射後の血管外形を示す写真である。レーザ発振開始を起点とする矢印は光ファイバー先端の位置を示す。It is the photograph which shows the blood vessel external shape before, during and after the laser irradiation image | photographed with the high-speed camera in the case of the laser energy of 400 mJ / pulse by the bare irradiation method. An arrow starting from the start of laser oscillation indicates the position of the tip of the optical fiber. ベア照射法でのレーザエネルギー400mJ/pulseの場合の、高速度カメラで撮影したレーザ照射前、照射中、照射後の血管外形を示す写真である(図23Aの続き)。レーザ発振開始を起点とする矢印は光ファイバー先端の位置を示す。FIG. 23B is a photograph showing the blood vessel outline before, during and after laser irradiation taken with a high-speed camera in the case of laser energy of 400 mJ / pulse in the bare irradiation method (continuation of FIG. 23A). An arrow starting from the start of laser oscillation indicates the position of the tip of the optical fiber. カテーテル内照射法(3mm)でのレーザエネルギー400mJ/pulseの場合の、高速度カメラで撮影したレーザ照射前、照射中、照射後の血管外形を示す写真である。レーザ発振開始を起点とする矢印は光ファイバー先端の位置を示す。It is the photograph which shows the blood vessel external shape before, during and after the laser irradiation image | photographed with the high-speed camera in the case of the laser energy of 400 mJ / pulse in the intra-catheter irradiation method (3 mm). An arrow starting from the start of laser oscillation indicates the position of the tip of the optical fiber. カテーテル内照射法(3mm)でのレーザエネルギー400mJ/pulseの場合の、高速度カメラで撮影したレーザ照射前、照射中、照射後の血管外形を示す写真である(図24Aの続き)。レーザ発振開始を起点とする矢印は光ファイバー先端の位置を示す。FIG. 24B is a photograph showing the external shape of a blood vessel before, during and after laser irradiation taken with a high-speed camera when the laser energy is 400 mJ / pulse in the intra-catheter irradiation method (3 mm) (continuation of FIG. 24A). An arrow starting from the start of laser oscillation indicates the position of the tip of the optical fiber. ベア照射法でのレーザエネルギー400mJ/pulseの場合の血管の流れ方向の位置に対する血管外径を示す図である。位置は光ファイバー先端を起点とする。It is a figure which shows the blood vessel outer diameter with respect to the position of the flow direction of the blood vessel in the case of the laser energy of 400 mJ / pulse by the bare irradiation method. The position starts from the tip of the optical fiber. カテーテル内照射法(3mm)でのレーザエネルギー400mJ/pulseの場合の血管の流れ方向の位置に対する血管外径を示す図である。位置は光ファイバー先端を起点とする。It is a figure which shows the blood vessel outer diameter with respect to the position of the flow direction of the blood vessel in the case of the laser energy of 400 mJ / pulse in the intra-catheter irradiation method (3 mm). The position starts from the tip of the optical fiber. レーザエネルギー400mJ/pulse、200回照射後に血管外径が初期外径と比較して最も増加していた位置における、1回目のレーザ照射中の血管外径の時間変化を示す図である。