JP5261999B2 - Fuel cell power generator - Google Patents

Fuel cell power generator Download PDF

Info

Publication number
JP5261999B2
JP5261999B2 JP2007175163A JP2007175163A JP5261999B2 JP 5261999 B2 JP5261999 B2 JP 5261999B2 JP 2007175163 A JP2007175163 A JP 2007175163A JP 2007175163 A JP2007175163 A JP 2007175163A JP 5261999 B2 JP5261999 B2 JP 5261999B2
Authority
JP
Japan
Prior art keywords
fuel
gas
electrode
air electrode
fuel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007175163A
Other languages
Japanese (ja)
Other versions
JP2009016118A (en
Inventor
崇徳 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007175163A priority Critical patent/JP5261999B2/en
Publication of JP2009016118A publication Critical patent/JP2009016118A/en
Application granted granted Critical
Publication of JP5261999B2 publication Critical patent/JP5261999B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料ガスと酸化剤ガスを供給して電気化学反応により電気エネルギーを得る燃料電池発電装置、特に発電運転と運転停止を繰り返しても長期にわたり優れた特性が得られる固体高分子形の燃料電池発電装置に関する。   The present invention relates to a fuel cell power generation device that obtains electric energy through an electrochemical reaction by supplying a fuel gas and an oxidant gas. The present invention relates to a fuel cell power generator.

燃料電池、例えば固体高分子形燃料電池は、固体高分子からなる電解質膜を燃料極と空気極とで挟持して形成した単位セルを用途に合わせて複数層積層したスタックより構成されている。発電運転の際には、燃料極に、水素ガスや、都市ガスを改質して得た水素濃度の高い燃料ガスが、また空気極に、酸素ガスや大気空気等の酸化剤ガスが供給される。このとき、燃料極(アノード)および空気極(カソード)では以下のごとき反応が生じて両極間に電気エネルギーが取り出される。   2. Description of the Related Art A fuel cell, for example, a solid polymer fuel cell is composed of a stack in which a plurality of unit cells, each of which is formed by sandwiching an electrolyte membrane made of a solid polymer between a fuel electrode and an air electrode, according to the application. During power generation operation, hydrogen gas or fuel gas with high hydrogen concentration obtained by reforming city gas is supplied to the fuel electrode, and oxygen gas or oxidant gas such as atmospheric air is supplied to the air electrode. The At this time, the following reaction occurs at the fuel electrode (anode) and the air electrode (cathode), and electric energy is extracted between both electrodes.

[化1]
アノード; H2 → 2H+ + 2e― (1)
カソード; (1/2)O2 + 2H+ + 2e― → H2O (2)
燃料電池の発電運転の停止操作は、燃料極への燃料ガスの供給および空気極への酸化剤ガスの供給を停止することにより実行される。しかしながら、この停止操作に際して、供給していた燃料ガスの通流を停止したのち、燃料極のガスの出口を大気開放状態に放置すると、燃料極に空気が混入して酸素が満たされた状態に保たれる可能性がある。この場合、再起動させるために燃料極へ燃料ガスを送り込むと、燃料極に水素と酸素が偏在した状態となって電池反応部の面内に局部電池が形成されるので、燃料極に酸素が存在する部位の空気極が高電位となり、高電位に曝された空気極の触媒層中の担体カーボンが腐食して電池の性能が大幅に低下してしまうという恐れがある。したがって、燃料極のガスの出口を大気開放状態に保持することに伴って生じるこの不具合を回避するために、燃料極のガス入口配管とガス出口配管にそれぞれ電磁弁を組み込み、発電運転の停止の際には、燃料ガスおよび酸化剤ガスの供給を停止するとともに、これらの電磁弁を閉止して燃料極のガス系統を封止する方式が一般に用いられている。
[Chemical 1]
Anode; H 2 → 2H + + 2e− (1)
Cathode; (1/2) O 2 + 2H + + 2e− → H 2 O (2)
The stop operation of the power generation operation of the fuel cell is executed by stopping the supply of the fuel gas to the fuel electrode and the supply of the oxidant gas to the air electrode. However, after stopping the flow of the supplied fuel gas during this stop operation, if the gas outlet of the fuel electrode is left open to the atmosphere, the fuel electrode is filled with air and filled with oxygen. May be preserved. In this case, when the fuel gas is sent to the fuel electrode for restarting, hydrogen and oxygen are unevenly distributed in the fuel electrode, and a local battery is formed in the surface of the cell reaction part. There is a possibility that the air electrode at the existing site has a high potential, and the carrier carbon in the catalyst layer of the air electrode exposed to the high potential is corroded, and the performance of the battery is greatly deteriorated. Therefore, in order to avoid this problem caused by keeping the gas outlet of the fuel electrode open to the atmosphere, a solenoid valve is incorporated in each of the gas inlet pipe and the gas outlet pipe of the fuel electrode to stop the power generation operation. In this case, a method is generally used in which the supply of the fuel gas and the oxidant gas is stopped and the solenoid valve is closed to seal the gas system of the fuel electrode.

また、特許文献1には、燃料電池スタックの燃料極ガス入口とガス入口配管との間、および燃料極ガス出口とガス出口配管との間の少なくともいずれか一方に、選択的に酸素を除去する酸素トラップボックスを組み込むことによって、非発電時にガス入口配管やガス出口配管から燃料極へと侵入する酸素を除去し、再起動時の特性低下を回避する方式の燃料電池が開示されている。
特開2006−79878号公報
Further, in Patent Document 1, oxygen is selectively removed between at least one of the fuel electrode gas inlet and the gas inlet pipe of the fuel cell stack and between the fuel electrode gas outlet and the gas outlet pipe. A fuel cell is disclosed that incorporates an oxygen trap box to remove oxygen that enters the fuel electrode from the gas inlet pipe and the gas outlet pipe during non-power generation, thereby avoiding deterioration in characteristics during restart.
JP 2006-79878 A

上記のように、燃料電池、特に発電運転と発電停止運転とを頻繁に繰り返す燃料電池にあっては、発電停止運転時に燃料極へ侵入する酸素を抑制し、除去することが電池の特性を維持するために必要、不可欠である。このため、上述のように、ガス出口に電磁弁を設置し、発電停止時には閉止して外部からの酸素の侵入を抑制するとか、あるいは酸素トラップボックスを組み込んで選択的に酸素を除去する等の方策が採られている。
しかしながら、燃料極には上記のごとく外部に連通する配管を通して酸素が侵入するばかりでなく、空気極に供給された酸化剤ガス中の酸素が電解質膜を介して燃料極へと絶えず流入するので、この酸素の流入を抑えて除去しなければ、再起動運転時に燃料極に酸素が残存して、電池の特性が低下することとなる。本発明は、このような従来技術の問題点を考慮してなされたもので、本発明の目的は、発電運転停止時に外部や空気極等から燃料極へと侵入する酸素量が微少に抑えられ、かつ効果的に除去されて、再起動運転時に燃料極に残存する酸素による特性劣化を引き起こす恐れがなく、長期間、安定して運転できる燃料電池発電装置を提供することにある。
As described above, fuel cells, particularly fuel cells that frequently repeat power generation operation and power generation stop operation, maintain the battery characteristics by suppressing and removing oxygen that enters the fuel electrode during power generation stop operation. Necessary and indispensable to For this reason, as described above, a solenoid valve is installed at the gas outlet and closed when power generation is stopped to prevent oxygen from entering from the outside, or an oxygen trap box is incorporated to selectively remove oxygen. Measures are taken.
However, not only oxygen enters the fuel electrode through the piping communicating with the outside as described above, but oxygen in the oxidant gas supplied to the air electrode constantly flows into the fuel electrode through the electrolyte membrane. Unless the oxygen inflow is suppressed and removed, oxygen remains in the fuel electrode during the restart operation, and the battery characteristics deteriorate. The present invention has been made in consideration of such problems of the prior art, and the object of the present invention is to minimize the amount of oxygen that enters the fuel electrode from the outside or the air electrode when the power generation operation is stopped. Another object of the present invention is to provide a fuel cell power generator that can be stably operated for a long period of time without causing the deterioration of characteristics due to oxygen remaining in the fuel electrode during the restart operation.

本発明においては、上記の目的を達成するために、
電解質膜を燃料極と空気極で挟持してセルが構成される燃料電池スタックと、燃料極ガス供給管、燃料極ガス排出管、空気極ガス供給管、空気極ガス排出管を備え、かつ、これらの供給管と排出管のそれぞれに、発電運転時に開状態に保持され、運転停止時に閉状態に保持される弁が備えられている燃料電池発電装置において、
(1)燃料極ガス排出管の弁と燃料極のガス排出口の間に、通流するガスの脱酸素処理を行う脱酸素処理手段を備え、かつ、この脱酸素処理手段と空気極ガス排出管との間に、発電運転時に閉状態に保持され、運転停止時に開状態に保持される弁を組み込んだ連通管を備えることとする。
(2)あるいは、燃料極ガス供給管の弁と燃料極のガス供給口との間に、通流するガスの脱酸素処理を行う脱酸素処理手段を備え、かつ、この脱酸素処理手段と前記空気極ガス供給管との間に、発電運転時に閉状態に保持され、運転停止時に開状態に保持される弁を組み込んだ連通管を備えることとする。
In the present invention, in order to achieve the above object,
A fuel cell stack in which a cell is configured by sandwiching an electrolyte membrane between a fuel electrode and an air electrode, a fuel electrode gas supply pipe, a fuel electrode gas discharge pipe, an air electrode gas supply pipe, an air electrode gas discharge pipe; and In each of these supply pipes and discharge pipes, a fuel cell power generator provided with a valve that is held open during power generation operation and is held closed when operation is stopped.
(1) Provided with a deoxygenation processing means for performing a deoxygenation treatment of the flowing gas between the valve of the fuel electrode gas discharge pipe and the gas discharge port of the fuel electrode, and this deoxygenation processing means and the air electrode gas discharge A communication pipe incorporating a valve that is held in a closed state during a power generation operation and held in an open state when the operation is stopped is provided between the pipe and the pipe.
(2) Alternatively, a deoxygenation processing means for performing a deoxygenation process for the gas flowing between the valve of the fuel electrode gas supply pipe and the gas supply port of the fuel electrode is provided, and the deoxygenation process means and the above-mentioned Between the air electrode gas supply pipe and the air electrode gas supply pipe, a communication pipe incorporating a valve that is kept closed during power generation operation and kept open when operation is stopped is provided.

上述のように燃料電池スタックの燃料極に連結された燃料極ガス供給管および燃料極ガス排出管に、発電運転時に開状態に保持され、運転停止時に閉状態に保持される弁を備えれば、運転停止時の外部の空気の燃料極の内部への侵入が阻止される。また、空気極に連結された空気極ガス供給管および空気極ガス排出管に、同様に発電運転時に開状態に保持され、運転停止時に閉状態に保持される弁を備え、さらに(1)のように、燃料極ガス排出管の弁と燃料極のガス排出口の間に脱酸素処理手段を備え、かつ、脱酸素処理手段と空気極ガス排出管との間に、発電運転時に閉状態に保持され、運転停止時に開状態に保持される弁を組み込んだ連通管を備えれば、運転停止時には燃料極と空気極と脱酸素処理手段とが連通し、かつ、密封された空間が形成されるので、空気極から電解質膜を介して燃料極へ侵入する酸素が存在しても、脱酸素処理手段により吸着されて処理されるので、運転再開時に燃料極に残存する酸素量は微量となり、特性の低下は回避される。また、この運転停止時に脱酸素処理手段に吸着された酸素は、運転再開時に流通する燃料極排ガス中に残存する水素によって脱離されて系外へと取り出されるので、脱酸素処理手段の処理性能は低下することなく維持される。
また、上記の(1)に替えて、上記(2)のように、燃料極ガス供給管の弁と燃料極のガス供給口との間に、通流するガスの脱酸素処理を行う脱酸素処理手段を備え、かつ、この脱酸素処理手段と空気極ガス供給管との間に、発電運転時に閉状態に保持され、運転停止時に開状態に保持される弁を組み込んだ連通管が備えることとしても、運転停止時には燃料極と空気極と脱酸素処理手段とが連通し、かつ、密封された空間が形成されるので、空気極から電解質膜を介して燃料極へ侵入する酸素が存在しても、脱酸素処理手段により吸着されて処理されるので、運転再開時に燃料極に残存する酸素量は微量となり、特性の低下は回避される。また、この場合、運転停止時に脱酸素処理手段に吸着された酸素は、運転再開時に流通する燃料ガス中の水素によって脱離されて系外へ取り出されるので、脱酸素処理手段の処理性能は十分に維持されることとなる。
If the fuel electrode gas supply pipe and the fuel electrode gas discharge pipe connected to the fuel electrode of the fuel cell stack as described above are provided with a valve that is kept open during power generation operation and kept closed when operation is stopped. When the operation is stopped, the outside air is prevented from entering the fuel electrode. In addition, the air electrode gas supply pipe and the air electrode gas discharge pipe connected to the air electrode are similarly provided with a valve that is kept open during the power generation operation and kept closed when the operation is stopped. As described above, a deoxygenation treatment means is provided between the valve of the fuel electrode gas discharge pipe and the gas discharge port of the fuel electrode, and is closed between the deoxygenation treatment means and the air electrode gas discharge pipe during power generation operation. If a communication pipe incorporating a valve that is held and held open when the operation is stopped is provided, the fuel electrode, the air electrode, and the deoxygenation processing unit communicate with each other and a sealed space is formed when the operation is stopped. Therefore, even if there is oxygen that enters the fuel electrode from the air electrode through the electrolyte membrane, it is adsorbed and processed by the deoxygenation processing means, so the amount of oxygen remaining in the fuel electrode when operation is resumed is very small, Degradation of characteristics is avoided. In addition, the oxygen adsorbed by the deoxygenation processing means when the operation is stopped is desorbed by the hydrogen remaining in the fuel electrode exhaust gas flowing when the operation is resumed and taken out of the system. Is maintained without degradation.
Further, in place of (1) above, as in (2) above, deoxygenation is performed for deoxygenating the gas flowing between the valve of the fuel electrode gas supply pipe and the gas supply port of the fuel electrode. Provided with processing means, and a communication pipe incorporating a valve that is kept closed during power generation operation and kept open when operation is stopped, between the deoxygenation processing means and the air electrode gas supply pipe However, when the operation is stopped, the fuel electrode, the air electrode, and the deoxygenation processing unit communicate with each other and a sealed space is formed, so that there is oxygen that enters the fuel electrode from the air electrode through the electrolyte membrane. However, since it is adsorbed and processed by the deoxygenation processing means, the amount of oxygen remaining in the fuel electrode at the time of restarting the operation becomes a very small amount, and deterioration of characteristics is avoided. Further, in this case, the oxygen adsorbed by the deoxygenation processing means when the operation is stopped is desorbed by the hydrogen in the fuel gas flowing when the operation is restarted and taken out of the system. Will be maintained.

本発明の最良の実施形態は、電解質膜を燃料極と空気極で挟持してセルが構成される燃料電池スタックと、燃料極ガス供給管、燃料極ガス排出管、空気極ガス供給管、空気極ガス排出管を備え、かつ、これらの供給管と排出管のそれぞれに、発電運転時に開状態に保持され、運転停止時に閉状態に保持される電磁弁が備えられている燃料電池発電装置において、燃料極ガス排出管の電磁弁と燃料極のガス排出口の間に、通流するガスの脱酸素処理を行う脱酸素処理手段、例えば脱酸素剤を充填した脱酸素剤充填層を備え、かつ、この脱酸素処理手段と空気極ガス排出管との間に、発電運転時に閉状態に保持され、運転停止時に開状態に保持される電磁弁を組み込んだ連通管を備えた形態にある。
本発明の他の最良の実施形態は、電解質膜を燃料極と空気極で挟持してセルが構成される燃料電池スタックと、燃料極ガス供給管、燃料極ガス排出管、空気極ガス供給管、空気極ガス排出管を備え、かつ、これらの供給管と排出管のそれぞれに、発電運転時に開状態に保持され、運転停止時に閉状態に保持される電磁弁が備えられている燃料電池発電装置において、燃料極ガス供給管の電磁弁と燃料極のガス供給口との間に、通流するガスの脱酸素処理を行う脱酸素処理手段を備え、かつ、この脱酸素処理手段と空気極ガス供給管との間に、発電運転時に閉状態に保持され、運転停止時に開状態に保持される電磁弁を組み込んだ連通管を備えた形態にある。
The best embodiment of the present invention includes a fuel cell stack in which a cell is formed by sandwiching an electrolyte membrane between a fuel electrode and an air electrode, a fuel electrode gas supply pipe, a fuel electrode gas discharge pipe, an air electrode gas supply pipe, air In a fuel cell power generator comprising a polar gas discharge pipe, and each of the supply pipe and the discharge pipe is provided with an electromagnetic valve that is held open during power generation operation and held closed when operation is stopped In addition, a deoxygenation treatment means for performing deoxygenation treatment of the flowing gas between the solenoid valve of the fuel electrode gas discharge pipe and the gas discharge port of the fuel electrode, for example, a deoxidizer filling layer filled with a deoxidizer, In addition, a communication pipe is provided between the deoxygenating means and the air electrode gas discharge pipe. The communication pipe incorporates an electromagnetic valve that is kept closed during power generation operation and kept open when operation is stopped.
Other best embodiments of the present invention include a fuel cell stack in which a cell is formed by sandwiching an electrolyte membrane between a fuel electrode and an air electrode, a fuel electrode gas supply pipe, a fuel electrode gas discharge pipe, and an air electrode gas supply pipe And a fuel cell power generator provided with an air electrode gas discharge pipe, and each of the supply pipe and the discharge pipe is provided with an electromagnetic valve that is kept open during power generation operation and is kept closed when operation is stopped The apparatus includes a deoxygenation processing means for performing a deoxygenation process for the gas flowing between the solenoid valve of the fuel electrode gas supply pipe and the gas supply port of the fuel electrode, and the deoxygenation process means and the air electrode Between the gas supply pipe and the gas supply pipe, there is a communication pipe incorporating a solenoid valve that is held in a closed state during a power generation operation and held in an open state when the operation is stopped.

図1は、本発明の燃料電池発電装置の実施例1の主要部の概略構成を示すフロー図で、(a)は発電運転時、(b)は発電停止時である。本図において、10は、電解質膜1を燃料極2と空気極3とで挟持して形成されたセルを積層して構成した燃料電池スタックである。また、11,12,13,14は、それぞれ電磁弁4,5,6,7を備えた燃料極ガス供給管、空気極ガス供給管、燃料極ガス排出管、空気極ガス排出管である。これらの電磁弁4,5,6,7は、図に見られるように、発電運転時には開放状態に、また発電停止時には閉止状態に保持されるよう設定されている。
本実施例の構成の特徴は、燃料極ガス排出管13の電磁弁6と燃料極2のガス排出口の間に、脱酸素剤を充填した脱酸素剤充填層20を備え、かつ、この脱酸素剤充填層20と空気極ガス排出管14との間に、発電運転時に閉状態に保持され、運転停止時に開状態に保持される電磁弁8を組み込んだ連通管を備えた点にある。したがって、運転停止時には、電磁弁4,5,6,7は閉じ、電磁弁8は開くので、燃料極2と空気極3と脱酸素剤充填層20は、互いに流通し、かつ密封された空間を形成する。したがって、この空間内に通流するガスは、酸素が脱酸素剤充填層20に吸着され、酸素濃度が低く抑えられる。発電運転を再開すると燃料極オフガスに残存する水素が脱酸素剤充填層20を通流し、吸着された酸素に作用して脱離させて系外へ取り出すので、脱酸素剤充填層20の脱酸素剤は再生され、再び運転停止状態へと変化しても十分な脱酸素処理性能を保持することとなる。
FIG. 1 is a flow diagram showing a schematic configuration of the main part of a fuel cell power generator according to Embodiment 1 of the present invention, where (a) is during power generation operation and (b) is during power generation stop. In this figure, reference numeral 10 denotes a fuel cell stack formed by stacking cells formed by sandwiching the electrolyte membrane 1 between the fuel electrode 2 and the air electrode 3. Reference numerals 11, 12, 13, and 14 denote a fuel electrode gas supply pipe, an air electrode gas supply pipe, a fuel electrode gas discharge pipe, and an air electrode gas discharge pipe that are provided with solenoid valves 4, 5, 6, and 7, respectively. As can be seen in the figure, these solenoid valves 4, 5, 6, and 7 are set to be in an open state during power generation operation and to be in a closed state when power generation is stopped.
The feature of this embodiment is that an oxygen scavenger filling layer 20 filled with an oxygen scavenger is provided between the solenoid valve 6 of the fuel electrode gas discharge pipe 13 and the gas discharge port of the fuel electrode 2, and this desorption is performed. Between the oxygen agent filling layer 20 and the air electrode gas discharge pipe 14, there is a communication pipe incorporating a solenoid valve 8 that is kept closed during power generation operation and kept open when the operation is stopped. Therefore, when the operation is stopped, the electromagnetic valves 4, 5, 6, and 7 are closed and the electromagnetic valve 8 is opened, so that the fuel electrode 2, the air electrode 3, and the oxygen-absorbing agent filling layer 20 circulate with each other and are sealed spaces. Form. Therefore, in the gas flowing through this space, oxygen is adsorbed by the oxygen scavenger packed layer 20 and the oxygen concentration is kept low. When the power generation operation is resumed, hydrogen remaining in the fuel electrode off-gas flows through the oxygen scavenger packed bed 20 and acts on the adsorbed oxygen to be desorbed and taken out of the system. The agent is regenerated and maintains a sufficient deoxygenation performance even if it is changed to a shutdown state again.

図2は、本発明の燃料電池発電装置の実施例2の主要部の概略構成を示すフロー図である。図2の実施例2においても、図1の実施例1と同一機能を有する構成要素には同一符号を付して説明は省略する。実施例2の燃料電池発電装置の特徴は、実施例1の脱酸素剤充填層20と電磁弁8を組み込んだ連通管に替わって、燃料極ガス供給管11の電磁弁4と燃料極のガス供給口との間に、脱酸素処理手段としての脱酸素剤充填層21を備え、かつ、この脱酸素剤充填層21と空気極ガス供給管との間に、発電運転時に閉状態に保持され、運転停止時に開状態に保持される電磁弁9を組み込んだ連通管を備えた点にある。
したがって、本構成においても、運転停止時には燃料極2と空気極3と脱酸素剤充填層21は、互いに流通する密封された空間を形成するので、この空間内に通流するガスは、酸素が脱酸素剤充填層21に吸着され、酸素濃度が低く抑えられる。また、発電運転を再開すると燃料極供給ガスに含まれる水素が脱酸素剤充填層21を通流し、吸着された酸素に作用して脱離させて系外へ取り出す。したがって、脱酸素剤充填層21の脱酸素剤は再生され、再び運転停止状態へと変化しても十分な脱酸素処理性能を保持する。
FIG. 2 is a flowchart showing a schematic configuration of the main part of the second embodiment of the fuel cell power generator of the present invention. Also in the second embodiment of FIG. 2, the same reference numerals are given to components having the same functions as those of the first embodiment of FIG. The feature of the fuel cell power generator of Example 2 is that the gas of the solenoid valve 4 and the fuel electrode of the fuel electrode gas supply pipe 11 is replaced with the communication pipe incorporating the oxygen scavenger filling layer 20 and the solenoid valve 8 of Example 1. A deoxidant filling layer 21 serving as a deoxygenation treatment means is provided between the supply port and the oxygen scavenger filling layer 21 and the air electrode gas supply pipe are kept closed during power generation operation. In addition, a communication pipe incorporating a solenoid valve 9 that is kept open when the operation is stopped is provided.
Therefore, also in this configuration, when the operation is stopped, the fuel electrode 2, the air electrode 3, and the oxygen scavenger filled layer 21 form a sealed space that circulates to each other. It is adsorbed by the oxygen scavenger packed bed 21 and the oxygen concentration is kept low. Further, when the power generation operation is resumed, hydrogen contained in the fuel electrode supply gas flows through the oxygen scavenger packed bed 21, acts on the adsorbed oxygen, is desorbed, and is taken out of the system. Therefore, the oxygen scavenger in the oxygen scavenger packed bed 21 is regenerated and maintains a sufficient oxygen scavenging performance even when the operation is changed to the shutdown state again.

図3は、本発明の燃料電池発電装置の実施例3の主要部の概略構成を示すフロー図である。本実施例の特徴は、実施例1と同様に燃料電池スタック10のガス排出側に脱酸素剤充填層20と電磁弁8を組み込んだ連通管を備え、同時に、実施例2と同様に燃料電池スタック10のガス供給側に脱酸素剤充填層21と電磁弁9を組み込んだ連通管を備えた点にある。したがって、本構成では、運転停止時には燃料極2と空気極3と脱酸素剤充填層20と脱酸素剤充填層21は、互いに流通する密封された空間を形成し、この空間内に通流するガスの酸素は脱酸素剤充填層20および21に吸着されるので、酸素濃度が低く抑えられる。   FIG. 3 is a flowchart showing a schematic configuration of the main part of the third embodiment of the fuel cell power generator of the present invention. The feature of this embodiment is that a communication pipe incorporating the oxygen scavenger filling layer 20 and the electromagnetic valve 8 is provided on the gas discharge side of the fuel cell stack 10 as in the first embodiment, and at the same time, the fuel cell as in the second embodiment. This is in that a communication pipe incorporating the oxygen scavenger filling layer 21 and the electromagnetic valve 9 is provided on the gas supply side of the stack 10. Therefore, in this configuration, when the operation is stopped, the fuel electrode 2, the air electrode 3, the oxygen absorber filling layer 20, and the oxygen absorber filling layer 21 form a sealed space that circulates to each other, and flows into this space. Since the oxygen of the gas is adsorbed by the oxygen absorber filling layers 20 and 21, the oxygen concentration is kept low.

上述のように、本発明による燃料電池発電装置では、発電運転停止時に燃料極に酸素が侵入しても、備えられた脱酸素処理手段によってこの酸素が吸着され、確実に除去されるので、運転再開時に燃料極に残存する酸素量は微量となり、残存酸素に起因する特性の低下は効果的に回避されるので、長期に渡り安定した発電運転が期待できる。したがって、本発明は、燃料電池発電装置、特に発電運転と運転停止とが頻繁に繰り返される固体高分子電解質形の燃料電池発電装置に効果的に適用される。   As described above, in the fuel cell power generator according to the present invention, even if oxygen enters the fuel electrode when the power generation operation is stopped, the oxygen is adsorbed and reliably removed by the provided deoxygenation processing means. Since the amount of oxygen remaining in the fuel electrode at the time of resumption is very small and the deterioration of characteristics due to the residual oxygen is effectively avoided, stable power generation operation can be expected over a long period of time. Therefore, the present invention is effectively applied to a fuel cell power generator, particularly a solid polymer electrolyte fuel cell power generator in which power generation operation and operation stop are frequently repeated.

本発明の燃料電池発電装置の実施例1の主要部の概略構成を示すフロー図で、(a)は発電運転時、(b)は発電停止時である。BRIEF DESCRIPTION OF THE DRAWINGS It is a flowchart which shows schematic structure of the principal part of Example 1 of the fuel cell power generator of this invention, (a) is at the time of a power generation operation, (b) is at the time of a power generation stop. 本発明の燃料電池発電装置の実施例2の主要部の概略構成を示すフロー図。The flowchart which shows schematic structure of the principal part of Example 2 of the fuel cell power generator of this invention. 本発明の燃料電池発電装置の実施例3の主要部の概略構成を示すフロー図The flowchart which shows schematic structure of the principal part of Example 3 of the fuel cell power generator of this invention.

符号の説明Explanation of symbols

1 電解質膜
2 燃料極
3 空気極
4 電磁弁(燃料極ガス供給管)
5 電磁弁(空気極ガス供給管)
6 電磁弁(燃料極ガス排出管)
7 電磁弁(空気極ガス排出管)
8 電磁弁(排出側連通管)
9 電磁弁(供給側連通管)
10 燃料電池スタック
20 脱酸素剤充填層(排出側連通管)
21 脱酸素剤充填層(供給側連通管)
1 Electrolyte membrane
2 Fuel electrode
3 Air electrode
4 Solenoid valve (fuel electrode gas supply pipe)
5 Solenoid valve (Air electrode gas supply pipe)
6 Solenoid valve (fuel electrode gas discharge pipe)
7 Solenoid valve (Air electrode gas discharge pipe)
8 Solenoid valve (discharge side communication pipe)
9 Solenoid valve (Supply side communication pipe)
10 Fuel cell stack
20 Oxygen absorber packed bed (exhaust side communication pipe)
21 Oxygen absorber packed bed (supply side communication pipe)

Claims (3)

電解質膜を燃料極と空気極で挟持してセルが構成される燃料電池スタックと、前記燃料極に水素を含む燃料ガスを供給する燃料極ガス供給管と、前記燃料極より燃料極オフガスを排出する燃料極ガス排出管と、前記空気極に酸素を含む酸化剤ガスを供給する空気極ガス供給管と、前記空気極より空気極オフガスを排出する空気極ガス排出管とを備え、前記の燃料極ガス供給管と燃料極ガス排出管と空気極ガス供給管と空気極ガス排出管のそれぞれに、発電運転時に開状態に保持され、運転停止時に閉状態に保持される弁が備えられている燃料電池発電装置において、
燃料極ガス排出管の前記弁と前記燃料極のガス排出口との間に、通流するガスの脱酸素処理を行う脱酸素処理手段を備え、かつ、該脱酸素処理手段と前記空気極ガス排出管との間に、発電運転時に閉状態に保持され、運転停止時に開状態に保持される弁を組み込んだ連通管が備えられている燃料電池発電装置。
A fuel cell stack in which a cell is formed by sandwiching an electrolyte membrane between a fuel electrode and an air electrode, a fuel electrode gas supply pipe for supplying a fuel gas containing hydrogen to the fuel electrode, and a fuel electrode off-gas is discharged from the fuel electrode. A fuel electrode gas discharge pipe, an air electrode gas supply pipe that supplies an oxidant gas containing oxygen to the air electrode, and an air electrode gas discharge pipe that discharges the air electrode off-gas from the air electrode. Each of the electrode gas supply pipe, the fuel electrode gas discharge pipe, the air electrode gas supply pipe, and the air electrode gas discharge pipe is provided with a valve that is kept open during power generation operation and kept closed when operation is stopped. In the fuel cell power generator,
A deoxygenation processing means for performing a deoxygenation treatment of the flowing gas is provided between the valve of the fuel electrode gas discharge pipe and the gas discharge port of the fuel electrode, and the deoxygenation processing means and the air electrode gas A fuel cell power generation apparatus provided with a communication pipe incorporating a valve between a discharge pipe and a valve that is kept closed during power generation operation and is kept open when operation is stopped.
電解質膜を燃料極と空気極で挟持してセルが構成される燃料電池スタックと、前記燃料極に水素を含む燃料ガスを供給する燃料極ガス供給管と、前記燃料極より燃料極オフガスを排出する燃料極ガス排出管と、前記空気極に酸素を含む酸化剤ガスを供給する空気極ガス供給管と、前記空気極より空気極オフガスを排出する空気極ガス排出管とを備え、前記の燃料極ガス供給管と燃料極ガス排出管と空気極ガス供給管と空気極ガス排出管のそれぞれに、発電運転時に開状態に保持され、運転停止時に閉状態に保持される弁が備えられている燃料電池発電装置において、
燃料極ガス供給管の前記弁と前記燃料極のガス供給口との間に、通流するガスの脱酸素処理を行う脱酸素処理手段を備え、かつ、該脱酸素処理手段と前記空気極ガス供給管との間に、発電運転時に閉状態に保持され、運転停止時に開状態に保持される弁を組み込んだ連通管が備えられている燃料電池発電装置。
A fuel cell stack in which a cell is formed by sandwiching an electrolyte membrane between a fuel electrode and an air electrode, a fuel electrode gas supply pipe for supplying a fuel gas containing hydrogen to the fuel electrode, and a fuel electrode off-gas is discharged from the fuel electrode. A fuel electrode gas discharge pipe, an air electrode gas supply pipe that supplies an oxidant gas containing oxygen to the air electrode, and an air electrode gas discharge pipe that discharges the air electrode off-gas from the air electrode. Each of the electrode gas supply pipe, the fuel electrode gas discharge pipe, the air electrode gas supply pipe, and the air electrode gas discharge pipe is provided with a valve that is kept open during power generation operation and kept closed when operation is stopped. In the fuel cell power generator,
A deoxygenation processing means for performing a deoxygenation treatment of the flowing gas is provided between the valve of the fuel electrode gas supply pipe and the gas supply port of the fuel electrode, and the deoxygenation treatment means and the air electrode gas A fuel cell power generator provided with a communication pipe between which a valve that is held in a closed state during a power generation operation and is held in an open state when the operation is stopped is provided between a supply pipe and the supply pipe.
脱酸素処理手段が脱酸素剤を充填した脱酸素剤充填層よりなることを特徴とする請求項1または2に記載の燃料電池発電装置。
The fuel cell power generator according to claim 1 or 2, wherein the deoxygenation processing means comprises an oxygen scavenger packed layer filled with a oxygen scavenger.
JP2007175163A 2007-07-03 2007-07-03 Fuel cell power generator Expired - Fee Related JP5261999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007175163A JP5261999B2 (en) 2007-07-03 2007-07-03 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007175163A JP5261999B2 (en) 2007-07-03 2007-07-03 Fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2009016118A JP2009016118A (en) 2009-01-22
JP5261999B2 true JP5261999B2 (en) 2013-08-14

Family

ID=40356790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007175163A Expired - Fee Related JP5261999B2 (en) 2007-07-03 2007-07-03 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JP5261999B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012007368A1 (en) 2012-04-12 2013-10-17 Daimler Ag Fuel cell system for use in e.g. land vehicle, has oxygen removal device formed as oxygen pump, which is connected with cathode chamber with electrode, where another electrode of pump is connected with environment of fuel cell
JP6236972B2 (en) * 2013-08-07 2017-11-29 三浦工業株式会社 Fuel cell system
DE102014216856A1 (en) 2014-08-25 2016-02-25 Volkswagen Aktiengesellschaft Method for starting a fuel cell and fuel cell system
DE102015205508A1 (en) 2015-03-26 2016-09-29 Volkswagen Ag Method for starting a fuel cell system
JP7029630B2 (en) * 2016-12-15 2022-03-04 パナソニックIpマネジメント株式会社 Fuel cell system
DE102018208988A1 (en) 2018-06-07 2019-12-12 Audi Ag Diagnostic procedure, mode of operation, fuel cell and fuel cell system
DE102023102013A1 (en) * 2023-01-27 2024-08-01 Bayerische Motoren Werke Aktiengesellschaft Gas supply device for a fuel cell and fuel cell arrangement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2412784B (en) * 2002-01-18 2006-08-23 Intelligent Energy Ltd Fuel cell oxygen removal and pre-conditioning system
JP2006024546A (en) * 2004-06-08 2006-01-26 Mitsubishi Electric Corp Operation method of fuel cell
US8003239B2 (en) * 2004-06-14 2011-08-23 Panasonic Corporation Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack
JP2006079878A (en) * 2004-09-08 2006-03-23 Nissan Motor Co Ltd Fuel cell system
JP2007027078A (en) * 2005-06-13 2007-02-01 Nissan Motor Co Ltd Fuel cell system
JP2006351310A (en) * 2005-06-15 2006-12-28 Mitsubishi Heavy Ind Ltd Fuel cell system and its operation method

Also Published As

Publication number Publication date
JP2009016118A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP5261999B2 (en) Fuel cell power generator
EP1992035B1 (en) Fuel cell system with regeneration of electrode activity during start or stop
JP4870065B2 (en) Method for operating a fuel cell stack
JP2008235093A (en) Method for recovering characteristics of fuel cell, and fuel cell system
US9437886B2 (en) Fuel cell system and method for stopping power generation in fuel cell system
JP2013149538A (en) Fuel cell system operation stopping method and fuel cell system
JP2006351270A (en) Fuel cell
JP2004127621A (en) Purge hydrogen diluting device of fuel cell
JP2005032652A (en) Fuel cell system
JP2013089352A (en) Fuel cell system and stopping method therefor
JP5872315B2 (en) Method and apparatus for starting fuel cell system
JP2007323863A (en) Fuel cell system and shutdown method of fuel cell
JP5200299B2 (en) Anode-side hydrogen / oxygen interface formation suppression structure for fuel cell vehicles
JP2010176993A (en) Shutdown method of solid polymer fuel cell system and solid polymer fuel cell system
JP2014063664A (en) Method of starting fuel cell system
JP2005108698A (en) Fuel cell system
JP2017152174A (en) Stop control method for fuel cell system
JP5502955B2 (en) Fuel cell system and control method thereof
JP4764916B2 (en) Fuel cell system and method for starting fuel cell system
JP5112525B2 (en) Starting method for polymer electrolyte fuel cell
JP5370200B2 (en) Fuel cell system
JP2004281268A (en) Operating method of fuel cell and fuel cell system
JP5073448B2 (en) Operation method of polymer electrolyte fuel cell
JP4772293B2 (en) Fuel cell system
JP5557579B2 (en) Fuel cell system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees