JP5262084B2 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
JP5262084B2
JP5262084B2 JP2007304447A JP2007304447A JP5262084B2 JP 5262084 B2 JP5262084 B2 JP 5262084B2 JP 2007304447 A JP2007304447 A JP 2007304447A JP 2007304447 A JP2007304447 A JP 2007304447A JP 5262084 B2 JP5262084 B2 JP 5262084B2
Authority
JP
Japan
Prior art keywords
voltage
vehicle
power storage
battery
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007304447A
Other languages
Japanese (ja)
Other versions
JP2009126395A (en
Inventor
順 中野渡
雅彦 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007304447A priority Critical patent/JP5262084B2/en
Publication of JP2009126395A publication Critical patent/JP2009126395A/en
Application granted granted Critical
Publication of JP5262084B2 publication Critical patent/JP5262084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、車両の制御装置に関する。   The present invention relates to a vehicle control device.

従来、高圧バッテリおよび低圧バッテリを設け、モータジェネレータによって発電された電力を高圧バッテリに供給するとともに、モータジェネレータの発電電力または高圧バッテリの電力をDC/DCコンバータで降圧して、低圧バッテリに供給するシステムが知られている(特許文献1参照)。
特開2004−320877号公報
Conventionally, a high voltage battery and a low voltage battery are provided, and the electric power generated by the motor generator is supplied to the high voltage battery, and the generated electric power of the motor generator or the electric power of the high voltage battery is stepped down by the DC / DC converter and supplied to the low voltage battery. A system is known (see Patent Document 1).
JP 2004-320877 A

しかしながら、従来のシステムでは、低圧バッテリに電力を供給する際に、常にDC/DCコンバータで電圧変換処理を行っていたので、電圧変換による損失が生じるという問題があった。   However, in the conventional system, when power is supplied to the low-voltage battery, the voltage conversion processing is always performed by the DC / DC converter, so that there is a problem that loss due to voltage conversion occurs.

本発明による車両の制御装置は、減速走行時以外の車両状態時には、発電手段の発電電圧が第2の蓄電手段の満充電時の開放電圧に応じた電圧となるように制御して、電圧変換手段による昇圧動作および降圧動作をさせずに、発電電力を第2の蓄電手段にも供給させることを特徴とする。   The vehicle control apparatus according to the present invention controls the voltage conversion by controlling the power generation voltage of the power generation means to be a voltage corresponding to the open voltage when the second power storage means is fully charged when the vehicle is in a state other than during deceleration. The generated power is also supplied to the second power storage means without performing the step-up operation and the step-down operation by the means.

本発明による車両の制御装置によれば、減速走行時以外の車両状態時には、電圧変換手段による昇圧動作および降圧動作をさせずに、発電電力を第2の蓄電手段にも供給させるので、電圧変換による損失を大幅に低減することができる。   According to the vehicle control apparatus of the present invention, the generated power is supplied to the second power storage means without performing the step-up operation and the step-down operation by the voltage conversion means when the vehicle is in a state other than the time when the vehicle is decelerating. The loss due to can be greatly reduced.

以下、添付図面を参照しながら本発明の一実施の形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は、一実施の形態における車両の制御装置の構成を示す図である。一実施の形態における車両の制御装置が適用される車両は、交差点等で車両が一時停止する状況において、エンジンの自動停止・自動再始動を行うアイドルストップ車両である。   FIG. 1 is a diagram illustrating a configuration of a vehicle control device according to an embodiment. The vehicle to which the vehicle control device in one embodiment is applied is an idle stop vehicle that automatically stops and restarts the engine in a situation where the vehicle temporarily stops at an intersection or the like.

バッテリ1は、満充電時の開放電圧が約16Vのリチウム電池であり、インバータ6を介して、モータジェネレータ9に電力を供給する。バッテリ2は、満充電時の開放電圧が約13Vの鉛酸バッテリであり、12V系電装品4に電力を供給する。12V系電装品4とは、例えば、ライト、ワイパー等である。   The battery 1 is a lithium battery having an open voltage of about 16 V when fully charged, and supplies power to the motor generator 9 via the inverter 6. The battery 2 is a lead acid battery having an open voltage of about 13 V when fully charged, and supplies power to the 12 V system electrical component 4. Examples of the 12V electrical component 4 include a light and a wiper.

電流センサ5は、バッテリ1の充放電電流を検出する。電圧センサ20は、バッテリ1の電圧を検出する。電圧センサ21は、バッテリ2の電圧を検出する。   The current sensor 5 detects the charge / discharge current of the battery 1. The voltage sensor 20 detects the voltage of the battery 1. The voltage sensor 21 detects the voltage of the battery 2.

DC/DCコンバータ3は、バッテリ1およびバッテリ2の間に設けられ、後述する状況下において、モータジェネレータ9の回生運転時に得られる発電電圧、または、バッテリ1の電圧を降圧して、バッテリ2に印加する。DC/DCコンバータ3は、図3に示すように、N型MOSFET31と、ダイオード32と、リアクトル33と、コンデンサ34とから構成されており、トランスは使われていない。   The DC / DC converter 3 is provided between the battery 1 and the battery 2, and reduces the power generation voltage obtained during the regenerative operation of the motor generator 9 or the voltage of the battery 1 under the circumstances described later to the battery 2. Apply. As shown in FIG. 3, the DC / DC converter 3 includes an N-type MOSFET 31, a diode 32, a reactor 33, and a capacitor 34, and no transformer is used.

インバータ6は、バッテリ1の直流電圧を三相交流電圧に変換して、モータジェネレータ9に供給する。モータジェネレータ9は、モータプーリー12、ベルト15、クランクプーリー13を介して、エンジン10と接続されている。すなわち、モータジェネレータ9とエンジン10とは、同期回転するように構成されている。なお、ベルト15は、エアコンコンプレッサ11の出力軸に取り付けられたコンプレッサプーリー14にも巻き掛けられている。   Inverter 6 converts the DC voltage of battery 1 into a three-phase AC voltage and supplies it to motor generator 9. The motor generator 9 is connected to the engine 10 via a motor pulley 12, a belt 15, and a crank pulley 13. That is, the motor generator 9 and the engine 10 are configured to rotate synchronously. The belt 15 is also wound around a compressor pulley 14 attached to the output shaft of the air conditioner compressor 11.

モータジェネレータ(MG)9は、発電機および電動機の両機能を有する。すなわち、バッテリ1からインバータ6を介して電力が供給されると、エンジン10を始動させる電動機(スターター)として機能し、エンジン10の回転による回生運転時には、発電機として機能する。   The motor generator (MG) 9 has both functions of a generator and an electric motor. That is, when electric power is supplied from the battery 1 via the inverter 6, it functions as an electric motor (starter) that starts the engine 10, and functions as a generator during regenerative operation by rotation of the engine 10.

エンジン10には、CVT(連続無段可変変速機)16が接続されている。CVT16には、エンジン10の一時停止中に、CVT16の作動油圧を保持するための電動オイルポンプ17が接続されている。CVT16および電動オイルポンプ17は、ATコントロールユニット18(以下、ATCU18と呼ぶ)によって制御される。   A CVT (continuous continuously variable transmission) 16 is connected to the engine 10. An electric oil pump 17 is connected to the CVT 16 for holding the hydraulic pressure of the CVT 16 during the temporary stop of the engine 10. The CVT 16 and the electric oil pump 17 are controlled by an AT control unit 18 (hereinafter referred to as ATCU 18).

エンジンコントロールモジュール8(以下、ECM8と呼ぶ)は、ニュートラル信号(N信号)、アクセル開度信号、ブレーキ信号、および、車速信号に基づいて、エンジン10を制御する。モータコントローラ7(以下、MC7と呼ぶ)は、ECM8からの指令に基づいて、インバータ6を制御する。すなわち、エンジン10の始動時には、モータジェネレータ9を力行運転させるために、バッテリ1の直流電圧を三相交流電圧に変換させてモータジェネレータ9に供給する。また、車両の通常走行時および減速走行時には、モータジェネレータ9の回生運転による発電電圧を直流電圧に変換させる。   The engine control module 8 (hereinafter referred to as ECM 8) controls the engine 10 based on a neutral signal (N signal), an accelerator opening signal, a brake signal, and a vehicle speed signal. The motor controller 7 (hereinafter referred to as MC7) controls the inverter 6 based on a command from the ECM8. That is, when the engine 10 is started, the DC voltage of the battery 1 is converted into a three-phase AC voltage and supplied to the motor generator 9 in order to cause the motor generator 9 to perform a power running operation. Further, during normal traveling and decelerating traveling of the vehicle, the generated voltage generated by the regenerative operation of the motor generator 9 is converted into a DC voltage.

一実施の形態における車両の制御装置では、ECM8が車両の状態に応じて、DC/DCコンバータ3の動作を変更させる制御を行う。車両の状態は、アクセル開度信号、ブレーキ信号、および、車速信号に基づいて判断する。以下では、エンジン10の再始動時、車両の通常走行時、車両の減速走行時、および、車両の一時停止時に分けて、DC/DCコンバータ3の制御について説明する。   In the vehicle control apparatus according to the embodiment, the ECM 8 performs control to change the operation of the DC / DC converter 3 in accordance with the state of the vehicle. The state of the vehicle is determined based on the accelerator opening signal, the brake signal, and the vehicle speed signal. Below, the control of the DC / DC converter 3 will be described separately when the engine 10 is restarted, when the vehicle is traveling normally, when the vehicle is decelerating, and when the vehicle is temporarily stopped.

図2は、様々な車両の状態に応じたモータジェネレータ9の動作、バッテリ1およびバッテリ2の電圧、および、エンジン10の回転数を示す図である。車両の一時停止時に所定のエンジン停止条件が成立すると、ECM8は、エンジン10を一時的に停止させる制御を行う。   FIG. 2 is a diagram illustrating the operation of the motor generator 9, the voltages of the battery 1 and the battery 2, and the rotational speed of the engine 10 in accordance with various vehicle conditions. If a predetermined engine stop condition is satisfied when the vehicle is temporarily stopped, the ECM 8 performs control to temporarily stop the engine 10.

−エンジン再始動時の制御−
図3は、エンジン再始動時のバッテリ1およびバッテリ2の状態、および、DC/DCコンバータ3の動作を示す図である。図3において、矢印は電流の流れを示している。エンジン10の一時停止制御時に、所定のエンジン再始動条件が成立すると、ECM8は、エンジン再始動要求信号をMC7に出力する。
-Control at engine restart-
FIG. 3 is a diagram showing the states of the battery 1 and the battery 2 at the time of restarting the engine and the operation of the DC / DC converter 3. In FIG. 3, arrows indicate the flow of current. When a predetermined engine restart condition is satisfied during the temporary stop control of the engine 10, the ECM 8 outputs an engine restart request signal to the MC 7.

エンジン再始動要求信号を受信したMC7は、モータジェネレータ9を力行運転させるためにインバータ6を制御して、バッテリ1からモータジェネレータ9に電流を流す。従って、図2に示すように、エンジン10の再始動時に、バッテリ1の電圧は低下する。   The MC 7 that has received the engine restart request signal controls the inverter 6 to cause the motor generator 9 to perform a power running operation, and causes a current to flow from the battery 1 to the motor generator 9. Therefore, as shown in FIG. 2, when the engine 10 is restarted, the voltage of the battery 1 decreases.

エンジン10の再始動時、DC/DCコンバータ3はオフに制御されており、12V系電装品4には、バッテリ2から電力が供給される。DC/DCコンバータ3はオフに制御されているので、エンジン再始動時のバッテリ1の電圧低下により、バッテリ2の電圧が低下したり、12V系電装品への電力供給量が低下することはない。   When the engine 10 is restarted, the DC / DC converter 3 is controlled to be off, and power is supplied from the battery 2 to the 12V electrical component 4. Since the DC / DC converter 3 is controlled to be off, the voltage of the battery 2 does not drop or the amount of power supplied to the 12V electrical components does not drop due to the voltage drop of the battery 1 when the engine is restarted. .

エンジン10の再始動が完了すると、図2に示すように、アイドリング状態に移行する。アイドリング状態に移行した後の制御については、車両の通常走行時の制御として、以下で説明する。   When the restart of the engine 10 is completed, the engine 10 shifts to an idling state as shown in FIG. The control after shifting to the idling state will be described below as the control during normal driving of the vehicle.

−車両の通常走行時の制御−
図4は、車両の通常走行時のバッテリ1およびバッテリ2の状態、および、DC/DCコンバータ3の動作を示す図である。図4において、矢印は電流の流れを示している。車両の通常走行時とは、車両のアイドリング時、加速時および一定走行時である。すなわち、エンジン10が停止している時、および、車両の減速走行時を除いた状態が通常走行時である。
-Control during normal driving of the vehicle-
FIG. 4 is a diagram illustrating the state of the battery 1 and the battery 2 during normal driving of the vehicle and the operation of the DC / DC converter 3. In FIG. 4, the arrows indicate the flow of current. The normal traveling time of the vehicle is when the vehicle is idling, accelerating, and during constant traveling. That is, when the engine 10 is stopped and when the vehicle is traveling at a reduced speed, the state is during normal traveling.

車両の通常走行時には、DC/DCコンバータ3のN型MOSFET31を常時オンとする。N型MOSFET31を常時オンとした場合、電流はDC/DCコンバータ3内を通過するだけになる。すなわち、DC/DCコンバータ3は、昇降圧動作を行わないので、DC/DCコンバータ3の入力電圧と出力電圧とは等しくなる。   During normal driving of the vehicle, the N-type MOSFET 31 of the DC / DC converter 3 is always turned on. When the N-type MOSFET 31 is always on, the current only passes through the DC / DC converter 3. That is, since the DC / DC converter 3 does not perform the step-up / step-down operation, the input voltage and the output voltage of the DC / DC converter 3 are equal.

アイドリング時を含む車両の通常走行時には、エンジン10の回転力によって、モータジェネレータ9は回生運転を行う。モータジェネレータ9の回生発電電力は、バッテリ1とともに、バッテリ2および12V系電装品4に供給される。   During normal travel of the vehicle including idling, the motor generator 9 performs regenerative operation by the rotational force of the engine 10. The regenerative power generated by the motor generator 9 is supplied to the battery 2 and the 12V system electrical component 4 together with the battery 1.

バッテリ2を充電する際の適正な印加電圧は、バッテリ2の満充電時の開放電圧に基づいて決定するのが好ましい。この適正印加電圧は、バッテリ温度や充電量等により変化するが、ここでは、バッテリ2の満充電時の開放電圧より少し高い14Vとする。MC7は、通常走行時のモータジェネレータ9の発電電力が14Vになるように、インバータ6を制御する。   The appropriate applied voltage when charging the battery 2 is preferably determined based on the open-circuit voltage when the battery 2 is fully charged. The appropriate applied voltage varies depending on the battery temperature, the amount of charge, and the like, but here it is set to 14 V, which is slightly higher than the open-circuit voltage when the battery 2 is fully charged. MC 7 controls inverter 6 so that the electric power generated by motor generator 9 during normal running is 14V.

上述したように、通常走行時には、DC/DCコンバータ3のN型MOSFET31を常時オンとするため、DC/DCコンバータ3は昇降圧動作を行わない。すなわち、モータジェネレータ9の回生発電電力は、ほとんど損失無く、バッテリ2および12V系電装品4に供給される。これにより、バッテリ1およびバッテリ2の電圧はほぼ等しくなる。バッテリ1の満充電時の開放電圧は、約16Vであるため、モータジェネレータ9の発電電力が14Vの場合、バッテリ1のSOC(State Of Charge:充電状態)は最大でも約30%程度にしかならないが、バッテリ1は、この充電量でも十分にエンジン再始動に必要な電力を供給することができる。   As described above, during normal running, the N-type MOSFET 31 of the DC / DC converter 3 is always turned on, so the DC / DC converter 3 does not perform the step-up / step-down operation. That is, the regenerative power generated by the motor generator 9 is supplied to the battery 2 and the 12V electrical component 4 with almost no loss. Thereby, the voltage of the battery 1 and the battery 2 becomes substantially equal. Since the open-circuit voltage when the battery 1 is fully charged is about 16V, when the generated power of the motor generator 9 is 14V, the SOC (State Of Charge) of the battery 1 is only about 30% at the maximum. However, the battery 1 can sufficiently supply power necessary for restarting the engine even with this amount of charge.

車両の状態がアイドリング状態から、加速状態や、一定速で走行する一定走行状態に移行すると、モータジェネレータ9の回転速度が高くなり発電量に余裕ができるが、モータジェネレータ9の目標発電電圧およびDC/DCコンバータ3の動作は、変化しない。   When the state of the vehicle shifts from the idling state to the acceleration state or the constant traveling state in which the vehicle travels at a constant speed, the rotational speed of the motor generator 9 increases and the power generation amount can be afforded. The operation of the DC converter 3 does not change.

−車両の減速走行時の制御−
図5は、車両の減速走行時のバッテリ1およびバッテリ2の状態、および、DC/DCコンバータ3の動作を示す図である。図5において、矢印は電流の流れを示している。車両の減速走行時とは、少なくとも車両の速度が低下している時であるが、下り坂等において、アクセルペダルをオフとしているが、車速が増加している状態も含む。すなわち、アクセルペダルオフ時、および、ブレーキペダルオン時も、車両の減速走行時に含まれる。
-Control during vehicle deceleration-
FIG. 5 is a diagram showing the state of the battery 1 and the battery 2 when the vehicle is decelerating and the operation of the DC / DC converter 3. In FIG. 5, the arrows indicate the flow of current. The time when the vehicle is decelerating is at least when the speed of the vehicle is decreasing, but includes a state where the accelerator pedal is turned off on a downhill or the like, but the vehicle speed is increasing. That is, the time when the accelerator pedal is off and the time when the brake pedal is on are also included when the vehicle is decelerating.

車両の減速走行時には、回生エネルギーを有効に回収するために、モータジェネレータ9の発電電圧を、バッテリ1の満充電時の開放電圧に応じた電圧、すなわち、バッテリ1が許容できる最大電圧まで高くする。本実施の形態では、バッテリ1の電圧が最大で16V(バッテリ1の満充電時の開放電圧)となるように、モータジェネレータ9の発電電圧を制御する。   When the vehicle is decelerating, the power generation voltage of the motor generator 9 is increased to a voltage corresponding to the open voltage when the battery 1 is fully charged, that is, the maximum voltage that the battery 1 can tolerate, in order to effectively recover the regenerative energy. . In the present embodiment, the power generation voltage of motor generator 9 is controlled so that the voltage of battery 1 is 16 V at maximum (the open voltage when battery 1 is fully charged).

この場合、モータジェネレータ9の発電電圧は、バッテリ2の適正印加電圧である14Vよりも高くなる。従って、ECM8は、モータジェネレータ9の発電電圧をDC/DCコンバータ3で14Vに降圧させて、バッテリ2および12V系電装品4に供給する。   In this case, the power generation voltage of motor generator 9 is higher than 14 V, which is the appropriate applied voltage of battery 2. Therefore, the ECM 8 steps down the power generation voltage of the motor generator 9 to 14 V by the DC / DC converter 3 and supplies it to the battery 2 and the 12 V system electrical component 4.

−車両の一時停止時−
図6は、車両の一時停止時のバッテリ1およびバッテリ2の状態、および、DC/DCコンバータ3の動作を示す図である。図6において、矢印は電流の流れを示している。車両が一時停止して、所定のエンジン停止条件が成立すると、ECM8はエンジン10を一時的に停止させる制御を行う。エンジン10の停止に伴い、モータジェネレータ9の回生発電も停止する。
−When the vehicle is temporarily stopped−
FIG. 6 is a diagram illustrating the states of the battery 1 and the battery 2 when the vehicle is temporarily stopped and the operation of the DC / DC converter 3. In FIG. 6, the arrows indicate the flow of current. When the vehicle is temporarily stopped and a predetermined engine stop condition is satisfied, the ECM 8 performs control to temporarily stop the engine 10. As the engine 10 stops, the regenerative power generation of the motor generator 9 also stops.

ECM8は、電圧センサ20によって検出されるバッテリ1の電圧と、電圧センサ21によって検出されるバッテリ2の電圧とを比較し、バッテリ1の電圧がバッテリ2の電圧より高ければ、バッテリ1からバッテリ2に電力を供給するために、DC/DCコンバータ3を降圧動作させる。   The ECM 8 compares the voltage of the battery 1 detected by the voltage sensor 20 with the voltage of the battery 2 detected by the voltage sensor 21, and if the voltage of the battery 1 is higher than the voltage of the battery 2, the battery 1 to the battery 2. In order to supply power to the DC / DC converter 3, the DC / DC converter 3 is stepped down.

図5を用いて説明したように、車両の停止前の減速走行時に、モータジェネレータ9の回生発電電圧を高く設定しているので、通常、バッテリ1の電圧はバッテリ2の電圧より高くなっている。従って、ECM8は、車両の一時停止中に、電圧の高いバッテリ1から電圧の低いバッテリ2および12V系電装品4に電力を供給するために、DC/DCコンバータ3を作動させる。すなわち、バッテリ1の電圧をDC/DCコンバータ3で14Vに降圧させて、バッテリ2および12V系電装品4に供給する。   As described with reference to FIG. 5, since the regenerative power generation voltage of the motor generator 9 is set high during the deceleration traveling before the vehicle stops, the voltage of the battery 1 is normally higher than the voltage of the battery 2. . Therefore, the ECM 8 operates the DC / DC converter 3 in order to supply power from the high voltage battery 1 to the low voltage battery 2 and the 12V system electrical component 4 while the vehicle is temporarily stopped. That is, the voltage of the battery 1 is stepped down to 14V by the DC / DC converter 3 and supplied to the battery 2 and the 12V system electrical component 4.

バッテリ1からバッテリ2に電力を供給することにより、バッテリ1の電圧は低下するとともに、バッテリ2の電圧は増加する。ECM8は、電圧センサ20によって検出されるバッテリ1の電圧と、電圧センサ21によって検出されるバッテリ2の電圧との差が所定電圧以下になると、DC/DCコンバータ3の作動を停止させる。所定電圧は、バッテリ1の電圧とバッテリ2の電圧とがほぼ等しいとみなせる程度の電圧である。DC/DCコンバータ3の作動を停止させることにより、バッテリ1は、エンジン再始動に必要な電力を確保することができる。DC/DCコンバータ3の停止後は、バッテリ2から12V系電装品4に電力が供給される。   By supplying electric power from the battery 1 to the battery 2, the voltage of the battery 1 decreases and the voltage of the battery 2 increases. The ECM 8 stops the operation of the DC / DC converter 3 when the difference between the voltage of the battery 1 detected by the voltage sensor 20 and the voltage of the battery 2 detected by the voltage sensor 21 becomes a predetermined voltage or less. The predetermined voltage is a voltage at which the voltage of the battery 1 and the voltage of the battery 2 can be regarded as substantially equal. By stopping the operation of the DC / DC converter 3, the battery 1 can secure electric power necessary for restarting the engine. After the DC / DC converter 3 is stopped, power is supplied from the battery 2 to the 12V electrical component 4.

図7は、一実施の形態における車両の制御装置によって行われる処理内容を示すフローチャートである。車両が起動すると、ECM8は、ステップS10の処理を開始する。   FIG. 7 is a flowchart showing the contents of processing performed by the vehicle control apparatus in one embodiment. When the vehicle is activated, the ECM 8 starts the process of step S10.

ステップS10では、車両のエンジン10が一時停止状態にあり、かつ、所定のエンジン再始動条件が成立したか否かを判定する。所定のエンジン再始動条件が成立したと判定するとステップS20に進み、成立していないと判定すると、ステップS30に進む。ステップS20では、図3を用いて説明したように、エンジン10を再始動させる制御を行う。   In step S10, it is determined whether the vehicle engine 10 is in a temporarily stopped state and a predetermined engine restart condition is satisfied. If it is determined that the predetermined engine restart condition is satisfied, the process proceeds to step S20. If it is determined that the predetermined engine restart condition is not satisfied, the process proceeds to step S30. In step S20, as described with reference to FIG. 3, control for restarting the engine 10 is performed.

ステップS30では、車両が通常走行状態にあるか否かを判定する。上述したように、通常走行状態とは、エンジン10が停止している状態、および、減速走行している状態を除いた状態であり、アイドリング状態、加速状態および一定走行状態のいずれかの状態である。車両が通常走行状態にあると判定するとステップS40に進み、通常走行状態にはないと判定するとステップS50に進む。   In step S30, it is determined whether or not the vehicle is in a normal traveling state. As described above, the normal running state is a state excluding the state where the engine 10 is stopped and the state where the engine 10 is decelerating, and is in any of the idling state, the acceleration state, and the constant running state. is there. If it is determined that the vehicle is in the normal traveling state, the process proceeds to step S40, and if it is determined that the vehicle is not in the normal traveling state, the process proceeds to step S50.

ステップS40では、図4を用いて説明したように、通常走行時における制御を行う。すなわち、モータジェネレータ9の発電電圧がバッテリ2の満充電時の開放電圧に応じた電圧となるように制御するとともに、DC/DCコンバータ3のN型MOSFET31を常時オンとして、DC/DCコンバータ3の昇圧動作および降圧動作をさせずにバッテリ2にも電力を供給する。通常走行時における制御を行うと、ステップS50に進む。   In step S40, as described with reference to FIG. 4, control during normal traveling is performed. That is, the power generation voltage of the motor generator 9 is controlled so as to become a voltage corresponding to the open voltage when the battery 2 is fully charged, and the N-type MOSFET 31 of the DC / DC converter 3 is always turned on, so that the DC / DC converter 3 Electric power is also supplied to the battery 2 without performing the step-up operation and the step-down operation. When the control during normal driving is performed, the process proceeds to step S50.

ステップS50では、車両が減速走行状態にあるか否かを判定する。車両が減速走行状態にあると判定するとステップS60に進み、減速走行状態にないと判定すると、ステップS70に進む。   In step S50, it is determined whether or not the vehicle is in a decelerating running state. If it is determined that the vehicle is in a decelerating running state, the process proceeds to step S60. If it is determined that the vehicle is not in a decelerating running state, the process proceeds to step S70.

ステップS60では、図5を用いて説明したように、減速走行時における制御を行う。すなわち、モータジェネレータ9の発電電圧を、バッテリ1が許容できる最大電圧まで高くするとともに、モータジェネレータ9の発電電圧をDC/DCコンバータ3で降圧させて、バッテリ2および12V系電装品4にも供給させる。減速走行時における制御を行うと、ステップS70に進む。   In step S60, as described with reference to FIG. 5, control during deceleration traveling is performed. In other words, the power generation voltage of the motor generator 9 is increased to the maximum voltage that the battery 1 can accept, and the power generation voltage of the motor generator 9 is stepped down by the DC / DC converter 3 and supplied to the battery 2 and the 12V system electrical component 4 as well. Let If the control at the time of decelerating is performed, the process proceeds to step S70.

ステップS70は、車両が一時停止して、所定のエンジン停止条件が成立したか否かを判定する。所定のエンジン停止条件が成立したと判定するとステップS80に進み、成立していないと判定すると、ステップS10に戻る。   In step S70, it is determined whether the vehicle is temporarily stopped and a predetermined engine stop condition is satisfied. If it is determined that the predetermined engine stop condition is satisfied, the process proceeds to step S80. If it is determined that the predetermined engine stop condition is not satisfied, the process returns to step S10.

ステップS80では、図6を用いて説明したように、エンジンの一時停止時における制御を行う。すなわち、バッテリ1の電圧とバッテリ2の電圧とを比較して、バッテリ1の電圧がバッテリ2の電圧より高ければ、バッテリ1の電圧をDC/DCコンバータ3で降圧させて、バッテリ2および12V系電装品4に供給する。この後、バッテリ1の電圧とバッテリ2の電圧との差が所定電圧以下になると、DC/DCコンバータ3の作動を停止させる。ステップS80の処理を終了すると、ステップS10に戻る。   In step S80, as described with reference to FIG. 6, control is performed when the engine is temporarily stopped. That is, the voltage of the battery 1 is compared with the voltage of the battery 2, and if the voltage of the battery 1 is higher than the voltage of the battery 2, the voltage of the battery 1 is stepped down by the DC / DC converter 3 to The electric component 4 is supplied. Thereafter, when the difference between the voltage of the battery 1 and the voltage of the battery 2 becomes a predetermined voltage or less, the operation of the DC / DC converter 3 is stopped. When the process of step S80 ends, the process returns to step S10.

上述した一実施の形態における車両の制御装置によれば、エンジン始動後の車両状態のうち、減速走行時以外の車両状態時には、DC/DCコンバータ3の発電電圧がバッテリ2の満充電時の開放電圧に応じた電圧となるように制御して、DC/DCコンバータ3による昇圧動作および降圧動作をさせずに、モータジェネレータ9の発電電力をバッテリ2にも供給させるので、電圧変換による損失を大幅に低減させることができる。   According to the vehicle control apparatus in the embodiment described above, the generated voltage of the DC / DC converter 3 is released when the battery 2 is fully charged when the vehicle is in a vehicle state other than during deceleration traveling among the vehicle states after the engine is started. Since the power generated by the motor generator 9 is also supplied to the battery 2 without performing the step-up operation and the step-down operation by the DC / DC converter 3 by controlling the voltage according to the voltage, loss due to voltage conversion is greatly increased. Can be reduced.

特に、一実施の形態における車両の制御装置によれば、バッテリ2の満充電時の開放電圧は、バッテリ1の満充電時の開放電圧以下である。そして、車両の減速走行時には、DC/DCコンバータ3の発電電圧がバッテリ1の満充電時の開放電圧に応じた電圧となるように制御するとともに、発電電圧をDC/DCコンバータ3で降圧させてバッテリ2にも印加する。これにより、バッテリ2の過充電を防止しつつ、減速時の回生エネルギーを効果的に回収することができる。   In particular, according to the vehicle control apparatus of the embodiment, the open voltage when the battery 2 is fully charged is equal to or lower than the open voltage when the battery 1 is fully charged. When the vehicle is decelerating, control is performed so that the generated voltage of the DC / DC converter 3 becomes a voltage corresponding to the open voltage when the battery 1 is fully charged, and the generated voltage is lowered by the DC / DC converter 3. It is also applied to the battery 2. Thereby, the regenerative energy at the time of deceleration can be collect | recovered effectively, preventing the overcharge of the battery 2. FIG.

また、一実施の形態における車両の制御装置によれば、エンジン10の一時停止制御が行われている時に、バッテリ1の電圧がバッテリ2の電圧より高ければ、バッテリ1の電力をバッテリ2に供給するために、DC/DCコンバータ3を降圧作動させる。これにより、エンジン10の一時停止制御時に、バッテリ2の電圧が低下して、12V系電装品4への電力供給不足が生じるのを防ぐことができる。また、バッテリ1の電圧とバッテリ2の電圧との差が所定電圧以下になると、DC/DCコンバータ3の作動を停止させるので、バッテリ1は、エンジン再始動に必要な電力を確保することができる。   Further, according to the vehicle control apparatus in the embodiment, when the voltage of the battery 1 is higher than the voltage of the battery 2 when the temporary stop control of the engine 10 is performed, the power of the battery 1 is supplied to the battery 2. In order to achieve this, the DC / DC converter 3 is stepped down. Thereby, it is possible to prevent the voltage of the battery 2 from being lowered during the temporary stop control of the engine 10 and insufficient power supply to the 12V electrical component 4. Moreover, since the operation of the DC / DC converter 3 is stopped when the difference between the voltage of the battery 1 and the voltage of the battery 2 is equal to or less than a predetermined voltage, the battery 1 can secure power necessary for engine restart. .

さらに、一実施の形態における車両の制御装置によれば、電圧変換装置としてのDC/DCコンバータ3は、トランスを備えていない。従って、車両の通常走行時に、DC/DCコンバータ3の降圧および昇圧を行わない制御を行う際に、トランスを備えた電圧変換装置で発生するスイッチング損失が生じることがない。   Furthermore, according to the vehicle control apparatus in the embodiment, the DC / DC converter 3 as the voltage converter does not include a transformer. Therefore, when performing control without performing step-down and step-up of the DC / DC converter 3 during normal driving of the vehicle, switching loss that occurs in the voltage conversion device including the transformer does not occur.

本発明は、上述した一実施の形態に限定されることはない。例えば、バッテリ1は、満充電時の開放電圧が約16Vのリチウム電池であり、バッテリ2は、満充電時の開放電圧が約13Vの鉛酸バッテリとして説明したが、バッテリ1および2は、これらのバッテリに限定されることはない。ただし、上述したように、車両の通常走行時には、モータジェネレータ9の発電電圧を、バッテリ2の満充電時の開放電圧に応じた電圧に制御するため、バッテリ1のSOCは低くなる。この時のバッテリ1のSOCでも、エンジン再始動に必要な電力を供給することができることが必要である。従って、バッテリ1の満充電時の開放電圧とバッテリ2の満充電時の開放電圧とは、上述した条件を満たすような電圧差以下であることが好ましい。   The present invention is not limited to the embodiment described above. For example, the battery 1 is a lithium battery having an open voltage of about 16V when fully charged, and the battery 2 has been described as a lead acid battery having an open voltage of about 13V when fully charged. The battery is not limited to this. However, as described above, during normal traveling of the vehicle, the generated voltage of the motor generator 9 is controlled to a voltage corresponding to the open voltage when the battery 2 is fully charged, so the SOC of the battery 1 is low. Even in the SOC of the battery 1 at this time, it is necessary to be able to supply electric power necessary for restarting the engine. Therefore, the open voltage when the battery 1 is fully charged and the open voltage when the battery 2 is fully charged are preferably equal to or less than a voltage difference that satisfies the above-described conditions.

DC/DCコンバータ3の構成は、図3で示した構成に限定されることはない。図8は、DC/DCコンバータの別の構成例を示す図である。図8に示すDC/DCコンバータ3Aは、4つのMOSFET81〜84と、トランス85と、ダイオード86と、リアクトル87と、コンデンサ88とを備えている。また、DC/DCコンバータ3と並列にリレー90が接続されている。   The configuration of the DC / DC converter 3 is not limited to the configuration shown in FIG. FIG. 8 is a diagram illustrating another configuration example of the DC / DC converter. The DC / DC converter 3A shown in FIG. 8 includes four MOSFETs 81 to 84, a transformer 85, a diode 86, a reactor 87, and a capacitor 88. A relay 90 is connected in parallel with the DC / DC converter 3.

図8に示すDC/DCコンバータ3Aは、車両の減速走行時、および、車両の一時停止時において、バッテリ1の電圧がバッテリ2の電圧より高い場合に、上述した降圧動作を行う。この時、リレー90はオフとなっている。一方、車両の通常走行時には、リレー90をオンにすることにより、モータジェネレータ9の発電電圧をそのままバッテリ2および12V系電装品4に印加することができる。すなわち、車両の通常走行時には、DC/DCコンバータ3を作動させないので、電圧変換による損失は発生しない。   The DC / DC converter 3A shown in FIG. 8 performs the above-described step-down operation when the voltage of the battery 1 is higher than the voltage of the battery 2 when the vehicle is decelerated and when the vehicle is temporarily stopped. At this time, the relay 90 is off. On the other hand, when the vehicle is traveling normally, the power generation voltage of motor generator 9 can be directly applied to battery 2 and 12V electrical component 4 by turning on relay 90. That is, since the DC / DC converter 3 is not operated during normal driving of the vehicle, no loss due to voltage conversion occurs.

上述した一実施の形態では、本発明をアイドルストップ車両に適用した例を挙げて説明したが、アイドルストップ機能を備えていないエンジン車に適用することもできる。また、車両駆動用モータを備えたハイブリッド車に本発明を適用することもできる。この場合、バッテリ1は、スタータモータに電力を供給するバッテリとは別の、車両駆動用モータに電力を供給するバッテリであってもよい。   In the above-described embodiment, an example in which the present invention is applied to an idle stop vehicle has been described. However, the present invention can also be applied to an engine vehicle that does not have an idle stop function. The present invention can also be applied to a hybrid vehicle provided with a vehicle driving motor. In this case, the battery 1 may be a battery that supplies power to the vehicle driving motor, different from the battery that supplies power to the starter motor.

車両の状態は、アクセル開度信号、ブレーキ信号、および、車速信号に基づいて判断するものとしたが、これらの信号以外の信号に基づいて判断するようにしてもよい。   The state of the vehicle is determined based on the accelerator opening signal, the brake signal, and the vehicle speed signal, but may be determined based on a signal other than these signals.

特許請求の範囲の構成要素と一実施の形態の構成要素との対応関係は次の通りである。すなわち、バッテリ1が第1の蓄電手段を、バッテリ2が第2の蓄電手段を、DC/DCコンバータ3が電圧変換手段を、ECM8が車両状態検出手段、制御手段およびエンジン停止手段を、電圧センサ20が第1の電圧検出手段を、電圧センサ21が第2の電圧検出手段を、リレー90がスイッチ手段をそれぞれ構成する。なお、本発明の特徴的な機能を損なわない限り、各構成要素は上記構成に限定されるものではない。   The correspondence between the constituent elements of the claims and the constituent elements of the embodiment is as follows. That is, the battery 1 is the first power storage means, the battery 2 is the second power storage means, the DC / DC converter 3 is the voltage conversion means, the ECM 8 is the vehicle state detection means, the control means, and the engine stop means, and the voltage sensor Reference numeral 20 denotes first voltage detection means, voltage sensor 21 constitutes second voltage detection means, and relay 90 constitutes switch means. In addition, as long as the characteristic function of this invention is not impaired, each component is not limited to the said structure.

一実施の形態における車両の制御装置の構成を示す図The figure which shows the structure of the control apparatus of the vehicle in one embodiment. 様々な車両の状態に応じたモータジェネレータの動作、2つのバッテリの電圧、および、エンジンの回転数を示す図The figure which shows the operation of the motor generator according to the state of various vehicles, the voltage of two batteries, and the number of rotations of the engine エンジン再始動時における2つのバッテリの状態、および、DC/DCコンバータの動作を示す図The figure which shows the state of two batteries at the time of engine restart, and operation | movement of a DC / DC converter 車両の通常走行時における2つのバッテリの状態、および、DC/DCコンバータの動作を示す図The figure which shows the state of two batteries at the time of normal driving | running | working of a vehicle, and operation | movement of a DC / DC converter 車両の減速走行時における2つのバッテリの状態、および、DC/DCコンバータの動作を示す図The figure which shows the state of two batteries at the time of deceleration driving | running | working of a vehicle, and operation | movement of a DC / DC converter 車両の一時停止時における2つのバッテリの状態、および、DC/DCコンバータの動作を示す図The figure which shows the state of two batteries at the time of a vehicle stop, and operation | movement of a DC / DC converter 一実施の形態における車両の制御装置によって行われる処理内容を示すフローチャートThe flowchart which shows the processing content performed by the control apparatus of the vehicle in one embodiment. DC/DCコンバータの別の構成例を示す図The figure which shows another structural example of a DC / DC converter

符号の説明Explanation of symbols

1…バッテリ
2…バッテリ
3、3A…DC/DCコンバータ
4…12V系電装品
6…インバータ
7…モータコントローラ
8…エンジンコントロールモジュール
9…モータジェネレータ
10…エンジン
20…電圧センサ
21…電圧センサ
90…リレー
DESCRIPTION OF SYMBOLS 1 ... Battery 2 ... Battery 3, 3A ... DC / DC converter 4 ... 12V system electrical component 6 ... Inverter 7 ... Motor controller 8 ... Engine control module 9 ... Motor generator 10 ... Engine 20 ... Voltage sensor 21 ... Voltage sensor 90 ... Relay

Claims (7)

発電手段による発電電力によって充電可能な第1の蓄電手段と、満充電時の開放電圧が前記第1の蓄電手段とは異なる第2の蓄電手段とを備えた車両の制御装置において、
前記第1の蓄電手段および前記第2の蓄電手段の間に設けられ、電圧の昇圧および降圧のうちの少なくとも一方の動作を行う電圧変換手段と、
車両の状態を検出する車両状態検出手段と、
エンジン始動後の車両状態のうち、減速走行時以外の車両状態時には、前記発電手段の発電電圧が前記第2の蓄電手段の満充電時の開放電圧に応じた電圧となるように制御して、前記電圧変換手段による昇圧動作および降圧動作をさせずに、前記発電電力を前記第2の蓄電手段にも供給させる制御手段と、
を備えることを特徴とする車両の制御装置。
In a vehicle control device comprising: a first power storage unit that can be charged by power generated by a power generation unit; and a second power storage unit that has an open-circuit voltage at full charge different from that of the first power storage unit.
Voltage conversion means provided between the first power storage means and the second power storage means and performing at least one of voltage step-up and step-down operations;
Vehicle state detection means for detecting the state of the vehicle;
Of the vehicle states after starting the engine, when the vehicle is in a state other than during deceleration, the power generation voltage of the power generation means is controlled to be a voltage corresponding to the open voltage at the time of full charge of the second power storage means, Control means for supplying the generated power to the second power storage means without performing the step-up operation and the step-down operation by the voltage conversion means;
A vehicle control apparatus comprising:
請求項1に記載の車両の制御装置において、
前記第2の蓄電手段の満充電時の開放電圧は、前記第1の蓄電手段の満充電時の開放電圧以下であり、
前記制御手段は、車両の減速走行時には、前記発電手段の発電電圧が前記第1の蓄電手段の満充電時の開放電圧に応じた電圧となるように制御するとともに、前記発電電圧を前記電圧変換手段で降圧させて前記第2の蓄電手段にも印加することを特徴とする車両の制御装置。
The vehicle control device according to claim 1,
The open voltage at the time of full charge of the second power storage means is equal to or less than the open voltage at the time of full charge of the first power storage means,
The control means controls the power generation voltage of the power generation means to be a voltage according to an open voltage when the first power storage means is fully charged when the vehicle is decelerated, and converts the power generation voltage to the voltage conversion A vehicle control apparatus, wherein the voltage is lowered by means and applied to the second power storage means.
請求項1または請求項2に記載の車両の制御装置において、
前記減速走行時以外の車両状態時には、アイドリング時、加速時、および、一定速走行時のうちの少なくとも1つの状態が含まれることを特徴とする車両の制御装置。
The vehicle control device according to claim 1 or 2,
The vehicle control device according to claim 1, wherein the vehicle state other than the time when the vehicle is decelerating includes at least one of an idling time, an acceleration time, and a constant speed driving state.
請求項1から請求項3のいずれか一項に記載の車両の制御装置において、
所定のエンジン停止条件が成立すると、一時的にエンジンを停止させるエンジン停止手段と、
前記第1の蓄電手段の電圧を検出する第1の電圧検出手段と、
前記第2の蓄電手段の電圧を検出する第2の電圧検出手段とをさらに備え、
前記制御手段は、前記エンジンの一時停止が行われている時に、前記第1の蓄電手段の電圧が前記第2の蓄電手段の電圧より高ければ、前記第1の蓄電手段の電力を前記第2の蓄電手段に供給するために、前記電圧変換手段を降圧作動させることを特徴とする車両の制御装置。
In the control apparatus of the vehicle as described in any one of Claims 1-3,
Engine stop means for temporarily stopping the engine when a predetermined engine stop condition is satisfied;
First voltage detection means for detecting a voltage of the first power storage means;
Second voltage detection means for detecting the voltage of the second power storage means,
If the voltage of the first power storage unit is higher than the voltage of the second power storage unit when the engine is temporarily stopped, the control unit supplies the power of the first power storage unit to the second In order to supply to the power storage means, the voltage conversion means is operated in a step-down manner.
請求項4に記載の車両の制御装置において、
前記制御手段は、前記第1の蓄電手段の電圧と前記第2の蓄電手段の電圧との差が所定電圧以下になると、前記電圧変換手段の作動を停止させることを特徴とする車両の制御装置。
The vehicle control device according to claim 4,
The control device stops the operation of the voltage conversion means when the difference between the voltage of the first power storage means and the voltage of the second power storage means becomes a predetermined voltage or less. .
請求項1から請求項5のいずれか一項に記載の車両の制御装置において、
前記電圧変換手段はトランスを備えておらず、電圧の降圧動作を行うためのスイッチ手段を備えており、
前記制御手段は、前記減速走行時以外の車両状態時には、前記スイッチ手段を常にオン状態とすることにより、前記電圧変換手段に降圧動作をさせずに、前記発電電力を前記第2の蓄電手段にも供給させることを特徴とする車両の制御装置。
The vehicle control device according to any one of claims 1 to 5,
The voltage conversion means does not include a transformer, and includes switch means for performing a voltage step-down operation.
The control means always turns on the switch means when the vehicle is in a state other than the time when the vehicle is decelerating, so that the generated power is supplied to the second power storage means without causing the voltage conversion means to step down. A control device for a vehicle, characterized in that a vehicle is also supplied.
請求項1から請求項5のいずれか一項に記載の車両の制御装置において、
前記電圧変換手段と並列に接続されるスイッチ手段をさらに備え、
前記制御手段は、前記減速走行時以外の車両状態時には、前記スイッチ手段をオン状態とすることにより、前記電圧変換手段に降圧動作をさせずに、前記発電電力を前記第2の蓄電手段にも供給させることを特徴とする車両の制御装置。
The vehicle control device according to any one of claims 1 to 5,
Further comprising switch means connected in parallel with the voltage conversion means,
The control means turns on the switch means when the vehicle is in a state other than the time when the vehicle is decelerating, so that the generated power is also sent to the second power storage means without causing the voltage conversion means to step down. A control device for a vehicle, characterized by being supplied.
JP2007304447A 2007-11-26 2007-11-26 Vehicle control device Expired - Fee Related JP5262084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007304447A JP5262084B2 (en) 2007-11-26 2007-11-26 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007304447A JP5262084B2 (en) 2007-11-26 2007-11-26 Vehicle control device

Publications (2)

Publication Number Publication Date
JP2009126395A JP2009126395A (en) 2009-06-11
JP5262084B2 true JP5262084B2 (en) 2013-08-14

Family

ID=40817735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007304447A Expired - Fee Related JP5262084B2 (en) 2007-11-26 2007-11-26 Vehicle control device

Country Status (1)

Country Link
JP (1) JP5262084B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2272722B1 (en) 2009-07-01 2015-04-08 Denso Corporation Power source apparatus for vehicle
JP5494498B2 (en) * 2010-02-03 2014-05-14 株式会社デンソー In-vehicle power supply
JP5520629B2 (en) * 2010-02-12 2014-06-11 富士重工業株式会社 Vehicle power supply
JP5488046B2 (en) * 2010-02-25 2014-05-14 株式会社デンソー In-vehicle power supply
JP5234052B2 (en) 2010-04-27 2013-07-10 株式会社デンソー Power supply
JP5434879B2 (en) 2010-10-05 2014-03-05 株式会社デンソー Battery system control device
JP5578014B2 (en) 2010-10-19 2014-08-27 株式会社デンソー Battery system control device
JP5541134B2 (en) 2010-12-13 2014-07-09 株式会社デンソー Power supply
JP5183774B2 (en) * 2011-06-08 2013-04-17 三菱電機株式会社 Vehicle power supply
JP5747669B2 (en) * 2011-06-09 2015-07-15 トヨタ自動車株式会社 VEHICLE POWER CONTROL DEVICE AND VEHICLE POWER CONTROL METHOD
JP6019985B2 (en) * 2012-09-19 2016-11-02 マツダ株式会社 Vehicle power supply
FR2996928B1 (en) * 2012-10-17 2014-12-19 Renault Sa HIGH HEAD DISPLAY DEVICE AND METHOD
FR2996703B1 (en) * 2012-10-10 2015-03-20 Renault Sas METHOD FOR RECOVERING ELECTRIC ENERGY WITH VOLTAGE SMOOTHING ON AN INBOARD ELECTRICAL NETWORK
US20150343919A1 (en) * 2012-10-29 2015-12-03 Sanyo Electric Co., Ltd. Vehicle-mounted power supply device and vehicle comprising power supply device
JP6024537B2 (en) * 2013-03-15 2016-11-16 株式会社デンソー In-vehicle power supply system
WO2014171453A1 (en) * 2013-04-16 2014-10-23 株式会社 豊田自動織機 Vehicle power supply system
JP5621873B2 (en) * 2013-04-16 2014-11-12 株式会社豊田自動織機 Vehicle power supply system
JP5829652B2 (en) 2013-07-02 2015-12-09 本田技研工業株式会社 Vehicle power supply
DE202013007357U1 (en) * 2013-08-14 2014-11-18 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Energy consumption dependent control for providing electrical power to a motor vehicle
JP6090259B2 (en) * 2014-08-18 2017-03-08 マツダ株式会社 Deterioration determination device for vehicle power supply device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2946712B2 (en) * 1990-09-28 1999-09-06 株式会社デンソー Power supply system for vehicles
JPH05336670A (en) * 1992-06-02 1993-12-17 Nippondenso Co Ltd Power supply for vehicle
JP4127078B2 (en) * 2003-02-28 2008-07-30 日産自動車株式会社 Vehicle power supply control device
JP2005124275A (en) * 2003-10-15 2005-05-12 Auto Network Gijutsu Kenkyusho:Kk Onboard charge control unit
JP4254658B2 (en) * 2004-08-23 2009-04-15 株式会社デンソー In-vehicle power supply system

Also Published As

Publication number Publication date
JP2009126395A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5262084B2 (en) Vehicle control device
KR101039679B1 (en) Mild hybrid system and method controlling thereof
US20180233943A1 (en) Power supply system for vehicle
US10385818B2 (en) Vehicle control apparatus
KR100867795B1 (en) Mehtod for controlling dc/dc converter of hev
WO2008108498A1 (en) Vehicle controlling apparatus and controlling method
JP6399048B2 (en) vehicle
CN109715426B (en) Method for operating a hybrid vehicle
EP3533668B1 (en) Vehicular power supply system control method and vehicular power supply system
WO2016125852A1 (en) Vehicle power-source device and vehicle-power-source-device control method
JP2008306795A (en) Discharge controller for power supply circuit
JP2017061182A (en) Vehicular control device
JP6268145B2 (en) Regenerative system and regenerative system control method
JP2018202915A (en) Control device of electric vehicle
JP5109743B2 (en) Power system, control method therefor, and vehicle
JP4192658B2 (en) Vehicle control apparatus and control method
JP2009207243A (en) Braking force regeneration device
JP2012091770A (en) Method and device for protecting battery of hybrid vehicle
JP2020002780A (en) Vehicle power supply device
JP5310640B2 (en) Drive device
US9000700B2 (en) Motor control apparatus
KR101619668B1 (en) Controlling systen of hybrid vehicle
JP4161919B2 (en) Vehicle control device
CN112208472A (en) Power supply device for vehicle
JP4285638B2 (en) Vehicle charging control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5262084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees