JP5262650B2 - Positive resist pattern forming method and developer for forming positive resist pattern - Google Patents

Positive resist pattern forming method and developer for forming positive resist pattern Download PDF

Info

Publication number
JP5262650B2
JP5262650B2 JP2008310863A JP2008310863A JP5262650B2 JP 5262650 B2 JP5262650 B2 JP 5262650B2 JP 2008310863 A JP2008310863 A JP 2008310863A JP 2008310863 A JP2008310863 A JP 2008310863A JP 5262650 B2 JP5262650 B2 JP 5262650B2
Authority
JP
Japan
Prior art keywords
resist pattern
positive resist
pattern forming
developer
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008310863A
Other languages
Japanese (ja)
Other versions
JP2010134239A (en
Inventor
研 丸山
敏之 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2008310863A priority Critical patent/JP5262650B2/en
Publication of JP2010134239A publication Critical patent/JP2010134239A/en
Application granted granted Critical
Publication of JP5262650B2 publication Critical patent/JP5262650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming resist patterns capable of highly precisely and stably forming fine patterns having excellent nano-edge roughness. <P>SOLUTION: The method for forming the resist patterns includes selectively exposing resist films formed on a substrate and having a film thickness of &le;50 nm and developing the resist film by using a developing agent for forming the resist patterns being aqueous solution containing an organic solvent. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明はポジ型レジストパターン形成方法及びポジ型レジストパターン形成用現像液に関し、更に詳しくは、KrFエキシマレーザー、ArFエキシマレーザー、Fエキシマレーザー、EUV等の(極)遠紫外線、シンクロトロン放射線等のX線、電子線等の荷電粒子線の如き各種の放射線による微細加工に適しており、ナノエッジラフネスに優れ、微細パターンを高精度に且つ安定して形成可能なポジ型レジストパターン形成方法(以下、単に「レジストパターン形成方法」とも記載する)及びそのレジストパターン形成方法で好適に使用可能なポジ型レジストパターン形成用現像液(以下、単に「レジストパターン形成用現像液」とも記載する)に関する。 The present invention relates to a positive resist pattern forming method and a positive resist pattern forming developer, and more specifically, (extreme) far ultraviolet rays such as KrF excimer laser, ArF excimer laser, F 2 excimer laser, EUV, synchrotron radiation, etc. A positive resist pattern forming method that is suitable for microfabrication by various types of radiation such as charged particle beams such as X-rays and electron beams, has excellent nano edge roughness, and can form a fine pattern with high accuracy and stability ( Hereinafter, it is also simply referred to as “resist pattern forming method”) and a positive resist pattern forming developer that can be suitably used in the resist pattern forming method (hereinafter also simply referred to as “resist pattern forming developer”). .

従来、ICやLSI等の半導体デバイスの製造プロセスにおいて、フォトレジスト組成物を用いたリソグラフィーによる微細加工が行われている。近年、集積回路の高集積化に伴い、サブミクロン領域やクオーターミクロン領域の超微細パターン形成が要求されるようになってきている。それに伴い、露光波長もg線から、i線、KrFエキシマレーザー光、更にはArFエキシマレーザー光というように短波長化の傾向が見られる。更に、現在では、エキシマレーザー光以外にも、電子線やX線、或いはEUV光を用いたリソグラフィーも開発が進んでいる。   Conventionally, in a manufacturing process of a semiconductor device such as an IC or LSI, fine processing by lithography using a photoresist composition has been performed. In recent years, with the high integration of integrated circuits, the formation of ultrafine patterns in the submicron region and the quarter micron region has been required. Along with this, there is a tendency to shorten the exposure wavelength from g-line to i-line, KrF excimer laser light, and further ArF excimer laser light. Further, in addition to excimer laser light, lithography using electron beams, X-rays, or EUV light is also being developed.

電子線やEUV光を用いたリソグラフィーは、次世代若しくは次々世代のパターン形成技術として位置付けられており、高感度、高解像性のポジ型レジストが望まれている。特に、ウェハー処理時間の短縮化のために、高感度化は非常に重要な課題である。しかし、電子線やEUV光を用いたリソグラフィーにおいては、高感度化を追求しようとすると、解像力の低下のみならず、ナノエッジラフネスが悪化する場合があるので、これらの特性を同時に満足するポジ型レジストの開発が強く望まれている。尚、ナノエッジラフネスとは、レジストのパターンと基板界面のエッジがレジストの特性に起因して、ライン方向と垂直な方向に不規則に変動するために、パターンを真上から見たときに設計寸法と実際のパターン寸法に生じるずれのことを言う。この設計寸法からのずれがレジストをマスクとするエッチング工程により転写され、電気特性を劣化させるため、歩留りを低下させることになる。特に、0.25μm以下の超微細領域では、ナノエッジラフネスは極めて重要な改良課題となっている。高感度と、高解像性、良好なパターン形状、及び良好なナノエッジラフネスと、はトレードオフの関係にあり、これを如何にして同時に満足させるかが非常に重要である。   Lithography using an electron beam or EUV light is positioned as a next-generation or next-generation pattern forming technique, and a positive resist with high sensitivity and high resolution is desired. In particular, increasing the sensitivity is a very important issue for shortening the wafer processing time. However, in lithography using an electron beam or EUV light, pursuing higher sensitivity not only lowers the resolution but also deteriorates the nano edge roughness. Therefore, a positive type that satisfies these characteristics at the same time. The development of resist is strongly desired. Nano edge roughness is designed when the pattern is viewed from directly above because the resist pattern and the edge of the substrate interface vary irregularly in the direction perpendicular to the line direction due to the characteristics of the resist. This refers to the deviation that occurs between the dimensions and the actual pattern dimensions. Since the deviation from the design dimension is transferred by an etching process using a resist as a mask and the electrical characteristics are deteriorated, the yield is lowered. In particular, in the ultrafine region of 0.25 μm or less, nano edge roughness is an extremely important improvement issue. High sensitivity, high resolution, good pattern shape, and good nanoedge roughness are in a trade-off relationship, and it is very important how to satisfy this simultaneously.

また、KrFエキシマレーザー光を用いるリソグラフィーにおいても同様に、高感度と、高解像性、良好なパターン形状、及び良好なナノエッジラフネスと、を同時に満足させることが重要な課題となっており、これらの解決が必要である。   Similarly, in lithography using KrF excimer laser light, it is an important issue to simultaneously satisfy high sensitivity, high resolution, good pattern shape, and good nano edge roughness. These solutions are necessary.

KrFエキシマレーザー光、電子線、或いはEUV光を用いたリソグラフィープロセスに適したレジストとして、高感度化の観点から主に酸触媒反応を利用した化学増幅型レジストが用いられている。例えば、ポジ型レジストにおいては、主成分として、アルカリ水溶液には不溶性又は難溶性で、酸の作用によりアルカリ水溶液に可溶性となる性質を有するフェノール性ポリマー(以下、「フェノール性酸分解性重合体」という)、及び酸発生剤を含有する化学増幅型レジスト組成物が有効に使用されている。   As a resist suitable for a lithography process using KrF excimer laser light, electron beam, or EUV light, a chemically amplified resist mainly utilizing an acid-catalyzed reaction is used from the viewpoint of high sensitivity. For example, in a positive resist, as a main component, a phenolic polymer (hereinafter referred to as “phenolic acid-decomposable polymer”) that has a property that is insoluble or hardly soluble in an aqueous alkali solution and becomes soluble in an aqueous alkali solution by the action of an acid. And chemically amplified resist compositions containing an acid generator have been used effectively.

これらのポジ型レジストに関して、これまで酸分解性アクリレートモノマーを共重合したフェノール性酸分解性重合体を用い、活性光線又は放射線の照射によりスルホン酸を発生する化合物(以下、「スルホン酸発生剤」という)を含むレジスト組成物が種々開示されている(例えば、特許文献1〜5参照)。   For these positive resists, compounds that generate sulfonic acid upon irradiation with actinic rays or radiation using a phenolic acid-decomposable polymer copolymerized with an acid-decomposable acrylate monomer (hereinafter referred to as “sulfonic acid generator”) Various resist compositions containing the above are disclosed (for example, see Patent Documents 1 to 5).

米国特許第5561194号明細書US Pat. No. 5,561,194 特開2001−166474号公報JP 2001-166474 A 特開2001−166478号公報JP 2001-166478 A 特開2003−107708号公報JP 2003-107708 A 特開2001−194792号公報JP 2001-194792 A

しかしながら、開示されてきたレジスト組成物等のいかなる組合せにおいても、超微細領域での、良好なナノエッジラフネス(低ラフネス)を満足できていないのが現状である。   However, in any combination of the disclosed resist compositions and the like, the present situation is that satisfactory nanoedge roughness (low roughness) in the ultrafine region cannot be satisfied.

本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、ナノエッジラフネスに優れ、微細パターンを高精度に且つ安定して形成可能なレジストパターン形成方法を提供することにある。   The present invention has been made in view of such problems of the prior art, and the problem is that the resist pattern is excellent in nano edge roughness and can form a fine pattern with high accuracy and stability. It is to provide a forming method.

また、その課題とするところは、ナノエッジラフネスに優れ、微細パターンを高精度に且つ安定して形成可能なレジストパターン形成方法に好適に使用可能なレジストパターン形成用現像液を提供することにある。   Moreover, the place made into the subject is providing the developing solution for resist pattern formation which can be used suitably for the resist pattern formation method which is excellent in nano edge roughness, and can form a fine pattern with high precision and stably. .

本発明者らは上記課題を達成すべく鋭意検討した結果、その膜厚が50nm以下であるレジスト膜を露光した後、所定のレジストパターン形成用現像液を用いて現像することを含む方法を採用することによって、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors adopted a method including exposing a resist film having a film thickness of 50 nm or less and then developing the resist film using a predetermined resist pattern forming developer. As a result, the present inventors have found that the above-described problems can be achieved, and have completed the present invention.

また、レジストパターン形成用現像液として有機溶剤を含有する水溶液を用いることによって、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。   Moreover, it discovered that the said subject could be achieved by using the aqueous solution containing an organic solvent as a developing solution for resist pattern formation, and came to complete this invention.

即ち、本発明によれば、以下に示すレジストパターン形成方法及びレジストパターン形成用現像液が提供される。   That is, according to the present invention, the following resist pattern forming method and resist pattern forming developer are provided.

[1]基板上に形成された、その膜厚が50nm以下であるレジスト膜を選択的に露光するとともに、有機溶剤を含有する水溶液であるポジ型レジストパターン形成用現像液を用いて現像することを含むポジ型レジストパターン形成方法。 [1] A resist film having a thickness of 50 nm or less formed on a substrate is selectively exposed and developed using a positive resist pattern forming developer that is an aqueous solution containing an organic solvent. A positive resist pattern forming method.

[2]前記ポジ型レジストパターン形成用現像液に含有される前記有機溶剤の割合が、前記ポジ型レジストパターン形成用現像液100質量%に対して、30〜95質量%である前記[1]に記載のポジ型レジストパターン形成方法。 [2] ratio of the organic solvent contained in the positive resist pattern forming developer, with respect to the positive resist pattern forming developer 100 wt%, 30 to 95 wt% said [1] The positive resist pattern forming method described in 1.

[3]前記有機溶剤が、脂肪族アルコールである前記[1]又は[2]に記載のポジ型レジストパターン形成方法。 [3] The positive resist pattern forming method according to [1] or [2], wherein the organic solvent is an aliphatic alcohol.

[4]前記脂肪族アルコールが、炭素数1〜6の脂肪族アルコールである前記[3]に記載のポジ型レジストパターン形成方法。 [4] The positive resist pattern forming method according to [3], wherein the aliphatic alcohol is an aliphatic alcohol having 1 to 6 carbon atoms.

[5]前記[1]〜[4]のいずれかに記載のポジ型レジストパターン形成方法で使用される、有機溶剤を含有する水溶液であるポジ型レジストパターン形成用現像液。 [5] A developer for forming a positive resist pattern, which is an aqueous solution containing an organic solvent, used in the method for forming a positive resist pattern according to any one of [1] to [4].

本発明のレジストパターン形成方法によれば、ナノエッジラフネスに優れ、微細パターンを高精度に且つ安定して形成可能であるという効果を奏する。   According to the resist pattern forming method of the present invention, it is excellent in nano edge roughness, and there is an effect that a fine pattern can be stably formed with high accuracy.

また、本発明のレジストパターン形成用現像液は、ナノエッジラフネスに優れ、微細パターンを高精度に且つ安定して形成可能なレジストパターン形成方法に好適に使用可能であるという効果を奏するものである。   Moreover, the developer for forming a resist pattern of the present invention is excellent in nano edge roughness, and has an effect that it can be suitably used for a resist pattern forming method capable of forming a fine pattern with high accuracy and stability. .

以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described below, but the present invention is not limited to the following embodiment, and is based on the ordinary knowledge of those skilled in the art without departing from the gist of the present invention. It should be understood that modifications and improvements as appropriate to the following embodiments also fall within the scope of the present invention.

I レジストパターン形成方法
本発明のレジストパターン形成方法は、基板上に形成された、その膜厚が50nm以下であるレジスト膜を選択的に露光するとともに、有機溶剤を含有する水溶液であるレジストパターン形成用現像液を用いて現像することを含む方法である。以下、詳細について記載する。
I. Resist pattern formation method The resist pattern formation method of this invention is the resist pattern formation which is the aqueous solution containing the organic solvent while selectively exposing the resist film with the film thickness of 50 nm or less formed on the board | substrate. And developing with a developing solution. Details will be described below.

(レジスト膜の形成)
先ず、レジスト膜を基板上に形成する。基板材料としては、通常、シリコンウエーハーが用いられるが、その他、アルミニウム、チタン−タングステン合金、アルミニウム−ケイ素合金、アルミニウム−銅−ケイ素合金、酸化ケイ素、窒化ケイ素等の半導体デバイス用基板として知られているものの中からも任意に選んで用いることができる。
(Formation of resist film)
First, a resist film is formed on the substrate. As a substrate material, a silicon wafer is usually used, but it is also known as a substrate for semiconductor devices such as aluminum, titanium-tungsten alloy, aluminum-silicon alloy, aluminum-copper-silicon alloy, silicon oxide, silicon nitride. It can be used by arbitrarily selecting from the existing ones.

レジスト膜は、例えば、一般に半導体デバイスの製造の際に用いられている化学増幅型レジスト組成物の溶液をスピンナー等により基板上に塗布した後、70〜150℃の温度で、30〜150秒間プリベーク(以下、「PB」という)することで形成することができる。PB後のレジスト膜の膜厚は、50nm以下であり、好ましくは10〜50nmであり、特に好ましくは15〜50nmである。PB後のレジスト膜の膜厚が50nm超であると、ナノエッジラフネスが悪化する場合がある。   For example, the resist film may be pre-baked at a temperature of 70 to 150 ° C. for 30 to 150 seconds after a solution of a chemically amplified resist composition generally used in the manufacture of semiconductor devices is applied onto the substrate by a spinner or the like. (Hereinafter referred to as “PB”). The film thickness of the resist film after PB is 50 nm or less, preferably 10 to 50 nm, and particularly preferably 15 to 50 nm. When the film thickness of the resist film after PB is more than 50 nm, nano edge roughness may be deteriorated.

(露光)
次に、基板上に形成されたレジスト膜に対し、マスクパターンを介して選択的に露光し、潜像を形成する。この露光処理は、例えば、KrFエキシマレーザー、ArFエキシマレーザー、Fエキシマレーザー、EUV等の(極)遠紫外線、シンクロトロン放射線等のX線、電子線等の荷電粒子線の如き各種の放射線を照射することで行う。また、露光により潜像を形成したレジスト膜に対し、70〜150℃程度の温度で、30〜150秒間加熱(以下、「PEB」ともいう)を行うことが好ましい。
(exposure)
Next, the resist film formed on the substrate is selectively exposed through a mask pattern to form a latent image. This exposure process is performed using various kinds of radiation such as KrF excimer laser, ArF excimer laser, F 2 excimer laser, EUV (extreme) deep ultraviolet rays, synchrotron radiation, etc., X-rays, electron beam, etc. This is done by irradiation. In addition, it is preferable to heat the resist film on which a latent image is formed by exposure at a temperature of about 70 to 150 ° C. for 30 to 150 seconds (hereinafter also referred to as “PEB”).

(現像)
最後に、露光後の、又は必要に応じて行なわれるPEB後の、レジスト膜を現像液を用いて現像する。なお、現像液としては、後述する「II レジストパターン形成用現像液」を用いる。処理温度としては、通常、室温、例えば、10〜30℃であり、特に23℃で行うことが望ましい。尚、現像液で現像した後は、通常、水で洗浄し、乾燥させる。
(developing)
Finally, the resist film after exposure or after PEB performed as necessary is developed using a developer. As the developer, “II resist pattern forming developer” described later is used. The treatment temperature is usually room temperature, for example, 10 to 30 ° C., particularly preferably 23 ° C. In addition, after developing with a developing solution, it is normally washed with water and dried.

II レジストパターン形成用現像液
本発明のレジストパターン形成用現像液は、有機溶剤を含有する水溶液である。レジストパターン形成用現像液に含有される有機溶剤の割合は、レジストパターン形成用現像液100質量%に対して、通常、30〜95質量%であり、好ましくは51〜95質量%であり、特に好ましくは61〜95質量%である。有機溶剤の割合がこの範囲外にあると、ナノエッジラフネスが悪化するという場合がある。
II Resist for Forming Resist Pattern The developer for forming a resist pattern of the present invention is an aqueous solution containing an organic solvent. The proportion of the organic solvent contained in the resist pattern forming developer is usually from 30 to 95% by weight, preferably from 51 to 95% by weight, based on 100% by weight of the resist pattern forming developer. Preferably it is 61-95 mass%. If the proportion of the organic solvent is outside this range, the nano edge roughness may deteriorate.

有機溶剤としては、炭素数1〜6の脂肪族アルコールが好ましく、炭素数2〜4の脂肪族アルコールが更に好ましい。脂肪族アルコールとしては、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、n−ブチルアルコール、イソブチルアルコール、t−ブチルアルコール、シクロペンタノール、4−メチル−2−ペンタノール等がある。尚、これらの有機溶媒は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   As an organic solvent, a C1-C6 aliphatic alcohol is preferable and a C2-C4 aliphatic alcohol is still more preferable. Examples of the aliphatic alcohol include methanol, ethanol, 1-propanol, 2-propanol, n-butyl alcohol, isobutyl alcohol, t-butyl alcohol, cyclopentanol, and 4-methyl-2-pentanol. In addition, these organic solvents may be used individually by 1 type, and may be used in combination of 2 or more type.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」は、特に断らない限り質量基準である。また、各種物性値の測定方法、及び諸特性の評価方法を以下に示す。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. “Parts” in Examples and Comparative Examples are based on mass unless otherwise specified. Moreover, the measuring method of various physical-property values and the evaluation method of various characteristics are shown below.

[核磁気共鳴スペクトル]:型番JNM−ECA−500型(日本電子社製)を用いて測定した。   [Nuclear Magnetic Resonance Spectrum]: Measured using model number JNM-ECA-500 (manufactured by JEOL Ltd.).

[重量平均分子量(Mw)及び数平均分子量(Mn)]:東ソー社製GPCカラム(G2000HXL2本、G3000HXL1本、G4000HXL1本)を用い、下記に示す分析条件にて、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定した。
流量:1.0mL/分
溶出溶剤:テトラヒドロフラン
カラム温度:40℃
[Weight average molecular weight (Mw) and number average molecular weight (Mn)]: A gel based on monodisperse polystyrene under the analysis conditions shown below using GPC columns (2 G2000HXL, 1 G3000HXL, 1 G4000HXL) manufactured by Tosoh Corporation It was measured by permeation chromatography (GPC).
Flow rate: 1.0 mL / min Elution solvent: Tetrahydrofuran Column temperature: 40 ° C

[分散度(Mw/Mn)]:測定したMw及びMnの値から算出した。   [Dispersity (Mw / Mn)]: Calculated from the measured values of Mw and Mn.

[感度(μC/cm)]:線幅150nmのライン部と、隣り合うライン部によって形成される間隔が150nmのスペース部(即ち、溝)と、からなるパターン(いわゆる、ライン・アンド・スペースパターン(1L1S))を1対1の線幅に形成する露光量を最適露光量とし、この最適露光量を感度とした。 [Sensitivity (μC / cm 2 )]: A pattern (so-called line-and-space) including a line portion having a line width of 150 nm and a space portion (that is, a groove) having an interval of 150 nm formed by adjacent line portions. The exposure amount for forming the pattern (1L1S) with a one-to-one line width was taken as the optimum exposure amount, and this optimum exposure amount was taken as the sensitivity.

[ナノエッジラフネス(nm)]:設計線幅150nmのライン・アンド・スペースパターン(1L1S)のラインパターンを、半導体用走査電子顕微鏡(高分解能FEB測長装置、商品名「S−9220」、日立製作所社製)にて観察した。観察された形状について、図1及び図2に示すように、基材1上に形成したレジスト膜のライン部2の横側面2aに沿って生じた凹凸の最も著しい箇所における線幅と、設計線幅150nmとの差「ΔCD」を、CD−SEM(日立ハイテクノロジーズ社製、「S−9220」)にて測定し、この差をナノエッジラフネスとした。   [Nano edge roughness (nm)]: A line-and-space pattern (1L1S) having a designed line width of 150 nm is scanned with a scanning electron microscope for semiconductors (high-resolution FEB measuring device, trade name “S-9220”, Hitachi, Ltd.) (Manufactured by Seisakusho). With respect to the observed shape, as shown in FIGS. 1 and 2, the line width and the design line at the most marked portion of the unevenness generated along the lateral side surface 2 a of the line portion 2 of the resist film formed on the substrate 1. The difference “ΔCD” from the width of 150 nm was measured by CD-SEM (manufactured by Hitachi High-Technologies Corporation, “S-9220”), and this difference was defined as nano edge roughness.

合成例1 (酸解離性基含有樹脂(A−1)の合成)
p−アセトキシスチレン56g、下記式(M−1)で表される化合物(単量体)44g、アゾビスイソブチロニトリル(以下、「AIBN」という)4g、及びt−ドデシルメルカプタン1gを、プロピレングリコールモノメチルエーテル100gに溶解した後、窒素雰囲気下、反応温度を70℃に保持して、16時間重合した。重合後、反応溶液を1000gのn−ヘキサン中に滴下して、共重合体を凝固精製した。次いで、この共重合体に、再度プロピレングリコールモノメチルエーテル150gを加えた後、更に、メタノール150g、トリエチルアミン35g、及び水7gを加えて、沸点にて還流しながら、8時間加水分解反応を行なった。反応後、溶剤及びトリエチルアミンを減圧留去し、得られた共重合体をアセトン150gに溶解した後、2000gの水中に滴下し、凝固生成した白色粉末を濾別し、減圧下50℃で一晩乾燥した。得られた白色粉末は、Mwが11000であり、Mw/Mnが2.0であり、13C−NMR分析の結果、p−ヒドロキシスチレンに由来する繰り返し単位と化合物(M−1)に由来する繰り返し単位の含有比(mol比)が65:35の共重合体であった。以下、この共重合体を、酸解離性基含有樹脂(A−1)とする。
Synthesis Example 1 (Synthesis of acid dissociable group-containing resin (A-1))
56 g of p-acetoxystyrene, 44 g of a compound (monomer) represented by the following formula (M-1), 4 g of azobisisobutyronitrile (hereinafter referred to as “AIBN”), and 1 g of t-dodecyl mercaptan are mixed with propylene. After dissolving in 100 g of glycol monomethyl ether, polymerization was carried out for 16 hours while maintaining the reaction temperature at 70 ° C. in a nitrogen atmosphere. After the polymerization, the reaction solution was dropped into 1000 g of n-hexane to coagulate and purify the copolymer. Next, 150 g of propylene glycol monomethyl ether was added again to the copolymer, and then 150 g of methanol, 35 g of triethylamine and 7 g of water were further added, and a hydrolysis reaction was performed for 8 hours while refluxing at the boiling point. After the reaction, the solvent and triethylamine were distilled off under reduced pressure, and the resulting copolymer was dissolved in 150 g of acetone and then dropped into 2000 g of water. The white powder formed by coagulation was separated by filtration and overnight at 50 ° C. under reduced pressure. Dried. The obtained white powder has Mw of 11000 and Mw / Mn of 2.0, and as a result of 13 C-NMR analysis, it is derived from a repeating unit derived from p-hydroxystyrene and the compound (M-1). It was a copolymer having a repeating unit content ratio (molar ratio) of 65:35. Hereinafter, this copolymer is referred to as “acid-labile group-containing resin (A-1)”.

Figure 0005262650
Figure 0005262650

合成例2 (化合物(A−2)の合成)
レゾルシノール22.0g(200mmol)をエタノール45mLに溶解し、塩酸を15mL加えた。調製した溶液を撹拌しながら5℃まで氷冷し、グルタルアルデヒドの50質量%水溶液10.0g(50mmol)をゆっくりと滴下した。その後、80℃で48時間加熱し、濁った黄色の溶液(懸濁液)を得た。得られた懸濁液をメタノール中に注いだ後、濾別し、沈殿物を得た。得られた沈殿物をメタノールで3回洗浄した後、室温で24時間減圧乾燥して、粉末状の淡黄色固体(S−1)を得た。収量は11.2gであり、収率は79%であった。
Synthesis Example 2 (Synthesis of Compound (A-2))
22.0 g (200 mmol) of resorcinol was dissolved in 45 mL of ethanol, and 15 mL of hydrochloric acid was added. The prepared solution was ice-cooled to 5 ° C. with stirring, and 10.0 g (50 mmol) of a 50 mass% aqueous solution of glutaraldehyde was slowly added dropwise. Then, it heated at 80 degreeC for 48 hours, and the cloudy yellow solution (suspension) was obtained. The obtained suspension was poured into methanol and then filtered to obtain a precipitate. The obtained precipitate was washed three times with methanol and then dried under reduced pressure at room temperature for 24 hours to obtain a powdery pale yellow solid (S-1). The yield was 11.2 g, and the yield was 79%.

得られた淡黄色固体(S−1)の構造確認を、MALDI−TOF−MS(型番SHIMAZU/KRATOSマトリックス支援レーザーイオン化飛行時間型質量分析装置 KOMPACT MALDI IV tDE、島津製作所社製)、IR(型番FT−IR 420型、日本分光社製)、及びH−NMRにて行った。これらの結果を以下に示す。 The structure of the obtained pale yellow solid (S-1) was confirmed by MALDI-TOF-MS (model number SHIMAZU / KRATOS matrix-assisted laser ionization time-of-flight mass spectrometer KOMPACT MALDI IV tDE, manufactured by Shimadzu Corporation), IR (model number) FT-IR 420 type, manufactured by JASCO Corporation) and 1 H-NMR. These results are shown below.

質量分析(MALDI−TOF−MS):分子量1705の化合物が得られたことが示された。   Mass spectrometry (MALDI-TOF-MS): It was shown that a compound with a molecular weight of 1705 was obtained.

IR(film法、cm−1):3406(νOH);2931(νC−H);1621、1505、1436(νC=C(aromatic)IR (film method, cm −1 ): 3406 (ν OH ); 2931 (ν C—H ); 1621, 1505, 1436 (ν C = C (aromatic) )

H−NMR(500MHz、溶媒DMSO−d、内部標準TMS):δ(ppm)=0.86〜2.35(b,12H)、3.98〜4.22(m,4H)、6.09〜7.42(m,8H)、8.65〜9.56(m,8H) 1 H-NMR (500 MHz, solvent DMSO-d 6 , internal standard TMS): δ (ppm) = 0.86 to 2.35 (b, 12H), 3.98 to 4.22 (m, 4H), 6 0.09 to 7.42 (m, 8H), 8.65 to 9.56 (m, 8H)

得られた淡黄色固体(S−1)3.5gを、1−メチル−2−ピロリドン40gに加えた後、テトラブチルアンモニウムブロマイド0.8gを更に加え、70℃で4時間攪拌して溶解した。溶解後、炭酸カリウム3.3gを加え、70℃で1時間撹拌した。その後、予め1−メチル−2−ピロリドン20gに溶解させたブロモ酢酸2−メチル−2−アダマンチル6.9gを徐々に加え、70℃で6時間攪拌した。室温まで冷却し、水(200g)/塩化メチレン(200g)で抽出を行った。次に、3質量%のシュウ酸水100mLで3回洗浄した後、水100mLで2回洗浄した。水層を廃棄した後、有機層を硫酸マグネシウムで乾燥した。その後、ヘキサン:酢酸エチル=1:4(体積比)を留出液としてシリカゲルカラムで精製して、化合物(A−2)を得た。得られた化合物(A−2)は3.2gであった。   After adding 3.5 g of the obtained pale yellow solid (S-1) to 40 g of 1-methyl-2-pyrrolidone, 0.8 g of tetrabutylammonium bromide was further added and dissolved by stirring at 70 ° C. for 4 hours. . After dissolution, 3.3 g of potassium carbonate was added and stirred at 70 ° C. for 1 hour. Thereafter, 6.9 g of 2-methyl-2-adamantyl bromoacetate previously dissolved in 20 g of 1-methyl-2-pyrrolidone was gradually added and stirred at 70 ° C. for 6 hours. The mixture was cooled to room temperature and extracted with water (200 g) / methylene chloride (200 g). Next, after washing 3 times with 100 mL of 3% by mass oxalic acid water, it was washed twice with 100 mL of water. After discarding the aqueous layer, the organic layer was dried over magnesium sulfate. Then, the compound (A-2) was obtained by refine | purifying with a silica gel column by using hexane: ethyl acetate = 1: 4 (volume ratio) as a distillate. The obtained compound (A-2) was 3.2 g.

化合物(A−2)についてH−NMR分析を行ったところ、化合物(A−2)は、一般式(1)で表される化合物であった。この化合物(A−2)は、一般式(1)中の全てのRのうち、40mol%が式(2)で表される基(2−メチル−2−アダマンチルオキシカルボニルメチル基)であり、残りが水素原子であった。 When 1 H-NMR analysis was performed on the compound (A-2), the compound (A-2) was a compound represented by the general formula (1). This compound (A-2) is a group (2-methyl-2-adamantyloxycarbonylmethyl group) in which 40 mol% of all R in the general formula (1) is represented by the formula (2), The rest were hydrogen atoms.

Figure 0005262650
Figure 0005262650

Figure 0005262650
Figure 0005262650

H−NMRの結果は次の通りである。H−NMR(500MHz、溶媒DMSO−d、内部標準TMS):δ(ppm)=0.82〜2.40(m,66.4H)、3.80〜4.52(m,10.4H)、6.08〜7.41(m,8.0H)、8.62〜9.54(m,3.2H) The result of 1 H-NMR is as follows. 1 H-NMR (500 MHz, solvent DMSO-d 6 , internal standard TMS): δ (ppm) = 0.82 to 2.40 (m, 66.4H), 3.80 to 4.52 (m, 10. 4H), 6.08-7.41 (m, 8.0H), 8.62-9.54 (m, 3.2H)

合成例3〜6 (感放射線性組成物の調製)
表1に示す配合量にて、酸解離性基含有樹脂(A−1)又は化合物(A−2)、(B)酸発生剤、(C)酸拡散制御剤、(D)溶剤を混合し、得られた混合液を孔径200nmのメンブランフィルターで濾過することにより、感放射線性組成物1〜4を調製した。
Synthesis Examples 3 to 6 (Preparation of radiation-sensitive composition)
In the compounding amounts shown in Table 1, the acid-dissociable group-containing resin (A-1) or compound (A-2), (B) acid generator, (C) acid diffusion controller, and (D) solvent are mixed. The resulting liquid mixture was filtered through a membrane filter having a pore size of 200 nm to prepare radiation sensitive compositions 1 to 4.

Figure 0005262650
Figure 0005262650

尚、表1で略記した、酸解離性基含有樹脂(A−1)又は化合物(A−2)、(B)酸発生剤、(C)酸拡散制御剤、及び(D)溶剤の詳細を以下に示す。   The details of the acid dissociable group-containing resin (A-1) or compound (A-2), (B) acid generator, (C) acid diffusion controller, and (D) solvent, which are abbreviated in Table 1, are as follows. It is shown below.

酸解離性基含有樹脂(A−1)又は化合物(A−2)
(A−1):合成例1で得られた酸解離性基含有樹脂(A−1)
(A−2):合成例2で得られた化合物(A−2)
Acid dissociable group-containing resin (A-1) or compound (A-2)
(A-1): Acid-dissociable group-containing resin obtained in Synthesis Example 1 (A-1)
(A-2): Compound (A-2) obtained in Synthesis Example 2

(B)酸発生剤
(B−1):トリフェニルスルホニウムトリフルオロメタンスルホネート
(B) Acid generator (B-1): Triphenylsulfonium trifluoromethanesulfonate

(C)酸拡散制御剤
(C−1):トリ−n−オクチルアミン
(C) Acid diffusion controller (C-1): Tri-n-octylamine

(D)溶剤
(D−1):乳酸エチル
(D−2):プロピレングリコールモノメチルエーテルアセテート
(D) Solvent (D-1): Ethyl lactate (D-2): Propylene glycol monomethyl ether acetate

実施例1
東京エレクトロン社製のクリーントラックACT−8内で、シリコンウエハー上に合成例3で調製した感放射線性組成物1をスピンコートした後、130℃で60秒間PB(加熱処理)を行い、膜厚が50nmであるレジスト膜を形成した。その後、簡易型の電子線描画装置(日立製作所社製、型式「HL800D」、出力;50KeV、電流密度;5.0アンペア/cm)を用いてレジスト膜に電子線を照射した。電子線を照射した後、130℃で60秒間PEBを行った。60質量%の2−プロパノール水溶液をレジストパターン形成用現像液として用い、23℃で1分間、パドル法により現像した後、純水で水洗し、乾燥して、レジストパターンを形成した。このレジストパターンの感度は27μC/cmであり、ナノエッジラフネスは7nmであった。
Example 1
In a clean track ACT-8 manufactured by Tokyo Electron, the radiation sensitive composition 1 prepared in Synthesis Example 3 was spin coated on a silicon wafer, and then PB (heat treatment) was performed at 130 ° C. for 60 seconds to obtain a film thickness. A resist film having a thickness of 50 nm was formed. Thereafter, the resist film was irradiated with an electron beam using a simple electron beam drawing apparatus (manufactured by Hitachi, Ltd., model “HL800D”, output: 50 KeV, current density: 5.0 amperes / cm 2 ). After irradiation with the electron beam, PEB was performed at 130 ° C. for 60 seconds. A 60% by mass aqueous 2-propanol solution was used as a resist pattern forming developer, developed at 23 ° C. for 1 minute by the paddle method, washed with pure water, and dried to form a resist pattern. The sensitivity of this resist pattern was 27 μC / cm 2 and the nano edge roughness was 7 nm.

実施例2〜4及び比較例1〜8
表2に示す感放射線性組成物を用いて、その膜厚が50又は80nmのレジスト膜を形成し、表2に示すレジストパターン形成用現像液を用いて現像したこと以外は実施例1と同様にして各レジストパターンを形成し、それらの評価を行った。評価結果を表2に併せて記す。
Examples 2 to 4 and Comparative Examples 1 to 8
Similar to Example 1 except that a resist film having a film thickness of 50 or 80 nm was formed using the radiation-sensitive composition shown in Table 2 and developed using a developer for forming a resist pattern shown in Table 2. Thus, each resist pattern was formed and evaluated. The evaluation results are also shown in Table 2.

Figure 0005262650
Figure 0005262650

実施例1〜4のレジストパターン形成方法によれば、比較例1〜8のレジストパターン形成方法に比べて、電子線に有効に感応し、ナノエッジラフネスに優れる(低ラフネス)と共に解像度にも優れており、微細パターンを高精度に且つ安定して形成することが可能であることがわかる。   According to the resist pattern forming methods of Examples 1 to 4, compared to the resist pattern forming methods of Comparative Examples 1 to 8, it is more sensitive to electron beams, has excellent nano edge roughness (low roughness) and excellent resolution. It can be seen that a fine pattern can be formed with high accuracy and stability.

本発明のレジストパターン形成方法によれば、レジストパターン形成時におけるナノエッジラフネスに優れるので、EB、EUVやX線による微細パターン形成に有用である。従って、本発明のレジストパターン形成方法は、今後更に微細化が進行すると予想される半導体デバイス製造において極めて有用である。   According to the resist pattern forming method of the present invention, it is excellent in nano edge roughness at the time of forming a resist pattern, so that it is useful for forming a fine pattern by EB, EUV or X-ray. Therefore, the resist pattern forming method of the present invention is extremely useful in the manufacture of semiconductor devices that are expected to be further miniaturized in the future.

レジストパターンの一例を模式的に示す上面図である。It is a top view which shows typically an example of a resist pattern. レジストパターンの一例を模式的に示す断面図である。It is sectional drawing which shows an example of a resist pattern typically.

符号の説明Explanation of symbols

1:基材、2:ライン部、2a:ライン部の横側面 1: Base material, 2: Line part, 2a: Side surface of line part

Claims (5)

基板上に形成された、その膜厚が50nm以下であるレジスト膜を選択的に露光するとともに、有機溶剤を含有する水溶液であるポジ型レジストパターン形成用現像液を用いて現像することを含むポジ型レジストパターン形成方法。 Positive, which comprises formed on a substrate, the film thickness thereof together with a selective exposure of a resist film is 50nm or less, developed using a positive resist pattern forming developer is an aqueous solution containing an organic solvent Mold resist pattern forming method. 前記ポジ型レジストパターン形成用現像液に含有される前記有機溶剤の割合が、前記ポジ型レジストパターン形成用現像液100質量%に対して、30〜95質量%である請求項1に記載のポジ型レジストパターン形成方法。 The proportion of the organic solvent contained in the positive resist pattern forming developer, with respect to the positive resist pattern forming developer 100 mass%, according to claim 1 which is 30 to 95 wt% positive Mold resist pattern forming method. 前記有機溶剤が、脂肪族アルコールである請求項1又は2に記載のポジ型レジストパターン形成方法。 The positive resist pattern forming method according to claim 1, wherein the organic solvent is an aliphatic alcohol. 前記脂肪族アルコールが、炭素数1〜6の脂肪族アルコールである請求項3に記載のポジ型レジストパターン形成方法。 The positive resist pattern forming method according to claim 3, wherein the aliphatic alcohol is an aliphatic alcohol having 1 to 6 carbon atoms. 請求項1〜4のいずれか一項に記載のポジ型レジストパターン形成方法で使用される、有機溶剤を含有する水溶液であるポジ型レジストパターン形成用現像液。 A developer for forming a positive resist pattern, which is an aqueous solution containing an organic solvent, used in the method for forming a positive resist pattern according to claim 1.
JP2008310863A 2008-12-05 2008-12-05 Positive resist pattern forming method and developer for forming positive resist pattern Active JP5262650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008310863A JP5262650B2 (en) 2008-12-05 2008-12-05 Positive resist pattern forming method and developer for forming positive resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008310863A JP5262650B2 (en) 2008-12-05 2008-12-05 Positive resist pattern forming method and developer for forming positive resist pattern

Publications (2)

Publication Number Publication Date
JP2010134239A JP2010134239A (en) 2010-06-17
JP5262650B2 true JP5262650B2 (en) 2013-08-14

Family

ID=42345590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008310863A Active JP5262650B2 (en) 2008-12-05 2008-12-05 Positive resist pattern forming method and developer for forming positive resist pattern

Country Status (1)

Country Link
JP (1) JP5262650B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5663338B2 (en) * 2011-02-14 2015-02-04 東京応化工業株式会社 Resist pattern forming method
JP5906076B2 (en) * 2011-12-16 2016-04-20 東京応化工業株式会社 Resist pattern forming method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107646A (en) * 1983-11-17 1985-06-13 Fujitsu Ltd Method for developing positive type electron beam resist
JP2712700B2 (en) * 1990-01-30 1998-02-16 松下電器産業株式会社 Pattern formation method
JPH05142787A (en) * 1991-11-26 1993-06-11 Nippon Telegr & Teleph Corp <Ntt> Resist developer and pattern forming method
JP3568599B2 (en) * 1993-12-28 2004-09-22 富士通株式会社 Radiation-sensitive material and pattern forming method
JP5137410B2 (en) * 2006-06-09 2013-02-06 キヤノン株式会社 Photosensitive compound, photosensitive composition, resist pattern forming method and substrate processing method

Also Published As

Publication number Publication date
JP2010134239A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
WookáChang Molecular glass photoresists for advanced lithography
KR102290635B1 (en) Iodine-containing photoacid generators and compositions comprising the same
TWI414894B (en) Resist underlayer film composition, process for forming resist underlayer film, patterning process and fullerene derivative
JP4675776B2 (en) Positive resist composition, resist laminate, and resist pattern forming method
JP4361527B2 (en) Chemically amplified silicone-based positive photoresist composition, double-layer resist material using the same, and ladder-type silicone copolymer used therefor
KR102291481B1 (en) Sulfonium compound, positive resist composition, and resist pattern forming process
JP5262651B2 (en) Positive resist pattern forming method and developer for forming positive resist pattern
JP2019001997A (en) Iodine-containing polymers for chemically amplified resist compositions
TWI588609B (en) Negative resist composition and pattern forming process
WO2006090591A1 (en) Positive-working resist composition, method for resist pattern formation and compound
KR101598826B1 (en) I-line negative-working photoresist composition for improving etching resistance
US6225019B1 (en) Photosensitive resin, resist based on the photosensitive resin, exposure apparatus and exposure method using the resist, and semiconductor device obtained by the exposure method
TW201142511A (en) Chemically amplified positive resist composition and pattern forming process
WO2019098338A1 (en) Composition for forming film for lithography, film for lithography, resist pattern forming method, and circuit pattern forming method
JP5678449B2 (en) Radiation sensitive composition
TW200532373A (en) Photoresist composition and method for forming resist pattern
JP5262650B2 (en) Positive resist pattern forming method and developer for forming positive resist pattern
JP2010134246A (en) Method of forming resist pattern and rinse liquid
TWI263871B (en) Positive photoresist composition
JP2009046395A (en) Method for producing resorcinol derivative
JP2006208658A (en) Photoresist composition
JP5678747B2 (en) Resist composition for EUV light exposure and resist pattern forming method using the same
WO2007046442A1 (en) Novel compound, acid generator, chemical amplification type photoresist composition, resist layer laminate and method of forming resist pattern
JPH061381B2 (en) Radiation-sensitive resin composition
JP2004231858A (en) Resin for photoresist and photoresist composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5262650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250