It is a figure which shows the time change of the blood vessel outer diameter in the time of the 1st laser irradiation in the position where the blood vessel outer diameter increased most compared with the initial outer diameter after 200 times of laser energy 400mJ / pulse irradiation. レーザの照射回数に対する血管外径拡張率(ベア照射法、レーザエネルギー変化)を示す図である。It is a figure which shows the blood vessel outer diameter expansion rate (bear irradiation method, laser energy change) with respect to the number of times of laser irradiation. レーザの照射回数に対する血管外径拡張率(レーザエネルギー一定、照射方法変化)を示す図である。It is a figure which shows the blood vessel outer diameter expansion rate (laser energy constant, irradiation method change) with respect to the frequency | count of laser irradiation. レーザの照射回数に対する血管外径拡張率(カテーテル内照射法(3mm)、レーザエネルギー変化)を示す図である。It is a figure which shows the blood vessel outer diameter expansion rate (intracatheter irradiation method (3 mm), laser energy change) with respect to the number of times of laser irradiation. カテーテル内照射法(3mm)でのレーザエネルギー800mJ/pulse、照射回数100回の場合の血管の応力ひずみ線図を示す。A stress strain diagram of a blood vessel when the laser energy is 800 mJ / pulse and the number of irradiations is 100 times in the intra-catheter irradiation method (3 mm) is shown. レーザ光照射部位および非照射部位のエラスチン繊維のヤング率(Ee)(レーザエネルギー 800mJ/pulse 一定)を示す図である。It illustrates the laser beam irradiation site and the Young's modulus of elastin fibers in the non-irradiated sites (E e) (laser energy 800 mJ / pulse constant). レーザ光照射部位および非照射部位のコラーゲン繊維のヤング率(Ec)(レーザエネルギー 800mJ/pulse 一定)を示す図である。It illustrates the laser beam irradiation site and the Young's modulus of the collagen fibers of the non-irradiated sites (E c) (laser energy 800 mJ / pulse constant). in vivoレーザ光照射後の家兎大動脈HE染色標本画像を示す写真である。写真上側が血管内腔、下側が外膜を表す。It is a photograph which shows the rabbit aorta HE dyeing | staining sample image after in vivo laser beam irradiation. The upper side of the photograph represents the lumen of the blood vessel, and the lower side represents the outer membrane. in vivoレーザ光照射後の家兎大動脈HE染色標本画像を示す写真である。写真上側が血管内腔、下側が外膜を表す。符号の説明1 カテーテル2 高強度パルス光照射部3 X線不透視マーカー4 高強度パルス光伝送ファイバー5 高強度パルス光源It is a photograph which shows the rabbit aorta HE dyeing | staining sample image after in vivo laser beam irradiation. The upper side of the photograph represents the lumen of the blood vessel, and the lower side represents the outer membrane. DESCRIPTION OF SYMBOLS 1 Catheter 2 High-intensity pulsed light irradiation unit 3 X-ray opaque marker 4 High-intensity pulsed light transmission fiber 5 High-intensity pulsed light source

Claims (19)

血管内で水蒸気泡を発生しうる高強度パルス光照射手段であって、高強度パルス光発生手段、高強度パルス光伝送手段及び高強度パルス光を血管内に照射する手段を有する高強度パルス光照射手段を含み、高強度パルス光照射により血管内の血液中で水蒸気泡を形成させ、該水蒸気泡の拡張時の圧力により血管壁を伸展させ血管を拡張させる高強度パルス光照射による血管拡張装置。 High-intensity pulsed light irradiation means capable of generating water vapor bubbles in a blood vessel, comprising high-intensity pulsed light generation means, high-intensity pulsed light transmission means, and means for irradiating high-intensity pulsed light into the blood vessel Vascular dilation apparatus using high-intensity pulsed light irradiation that includes irradiation means, forms water vapor bubbles in the blood in the blood vessel by irradiation with high-intensity pulsed light, and expands the blood vessel wall by expanding the blood vessel wall by the pressure during expansion of the water-vapor bubble . 管壁に水蒸気泡の拡張時の圧力が加えられると共に水蒸気泡中を通って血管壁に直達した高強度パルス光により熱が加えられ、血管壁のコラーゲン繊維を軟化変性させ拡張し、血管壁のコラーゲン繊維の配向が揃うと共に、血管の拡張状態を維持する、請求項1記載の高強度パルス光照射による血管拡張装置。 Heat is applied by the high-intensity pulsed light reaching directly to the vessel wall through the water vapor in the bubbles as the pressure at the time of expansion of the vapor bubbles in the blood vessel wall is added, expanded soften denatured collagen fibers of the vessel wall, the vessel wall The vasodilator by irradiation with high-intensity pulsed light according to claim 1 , wherein the orientation of the collagen fibers is aligned and the dilated state of the blood vessel is maintained . 血管壁に加えられる圧力が0.1〜5.0atmであり、温度が60℃以上である、請求項1又は2に記載の高強度パルス光照射による血管拡張装置。   The vasodilator by high-intensity pulsed light irradiation according to claim 1 or 2, wherein the pressure applied to the blood vessel wall is 0.1 to 5.0 atm and the temperature is 60 ° C or higher. 高強度パルス光伝送手段が光伝送ファイバーである請求項1又は2に記載の高強度パルス光照射による血管拡張装置。   The blood vessel dilator according to claim 1 or 2, wherein the high-intensity pulsed light transmission means is an optical transmission fiber. バルーンを有しないカテーテルを含む装置であり、カテーテル内に高強度パルス光を伝送する光伝送ファイバーが備えられた請求項1〜4のいずれか1項に記載の高強度パルス光照射による血管拡張装置。   The device including a catheter having no balloon, the device for vascular dilation by irradiation with high-intensity pulsed light according to any one of claims 1 to 4, further comprising an optical transmission fiber for transmitting high-intensity pulsed light in the catheter. . 高強度パルス光照射手段の照射部の位置がカテーテル遠位端より内部に位置している請求項5記載の高強度パルス光照射による血管拡張装置。   The vasodilator by high-intensity pulsed light irradiation according to claim 5, wherein the position of the irradiation part of the high-intensity pulsed light irradiation means is located inside the distal end of the catheter. 高強度パルス光照射手段の照射部の位置がカテーテル遠位端より0.5〜5mm内部に位置している請求項6記載の高強度パルス光照射による血管拡張装置。   The vasodilator by high intensity pulsed light irradiation according to claim 6, wherein the position of the irradiation part of the high intensity pulsed light irradiation means is located within 0.5 to 5 mm from the distal end of the catheter. 光伝送ファイバーの遠位端部付近にX線不透視マーカーを有する請求項1〜7のいずれか1項に記載の高強度パルス光照射による血管拡張装置。   The vasodilator by high-intensity pulsed light irradiation according to any one of claims 1 to 7, wherein an X-ray opaque marker is provided in the vicinity of a distal end portion of the optical transmission fiber. カテーテルの遠位端部付近にX線不透視マーカーを有する請求項1〜8のいずれか1項に記載の高強度パルス光照射による血管拡張装置。   The vasodilator by high-intensity pulsed light irradiation according to any one of claims 1 to 8, which has an X-ray opaque marker near the distal end of the catheter. 血管の狭窄部位に適用し血管の狭窄部位を拡張するための請求項1〜9のいずれか1項に記載の高強度パルス光照射による血管拡張装置。   The vasodilator device by high-intensity pulsed light irradiation according to any one of claims 1 to 9, which is applied to a stenosis region of a blood vessel to expand the stenosis region of the blood vessel. 少なくとも10分間血管の拡張を維持し得る請求項1〜10のいずれか1項に記載の高強度パルス光照射による血管拡張装置。   The blood vessel dilation device by high-intensity pulsed light irradiation according to any one of claims 1 to 10, wherein the blood vessel dilation can be maintained for at least 10 minutes. 永続的に血管の拡張を維持し得る請求項11記載の高強度パルス光照射による血管拡張装置。   The vasodilator by high-intensity pulsed light irradiation according to claim 11, wherein the vasodilation can be permanently maintained. 高強度パルス光の波長が1〜3μmの範囲にある、請求項1〜12のいずれか1項に記載の高強度パルス光照射による血管拡張装置。   The vasodilator by high-intensity pulsed light irradiation according to any one of claims 1 to 12, wherein the wavelength of the high-intensity pulsed light is in the range of 1 to 3 µm. 高強度パルス光が、パルスレーザである請求項1〜13のいずれか1項に記載の高強度パルス光照射による血管拡張装置。   The vasodilator by high intensity pulsed light irradiation according to any one of claims 1 to 13, wherein the high intensity pulsed light is a pulse laser. 高強度パルス光照射のパルス幅が50μs〜1msである請求項1〜14のいずれか1項に記載の高強度パルス光照射による血管拡張装置。   The vasodilator by high intensity pulsed light irradiation according to any one of claims 1 to 14, wherein the pulse width of the high intensity pulsed light irradiation is 50 µs to 1 ms. 少なくとも25回、100回以下の高強度パルス光照射を繰り返し、血管を拡張させる請求項1〜15のいずれか1項に記載の高強度パルス光照射による血管拡張装置。   The vasodilator by high-intensity pulsed light irradiation according to any one of claims 1 to 15, wherein the blood vessel is expanded by repeating irradiation with high-intensity pulsed light at least 25 times and not more than 100 times. 少なくとも50回、100回以下の高強度パルス光照射を繰り返し、血管を拡張させる請求項16記載の高強度パルス光照射による血管拡張装置。   The vasodilator by high-intensity pulsed light irradiation according to claim 16, wherein the blood vessel is expanded by repeating irradiation with high-intensity pulsed light at least 50 times and not more than 100 times. 血管内で水蒸気泡を発生しうる高強度パルス光照射手段、高強度パルス光発生手段及び高強度パルス光伝送手段を含み、高強度パルス光照射により血管内の血液中で水蒸気泡を形成させ、該水蒸気泡の拡張時の圧力により血管壁を伸展させ血管を拡張させる高強度パルス光照射による血管拡張装置の制御方法であって、血管内の血液中形成される水蒸気泡の大きさ及び形状並びに水蒸気泡中を通って血管壁に直達した高強度パルス光により血管壁に加えられる熱を変化させるために、血管拡張装置の制御手段が高強度パルス光照射手段を制御して高強度パルス光の強度及び照射回数を変化させる工程を行なう、制御方法。 Including high intensity pulsed light irradiation means capable of generating water vapor bubbles in the blood vessel, high intensity pulsed light generation means and high intensity pulsed light transmission means, forming water vapor bubbles in the blood in the blood vessel by high intensity pulsed light irradiation, A method for controlling a vascular dilation device by high-intensity pulsed light irradiation that expands a blood vessel wall and expands a blood vessel by the pressure at the time of expansion of the water vapor bubble, and the size and shape of the water vapor bubble formed in the blood in the blood vessel In addition, in order to change the heat applied to the blood vessel wall by the high-intensity pulsed light that has directly passed through the water vapor bubble and reached the blood vessel wall, the control means of the vasodilator controls the high-intensity pulsed light irradiation means to control the high-intensity pulsed light. The control method which performs the process of changing the intensity | strength and the frequency | count of irradiation. 血管内で水蒸気泡を発生しうる高強度パルス光照射手段、高強度パルス光発生手段及び高強度パルス光伝送手段を含み、高強度パルス光照射により血管内の血液中で水蒸気泡を形成させ、該水蒸気泡の拡張時の圧力により血管壁を伸展させ血管を拡張させる高強度パルス光照射による血管拡張装置の制御方法であって、高強度パルス光照射手段の照射部の位置とカテーテル遠位端の距離を調節して、形成される水蒸気泡の形状および圧力を制御する、制御方法。 Including high intensity pulsed light irradiation means capable of generating water vapor bubbles in the blood vessel, high intensity pulsed light generation means and high intensity pulsed light transmission means, forming water vapor bubbles in the blood in the blood vessel by high intensity pulsed light irradiation, A method of controlling a vasodilator by high-intensity pulsed light irradiation that expands a blood vessel wall and expands a blood vessel by the pressure at the time of expansion of the water vapor bubbles, the position of the irradiation part of the high-intensity pulsed light irradiation means and the distal end of the catheter A control method for controlling the shape and pressure of the water vapor bubbles formed by adjusting the distance of the water vapor.
JP2008006162A 2007-01-17 2008-01-15 Vasodilator Expired - Fee Related JP5265206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008006162A JP5265206B2 (en) 2007-01-17 2008-01-15 Vasodilator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007008503 2007-01-17
JP2007008503 2007-01-17
JP2008006162A JP5265206B2 (en) 2007-01-17 2008-01-15 Vasodilator

Publications (2)

Publication Number Publication Date
JP2008194455A JP2008194455A (en) 2008-08-28
JP5265206B2 true JP5265206B2 (en) 2013-08-14

Family

ID=39636059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006162A Expired - Fee Related JP5265206B2 (en) 2007-01-17 2008-01-15 Vasodilator

Country Status (2)

Country Link
JP (1) JP5265206B2 (en)
WO (1) WO2008088062A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435739B2 (en) * 2010-10-19 2014-03-05 国立大学法人東北大学 Optical fiber and underwater shock wave generator using the same
KR101349122B1 (en) * 2012-03-27 2014-01-10 주식회사 루트로닉 An optical device for surgery and an method for controlling thereof
KR101451975B1 (en) 2013-03-19 2014-10-23 주식회사 루트로닉 Apparatus for irradiating Laser and Method for irradiating Laser
US20160151639A1 (en) * 2013-07-10 2016-06-02 Oxys Ag Devices and methods for delivery of therapeutic energy
US10716508B2 (en) * 2015-10-08 2020-07-21 Briteseed, Llc System and method for determining vessel size

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07502423A (en) * 1991-10-03 1995-03-16 ザ ゼネラル ホスピタル コーポレーション Devices and methods for vasodilation
US5683345A (en) * 1994-10-27 1997-11-04 Novoste Corporation Method and apparatus for treating a desired area in the vascular system of a patient
US8657811B2 (en) * 2003-05-01 2014-02-25 Keio University Intravascular diagnostic or therapeutic apparatus using high-intensity pulsed light
JP2004344627A (en) * 2003-05-22 2004-12-09 Tomio Wada Balloon catheter for medical treatment
JP2004357792A (en) * 2003-06-02 2004-12-24 Keio Gijuku Vascular restenosis preventive therapeutic apparatus by sound pressure wave induced by irradiation of high strength pulse light

Also Published As

Publication number Publication date
WO2008088062A1 (en) 2008-07-24
JP2008194455A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
US10195080B2 (en) Glaucoma surgery methods and systems
JP5265206B2 (en) Vasodilator
US8657811B2 (en) Intravascular diagnostic or therapeutic apparatus using high-intensity pulsed light
US8540659B2 (en) Delivery system and method of use for the eye
Lubatschowski et al. Medical applications for ultrafast laser pulses
JP4966640B2 (en) Photodynamic therapy device and method of using the same
US20150080783A1 (en) Delivery System and Method of Use for the Eye
Xu et al. Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy-histotripsy
JPH06501859A (en) Suppression of restenosis by ultraviolet irradiation
JPS58502037A (en) catheter assembly
US6887261B1 (en) System and method for thermally and chemically treating cells at sites of interest in the body to impede cell proliferation
JP2004357792A (en) Vascular restenosis preventive therapeutic apparatus by sound pressure wave induced by irradiation of high strength pulse light
US20220183756A1 (en) Systems and methods for laser-induced calcium fractures
JP2004215862A (en) Shock wave producing device
Tulleken et al. End-to-side anastomosis of small vessels using an Nd: YAG laser with a hemispherical contact probe
Isner et al. Laser-induced dissections: pathogenesis and implications for therapy
CN205494094U (en) Windowing function 's intervention treatment device is realized turning to and fixing a position through laser catheter
CN105616045A (en) Interventional therapy device and method realizing steering and positioning fenestration through laser catheter
Deutsch Medical applications of lasers
WO2006059793A1 (en) Device for blood vessel re-narrowing prevention and treatment by controlled sound pressure wave induced by irradiation with highly intense pulsed light
US20230270498A1 (en) Device and method for dilation of a tubular anatomical structure
Nakagawa et al. Application of shock waves as a treatment modality in the vicinity of the brain and skull
US20120095532A1 (en) Device For Irradiating An Internal Body Surface
Genyk et al. Acute and chronic effects of transmyocardial laser revascularization in the nonischemic pig myocardium by using three laser systems
Van Doormaal et al. Optimization of the excimer laser assisted non‐occlusive anastomosis (ELANA) flap retrieval rate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5265206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees