JP5264852B2 - Cooling pipe joint structure - Google Patents

Cooling pipe joint structure Download PDF

Info

Publication number
JP5264852B2
JP5264852B2 JP2010219861A JP2010219861A JP5264852B2 JP 5264852 B2 JP5264852 B2 JP 5264852B2 JP 2010219861 A JP2010219861 A JP 2010219861A JP 2010219861 A JP2010219861 A JP 2010219861A JP 5264852 B2 JP5264852 B2 JP 5264852B2
Authority
JP
Japan
Prior art keywords
pipe
cooling
water
cooling water
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010219861A
Other languages
Japanese (ja)
Other versions
JP2012072884A (en
Inventor
寿司 川端
靖信 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Teli Corp
Original Assignee
Toshiba Teli Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Teli Corp filed Critical Toshiba Teli Corp
Priority to JP2010219861A priority Critical patent/JP5264852B2/en
Publication of JP2012072884A publication Critical patent/JP2012072884A/en
Application granted granted Critical
Publication of JP5264852B2 publication Critical patent/JP5264852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling pipe joint structure for improving cooling efficiency of a water-cooled heat radiation mechanism including a radiation fin and improving cooling capacity of the heat radiation mechanism without increasing the scale of the water-cooled heat radiation mechanism. <P>SOLUTION: In cooling water (Ca) supplied from a water supply pipe 5, cooling water (Ca) flowing into an inner pipe joint 17B is pressurized by a tapered part 172 formed in the inner pipe joint 17B to increase the flow rate and supplied as secondary cooling water (Ca2) to a secondary cooling pipe 12. By accelerating the secondary cooling water (Ca2), the secondary cooling water (Ca2) absorbing heat from a primary cooling pipe 11 where the primary cooling water (Ca1) flows is accelerated and quickly drained in the cooling pipe structure 10, and thereby, reduction in the cooling capacity due to the temperature difference in the primary cooling water (Ca1) can be suppressed. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、例えばパワー半導体素子等の発熱体の冷却に使用される水冷式放熱機構に適用して好適な冷却管継手構造に関する。     The present invention relates to a cooling pipe joint structure suitable for application to, for example, a water-cooled heat dissipation mechanism used for cooling a heating element such as a power semiconductor element.

パワー半導体素子から発生する熱を水冷式放熱フィンにより放熱する水冷式の放熱機構を備えた機器において、従来では、放熱フィンに冷却管の貫通孔を設け、この貫通孔に冷却管(単管)を嵌挿して水冷式の放熱機構を構成していた。この放熱機構は、放熱フィンに内接して貫通した直状の冷却管内を、冷却水がそのまま直進して通過する構造であり、放熱フィンと冷却水との間での熱交換は、放熱フィンを貫通した冷却管の内壁とこの内壁面に触れる冷却水との間で行われ、冷却水が冷却管内を満たしているため、冷却水全体に効率よく熱伝達が行われずに冷却水が排水され、供給した冷却水の冷却能力が十分に活用されないという問題があった。また、放熱フィンを貫通する冷却管の前後(給水側と排水側)において、管内を通過する冷却水の温度は、給水側に比べて熱を吸収した排水側の方が高くなり、結果的に排水側の放熱フィンの温度が十分に低下しないという問題があった。   In equipment equipped with a water-cooled heat dissipation mechanism that dissipates heat generated from power semiconductor elements by a water-cooled heat dissipation fin, conventionally, a through-hole of a cooling pipe is provided in the heat dissipation fin, and a cooling pipe (single pipe) is provided in this through-hole The water-cooled heat dissipation mechanism was configured. This heat dissipating mechanism has a structure in which the cooling water passes straight through the straight cooling pipe inscribed through the heat dissipating fin, and heat exchange between the heat dissipating fin and the cooling water It is performed between the inner wall of the cooling pipe that penetrates and the cooling water that touches this inner wall, and the cooling water fills the inside of the cooling pipe, so the cooling water is drained without efficient heat transfer to the entire cooling water, There was a problem that the cooling capacity of the supplied cooling water was not fully utilized. In addition, before and after the cooling pipe that penetrates the radiating fins (water supply side and drainage side), the temperature of the cooling water passing through the pipe is higher on the drainage side that absorbs heat than on the water supply side. There was a problem that the temperature of the heat-radiating fin on the drainage side did not decrease sufficiently.

そこで、本発明者等は、直状の外管と、前記外管の内壁と一定の間隙を存して前記外管に挿通された内管と、前記外管と前記内管に同一圧の冷却水を共通に供給する冷却水の供給手段と、前記内管を前記外管内に支持する支持手段と、前記外管内を流れる冷却水の流速に対して前記内管内を流れる冷却水の流速を速める流速制御手段とを具備した冷却管構造を開発した。   Therefore, the present inventors have a straight outer tube, an inner tube inserted into the outer tube with a certain gap from the inner wall of the outer tube, and the same pressure applied to the outer tube and the inner tube. Cooling water supply means for commonly supplying cooling water, support means for supporting the inner pipe in the outer pipe, and a flow rate of the cooling water flowing in the inner pipe with respect to a flow speed of the cooling water flowing in the outer pipe. A cooling pipe structure equipped with a speed control means for speeding up was developed.

この冷却管構造を用いて水冷式放熱機構を構成する場合、上記冷却管構造が、所謂、二重管構造であることから、外管および外管内に配管された内管を継合対象とした、配管が容易で作業性並びに経済性に優れた継手構造の開発が必要とされた。   When configuring a water-cooled heat dissipation mechanism using this cooling pipe structure, since the cooling pipe structure is a so-called double pipe structure, the outer pipe and the inner pipe piped in the outer pipe are to be joined. Therefore, it was necessary to develop a joint structure that was easy to pipe and excellent in workability and economy.

外管および外管内に配管された内管を有する二重管構造の継手として、従来では、継手の外周に、弾性変形により、第1、第2の二重管を係止する円筒状の係止部材を設け、二重管の各管に嵌着機構を有して、上記係止部材により、第1、第2の二重管を継手に係止し、継手に第1、第2の二重管を継合する継手構造(特許文献1参照)や、内管を外管外に導出させて、内管および外管を個別に継合する継手構造(特許文献2,3参照)が存在した。   Conventionally, as a joint of a double pipe structure having an outer pipe and an inner pipe piped in the outer pipe, a cylindrical engagement that locks the first and second double pipes by elastic deformation on the outer periphery of the joint. A stop member is provided, each pipe of the double pipe has a fitting mechanism, and the first and second double pipes are locked to the joint by the locking member, and the first and second joints are connected to the joint. There are joint structures that join double pipes (see Patent Document 1) and joint structures that lead out the inner pipe to the outside of the outer pipe and join the inner pipe and outer pipe individually (see Patent Documents 2 and 3). Were present.

このうち、係止部材により、第1、第2の二重管を継手に係止する継手構造は、継手の外周部に、弾性変形する係止部材を設け、内管および外管の継手部にそれぞれ固有の嵌着機構を設ける必要があることから、継手構造が煩雑かつ大型化するとともに信頼性の高い強固な継合状態を維持する上で問題がある。また、内管を外管外に導出させて、内管および外管を個別に継合する継手構造においては、内管を外管外に導出させる構造が必要となることから、構成が煩雑になるとともに内管を外管外に導出させる特殊な製造技術が必要とされ、さらに継手を含む配管構造が複雑化、大型化するという問題がある。   Among these, the joint structure for locking the first and second double pipes to the joint by the locking member is provided with a locking member that is elastically deformed on the outer peripheral part of the joint, and the joint part of the inner pipe and the outer pipe Since it is necessary to provide a unique fitting mechanism for each, there is a problem in that the joint structure becomes complicated and large in size and maintains a reliable and strong joint state. In addition, the joint structure in which the inner pipe is led out of the outer pipe and the inner pipe and the outer pipe are individually joined requires a structure for leading the inner pipe out of the outer pipe. In addition, a special manufacturing technique for leading the inner pipe out of the outer pipe is required, and the piping structure including the joint is complicated and enlarged.

さらに上記各継手構造は、単に外管と内管の流体を区分するのみの構造であることから、例えば、パワー半導体素子群から発生する熱を水冷式放熱フィンにより放熱する水冷式の放熱機構に適用した場合、冷却管内を流れる冷却水により冷却される放熱フィンの給水側と排水側とで吸熱による温度差が生じ、この温度差が冷却対象となる半導体素子を含む回路動作に不具合な影響を及ぼすという問題があり、この問題を解消しようとすると放熱フィンを基体とした水冷式放熱機構が大型化するという問題があった。   Furthermore, each joint structure is a structure that merely separates the fluid of the outer tube and the inner tube, so that, for example, a water-cooled heat radiation mechanism that radiates heat generated from the power semiconductor element group by a water-cooled heat radiation fin. When applied, there is a temperature difference due to heat absorption between the water supply side and the drain side of the radiating fin cooled by the cooling water flowing in the cooling pipe, and this temperature difference has a detrimental effect on the circuit operation including the semiconductor element to be cooled. In order to solve this problem, there has been a problem that the water-cooled heat dissipating mechanism based on the heat dissipating fins is enlarged.

特開2004−270928号公報JP 2004-270928 A 特開2007−177872号公報JP 2007-177872 A 特開2003−287166号公報JP 2003-287166 A

上述したように、従来の二重管を用いた水冷式放熱機構における冷却管継手構造は、パワー半導体素子群から発生する熱を水冷式放熱フィンにより放熱する水冷式の放熱機構に適用した場合、冷却管内を流れる冷却水により冷却される放熱フィンの給水側と排水側とで吸熱による温度差が生じ、この温度差が冷却対象となる半導体素子を含む回路動作に不具合な影響を及ぼすという問題があり、この問題を解消しようとすると放熱フィンを含む水冷式放熱機構が大型化するという問題があった。   As described above, the cooling pipe joint structure in the water-cooled heat dissipation mechanism using the conventional double pipe is applied to a water-cooled heat dissipation mechanism that radiates heat generated from the power semiconductor element group by the water-cooled heat dissipation fins. There is a problem that a temperature difference due to heat absorption occurs between the water supply side and the drainage side of the radiating fin cooled by the cooling water flowing in the cooling pipe, and this temperature difference adversely affects the circuit operation including the semiconductor element to be cooled. In order to solve this problem, there is a problem that the water-cooled heat dissipating mechanism including the heat dissipating fins is enlarged.

本発明の実施形態は、放熱フィンを含む水冷式放熱機構を大型化することなく、水冷式放熱機構の冷却効率並びに冷却能力を改善できる冷却管継手構造を提供することを目的とする。   An object of an embodiment of the present invention is to provide a cooling pipe joint structure capable of improving the cooling efficiency and cooling capacity of a water-cooled heat dissipation mechanism without increasing the size of the water-cooled heat dissipation mechanism including the heat dissipation fins.

本発明の実施形態は、放熱フィンと熱交換を行う水冷式の放熱機構に用いられ、冷却管構造の配管に適用される冷却管継手構造であって、外管と、前記外管の内壁と一定の間隙を存して前記外管内に設けられ、給水側からの冷却水が直進して排水側に流れる内管と、給水側配管と前記外管とを継合し、前記冷却水を前記内管の外周および前記内管内に給水する筒状の外管継手と、前記外管継手の内壁と一定の間隙を保持すると共に、前記内管の外周に流れる前記冷却水に対して渦流を生起せしめるスペーサを有する内管継手と、を具備し、前記外管継手は、前記内管の外周に、前記給水側配管から給水された前記冷却水を前記放熱フィンから熱を奪う一次冷却水として給水し、前記内管継手は、前記内管に、前記給水側配管から給水された同一圧の前記冷却水を、前記熱を奪った前記一次冷却水を冷却する二次冷却水として給水することを特徴とする。 An embodiment of the present invention is a cooling pipe joint structure that is used in a water-cooling type heat radiation mechanism that performs heat exchange with a heat radiation fin and is applied to a pipe having a cooling pipe structure, and includes an outer pipe, an inner wall of the outer pipe, The cooling water from the water supply side is provided in the outer pipe with a certain gap, and the inner pipe that flows straight to the drainage side is joined to the water supply side pipe and the outer pipe, and the cooling water is A cylindrical outer pipe joint for supplying water to the outer circumference of the inner pipe and the inner pipe, a constant gap from the inner wall of the outer pipe joint, and a vortex flow to the cooling water flowing on the outer circumference of the inner pipe An inner pipe joint having a spacer to be squeezed , and the outer pipe joint is provided with water as primary cooling water that draws heat from the radiation fins on the outer circumference of the inner pipe from the water supply side pipe. The inner pipe joint is supplied to the inner pipe from the water supply side pipe. The cooling water pressure, characterized in that the feed water as secondary cooling water for cooling the primary coolant robbed the heat.

本発明の実施形態によれば、放熱フィンを含む水冷式放熱機構を大型化することなく、水冷式放熱機構の冷却効率並びに冷却能力を改善した冷却管継手構造が提供できる。   According to the embodiment of the present invention, it is possible to provide a cooling pipe joint structure in which the cooling efficiency and the cooling capacity of the water-cooled heat dissipation mechanism are improved without increasing the size of the water-cooled heat dissipation mechanism including the radiation fins.

本発明の実施形態に係る冷却管継手構造の継合対象となる冷却管構造の構成を冷却水の流れとともに示す一部を縦断面にした斜視図。The perspective view which made the longitudinal cross-section part which shows the structure of the cooling pipe structure used as the connection object of the cooling pipe joint structure which concerns on embodiment of this invention with the flow of cooling water. 上記冷却管構造の構成を示す横断面図。The cross-sectional view which shows the structure of the said cooling pipe structure. 上記冷却管構造のスペーサの配置構成例を示す図。The figure which shows the arrangement configuration example of the spacer of the said cooling pipe structure. 上記冷却管構造を放熱フィンに取り付けた基本構成を示す図。The figure which shows the basic composition which attached the said cooling pipe structure to the radiation fin. 図4に示す冷却管構造の内部構成を示す図。The figure which shows the internal structure of the cooling pipe structure shown in FIG. 上記冷却管構造の熱交換を説明するための図。The figure for demonstrating the heat exchange of the said cooling pipe structure. 図6における冷却水の流れを示す図。The figure which shows the flow of the cooling water in FIG. 本発明の実施形態に係る冷却管継手構造の第1の構成例を示す図。The figure which shows the 1st structural example of the cooling pipe joint structure which concerns on embodiment of this invention. 上記実施形態に係る冷却管継手構造の第2の構成例を示す図。The figure which shows the 2nd structural example of the cooling pipe joint structure which concerns on the said embodiment. 図9に示す継手部分の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the joint part shown in FIG. 上記実施形態に係る冷却管継手構造を適用した配管の第1の構成例を示す図。The figure which shows the 1st structural example of piping which applied the cooling pipe joint structure which concerns on the said embodiment. 上記実施形態に係る冷却管継手構造を適用した配管の第2の構成例を示す図。The figure which shows the 2nd structural example of piping which applied the cooling pipe joint structure which concerns on the said embodiment. 上記実施形態に係る冷却管継手構造の第3の構成例を示す図。The figure which shows the 3rd structural example of the cooling pipe joint structure which concerns on the said embodiment. 図13に示す継手部分の構成を示す縦断面図。FIG. 14 is a longitudinal sectional view showing a configuration of a joint portion shown in FIG. 13. 上記実施形態に係る冷却管継手構造の第4の構成例を示す図。The figure which shows the 4th structural example of the cooling pipe joint structure which concerns on the said embodiment. 図15に示す継手部分の冷却水の流れを説明するための斜視図。The perspective view for demonstrating the flow of the cooling water of the joint part shown in FIG. 図15に示す継手部分の冷却水の流れを説明するための側面図。The side view for demonstrating the flow of the cooling water of the joint part shown in FIG. 上記実施形態に係る冷却管継手構造の継合対象となる他の冷却管構造の構成例を一部を拡大して示す斜視図。The perspective view which expands and partially shows the structural example of the other cooling pipe structure used as the connection object of the cooling pipe joint structure which concerns on the said embodiment. 図18に示す冷却管構造の構成を示す横断面図。FIG. 19 is a cross-sectional view showing the configuration of the cooling pipe structure shown in FIG. 18. 上記実施形態に係る冷却管継手構造を適用した水冷式放熱機構の第1の構成例を示す平面図。The top view which shows the 1st structural example of the water cooling type thermal radiation mechanism to which the cooling pipe joint structure which concerns on the said embodiment is applied. 図20に示す水冷式放熱機構の構成を示す正面図。The front view which shows the structure of the water cooling type thermal radiation mechanism shown in FIG. 上記実施形態に係る冷却管継手構造を適用した水冷式放熱機構の第2の構成例を示す平面図。The top view which shows the 2nd structural example of the water cooling type thermal radiation mechanism to which the cooling pipe joint structure which concerns on the said embodiment is applied. 図22に示す水冷式放熱機構の構成を示す正面図。The front view which shows the structure of the water cooling type thermal radiation mechanism shown in FIG. 上記実施形態に係る冷却管継手構造の内管部分の第1の構成例を示す斜視図。The perspective view which shows the 1st structural example of the inner pipe part of the cooling pipe joint structure which concerns on the said embodiment. 上記実施形態に係る冷却管継手構造の内管部分の第2の構成例を示す斜視図。The perspective view which shows the 2nd structural example of the inner pipe part of the cooling pipe joint structure which concerns on the said embodiment.

以下図面を参照して本発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず本発明の実施形態に係る冷却管継手構造の継合対象となる冷却管構造の構成を図1乃至図5を参照して説明する。   First, a configuration of a cooling pipe structure that is a target for joining a cooling pipe joint structure according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5.

この冷却管構造は、冷却管(一次冷却管)中の冷却水(一次冷却水)を冷却するための冷却管(二次冷却管)を一次冷却管内に配置し、この二次冷却管内に一次冷却水の冷却用水(二次冷却水)を供給し、一次冷却水の流速より二次冷却水の流速を速くすることにより、吸熱した二次冷却水を速やかに排水することで、一次冷却水の冷却能力の低下を軽減すると同時に、一次冷却水の水流に渦を発生させ、一次冷却管と一次冷却水および一次冷却水と二次冷却管相互の効率の良い熱交換を実現したことにある。   In this cooling pipe structure, a cooling pipe (secondary cooling pipe) for cooling the cooling water (primary cooling water) in the cooling pipe (primary cooling pipe) is arranged in the primary cooling pipe, and the primary cooling pipe is placed in the secondary cooling pipe. By supplying cooling water for cooling water (secondary cooling water) and increasing the flow rate of the secondary cooling water faster than the flow rate of the primary cooling water, the absorbed secondary cooling water can be drained quickly, so that the primary cooling water is discharged. In addition to reducing the cooling capacity of the primary cooling water, the vortex was generated in the flow of the primary cooling water to achieve efficient heat exchange between the primary cooling pipe and the primary cooling water and between the primary cooling water and the secondary cooling pipe. .

図1は上記冷却管構造の一部構成要素を切欠した基本構成と冷却水の流れを示す一部を縦断面にした斜視図、図2は上記冷却管構造の構成を示す横断面図、図3は上記冷却管構造のスペーサの配置構成例を示す図、図4は上記冷却管構造を放熱フィンに取り付けた基本構成を示す図、図5は図4に示す冷却管構造の内部構成を示す図である。   FIG. 1 is a perspective view of a basic configuration in which some components of the cooling pipe structure are cut out, and a part of the cooling pipe structure showing a flow of the cooling water in a longitudinal section. FIG. 2 is a cross-sectional view showing the configuration of the cooling pipe structure. 3 is a diagram showing an example of the arrangement configuration of spacers in the cooling pipe structure, FIG. 4 is a diagram showing a basic configuration in which the cooling pipe structure is attached to a heat radiating fin, and FIG. 5 is an internal configuration of the cooling pipe structure shown in FIG. FIG.

冷却管構造10は、放熱フィンと熱交換を行う水冷式の放熱機構に用いられるもので、放熱フィン20を貫通して設けられた直状の外管11と、上記外管11の内壁と一定の間隙を存して上記外管11内に同軸状に設けられた内管12と、上記外管11と上記内管12に同一圧の冷却水を共通に供給する冷却水(Ca)の供給手段と、上記内管12を上記外管11内に支持するとともに、上記外管11内を流れる冷却水(Ca1)に対して上記内管12の外周に沿い渦流(WP)を生起させる偏流面(DF)を有する複数のスペーサ13(13a〜13c)とを具備し、上記外管11内を流れる冷却水(Ca1)の流速に対し上記内管12内(二次冷却水流路12a)を流れる冷却水(Ca2)の流速を速めて、上記外管11に上記放熱フィン20と熱交換を行う一次冷却水(Ca1)の流路11aを形成し、上記内管12に上記一次冷却水(Ca1)を冷却する二次冷却水(Ca2)の流路12aを形成したことを特徴とする。この実施形態においては、符号11で示す外管を一次冷却管と称し、符号12で示す内管を二次冷却管と称している。また、符号11aで示す一次冷却水(Ca1)の流路を一次冷却水流路と称し、符号12aで示す二次冷却水(Ca2)の流路を二次冷却水流路と称す。   The cooling pipe structure 10 is used for a water-cooling type heat radiation mechanism for exchanging heat with the heat radiation fins, and has a straight outer tube 11 provided through the heat radiation fins 20, and the inner wall of the outer tube 11 is constant. The inner pipe 12 provided coaxially in the outer pipe 11 with a gap between them, and the supply of cooling water (Ca) for commonly supplying the same pressure of cooling water to the outer pipe 11 and the inner pipe 12 Means and a drift surface for supporting the inner tube 12 in the outer tube 11 and generating a vortex (WP) along the outer periphery of the inner tube 12 with respect to the cooling water (Ca1) flowing in the outer tube 11 A plurality of spacers 13 (13a to 13c) having (DF) and flowing in the inner pipe 12 (secondary cooling water flow path 12a) with respect to the flow rate of the cooling water (Ca1) flowing in the outer pipe 11. The flow rate of the cooling water (Ca2) is increased, and the radiating fin 20 and the heat are added to the outer tube 11. A primary cooling water (Ca1) flow path 11a for exchange is formed, and a secondary cooling water (Ca2) flow path 12a for cooling the primary cooling water (Ca1) is formed in the inner pipe 12. To do. In this embodiment, the outer pipe indicated by reference numeral 11 is referred to as a primary cooling pipe, and the inner pipe indicated by reference numeral 12 is referred to as a secondary cooling pipe. Further, the flow path of primary cooling water (Ca1) indicated by reference numeral 11a is referred to as a primary cooling water flow path, and the flow path of secondary cooling water (Ca2) indicated by reference numeral 12a is referred to as a secondary cooling water flow path.

上記外管を構成する一次冷却管11は、例えば銅パイプを用いた円筒状の直状管により構成され、放熱フィン20を貫通して設けられている。放熱フィン20は一次冷却管11の管径より厚みのある肉厚で熱伝導率の高い金属材料(例えばアルミニウムで構成された直方体金属)により構成され、一側面部と同面と反対側の他側面部との間に穿設した一次冷却管挿通用の貫通孔21を有して、この貫通孔21の内周面に一次冷却管11の外周面が面接触した状態で一次冷却管11が放熱フィン20に嵌挿されている。放熱フィン20には発熱体となる半導体素子31が実装され、半導体素子31と一次冷却管11との間に放熱フィン20を介して熱伝導路が形成されている。   The primary cooling pipe 11 constituting the outer pipe is constituted by a cylindrical straight pipe using, for example, a copper pipe, and is provided so as to penetrate the radiating fins 20. The radiating fin 20 is made of a metal material having a thickness larger than the diameter of the primary cooling pipe 11 and having a high thermal conductivity (for example, a rectangular parallelepiped metal made of aluminum). The primary cooling pipe 11 is provided with a through hole 21 for insertion of the primary cooling pipe formed between the side surface portion and the outer peripheral surface of the primary cooling pipe 11 in surface contact with the inner peripheral surface of the through hole 21. The heat radiating fins 20 are inserted. A semiconductor element 31 serving as a heating element is mounted on the radiation fin 20, and a heat conduction path is formed between the semiconductor element 31 and the primary cooling pipe 11 via the radiation fin 20.

上記内管を構成する二次冷却管12は、外管11と同様の直状管により構成され、直状の一次冷却管11の内壁と一定の間隙を存して一次冷却管11内に配管されている。この実施形態では、二次冷却管12の外周部に、一次冷却管11の内壁との間隙を一定に保つ二次冷却管保持スペーサ13が設けられ、この二次冷却管保持スペーサ13により、二次冷却管12が一次冷却管11内に一次冷却管11と同軸状に保持されて配管されている。   The secondary cooling pipe 12 constituting the inner pipe is constituted by a straight pipe similar to the outer pipe 11 and is piped in the primary cooling pipe 11 with a certain gap from the inner wall of the straight primary cooling pipe 11. Has been. In this embodiment, a secondary cooling pipe holding spacer 13 that maintains a constant gap with the inner wall of the primary cooling pipe 11 is provided on the outer periphery of the secondary cooling pipe 12. The secondary cooling pipe 12 is piped in the primary cooling pipe 11 while being held coaxially with the primary cooling pipe 11.

二次冷却管保持スペーサ13は一次冷却水流路11aに給水された一次冷却水(Ca1)を渦流化し二次冷却管12の外周を螺旋状に流すことによって二次冷却水流路12aを直進する二次冷却水(Ca2)に対し給水から排水に至る水流に時間差(流路差)をもたせ、これによって、一次冷却水流路11aを流れる一次冷却水(Ca1)の流速に対して二次冷却水流路12aを流れる二次冷却水(Ca2)の流速を速める流速制御手段を実現している。二次冷却管保持スペーサ13は、一次冷却管11内(一次冷却水流路11a)を流れる冷却水(Ca1)に対して渦流(WP)を生起する偏流面(DF)を有する3枚の羽根状のスペーサ部材13a,13b,13cにより構成され、3枚のスペーサ部材13a〜13cを一組として組を単位に二次冷却管12の外周に螺旋状に巻装された状態で設けられている。この二次冷却管保持スペーサ13は、二次冷却管12内の少なくとも給水側と排水側を含む複数箇所に設けられている。スペーサ部材13a,13b,13cは、例えばスクリューの羽根に類似した形状であり、それぞれ渦を生起せしめる曲面をなす偏流面(DF)および円弧状の縁部を有し、同縁部の一部先端が一次冷却管11に対する二次冷却管12の支持点(TP)として一次冷却管11の内壁に当接して設けられている。この実施形態では、二次冷却管保持スペーサ13を一次冷却水(Ca1)と二次冷却管12との熱伝導路として利用するため、二次冷却管保持スペーサ13を熱伝導率の高い銅材を用いて構成している。   The secondary cooling pipe holding spacer 13 vortexes the primary cooling water (Ca1) supplied to the primary cooling water flow path 11a and causes the outer periphery of the secondary cooling pipe 12 to flow spirally, thereby moving straight through the secondary cooling water flow path 12a. A time difference (flow path difference) is given to the water flow from the supply water to the drainage with respect to the primary cooling water (Ca2), and thereby the secondary cooling water flow path with respect to the flow rate of the primary cooling water (Ca1) flowing through the primary cooling water flow path 11a. The flow rate control means for increasing the flow rate of the secondary cooling water (Ca2) flowing through 12a is realized. The secondary cooling pipe holding spacer 13 has three blades having a drift surface (DF) that generates a vortex (WP) with respect to the cooling water (Ca1) flowing in the primary cooling pipe 11 (primary cooling water flow path 11a). The spacer members 13a, 13b, and 13c are provided as a set, and the three spacer members 13a to 13c are provided as a set and are wound around the outer periphery of the secondary cooling pipe 12 in a spiral manner. The secondary cooling pipe holding spacers 13 are provided at a plurality of locations in the secondary cooling pipe 12 including at least the water supply side and the drainage side. Each of the spacer members 13a, 13b, and 13c has a shape similar to, for example, a blade of a screw, and has a drift surface (DF) and an arc-shaped edge that form a curved surface that causes a vortex. Is provided in contact with the inner wall of the primary cooling pipe 11 as a support point (TP) of the secondary cooling pipe 12 with respect to the primary cooling pipe 11. In this embodiment, since the secondary cooling pipe holding spacer 13 is used as a heat conduction path between the primary cooling water (Ca1) and the secondary cooling pipe 12, the secondary cooling pipe holding spacer 13 is a copper material having a high thermal conductivity. It is configured using.

ここで図6および図7を参照して上記構成の冷却管構造10における熱交換作用を説明する。図6は上記冷却管構造10の熱交換を説明するための図であり、放熱フィン20に実装された発熱体(半導体素子)31の熱交換作用を説明するための熱伝達径路を符号31hおよび符号ta,tb,tcで示している。図6において符号31hは発熱体となる半導体素子31から発生した熱の伝達径路、符号taは放熱フィン20から冷却管構造10への熱伝達径路、符号tbは一次冷却管11から同管11内(一次冷却水流路11a)を流れる冷却水(Ca1)への熱伝達径路、符号tcは一次冷却管11内(一次冷却水流路11a)を流れる冷却水(Ca1)から二次冷却管12内(二次冷却水流路12a)を流れる二次冷却水(Ca2)への熱伝達径路を示している。図7は図6の熱伝達径路を形成する冷却管構造10の熱交換作用を説明するための一次冷却水流路11aを流れる一次冷却水(Ca1)および二次冷却水流路12aを流れる二次冷却水(Ca2)を示す図である。   Here, with reference to FIG. 6 and FIG. 7, the heat exchange action in the cooling pipe structure 10 having the above-described configuration will be described. FIG. 6 is a view for explaining the heat exchange of the cooling pipe structure 10, and a heat transfer path for explaining the heat exchange action of the heating element (semiconductor element) 31 mounted on the heat radiating fin 20 is denoted by reference numeral 31 h and Reference numerals ta, tb, and tc indicate. In FIG. 6, reference numeral 31 h is a transfer path of heat generated from the semiconductor element 31 serving as a heating element, reference numeral ta is a transfer path of heat from the radiation fins 20 to the cooling pipe structure 10, and reference sign tb is from the primary cooling pipe 11 to the inside of the pipe 11. The heat transfer path to the cooling water (Ca1) flowing through the (primary cooling water flow path 11a), the symbol tc is the cooling water (Ca1) flowing through the primary cooling pipe 11 (primary cooling water flow path 11a) to the secondary cooling pipe 12 ( The heat transfer path to the secondary cooling water (Ca2) flowing through the secondary cooling water flow path 12a) is shown. FIG. 7 shows the primary cooling water (Ca1) flowing through the primary cooling water flow path 11a and the secondary cooling flowing through the secondary cooling water flow path 12a for explaining the heat exchange action of the cooling pipe structure 10 forming the heat transfer path of FIG. It is a figure which shows water (Ca2).

一次冷却管11の給水側と二次冷却管12の給水側には、それぞれ給水側配管(給水パイプ)から継手(管継手)を介して上記各冷却管に共通の冷却水(Ca)が同一水圧で供給される。この冷却水(Ca)は一次冷却管11内(一次冷却水流路11a)を流れる一次冷却水(Ca1)と二次冷却管12内(二次冷却水流路12a)を流れる二次冷却水(Ca2)とに分流され、それぞれ排水側に流れる。   The water supply side of the primary cooling pipe 11 and the water supply side of the secondary cooling pipe 12 have the same cooling water (Ca) common to each cooling pipe from the water supply side pipe (water supply pipe) through a joint (pipe joint). Supplied with water pressure. The cooling water (Ca) includes primary cooling water (Ca1) flowing in the primary cooling pipe 11 (primary cooling water flow path 11a) and secondary cooling water (Ca2) flowing in the secondary cooling pipe 12 (secondary cooling water flow path 12a). ) And flow to the drain side.

この際、一次冷却管11の給水側に供給された一次冷却水(Ca1)は、二次冷却管12の外周に設けられた二次冷却管保持スペーサ13の偏流面(DF)に案内され、渦流(WP)となって一次冷却管11内を二次冷却管12の外周に沿い排水側に向かって流れる(二次冷却管12の外周を螺旋状に回りながら排水側に向かって進行する)。   At this time, the primary cooling water (Ca1) supplied to the water supply side of the primary cooling pipe 11 is guided to the drift surface (DF) of the secondary cooling pipe holding spacer 13 provided on the outer periphery of the secondary cooling pipe 12, It becomes a vortex (WP) and flows in the primary cooling pipe 11 along the outer periphery of the secondary cooling pipe 12 toward the drainage side (progresses toward the drainage side while spiraling around the outer periphery of the secondary cooling pipe 12). .

この渦流(WP)となった一次冷却水(Ca1)は一次冷却管11内において満遍なく掻き回された状態で二次冷却管12の外周を排水側に向かって流れ、従って渦流(WP)となった一次冷却水(Ca1)により熱伝達径路ta,tbにおいて効率のよい熱交換が行われる。この熱交換により一次冷却水(Ca1)は給水側の一次冷却水(Ca1)と排水側の一次冷却水(Ca1)とで温度差が生じ、給水側の一次冷却水(Ca1)に対して排水側の一次冷却水(Ca1)の温度が高くなる。   The primary cooling water (Ca1) that has become the vortex flow (WP) flows in the primary cooling pipe 11 evenly in the primary cooling pipe 11 and flows toward the drain side on the outer periphery of the secondary cooling pipe 12, and thus becomes a vortex flow (WP). Further, efficient heat exchange is performed in the heat transfer paths ta and tb by the primary cooling water (Ca1). Due to this heat exchange, the primary cooling water (Ca1) has a temperature difference between the primary cooling water (Ca1) on the water supply side and the primary cooling water (Ca1) on the drainage side, and drains from the primary cooling water (Ca1) on the water supply side. The temperature of the primary cooling water (Ca1) on the side increases.

一方、二次冷却管12の給水側に供給された二次冷却水(Ca2)は同管内を直進して排水側に流れる。この二次冷却管12内(二次冷却水流路12a)を流れる二次冷却水(Ca2)に対して、一次冷却管11内(一次冷却水流路11a)を流れる一次冷却水(Ca1)は、渦流(WP)となって二次冷却管12の外周を排水側に流れることから、一次冷却水(Ca1)と二次冷却水(Ca2)との間に流速差が生じ、一次冷却管11内(一次冷却水流路11a)を流れる一次冷却水(Ca1)の流速に対して二次冷却管12内(二次冷却水流路12a)を流れる二次冷却水(Ca2)の流速が速まる流速制御が実現される。   On the other hand, the secondary cooling water (Ca2) supplied to the water supply side of the secondary cooling pipe 12 goes straight through the pipe and flows to the drain side. With respect to the secondary cooling water (Ca2) flowing through the secondary cooling pipe 12 (secondary cooling water flow path 12a), the primary cooling water (Ca1) flowing through the primary cooling pipe 11 (primary cooling water flow path 11a) is: Since it becomes a vortex (WP) and flows around the outer periphery of the secondary cooling pipe 12 to the drain side, a flow velocity difference is generated between the primary cooling water (Ca1) and the secondary cooling water (Ca2), and the inside of the primary cooling pipe 11 The flow rate control is such that the flow rate of the secondary cooling water (Ca2) flowing in the secondary cooling pipe 12 (secondary cooling water channel 12a) is increased with respect to the flow rate of the primary cooling water (Ca1) flowing in the (primary cooling water channel 11a). Realized.

この流速制御により、一次冷却管11内(一次冷却水流路11a)を流れる一次冷却水(Ca1)に対して二次冷却管12内(二次冷却水流路12a)を流れる二次冷却水(Ca2)を速やかに排水することができ、熱伝達径路tcにおいて効率のよい熱交換を行うことができる。これにより、排水側に向かうに従い顕著になる一次冷却水(Ca1)の冷却能力の低下を著しく低減でき、放熱フィン20の給水側と排水側とに温度差を殆どもたない安定した温度管理を実現できる。   By this flow rate control, the secondary cooling water (Ca2) flowing in the secondary cooling pipe 12 (secondary cooling water flow path 12a) with respect to the primary cooling water (Ca1) flowing in the primary cooling pipe 11 (primary cooling water flow path 11a). ) Can be drained quickly, and efficient heat exchange can be performed in the heat transfer path tc. As a result, the decrease in the cooling capacity of the primary cooling water (Ca1) that becomes conspicuous as it goes toward the drainage side can be remarkably reduced, and stable temperature management with almost no temperature difference between the water supply side and the drainage side of the radiating fin 20 is achieved. realizable.

このように、一次冷却管11内の一次冷却水(Ca1)を冷却するための二次冷却管12を一次冷却管11内に配置し、この二次冷却管12に一次冷却水(Ca1)の冷却用水となる二次冷却水(Ca2)を供給し、一次冷却水(Ca1)の流速より二次冷却水(Ca2)の流速を速くすることにより、吸熱した二次冷却水(Ca2)を速やかに排水することで、一次冷却水(Ca1)の冷却能力の低下を軽減すると同時に、一次冷却水(Ca1)の水流に渦を発生させ、一次冷却管11と一次冷却水(Ca1)および一次冷却水(Ca1)と二次冷却管12相互の効率の良い熱交換を実現できる。   Thus, the secondary cooling pipe 12 for cooling the primary cooling water (Ca1) in the primary cooling pipe 11 is arranged in the primary cooling pipe 11, and the primary cooling water (Ca1) is supplied to the secondary cooling pipe 12. By supplying the secondary cooling water (Ca2) as cooling water and increasing the flow rate of the secondary cooling water (Ca2) from the flow rate of the primary cooling water (Ca1), the absorbed secondary cooling water (Ca2) is quickly By draining into the water, the decrease in the cooling capacity of the primary cooling water (Ca1) is reduced, and at the same time, a vortex is generated in the flow of the primary cooling water (Ca1), and the primary cooling pipe 11 and the primary cooling water (Ca1) and the primary cooling are generated. Efficient heat exchange between water (Ca1) and the secondary cooling pipe 12 can be realized.

また、二次冷却管保持スペーサ13は、二次冷却管12を一次冷却管11内に同軸状に保持する保持スペーサの機能と、一次冷却管11内(一次冷却水流路11a)を流れる一次冷却水(Ca1)に渦流(WP)を生起する(二次冷却管12の外周を螺旋状に回りながら排水側に進行する)機能とを兼ね備えた構造であることから、保持スペーサと渦流を作る羽根とを別体に設ける構造に比し部品点数および組立工数を削減できる。   In addition, the secondary cooling pipe holding spacer 13 functions as a holding spacer that holds the secondary cooling pipe 12 coaxially in the primary cooling pipe 11 and primary cooling that flows in the primary cooling pipe 11 (primary cooling water flow path 11a). Since the structure has a function of generating vortex (WP) in water (Ca1) (progressing to the drainage side while spiraling around the outer periphery of the secondary cooling pipe 12), the blade that creates the vortex with the holding spacer The number of parts and the number of assembling steps can be reduced as compared with a structure in which and are separately provided.

また、二次冷却管保持スペーサ13は二次冷却管12の軸方向(長さ方向)に対してほぼ垂直な偏流面および円弧状の縁部を有する3枚のスペーサ部材13a,13b,13cを一組として組を単位に、二次冷却管12に対して同管の周方向に120度ずつ連続して螺旋状に巻き付けた状態で、冷却管構造10の給水側と排水側を含む管軸方向の複数箇所に所定の間隔を隔てて設けられ、スペーサ部材13a,13b,13cの円弧状の一部先端が一次冷却管11に対する二次冷却管12の支持点(TP)として一次冷却管11の内壁に当接して二次冷却管12を一次冷却管11内に保持する構造、すなわち、管軸方向に間隔を存して部分的に設けられた点接触による内管保持構造であることから、外管内に内管を挿入する際の挿入抵抗を軽減でき、これによって同軸二重管の組立が極めて容易に実現可能である。さらに二次冷却管保持スペーサ13の各スペーサ部材13a,13b,13cが渦流(WP)を作る羽根として作用するとともに、一次冷却水(Ca1)との熱伝導部材として作用することから、より冷却効果を高めることができる。   The secondary cooling pipe holding spacer 13 includes three spacer members 13a, 13b, and 13c each having a drift surface and an arcuate edge substantially perpendicular to the axial direction (length direction) of the secondary cooling pipe 12. A pipe shaft including the water supply side and the water discharge side of the cooling pipe structure 10 in a state of being wound spirally continuously by 120 degrees in the circumferential direction of the pipe with respect to the secondary cooling pipe 12 as a set. The primary cooling pipe 11 is provided at a plurality of locations in the direction with predetermined intervals, and the arcuate partial tips of the spacer members 13a, 13b, 13c serve as support points (TP) for the secondary cooling pipe 12 with respect to the primary cooling pipe 11. Since the secondary cooling pipe 12 is held in the primary cooling pipe 11 in contact with the inner wall of the pipe, that is, the inner pipe holding structure is formed by point contact that is partially provided at intervals in the pipe axis direction. The insertion resistance when inserting the inner tube into the outer tube is reduced. Can, whereby the assembly of the coaxial double tube is very easily realized. Furthermore, since each spacer member 13a, 13b, 13c of the secondary cooling pipe holding spacer 13 acts as a blade that creates a vortex (WP) and also acts as a heat conduction member with the primary cooling water (Ca1), the cooling effect is further increased. Can be increased.

上記した冷却管構造10を継合対象とした本発明の実施形態に係る、流速制御機能を有する冷却管継手構造の各種構成例を図8乃至図17を参照して説明する。   Various configuration examples of the cooling pipe joint structure having the flow rate control function according to the embodiment of the present invention in which the above-described cooling pipe structure 10 is an object to be joined will be described with reference to FIGS.

図8乃至図10はそれぞれ給水側における二次冷却管12の継手構造を示している。図8はねじ込み形の継手構造(第1の構成例による継手構造)を示し、図9および図10ははめ込み形の継手構造(第2の構成例による継手構造)を示している。   8 to 10 each show a joint structure of the secondary cooling pipe 12 on the water supply side. FIG. 8 shows a screw-type joint structure (joint structure according to the first configuration example), and FIGS. 9 and 10 show a fit-type joint structure (joint structure according to the second configuration example).

図8に示すねじ込み形の継手構造は、二次冷却管保持スペーサ13の渦流(WP)を作る偏流面(DF)の向きに応じたねじ込み方向の螺子結合による、給水側配管(給水パイプ)の継手15と二次冷却管12との継合例を示している。この継合例では、継手15と二次冷却管12の結合部分において、継手15の内周面と二次冷却管12の外周面にそれぞれ螺子結合のための螺刻部を形成している。すなわち、継手15の内周面に冷却管結合用の螺刻部15sを設け、二次冷却管12の外周面に継手結合用の螺刻部12sを設けている。   The screw-type joint structure shown in FIG. 8 is provided on the water supply side pipe (water supply pipe) by screw connection in the screwing direction according to the direction of the drift surface (DF) that creates the vortex (WP) of the secondary cooling pipe holding spacer 13. A joint example of the joint 15 and the secondary cooling pipe 12 is shown. In this joint example, in the joint portion between the joint 15 and the secondary cooling pipe 12, threaded portions for screw coupling are formed on the inner peripheral surface of the joint 15 and the outer peripheral surface of the secondary cooling pipe 12, respectively. That is, a threaded portion 15 s for coupling a cooling pipe is provided on the inner peripheral surface of the joint 15, and a threaded portion 12 s for coupling is provided on the outer peripheral surface of the secondary cooling pipe 12.

図中の符号raは、力Faにより発生する二次冷却管12の回転方向であり、給水側から排水側に向かってみて反時計回りの方向、すなわち、排水側から給水側に向かってみて時計回りの方向である。この回転方向raは、右ねじの進む方向、すなわち継手15に対して二次冷却管12が螺子結合される方向である。なお、継手15の二次冷却管12の結合部分と反対側の結合部分は、後述する図11若しくは図12に示す単一の給水パイプ(符号5参照)に螺子結合により継合される。   The symbol ra in the figure is the direction of rotation of the secondary cooling pipe 12 generated by the force Fa, and is a counterclockwise direction when viewed from the water supply side toward the drainage side, that is, when viewed from the drainage side toward the water supply side. It is the direction around. The rotation direction ra is a direction in which the right screw advances, that is, a direction in which the secondary cooling pipe 12 is screwed to the joint 15. In addition, the joint part of the joint 15 opposite to the joint part of the secondary cooling pipe 12 is joined to a single water supply pipe (see reference numeral 5) shown in FIG.

このように、二次冷却管12と継手15が右ネジで接合されている場合、給水側から排水側に向って時計回りの方向に渦流(WP)が発生するように、二次冷却管保持スペーサ13の偏流面(DF)を形成することにより、一次冷却水(Ca1)の水流圧作用で二次冷却管12が結合方向と反対の方向に回転して継手15から外れる不具合を回避できる。なお、二次冷却管12と継手15が左ネジで螺子結合されている場合は、上記とは逆の、反時計回りの渦が発生するように二次冷却管保持スペーサ13の偏流面(DF)を形成することにより同様に上記不具合を回避することができる。   In this way, when the secondary cooling pipe 12 and the joint 15 are joined with a right-hand thread, the secondary cooling pipe is held so that a vortex (WP) is generated in the clockwise direction from the water supply side to the drainage side. By forming the drift surface (DF) of the spacer 13, it is possible to avoid the problem that the secondary cooling pipe 12 rotates in the direction opposite to the coupling direction due to the water pressure action of the primary cooling water (Ca1) and comes off from the joint 15. In addition, when the secondary cooling pipe 12 and the joint 15 are screw-coupled with a left-hand thread, the drift surface (DF) of the secondary cooling pipe holding spacer 13 is generated so that a counterclockwise vortex is generated, which is the reverse of the above. ) Can be similarly avoided.

図9および図10は嵌め込み形の継手構造を示している。図9は分解斜視図であり、図10は結合状態を示す側断面図である。   9 and 10 show a fitting joint structure. FIG. 9 is an exploded perspective view, and FIG. 10 is a side sectional view showing a combined state.

この嵌め込み形の継手結合構造は、筒状の締結リングCPを用いて二次冷却管12の給水側に筒状の継手16を継合している。二次冷却管12は、給水側の先端部分が継手16に嵌挿される嵌挿部12dとなり、この嵌挿部12dの外周面に管軸方向に沿って突起状の回転止めフック12fが設けられ、上記嵌挿部12dの終端外周面にフランジ状の締結リング用ストッパー12rが設けられている。筒状の継手16には、二次冷却管12の嵌挿部12dが嵌挿される部分の内周面に上記回転止めフック12fに係合するガイド溝16gが設けられ、冷却管結合側の外周面に締結リング結合用の螺刻部16s1を設けている。締結リングCPには給水側の内周面に上記螺刻部16s1に螺合する継手結合用の螺刻部16s2が設けられ、排水側の内周面に上記ストッパー12rに係合する段差をもつ突き当て部16rが設けられている。   In this fitting-type joint coupling structure, a tubular joint 16 is joined to the water supply side of the secondary cooling pipe 12 using a tubular fastening ring CP. The secondary cooling pipe 12 is a fitting insertion portion 12d in which the water supply-side tip portion is fitted into the joint 16, and a protrusion-like anti-rotation hook 12f is provided on the outer peripheral surface of the fitting insertion portion 12d along the pipe axis direction. In addition, a flange-like fastening ring stopper 12r is provided on the terminal outer peripheral surface of the fitting insertion portion 12d. The cylindrical joint 16 is provided with a guide groove 16g that engages with the anti-rotation hook 12f on the inner peripheral surface of the portion where the insertion portion 12d of the secondary cooling pipe 12 is inserted, and the outer periphery on the cooling pipe coupling side. A threaded portion 16s1 for coupling the fastening ring is provided on the surface. The fastening ring CP is provided with a threaded portion 16s2 for coupling coupling that is threadedly engaged with the threaded portion 16s1 on the inner peripheral surface on the water supply side, and has a step that engages with the stopper 12r on the inner peripheral surface on the drain side. An abutting portion 16r is provided.

この継手構造の組立は、二次冷却管12の嵌挿部12dに設けられた回転止めフック12fを継手16の内周面に設けられたガイド溝16gに係合させて二次冷却管12の嵌挿部12dを継手16に嵌挿する。二次冷却管12の給水側外周に被嵌された締結リングCPを継手16の螺刻部16s1に対して締め付け方向に回転させることによって、継手16の螺刻部16s1に締結リングCPの螺刻部16s2が螺合し、締結リングCPの締め付けにより、二次冷却管12のストッパー12rに締結リングCPの突き当て部16rが当接して二次冷却管12が継手16に継合される。この継手16を介して二次冷却管12が一次冷却管11とともに一つの給水側配管(給水パイプ)に継合される。   In the assembly of the joint structure, the anti-rotation hook 12f provided at the fitting insertion portion 12d of the secondary cooling pipe 12 is engaged with the guide groove 16g provided on the inner peripheral surface of the joint 16 so that the secondary cooling pipe 12 can be assembled. The fitting insertion portion 12 d is fitted into the joint 16. By screwing the fastening ring CP fitted to the outer periphery of the water supply side of the secondary cooling pipe 12 in the tightening direction with respect to the threaded portion 16s1 of the joint 16, the threaded portion 16s1 of the joint 16 is threaded with the fastening ring CP. When the fastening ring CP is tightened, the portion 16s2 is screwed, and the abutting portion 16r of the fastening ring CP comes into contact with the stopper 12r of the secondary cooling pipe 12, and the secondary cooling pipe 12 is joined to the joint 16. The secondary cooling pipe 12 is joined to one water supply side pipe (water supply pipe) through the joint 16 together with the primary cooling pipe 11.

上記一次冷却管11および二次冷却管12で構成された冷却管構造10の給水側および排水側における配管構成例を図11および図12に示している。ここでは放熱フィン20の貫通孔を設けた両側面において、給水側と排水側がそれぞれ片側に揃っている配管構成例を図11に示し、給水側と排水側がそれぞれ交互に配管された配管構成例を図12に示している。   11 and 12 show an example of the piping configuration on the water supply side and the drain side of the cooling pipe structure 10 constituted by the primary cooling pipe 11 and the secondary cooling pipe 12. Here, FIG. 11 shows an example of a pipe configuration in which the water supply side and the drainage side are aligned on one side on both sides where the through holes of the radiating fin 20 are provided, and an example of a pipe configuration in which the water supply side and the drainage side are alternately piped. This is shown in FIG.

図において、符号5,5A,5Bはそれぞれ給水側の配管(給水パイプ)、符号6,6A,6Bはそれぞれ排水側配管(排水パイプ)である。符号PJ1は冷却管構造10の給水側の継手であり、符号PJ2は冷却管構造10の排水側の継手である。継手PJ1は冷却管構造10を構成する一次冷却管11および二次冷却管12をそれぞれ一つの給水側配管5(5A,5B)に継合し、一次冷却管11および二次冷却管12にそれぞれ同一圧の冷却水(Ca)を給水する。この継手PJ1は、上記した図8に示した二次冷却管12の継手を有する継手構造(第1の構成例)、図9および図10に示した二次冷却管12の継手を有する継手構造(第2の構成例)、若しくは後述する図13および図14に示す継手構造(第3の構成例)、図15乃至図17に示す継手構造(第4の構成例)のいずれであってもよい。ここでは一例として後述する図15乃至図17に示す第4の構成例による継手構造により冷却管構造10を給水側の配管5に継合するものとする。この第4の構成例による継手構造は、一次冷却水(Ca1)の渦流旋回による流速制御機能と、二次冷却水(Ca2)の加速化(高圧化)による流速制御機能とを実現している。   In the figure, reference numerals 5, 5A and 5B are water supply side pipes (water supply pipes), and reference numerals 6, 6A and 6B are drain side pipes (drainage pipes), respectively. Reference numeral PJ1 is a joint on the water supply side of the cooling pipe structure 10, and reference numeral PJ2 is a joint on the drain side of the cooling pipe structure 10. The joint PJ1 joins the primary cooling pipe 11 and the secondary cooling pipe 12 constituting the cooling pipe structure 10 to one water supply side pipe 5 (5A, 5B), respectively, and the primary cooling pipe 11 and the secondary cooling pipe 12 respectively. Supply cooling water (Ca) of the same pressure. The joint PJ1 is a joint structure (first configuration example) having the joint of the secondary cooling pipe 12 shown in FIG. 8 and a joint structure having the joint of the secondary cooling pipe 12 shown in FIGS. (Second configuration example), or a joint structure (third configuration example) shown in FIGS. 13 and 14 to be described later, or a joint structure (fourth configuration example) shown in FIGS. 15 to 17. Good. Here, as an example, the cooling pipe structure 10 is joined to the water supply side pipe 5 by a joint structure according to a fourth configuration example shown in FIGS. The joint structure according to the fourth configuration example realizes a flow rate control function by swirling the primary cooling water (Ca1) and a flow rate control function by accelerating (high pressure) the secondary cooling water (Ca2). .

図11に示す配管構成例においては放熱フィン20の貫通孔を設けた両側面において、給水側と排水側の配管をそれぞれ片側に集約することで、配管構成を簡素にすることができるが、放熱フィン20の給水側と排水側で温度差が生じ易い傾向となる。図12に示す配管構成例においては放熱フィン20の貫通孔を設けた両側面において、給水側と排水側の配管をそれぞれ交互にすることで、放熱フィン20の給水側と排水側での温度差が生じ難い構成とすることができるが、給水側と排水側の配管構成が煩雑になる。   In the piping configuration example shown in FIG. 11, the piping configuration can be simplified by consolidating the water supply side and drainage side pipes on one side on both sides where the through holes of the heat dissipating fins 20 are provided. A temperature difference tends to occur between the water supply side and the drainage side of the fin 20. In the piping configuration example shown in FIG. 12, the temperature difference between the water supply side and the drainage side of the radiation fin 20 is made by alternately arranging the water supply side and the drainage side pipes on both side surfaces provided with the through holes of the radiation fin 20. However, the piping configuration on the water supply side and the drain side becomes complicated.

上記した冷却管構造10の一次冷却管11および二次冷却管12をそれぞれ給水側の配管5(5A,5B)に継合する継手構造の図3の構成例を図13および図14に示している。図13は継手部分の分解斜視図、図14は同継手部分の側面図である。   FIG. 13 and FIG. 14 show a configuration example of FIG. 3 of the joint structure in which the primary cooling pipe 11 and the secondary cooling pipe 12 described above are joined to the water supply side pipe 5 (5A, 5B), respectively. Yes. FIG. 13 is an exploded perspective view of the joint portion, and FIG. 14 is a side view of the joint portion.

この冷却管構造10の一次冷却管11および二次冷却管12をそれぞれ給水側配管5(5A,5B)に継合する継手17は、冷却管構造10の一次冷却管11に継合する筒状の外管継手17Aと、冷却管構造10の二次冷却管12に継合する筒状の内管継手17Bと、内管継手17Bを外管継手17Aに係止するリング状の内管用ストッパー17Cとを具備して構成されている。   A joint 17 that joins the primary cooling pipe 11 and the secondary cooling pipe 12 of the cooling pipe structure 10 to the water supply side pipe 5 (5A, 5B) is a cylindrical shape that joins the primary cooling pipe 11 of the cooling pipe structure 10. The outer pipe joint 17A, a cylindrical inner pipe joint 17B joined to the secondary cooling pipe 12 of the cooling pipe structure 10, and a ring-shaped inner pipe stopper 17C for locking the inner pipe joint 17B to the outer pipe joint 17A. It comprises.

外管継手17Aは、給水側の端部内周面に、給水側配管5を螺子結合するめための螺刻部17s1を有し、排水側の端部内周面に冷却管構造10の一次冷却管11を螺子結合するめための螺刻部17s6を有し、中間部内周面に、内管継手17Bを螺子結合するめための螺刻部17s2と、内管用ストッパー17Cを螺子結合するめための螺刻部17s4とを有して構成されている。   The outer pipe joint 17A has a threaded portion 17s1 for screwing the water supply side pipe 5 on the inner peripheral surface of the water supply side, and the primary cooling pipe 11 of the cooling pipe structure 10 on the inner peripheral surface of the drain side end. A threaded portion 17s6 for screwing the inner pipe joint 17B and a threaded portion 17s4 for screwing the inner tube stopper 17C on the inner peripheral surface of the intermediate portion. And is configured.

内管継手17Bは、給水側端部と排水側端部との中間部に、給水側から排水側に向かって径小となる漏斗状のテーパ部(絞り口径部)172を有し、給水側端部に、内管継手17Bの給水口を外管継手17A内に外管継手17Aと同軸状に配置し保持するスペーサ173と、上記螺刻部17s2に螺合する螺刻部17s3とを有し、排水側端部に、二次冷却管12を螺子結合するめための螺刻部17s7を有する連結管部171を有して構成されている。   The inner pipe joint 17B has a funnel-shaped taper portion (a throttle port diameter portion) 172 whose diameter decreases from the water supply side to the water discharge side at the intermediate portion between the water supply side end portion and the water discharge side end portion. At the end, there is a spacer 173 that holds the water supply port of the inner pipe joint 17B coaxially with the outer pipe joint 17A in the outer pipe joint 17A, and a threaded part 17s3 that is screwed into the threaded part 17s2. In addition, a connecting pipe part 171 having a threaded part 17 s 7 for screwing the secondary cooling pipe 12 to the drain side end is provided.

内管用ストッパー17Cは、外管継手17A内で内管継手17Bに緩みが生じないように外管継手17Aと内管継手17Bとの結合状態(螺着状態)を保持する、所謂二重ナットの作用をもたせるための固定リングであり、外周面に上記螺刻部17s4に螺合する螺刻部17s5を有して構成されている。なお、この内管用ストッパー17Cは必須の構成要素ではなく省略可能である。   The stopper 17C for the inner pipe is a so-called double nut that holds the coupling state (screwed state) between the outer pipe joint 17A and the inner pipe joint 17B so that the inner pipe joint 17B is not loosened in the outer pipe joint 17A. This is a fixing ring for providing an action, and has a threaded portion 17s5 that is screwed onto the threaded portion 17s4 on the outer peripheral surface. The inner pipe stopper 17C is not an essential component and can be omitted.

上記構成の継手17に対して、給水側配管5には端部外周面に上記螺刻部17s1に螺合する螺刻部55が設けられ、一次冷却管11には端部外周面に上記螺刻部17s6に螺合する螺刻部11Sが設けられ、二次冷却管12には端部外周面に上記螺刻部17s7に螺合する螺刻部12Sが設けられている。   For the joint 17 configured as described above, the water supply side pipe 5 is provided with a threaded portion 55 that is screwed into the threaded portion 17s1 on the outer peripheral surface of the end portion, and the primary cooling pipe 11 is threaded on the outer peripheral surface of the end portion. A threaded portion 11S that is screwed into the grooved portion 17s6 is provided, and the secondary cooling pipe 12 is provided with a threaded portion 12S that is threadedly engaged with the threaded portion 17s7 on the outer peripheral surface of the end.

この継手17を用いた給水側配管5と冷却管構造10との継合手順についてその一例を挙げると、上記給水側配管5に外管継手17Aを螺子結合により継合し、外管継手17Aに内管継手17Bを螺嵌し、内管継手17Bを内管用ストッパー17Cにより外管継手17Aに締付固定し、内管継手17Bに二次冷却管12を螺子結合により継合し、外管継手17Aに一次冷却管11を螺子結合により継合する。これにより、冷却管構造10の一次冷却管11および二次冷却管12が継手17を介して給水側配管5に継合される。なお、この継合作業の際、一次冷却管11内において二次冷却管12の管軸方向への移動が伴うが、この移動に伴う摺動摩擦抵抗は、上述したように、スペーサ部材13a,13b,13cの円弧状の一部先端が一次冷却管11に対する二次冷却管12の支持点(TP)として一次冷却管11の内壁に当接して二次冷却管12を一次冷却管11内に保持する構造であることから軽微であり、従って継手17を介在した給水側配管5と冷却管構造10との継合作業を円滑に行うことができる。   An example of the joining procedure between the water supply side pipe 5 and the cooling pipe structure 10 using the joint 17 will be described. The outer pipe joint 17A is joined to the water supply side pipe 5 by screw connection, and the outer pipe joint 17A is joined. The inner pipe joint 17B is screwed, the inner pipe joint 17B is fastened and fixed to the outer pipe joint 17A by the inner pipe stopper 17C, and the secondary cooling pipe 12 is joined to the inner pipe joint 17B by screw connection. The primary cooling pipe 11 is joined to 17A by screw connection. Accordingly, the primary cooling pipe 11 and the secondary cooling pipe 12 of the cooling pipe structure 10 are joined to the water supply side pipe 5 via the joint 17. In this joining operation, the secondary cooling pipe 12 moves in the tube axis direction in the primary cooling pipe 11, and the sliding frictional resistance accompanying this movement is, as described above, the spacer members 13a and 13b. , 13c hold the secondary cooling pipe 12 in the primary cooling pipe 11 by abutting against the inner wall of the primary cooling pipe 11 as a support point (TP) of the secondary cooling pipe 12 with respect to the primary cooling pipe 11 Therefore, the joining operation between the water supply side pipe 5 and the cooling pipe structure 10 with the joint 17 interposed therebetween can be performed smoothly.

この継手構造は、給水側配管5から給水された冷却水(Ca)のうち、内管継手17B内に流入された冷却水(Ca)が内管継手17Bに形成されたテーパ部172により高圧化され、流速が速められて二次冷却管12に二次冷却水(Ca2)として給水される。この二次冷却水(Ca2)の加速化により、冷却管構造10において、一次冷却水(Ca1)が流れる一次冷却管11から吸熱した二次冷却水(Ca2)が加速化されてより速やかに排水されることから、一次冷却水(Ca1)の温度差による冷却能力の低下をより抑制することができる。   In this joint structure, among the cooling water (Ca) supplied from the water supply side pipe 5, the cooling water (Ca) flowing into the inner pipe joint 17B is increased in pressure by the tapered portion 172 formed in the inner pipe joint 17B. Then, the flow rate is increased and water is supplied to the secondary cooling pipe 12 as secondary cooling water (Ca2). By accelerating the secondary cooling water (Ca2), in the cooling pipe structure 10, the secondary cooling water (Ca2) that has absorbed heat from the primary cooling pipe 11 through which the primary cooling water (Ca1) flows is accelerated and drained more quickly. Therefore, it is possible to further suppress a decrease in the cooling capacity due to the temperature difference of the primary cooling water (Ca1).

上記構成の継手17に、さらに一次冷却水(Ca1)の渦流発生機能をもたせた継手構造を第4の構成例として図15乃至図17に示している。図15は継手部分の横断面図、図16および図17はそれぞれ同継手部分における一次冷却水(Ca1)および二次冷却水(Ca2)の流れを斜視および側方視で示している。この第4の構成例による継手構造は、一次冷却水(Ca1)の渦流旋回による流速制御機能と、二次冷却水(Ca2)の加速化(高圧化)による流速制御機能とを実現している。   A joint structure in which the joint 17 having the above-described structure is further provided with a function of generating a vortex flow of the primary cooling water (Ca1) is shown in FIGS. 15 to 17 as a fourth structure example. FIG. 15 is a cross-sectional view of the joint portion, and FIGS. 16 and 17 show the flow of the primary cooling water (Ca1) and the secondary cooling water (Ca2) in the joint portion in perspective and side views, respectively. The joint structure according to the fourth configuration example realizes a flow rate control function by swirling the primary cooling water (Ca1) and a flow rate control function by accelerating (high pressure) the secondary cooling water (Ca2). .

この図15乃至図17に示す継手構造は、内管継手17Bのスペーサ173を、渦流を発生させるためのスクリューの羽根に類似した形状の偏流面(DF)を有する3枚のスペーサ部材f1〜f3により構成している。内管継手17Bおよびスペーサ173を構成するスペーサ部材f1〜f3の給水側の各面部は、それぞれ継手17に給水される冷却水(Ca)の流れを妨げないように面取り加工されている。このスペーサ部材f1〜f3に形成した偏流面(DF)は、上記した冷却管構造10の二次冷却管保持スペーサ13を構成するスペーサ部材13a〜13cの偏流面(DF)と同じ方向に渦流を生起する。   In the joint structure shown in FIGS. 15 to 17, the spacer 173 of the inner pipe joint 17B has three spacer members f1 to f3 each having a drift surface (DF) having a shape similar to that of a blade of a screw for generating a vortex. It is constituted by. The surface portions on the water supply side of the spacer members f1 to f3 constituting the inner pipe joint 17B and the spacer 173 are chamfered so as not to disturb the flow of the cooling water (Ca) supplied to the joint 17, respectively. The drift surface (DF) formed on the spacer members f1 to f3 generates a vortex in the same direction as the drift surface (DF) of the spacer members 13a to 13c constituting the secondary cooling pipe holding spacer 13 of the cooling pipe structure 10 described above. To occur.

これにより、図16および図17に示すように、継手17の給水側に供給された冷却水(Ca)のうち、外管継手17A内に給水された一次冷却水(Ca1)は、内管継手17Bの外周に設けられたスペーサ173の偏流面(DF)に案内され、渦流(WP)となって外管継手17A内を内管継手17Bの外周に沿い排水側に向かって流れる(内管継手17Bの外周を螺旋状に回りながら排水側に向かって進行する)。この渦流(WP)となった一次冷却水(Ca1)は冷却管構造10の一次冷却管11に給水され、冷却管構造10内における渦流の生起を助長する。   Accordingly, as shown in FIGS. 16 and 17, among the cooling water (Ca) supplied to the water supply side of the joint 17, the primary cooling water (Ca1) supplied into the outer pipe joint 17 </ b> A is the inner pipe joint. 17B is guided to the drift surface (DF) of the spacer 173 provided on the outer periphery of 17B, and flows as a vortex (WP) in the outer pipe joint 17A along the outer periphery of the inner pipe joint 17B toward the drain side (inner pipe joint It advances toward the drainage side while spirally turning around the outer periphery of 17B). The primary cooling water (Ca1) that has become the vortex flow (WP) is supplied to the primary cooling pipe 11 of the cooling pipe structure 10 and promotes the generation of the vortex flow in the cooling pipe structure 10.

上記実施形態に係る冷却管継手構造の継合対象となる冷却管構造の他の構成例を図18および図19に示している。この冷却管構造10Eは、上記した図1乃至図5に示す実施形態の二次冷却管保持スペーサ13が、一次冷却管11内おける二次冷却管12の保持機能と一次冷却水(Ca1)の渦流発生機能とを兼ね備えた構成であったのに対して、この図18および図19に示す構成では、二次冷却管12の保持機能と一次冷却水(Ca1)の渦流発生機能とをそれぞれ別体の構成要素により実現している。ここでは、二次冷却管12の両側(給水側と排水側)に、それぞれ二次冷却管12を一次冷却管11内に一次冷却管11と同軸状に保持するスペーサ18が設けられ、その間の二次冷却管12に管軸に沿い、二次冷却管12の外周を流れる一次冷却水(Ca1)に渦流を生起せしめる羽根組立19が設けられている。   18 and 19 show another configuration example of the cooling pipe structure that is a joint target of the cooling pipe joint structure according to the embodiment. In this cooling pipe structure 10E, the secondary cooling pipe holding spacer 13 of the embodiment shown in FIGS. 1 to 5 described above is used to hold the secondary cooling pipe 12 in the primary cooling pipe 11 and the primary cooling water (Ca1). 18 and 19, the function of holding the secondary cooling pipe 12 and the function of generating the primary cooling water (Ca1) are separated from each other. Realized by body components. Here, spacers 18 for holding the secondary cooling pipe 12 coaxially with the primary cooling pipe 11 in the primary cooling pipe 11 are provided on both sides (water supply side and drainage side) of the secondary cooling pipe 12, respectively. The secondary cooling pipe 12 is provided with a blade assembly 19 that generates a vortex in the primary cooling water (Ca1) flowing along the outer circumference of the secondary cooling pipe 12 along the pipe axis.

スペーサ18は、3つのスペーサ部材(支持片)181,182,183により構成され、二次冷却管12の外周面に、周方向に3つのスペーサ部材181,182,183を等間隔(120°間隔)に配している。3つのスペーサ部材181,182,183は、それぞれ図18に拡大して示すように、管軸方向に流線形状をなす台座部18aと、先端が球面状に形成された係止端部18bとにより構成されている。この台座部18aと係止端部18bとを有して構成されたスペーサ部材181,182,183は、それぞれ給水側から排水側に流れる一次冷却水(Ca1)に対して水流の抵抗を低く抑え一次冷却管11の流れを円滑にして、かつ二次冷却管12を一次冷却管11内で摺動可能に一次冷却管11に対し同軸状に保持することを可能にしている。   The spacer 18 includes three spacer members (support pieces) 181, 182, and 183, and the three spacer members 181, 182, and 183 are arranged at equal intervals (120 ° intervals) on the outer peripheral surface of the secondary cooling pipe 12 in the circumferential direction. ). The three spacer members 181, 182, and 183 are each composed of a pedestal portion 18 a having a streamline shape in the tube axis direction and a locking end portion 18 b having a tip formed in a spherical shape, as shown in an enlarged view in FIG. 18. It is comprised by. The spacer members 181, 182 and 183 having the pedestal portion 18 a and the locking end portion 18 b suppress the resistance of the water flow to the primary cooling water (Ca 1) flowing from the water supply side to the drain side. The flow of the primary cooling pipe 11 is made smooth, and the secondary cooling pipe 12 can be held coaxially with respect to the primary cooling pipe 11 so as to be slidable in the primary cooling pipe 11.

一次冷却水(Ca1)に渦流を生起せしめる羽根組立19は、3枚の羽根部材(ブレード)191,192,193を一組として二次冷却管12の外周に管軸方向に連続して二次冷却管12に巻き付くように設けられるもので、それぞれ、二次冷却管保持スペーサ13を構成するスペーサ部材13a〜13cにより生起される渦と同一の回転方向に渦を生起せしめる曲面をなす偏流面(DF)を有して構成される。この羽根組立19は、上述した二次冷却管保持スペーサ13のスペーサ部材13a,13b,13cと同様の渦流(WP)を作る羽根として作用するが、二次冷却管12が上記3つのスペーサ部材181,182,183で一次冷却管11内に保持された状態で、その羽根の円弧状の縁部が一次冷却管11の内壁に接触しない面形状である。   The blade assembly 19 for generating a vortex flow in the primary cooling water (Ca1) includes a pair of three blade members (blades) 191, 192, and 193, which are secondary to the outer periphery of the secondary cooling tube 12 in the tube axis direction. Diffusion surfaces which are provided so as to be wound around the cooling pipe 12 and form curved surfaces which cause vortices in the same rotational direction as the vortices generated by the spacer members 13a to 13c constituting the secondary cooling pipe holding spacer 13, respectively. (DF). The blade assembly 19 acts as a blade that creates a vortex (WP) similar to the spacer members 13a, 13b, and 13c of the secondary cooling pipe holding spacer 13 described above, but the secondary cooling pipe 12 has the three spacer members 181. , 182, and 183 in a state where the arcuate edges of the blades do not contact the inner wall of the primary cooling pipe 11 while being held in the primary cooling pipe 11.

このように、二次冷却管12の保持機能と一次冷却水(Ca1)の渦流発生機能とをそれぞれ別体の構成要素により実現した冷却管構造10Eにおいても、上記した冷却管構造10と同様に、冷却効率および冷却能力を改善した水冷式放熱機構が実現可能である。   As described above, in the cooling pipe structure 10E in which the holding function of the secondary cooling pipe 12 and the eddy current generation function of the primary cooling water (Ca1) are realized by separate components, the cooling pipe structure 10 is also provided. In addition, a water-cooled heat dissipation mechanism with improved cooling efficiency and cooling capacity can be realized.

この実施形態に係る水冷式放熱機構の要部の具体的な構成例を図20および図21と、図22および図23に示している。   20 and FIG. 21, FIG. 22 and FIG. 23 show specific configuration examples of the main part of the water-cooled heat dissipation mechanism according to this embodiment.

図20および図21は、上記図1乃至図5に示した冷却管構造10または図18および図19に示した冷却管構造10Eを用いて、回路基板30上に行列方向に配置(マトリクス配置)された複数の半導体素子(パワーIC)を冷却する水冷式放熱機構を示したもので、図20は平面図、図21は側面図である。ここでは冷却管構造10を適用した水冷式放熱機構を例に挙げて説明する。放熱フィン20は一次冷却管11の管径より厚みのある肉厚で熱伝導率の高い直方体形状の金属材料により構成され、一側面部と同面と反対側の他側面部との間に穿設した一次冷却管挿通用の複数の貫通孔21を有し、この各貫通孔21の内周面に一次冷却管11の外周面が面接触した状態で一次冷却管11が放熱フィン20に嵌挿されている。放熱フィン20の一方面に形成された扁平状の吸熱面23には、発熱体となる複数の半導体素子(パワーIC)31を行列状(マトリクス状)に配置した半導体基板(パワーIC実装基板)30が実装され、各半導体素子31の放熱フィン31aがそれぞれ熱交換を行う扁平状の吸熱面23に螺子止め固定されている。なお、図中の符号30hは、半導体基板30の半導体素子実装位置に設けられたた開口である。   20 and 21 are arranged in a matrix direction on the circuit board 30 using the cooling pipe structure 10 shown in FIGS. 1 to 5 or the cooling pipe structure 10E shown in FIGS. 18 and 19 (matrix arrangement). FIG. 20 is a plan view and FIG. 21 is a side view showing a water-cooling type heat dissipation mechanism for cooling a plurality of semiconductor elements (power ICs). Here, a water-cooled heat dissipation mechanism to which the cooling pipe structure 10 is applied will be described as an example. The radiating fins 20 are made of a rectangular parallelepiped metal material that is thicker than the diameter of the primary cooling pipe 11 and has a high thermal conductivity, and is pierced between one side face and the other side face opposite to the same face. A plurality of through holes 21 for inserting the primary cooling pipes, and the primary cooling pipes 11 are fitted to the radiating fins 20 with the outer peripheral surfaces of the primary cooling pipes 11 being in surface contact with the inner peripheral surfaces of the through holes 21. It is inserted. A semiconductor substrate (power IC mounting substrate) in which a plurality of semiconductor elements (power ICs) 31 serving as a heating element are arranged in a matrix (matrix shape) on a flat heat absorbing surface 23 formed on one surface of the radiation fin 20. 30 is mounted, and the radiating fins 31a of the respective semiconductor elements 31 are screwed and fixed to flat heat absorbing surfaces 23 that perform heat exchange. Reference numeral 30h in the drawing is an opening provided at a semiconductor element mounting position of the semiconductor substrate 30.

この平板状の放熱フィン20を用いた水冷式放熱機構においては、上記冷却管構造10に代わり単管構造の冷却管を適用した場合、放熱フィン20における冷却管通路の給水側と排水側とで比較的大きな温度差状態(給水側に比べ排水側の温度が高い温度差状態)が持続されることから、排水側の温度を基準にした回路設計が必要となり、さらには放熱フィン20の大型化が必要となる。これに対して、上記実施形態に係る冷却管構造10を適用した水冷式放熱機構においては、放熱フィン20における冷却管通路の給水側と排水側との温度差を狭い温度変動範囲に抑制できることから、回路設計並びに水冷式放熱機構の小型化に寄与することができる。   In the water-cooling type heat radiation mechanism using the flat plate-shaped heat radiation fins 20, when a single-tube structure cooling pipe is applied instead of the cooling pipe structure 10, the water supply side and the drainage side of the cooling pipe passage in the heat radiation fin 20 Since a relatively large temperature difference state (temperature difference state where the temperature on the drainage side is higher than that on the water supply side) is maintained, a circuit design based on the temperature on the drainage side is required, and further, the radiating fin 20 is enlarged. Is required. On the other hand, in the water cooling type heat radiation mechanism to which the cooling pipe structure 10 according to the above embodiment is applied, the temperature difference between the water supply side and the drain side of the cooling pipe passage in the heat radiation fin 20 can be suppressed to a narrow temperature fluctuation range. In addition, it is possible to contribute to circuit design and miniaturization of the water-cooled heat dissipation mechanism.

図22および図23に示した水冷式放熱機構は、上記図20および図21に示した水冷式放熱機構が一次冷却管11を具備する冷却管構造10若しくは冷却管構造10Eを適用しているのに対して、ここでは、上記一次冷却管11に相当する外管を貫通孔21により実現している。すなわち、外管が放熱フィン20に穿設した貫通孔21により構成されている。   In the water-cooling type heat radiation mechanism shown in FIGS. 22 and 23, the water-cooling type heat radiation mechanism shown in FIGS. 20 and 21 applies the cooling pipe structure 10 or the cooling pipe structure 10E provided with the primary cooling pipe 11. On the other hand, here, an outer tube corresponding to the primary cooling tube 11 is realized by the through hole 21. That is, the outer tube is configured by the through hole 21 formed in the heat radiating fin 20.

この構造においては、放熱フィン20と一次冷却管11との熱膨張差を考慮する必要が無いことから、設計の容易化と部品点数の削減を図ることができる。なお、この図23に示す配管構成では、放熱フィン20に配置される半導体素子(パワーIC)31の配置位置に応じて(発熱量に応じて)冷却管構造10の管径(貫通孔21の孔径)を異ならせ、放熱フィン20全体の温度を一様化している。   In this structure, it is not necessary to consider the difference in thermal expansion between the heat radiating fins 20 and the primary cooling pipe 11, so that the design can be facilitated and the number of parts can be reduced. In the piping configuration shown in FIG. 23, the pipe diameter of the cooling pipe structure 10 (in accordance with the amount of heat generation) (in accordance with the amount of generated heat) of the semiconductor element (power IC) 31 arranged in the radiating fin 20 The temperature of the entire radiating fin 20 is made uniform by making the hole diameters different.

上記した図15乃至図17に示した内管継手17Bはスペーサ173に偏流面(DF)を形成して、スペーサ173に一次冷却水(Ca1)の渦流発生用機能をもたせた継手構造であったが、スペーサと渦流発生用の羽根(ブレード)とを別体に構成した内管継手17Bの第1構成例を図24に示し、第2構成例を図25に示している。ここではスペーサとブレードの螺子結合による組立構造を第1構成例として図24に示し、スペーサとブレードの嵌着結合による組立構造を第2構成例として図25に示している。ブレードは、ブレードアタッチメント175として、スペーサ173を有した内管継手17Bと別体に構成される。   The inner pipe joint 17B shown in FIGS. 15 to 17 described above has a joint structure in which a drift surface (DF) is formed on the spacer 173, and the spacer 173 has a function for generating a vortex flow of the primary cooling water (Ca1). However, FIG. 24 shows a first configuration example of an inner pipe joint 17B in which a spacer and a blade (blade) for generating eddy currents are formed separately, and FIG. 25 shows a second configuration example. Here, FIG. 24 shows an assembly structure based on a screw connection between a spacer and a blade as a first configuration example, and FIG. 25 shows an assembly structure based on a fitting connection between the spacer and the blade as a second configuration example. The blade is configured separately from the inner pipe joint 17B having the spacer 173 as a blade attachment 175.

図24に示す内管継手17Bは、連結管部171の外周にブレード・ストッパー取付用の螺刻部17s8を形成して、この螺刻部17s8に、3枚の羽根b1,b2,b3をもつブレードアタッチメント175を螺嵌せしめ、アタッチメント用ストッパー176を螺刻部17s8に螺着してアタッチメント用ストッパー176でブレードアタッチメント175を連結管部171に固定(螺子留め)することにより、内管継手17Bの連結管部171にブレードアタッチメント175を一体に取り付けている。   An inner pipe joint 17B shown in FIG. 24 has a threaded portion 17s8 for attaching a blade and a stopper formed on the outer periphery of a connecting pipe portion 171, and the threaded portion 17s8 has three blades b1, b2, and b3. The blade attachment 175 is screwed, the attachment stopper 176 is screwed to the threaded portion 17s8, and the blade attachment 175 is fixed (screwed) to the connecting pipe portion 171 with the attachment stopper 176, whereby the inner pipe joint 17B is fixed. A blade attachment 175 is integrally attached to the connecting pipe portion 171.

図25に示す内管継手17Bは、連結管部171の外周にストッパー取付用の螺刻部17s8と管軸に沿うガイド溝17gを形成し、ブレードアタッチメント175に上記ガイド溝17gに係合する回転止めフック17pを形成して、ブレードアタッチメント175の回転止めフック17pを連結管部171に形成したガイド溝17gに係合し、ブレードアタッチメント175を連結管部171に嵌着した後、アタッチメント用ストッパー176を螺刻部17s8に螺着してアタッチメント用ストッパー176でブレードアタッチメント175を連結管部171に固定することにより、内管継手17Bの連結管部171にブレードアタッチメント175を一体に取り付けている。   The inner pipe joint 17B shown in FIG. 25 is formed with a stopper mounting screw part 17s8 and a guide groove 17g along the pipe axis on the outer periphery of the connecting pipe part 171, and a blade attachment 175 engaged with the guide groove 17g. After the stop hook 17p is formed and the rotation stop hook 17p of the blade attachment 175 is engaged with the guide groove 17g formed in the connecting pipe portion 171, the blade attachment 175 is fitted into the connecting pipe portion 171, and then the attachment stopper 176 is attached. Is screwed into the threaded portion 17s8 and the blade attachment 175 is fixed to the connecting pipe portion 171 with the attachment stopper 176, whereby the blade attachment 175 is integrally attached to the connecting pipe portion 171 of the inner pipe joint 17B.

この図24、図25に示す継手構造においても一次冷却水(Ca1)の渦流発生機能をもたせた継手構造を実現できる。   Also in the joint structure shown in FIGS. 24 and 25, a joint structure having a function of generating a vortex flow of the primary cooling water (Ca1) can be realized.

以上詳記したように、本発明の実施形態によれば、冷却効率並びに冷却能力を改善した水冷式放熱機構が実現可能な冷却管継手構造を提供できる。なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。例えば、上記した実施形態では、内管継手17B   As described in detail above, according to the embodiment of the present invention, it is possible to provide a cooling pipe joint structure capable of realizing a water-cooling heat dissipation mechanism with improved cooling efficiency and cooling capacity. Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. For example, in the above-described embodiment, the inner pipe joint 17B

10,10E…冷却管構造、11…外管(一次冷却管)、11a…一次冷却水の流路、12…内管(二次冷却管)、12a…二次冷却水の流路、12f…回転止めフック、12d…嵌挿部、12r…締結リング用ストッパー、13…二次冷却管保持スペーサ、13a,13b,13c…スペーサ部材、15,16,17…継手、16g…ガイド溝、17A…外管継手、17B…内管継手、17C…内管用ストッパー、171…連結管部、172…漏斗状のテーパ部(絞り口径部)、173…スペーサ、18…スペーサ、181,182,183…スペーサ部材、19…羽根組立、191,192,193…羽根部材(ブレード)、20…放熱フィン、21…貫通孔、31…半導体素子(パワーIC)、31h,ta,tb,tc…熱伝達径路、Ca…冷却水、Ca1…一次冷却水、Ca2…二次冷却水、WP…渦流、DF…偏流面、TP…二次冷却管の支持点、f1〜f3…スペーサ部材、5,5A,5B…給水側の配管(給水パイプ)、6,6A,6B…排水側配管(排水パイプ)。   DESCRIPTION OF SYMBOLS 10, 10E ... Cooling pipe structure, 11 ... Outer pipe (primary cooling pipe), 11a ... Primary cooling water flow path, 12 ... Inner pipe (secondary cooling pipe), 12a ... Secondary cooling water flow path, 12f ... Anti-rotation hook, 12d ... insertion part, 12r ... fastening ring stopper, 13 ... secondary cooling pipe holding spacer, 13a, 13b, 13c ... spacer member, 15, 16, 17 ... joint, 16g ... guide groove, 17A ... Outer pipe joint, 17B ... Inner pipe joint, 17C ... Inner pipe stopper, 171 ... Connecting pipe part, 172 ... Funnel-shaped taper part (diaphragm diameter part), 173 ... Spacer, 18 ... Spacer, 181, 182, 183 ... Spacer 19: blade assembly, 191, 192, 193 ... blade member (blade), 20 ... radiation fin, 21 ... through hole, 31 ... semiconductor element (power IC), 31h, ta, tb, tc ... heat transfer path Ca ... cooling water, Ca1 ... primary cooling water, Ca2 ... secondary cooling water, WP ... vortex, DF ... drift surface, TP ... support point of secondary cooling pipe, f1-f3 ... spacer member, 5, 5A, 5B ... Water supply side piping (water supply pipe), 6, 6A, 6B ... Drain side piping (drainage pipe).

Claims (5)

放熱フィンと熱交換を行う水冷式の放熱機構に用いられ、冷却管構造の配管に適用される冷却管継手構造であって、
外管と、
前記外管の内壁と一定の間隙を存して前記外管内に設けられ、給水側からの冷却水が直進して排水側に流れる内管と、
給水側配管と前記外管とを継合し、前記冷却水を前記内管の外周に給水する筒状の外管継手と
前記外管継手の内壁と一定の間隙を保持して前記冷却水を前記内管内に給水すると共に、前記内管の外周に流れる前記冷却水に対して渦流を生起せしめるスペーサを有する内管継手と、
を具備し、
前記外管継手は、前記内管の外周に、前記給水側配管から給水された前記冷却水を前記放熱フィンから熱を奪う一次冷却水として給水し、前記内管継手は、前記内管に、前記給水側配管から給水された同一圧の前記冷却水を、前記熱を奪った前記一次冷却水を冷却する二次冷却水として給水することを特徴とする冷却管継手構造。
A cooling pipe joint structure that is used in a water-cooled heat radiation mechanism that exchanges heat with a heat radiation fin and is applied to a pipe having a cooling pipe structure,
An outer tube,
An inner pipe that is provided in the outer pipe with a certain gap from the inner wall of the outer pipe, and in which cooling water from the water supply side goes straight and flows to the drain side;
A tubular outer pipe joint that joins the water supply side pipe and the outer pipe, and supplies the cooling water to the outer periphery of the inner pipe ;
An inner pipe joint having a spacer that keeps a certain gap from the inner wall of the outer pipe joint and supplies the cooling water into the inner pipe, and generates a vortex in the cooling water flowing on the outer periphery of the inner pipe; ,
Comprising
The outer pipe joint supplies the cooling water supplied from the water supply side pipe to the outer periphery of the inner pipe as primary cooling water that takes heat away from the radiating fin, and the inner pipe joint is connected to the inner pipe. A cooling pipe joint structure , wherein the cooling water of the same pressure supplied from the water supply side pipe is supplied as secondary cooling water for cooling the primary cooling water that has taken away the heat .
前記内管継手は、前記冷却水の給水側から前記内管に向かって径小となるテーパ部を有していることを特徴とする請求項1に記載の冷却管継手構造。 2. The cooling pipe joint structure according to claim 1, wherein the inner pipe joint has a tapered portion having a diameter that decreases from the cooling water supply side toward the inner pipe . 前記内管継手以外の前記内管の外周面に、前記内管の外周を流れる前記渦流した前記一次冷却水に対して同じ方向の渦流を生起せしめる複数のブレードが設けられ、
前記内管の外周を流れる前記一次冷却水に渦流を生起せしめることによって、前記一次冷却水の流速より前記内管内を流れる前記二次冷却水の流速を速くすることを請求項に記載の冷却管継手構造。
A plurality of blades are provided on the outer peripheral surface of the inner pipe other than the inner pipe joint to cause vortex flow in the same direction with respect to the vortexed primary cooling water flowing on the outer periphery of the inner pipe ,
The cooling according to claim 1 , wherein the flow rate of the secondary cooling water flowing in the inner pipe is made faster than the flow rate of the primary cooling water by causing a vortex in the primary cooling water flowing on the outer periphery of the inner pipe. Pipe joint structure.
前記スペーサおよび前記ブレードは、前記外管内に生起する渦流と同方向に渦流を生起する水流偏面を有する請求項又はに記載の冷却管継手構造。 Said spacer and said blade, a cooling pipe joint structure according to claim 1 or 3 having a water partial flow surface that occurs the vortex to vortex the same direction that occur in the outer tube. 前記外管継手と前記外管および前記給水側配管との継合、および前記内管継手と前記内管および前記外管継手の内壁との継合は、それぞれ螺合による継合構造である請求項1に記載の冷却管継手構造。 The joint between the outer pipe joint and the outer pipe and the water supply side pipe, and the joint between the inner pipe joint and the inner pipe and the inner wall of the outer pipe joint are joint structures by screwing, respectively. Item 2. The cooling pipe joint structure according to Item 1.
JP2010219861A 2010-09-29 2010-09-29 Cooling pipe joint structure Active JP5264852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010219861A JP5264852B2 (en) 2010-09-29 2010-09-29 Cooling pipe joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010219861A JP5264852B2 (en) 2010-09-29 2010-09-29 Cooling pipe joint structure

Publications (2)

Publication Number Publication Date
JP2012072884A JP2012072884A (en) 2012-04-12
JP5264852B2 true JP5264852B2 (en) 2013-08-14

Family

ID=46169263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010219861A Active JP5264852B2 (en) 2010-09-29 2010-09-29 Cooling pipe joint structure

Country Status (1)

Country Link
JP (1) JP5264852B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105351663A (en) * 2015-12-08 2016-02-24 苏州信利昌电子材料有限公司 Multifunctional polyethylene (PE) water supply pipe

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5171915B2 (en) * 2010-09-29 2013-03-27 東芝テリー株式会社 Cooling pipe structure
KR102404619B1 (en) * 2020-03-17 2022-06-02 평화오일씰공업 주식회사 Coating material and Coupling in coolant line including the coating material

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128965U (en) * 1980-03-04 1981-09-30
JPS6288173U (en) * 1985-11-20 1987-06-05
JPH0613241Y2 (en) * 1988-09-21 1994-04-06 石川島播磨重工業株式会社 Connection structure of cooling water pipe in bell-less top charging device
JPH02145396U (en) * 1989-05-12 1990-12-10
JPH0391594U (en) * 1989-12-29 1991-09-18
US5063994A (en) * 1990-06-26 1991-11-12 Level 1 Technologies, Inc. Reflux fluid heated patient line
JPH0926281A (en) * 1995-07-11 1997-01-28 Nhk Spring Co Ltd Heat exchanger
JPH11132677A (en) * 1997-10-24 1999-05-21 Nippon Thermal Technology:Kk Heat exchanger
JP4157616B2 (en) * 1998-03-20 2008-10-01 株式会社アルバック Casting equipment
JP3035520B2 (en) * 1998-05-29 2000-04-24 三菱電機株式会社 Information processing device
JP2000070692A (en) * 1998-09-02 2000-03-07 Sony Corp Diffuser hose joint structure
JP4154632B2 (en) * 1999-03-01 2008-09-24 株式会社Ihi Hot rolled material table roller equipment
JP2003301990A (en) * 2002-04-08 2003-10-24 Kajima Corp Fluid transport pipe
JP4023430B2 (en) * 2003-02-21 2007-12-19 株式会社デンソー Double pipe joint structure
JP2005218992A (en) * 2004-02-06 2005-08-18 Unitika Ltd Influent pipe with rectification mechanism
JP2008175095A (en) * 2007-01-17 2008-07-31 Kubota Corp Suction nozzle and pump equipped with suction nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105351663A (en) * 2015-12-08 2016-02-24 苏州信利昌电子材料有限公司 Multifunctional polyethylene (PE) water supply pipe

Also Published As

Publication number Publication date
JP2012072884A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP5171915B2 (en) Cooling pipe structure
US20200116437A1 (en) Vapor chamber based on flat plate loop heat pipe
US9170058B2 (en) Heat pipe heat dissipation structure
TWI810448B (en) heat sink
US20120227934A1 (en) Heat pipe having a composite wick structure and method for making the same
JP5264852B2 (en) Cooling pipe joint structure
TWI748294B (en) Heat sink
US20170311480A1 (en) Heat exchanger
JP5544412B2 (en) Cooling pipe structure
JP2006317096A (en) Heat exchanger for electric water heater
WO2020230499A1 (en) Heat sink
US20110067844A1 (en) Planar heat pipe
WO2020213581A1 (en) Heatsink
JP7100665B2 (en) Evaporator with optimized vaporization interface
JPWO2017170153A1 (en) Phase change cooler and electronic device
US20080078529A1 (en) Cooling of the power components of a frequency converter
JP7353490B2 (en) Fixing jig and heat exchanger manufacturing method
JP2010065873A (en) Heat exchanger
JP2008064457A (en) Heat exchanger
JP3171613U (en) Fixing structure of heat dissipation unit
TWI484895B (en) Heat dissipation device
JP3162488U (en) Heat dissipation device
TWM595211U (en) Connection strengthening structure of thermosiphon heat sink
JP2008101907A (en) Heat exchanger
TWI807158B (en) Reinforcement connection structure for thermosyphon heat dissipation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Ref document number: 5264852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350