JP5261988B2 - Ventilation air conditioner - Google Patents

Ventilation air conditioner Download PDF

Info

Publication number
JP5261988B2
JP5261988B2 JP2007146267A JP2007146267A JP5261988B2 JP 5261988 B2 JP5261988 B2 JP 5261988B2 JP 2007146267 A JP2007146267 A JP 2007146267A JP 2007146267 A JP2007146267 A JP 2007146267A JP 5261988 B2 JP5261988 B2 JP 5261988B2
Authority
JP
Japan
Prior art keywords
air
heat exchange
passage
path
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007146267A
Other languages
Japanese (ja)
Other versions
JP2008298384A (en
Inventor
敏也 石田
晃悦 内田
三仁 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Co Ltd
Original Assignee
Max Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Co Ltd filed Critical Max Co Ltd
Priority to JP2007146267A priority Critical patent/JP5261988B2/en
Priority to PCT/JP2008/059812 priority patent/WO2008146843A1/en
Publication of JP2008298384A publication Critical patent/JP2008298384A/en
Application granted granted Critical
Publication of JP5261988B2 publication Critical patent/JP5261988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F2012/007Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using a by-pass for bypassing the heat-exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Air Humidification (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is a ventilating and air conditioning apparatus having a temperature adjusting function by heat exchange and improved cooling/heating efficiency. A ventilating and air conditioning apparatus (1A) is provided with a heat exchanging element (3A) for exchanging heat between air passing through an isolated first heat exchanging air path (30a) and air passing through a second heat exchanging air path (30b); a heat pump air conditioning apparatus (2A) which performs air conditioning; a heat exchanging air feeding path (5A) which makes the first heat exchanging air path (30a) of the heat exchanging element (3A) communicate with a second heat exchanging air path (30b) through the heat pump air conditioning apparatus (2A); a non heat exchanging air feeding path (5B) which bypasses the first heat exchanging air path (30a); and an air path opening/closing damper (54) which performs switching between heat exchanging air feeding path (5A) and the non heat exchanging air feeding path (5B).

Description

本発明は、除湿機能と冷暖房機能を有した換気空調装置に関する。   The present invention relates to a ventilation air conditioner having a dehumidifying function and an air conditioning function.

従来から、室内機と室外機との間で冷媒を循環させ、室内機側の熱交換器を凝縮器として機能させることで、冷媒の放熱作用で空気を加熱すると共に、室内機側の熱交換器を蒸発器として機能させることで、冷媒の吸熱作用で空気を冷却する冷凍サイクルを利用したヒートポンプ型の空調装置が提案されている。   Conventionally, the refrigerant is circulated between the indoor unit and the outdoor unit, and the heat exchanger on the indoor unit side functions as a condenser to heat the air by the heat radiation action of the refrigerant and to exchange heat on the indoor unit side. A heat pump type air conditioner using a refrigeration cycle in which air is cooled by an endothermic action of a refrigerant by causing the chamber to function as an evaporator has been proposed.

このような空調装置では、蒸発器を通る空気中の水分を結露させることで、除湿を行うことが可能で、除湿量を増やすためには、空気の温度を下げる必要があった。このため、室内の温度が下がり過ぎるという問題や、給気口で結露が発生する等の問題があった。このように、給気温度が下がり過ぎる問題を解決するため、従来の空調装置は、一般的に再加熱するための構成を備えているが、装置が複雑になるという問題があった。   In such an air conditioner, it is possible to perform dehumidification by condensing moisture in the air passing through the evaporator, and it is necessary to lower the temperature of the air in order to increase the dehumidification amount. For this reason, there existed a problem that indoor temperature fell too much, and the problem that dew condensation generate | occur | produces in an air supply opening | mouth. Thus, in order to solve the problem that the supply air temperature is too low, the conventional air conditioner is generally provided with a configuration for reheating, but there is a problem that the apparatus becomes complicated.

そこで、ヒートポンプ型の空調器と熱交換素子とを組み合わせて、室内に給気する空気の温度調整を行えるようにした空調装置が提案されている(例えば、特許文献1参照)。   Therefore, an air conditioner has been proposed in which a heat pump type air conditioner and a heat exchange element are combined so that the temperature of air supplied to the room can be adjusted (see, for example, Patent Document 1).

空調機と熱交換素子を組み合わせた従来の空調装置では、熱交換素子をバイパスする風路と、バイパス風路の風量を調整するダンパを備えて、温度調整等を行えるようになっている。   In a conventional air conditioner that combines an air conditioner and a heat exchange element, an air path that bypasses the heat exchange element and a damper that adjusts the air volume of the bypass air path are provided so that temperature adjustment and the like can be performed.

特許第2631674号公報Japanese Patent No. 2631694

しかし、従来の空調装置では、熱交換素子とバイパス風路の双方に空気が通るので、空調機で調和された空気の所定量が、外気との間で熱交換が行われることになり、給気温度が熱交換による外気の温度の影響を受けて、冷暖房の効率が低下するという問題があった。   However, in the conventional air conditioner, since air passes through both the heat exchange element and the bypass air passage, a predetermined amount of air harmonized by the air conditioner is exchanged with the outside air, so that The air temperature is affected by the temperature of the outside air due to heat exchange, and there is a problem that the efficiency of air conditioning is lowered.

本発明は、このような問題を解決するためになされたもので、熱交換による温度調整機能を備えると共に、冷暖房の効率を向上させた換気空調装置を提供することを目的とする。   The present invention has been made to solve such a problem, and an object thereof is to provide a ventilation air conditioner having a temperature adjustment function by heat exchange and improving the efficiency of air conditioning.

上述した課題を解決するため、本発明の換気空調装置は、第1の熱交換風路と第2の熱交換風路が隔壁を挟んで交互に積層されて互いが隔絶され第1の熱交換風路を通る空気と第2の熱交換風路を通る空気との間で熱交換が行われる熱交換素子と、空気調和を行う空気調和機と、第1の取入口と第2の取入口が並列された外気の取入口と、第1の取入口と熱交換素子の第1の熱交換風路の吸込側を連通させ、第1の熱交換風路の吹出側を、空気調和機を通して第2の熱交換風路の吸込側に連通させ、第2の熱交換風路の吹出側を給気口と連通させた熱交換給気風路と、熱交換素子の第1の熱交換風路をバイパスして、第2の取入口を空気調和機より上流の熱交換給気風路と連通させた非熱交換給気風路と、熱交換給気風路と非熱交換給気風路を開閉して風路を切り替える風路開閉手段とを備え、取入口は、第1の熱交換風路と第2の熱交換風路が積層された熱交換素子で、第1の熱交換風路と対向する部位が開口し、第2の熱交換風路と対向する部位が塞がれた第1の熱交換風路の吸込側と連通した第1の取入口の両側に第2の取入口が並列され、非熱交換給気風路は、第1の熱交換風路と第2の熱交換風路との積層方向に沿った熱交換素子の両側に形成され、熱交換素子の両側に形成された非熱交換給気風路は、第1の取入口の両側に並列された第2の取入口と連通し、風路開閉手段は、第1の取入口を開閉する第1のダンパと、第2の取入口を開閉する第2のダンパが、位相を異ならせて同じ軸部に備えられ、軸部の回転で第1のダンパと第2のダンパが作動して、第1の取入口と第2の取入口の開閉が切り替えられることを特徴とする。ここで、風路開閉手段における風路の開閉とは、風路の開度調整を含む。 To solve the problems described above, ventilating air-conditioning system of the present invention, a first heat exchange air path and the second heat exchange air passage is alternately stacked across the partition walls to one another is isolated, the first heat A heat exchange element that exchanges heat between air passing through the exchange air passage and air passing through the second heat exchange air passage, an air conditioner that performs air conditioning, a first intake port, and a second intake air. The inlet of the outside air in which the inlets are arranged in parallel, the first inlet and the suction side of the first heat exchange air passage of the heat exchange element are communicated, and the outlet side of the first heat exchange air passage is connected to the air conditioner A heat exchange air supply passage in which the second heat exchange air passage is communicated with the suction side of the second heat exchange air passage and the blowout side of the second heat exchange air passage is communicated with the air supply port, and the first heat exchange air of the heat exchange element bypassing the road, and a non-heat exchange supply air flow path second inlet which communicates with the upstream heat exchanger supply air flow path from the air conditioner, the heat exchanger supply air flow path and the non-thermal exchange supply air flow The opening and closing a wind passage opening and closing means for switching the air passage, intake is a heat exchange element in which the first heat exchange air path and the second heat exchange air path are stacked, the first heat exchange air The second intake is provided on both sides of the first intake port communicating with the suction side of the first heat exchange air passage where the portion opposite the passage is open and the portion opposite the second heat exchange air passage is blocked. The inlets are arranged in parallel, and the non-heat exchange air supply passage is formed on both sides of the heat exchange element along the stacking direction of the first heat exchange air passage and the second heat exchange air passage. The formed non-heat exchange air supply air passage communicates with a second intake air juxtaposed on both sides of the first intake air , and the air passage opening / closing means includes a first damper that opens and closes the first air intake port. The second damper that opens and closes the second intake port is provided in the same shaft portion with different phases, and the first damper and the second damper are operated by the rotation of the shaft portion, so that the first intake Wherein the opening and closing of the mouth and the second inlet is switched. Here, the opening / closing of the air passage in the air passage opening / closing means includes adjustment of the opening degree of the air passage.

本発明の換気空調装置では、運転モードに応じて風路が切り替えられ、熱交換給気風路を通る空気を空気調和機で冷却することで、空気中の水分を結露させて湿度が下げられた空気が給気され、室内が除湿される。また、非熱交換給気風路を通る空気を空気調和機で冷却して給気することで、室内が冷房される。   In the ventilation air conditioner of the present invention, the air path is switched according to the operation mode, and the air passing through the heat exchange air supply air path is cooled by an air conditioner, so that moisture in the air is condensed to reduce the humidity. Air is supplied and the room is dehumidified. Further, the room is cooled by cooling the air passing through the non-heat exchange supply air passage with an air conditioner and supplying the air.

本発明の換気空調装置によれば、熱交換素子と空気調和機による除湿機能で、給気温度を下げすぎることなく除湿が可能となると共に、風路の切り替えで、熱交換素子を通さずに冷暖房が可能であるので、熱交換による外気の温度の影響を受けずに、冷暖房された空気を給気することができ、冷暖房の効率を向上させることができる。また、軸部の回転動作で第1のダンパと第2のダンパが作動して、第1の取入口と第2の取入口の開閉が切り替えられるので、1つのモータで、2つの取入口を開閉して風路を切り替えることができ、低コストで風路を切り替える構成を実現できる。 According to the ventilation air conditioner of the present invention, the dehumidification function by the heat exchange element and the air conditioner enables dehumidification without excessively reducing the supply air temperature, and by switching the air path without passing the heat exchange element. Since air-conditioning is possible, air that has been air-conditioned can be supplied without being affected by the temperature of the outside air due to heat exchange, and the efficiency of air-conditioning can be improved. Moreover, since the first damper and the second damper are operated by the rotation of the shaft portion, and the opening and closing of the first intake port and the second intake port are switched, the two intake ports can be opened by one motor. The air path can be switched by opening and closing, and a configuration for switching the air path at low cost can be realized.

以下、図面を参照して本発明の換気空調装置の実施の形態について説明する。   Embodiments of a ventilation air conditioner of the present invention will be described below with reference to the drawings.

<第1の実施の形態の換気空調装置の構成例>
図1は、第1の実施の形態の換気空調装置の一例を示す構成図で、図1(a)は、第1の実施の形態の換気空調装置の内部構成を示す正面図、図1(b)は、第1の実施の形態の換気空調装置の内部構成を示す側面図である。
<Configuration Example of Ventilation Air Conditioner of First Embodiment>
FIG. 1 is a configuration diagram illustrating an example of a ventilation air conditioner according to the first embodiment. FIG. 1A is a front view illustrating an internal configuration of the ventilation air conditioning apparatus according to the first embodiment. b) is a side view showing the internal configuration of the ventilation air conditioner of the first embodiment.

また、図2は、第1の実施の形態の換気空調装置の分解斜視図、図3は、第1の実施の形態の換気空調装置の風路構成図である。   FIG. 2 is an exploded perspective view of the ventilation air conditioner of the first embodiment, and FIG. 3 is an air path configuration diagram of the ventilation air conditioner of the first embodiment.

第1の実施の形態の換気空調装置1Aは、空気の冷却及び加熱を行う空気調和機としてのヒートポンプ空調機2Aと、ヒートポンプ空調機2Aで調和される空気の温度調整及びヒートポンプ空調機2Aで調和された空気の除湿等を行う熱交換素子3Aを備え、外気を取り入れ、空気調和して室内に給気する空調換気機能を有する。   The ventilation air conditioner 1A of the first embodiment is harmonized by a heat pump air conditioner 2A as an air conditioner that cools and heats the air, and air temperature adjustment and heat pump air conditioner 2A harmonized by the heat pump air conditioner 2A. It has a heat exchange element 3A for dehumidifying the air, etc., and has an air-conditioning ventilation function that takes in outside air and supplies the air in an air-conditioned room.

まず、図3等を参照して、ヒートポンプ空調機2Aの構成について説明する。   First, with reference to FIG. 3 etc., the structure of 2 A of heat pump air conditioners is demonstrated.

ヒートポンプ空調機2Aは、冷媒が流れる配管20と、室内に給気する空気と冷媒との間で熱交換を行う第1の熱交換器21と、室外に排出する空気と冷媒との間で熱交換を行う第2の熱交換器22を備える。   The heat pump air conditioner 2A includes a pipe 20 through which the refrigerant flows, a first heat exchanger 21 that performs heat exchange between the air supplied to the room and the refrigerant, and heat between the air that is discharged to the outside and the refrigerant. A second heat exchanger 22 that performs exchange is provided.

また、ヒートポンプ空調機2Aは、配管20を流れる冷媒を圧縮する圧縮機23と、配管20を流れる冷媒を減圧する膨張弁24と、冷媒の流れる方向を切り替える四方弁25を備える。   The heat pump air conditioner 2A includes a compressor 23 that compresses the refrigerant that flows through the pipe 20, an expansion valve 24 that decompresses the refrigerant that flows through the pipe 20, and a four-way valve 25 that switches the direction in which the refrigerant flows.

なお、ヒートポンプ空調機2Aは、第2の熱交換器22と、圧縮機23と、膨張弁24と、四方弁25と、図示しない基板等がユニット化されて室外機ユニット26が構成され、室外機ユニット26の外部に配置される第1の熱交換器21が配管20を介して接続される。   In the heat pump air conditioner 2A, the second heat exchanger 22, the compressor 23, the expansion valve 24, the four-way valve 25, a substrate (not shown), and the like are unitized to form an outdoor unit 26. A first heat exchanger 21 disposed outside the machine unit 26 is connected via a pipe 20.

また、第1の熱交換器21は、例えば図2に示すように、熱交換給気風路5Aの一部を構成する筐体27a,27bに組み込まれる。筐体27a,27bは、筐体27aの上面に形成された一方の開口部27cから吸い込まれた空気が第1の熱交換器21を通り、他方の開口部27dから吹き出される風路を形成する。   Moreover, the 1st heat exchanger 21 is integrated in the housing | casings 27a and 27b which comprise some heat exchange air supply paths 5A, for example, as shown in FIG. The casings 27a and 27b form an air path in which air sucked from one opening 27c formed on the upper surface of the casing 27a passes through the first heat exchanger 21 and is blown out from the other opening 27d. To do.

ここで、空気調和機としては、上述したように、冷暖房とも冷媒を使用する構成以外に、冷房は冷媒を使用し、暖房温水を使用する構成でも良い。 Here, as described above, the air conditioner may have a configuration in which the cooling uses the refrigerant and the heating uses the hot water, in addition to the configuration in which the cooling and heating use the refrigerant.

次に、各図を参照して、熱交換素子3Aの構成について説明する。   Next, the configuration of the heat exchange element 3A will be described with reference to the drawings.

熱交換素子3Aは、空気が通る第1の熱交換風路30aと、第1の熱交換風路30aと隔絶されて空気が通る第2の熱交換風路30bを備え、第1の熱交換風路30aを通る空気と第2の熱交換風路30bを通る空気との間で熱交換が行われる。   The heat exchange element 3A includes a first heat exchange air passage 30a through which air passes and a second heat exchange air passage 30b through which air passes and is isolated from the first heat exchange air passage 30a. Heat exchange is performed between the air passing through the air passage 30a and the air passing through the second heat exchange air passage 30b.

図4及び図5は、熱交換素子の実施の形態の一例を示す構成図で、図4(a)は、熱交換素子3Aの正面図、図4(b)は、熱交換素子3Aの左側面図、図4(c)は、熱交換素子3Aの右側面図である。また、図5(a)は、熱交換素子3Aの内部構成を示す図4(a)のA−A断面図、図5(b)は、熱交換素子3Aの要部断面図である。   4 and 5 are configuration diagrams showing an example of an embodiment of the heat exchange element. FIG. 4A is a front view of the heat exchange element 3A, and FIG. 4B is a left side of the heat exchange element 3A. FIG. 4C is a right side view of the heat exchange element 3A. 5A is a cross-sectional view taken along the line AA of FIG. 4A showing the internal configuration of the heat exchange element 3A, and FIG. 5B is a cross-sectional view of the main part of the heat exchange element 3A.

熱交換素子3Aは、第1の熱交換風路30aと第2の熱交換風路30bが、隔壁31を挟んで交互に積層される。第1の熱交換風路30aは、隔壁31の間が風路形成板32aによって仕切られて、複数本の平行な風路が直線状に形成される。   In the heat exchange element 3A, the first heat exchange air passage 30a and the second heat exchange air passage 30b are alternately stacked with the partition wall 31 interposed therebetween. In the first heat exchange air passage 30a, the partition walls 31 are partitioned by the air passage forming plate 32a, and a plurality of parallel air passages are linearly formed.

また、第2の熱交換風路30bは、隔壁31の間が風路形成板32bによって仕切られて、複数本の平行な風路が、ここでは第1の熱交換風路30aと平行な向きで直線状に形成される。   In addition, the second heat exchange air passage 30b is partitioned between the partition walls 31 by an air passage forming plate 32b, and a plurality of parallel air passages are here oriented in parallel with the first heat exchange air passage 30a. It is formed in a straight line.

隔壁31及び風路形成板32a,32bは、例えば、アルミニウムや銅等、熱伝導性の良い金属素材で構成される。なお、熱交換素子3Aは、風路形成板32a,32bに複数のスリットを備える構成としても良い。   The partition wall 31 and the air path forming plates 32a and 32b are made of a metal material having good thermal conductivity such as aluminum or copper. The heat exchange element 3A may be configured to include a plurality of slits in the air passage forming plates 32a and 32b.

熱交換素子3Aは、第1の熱交換風路30aの吸込口35aと第2の熱交換風路30bの吹出口36bを一方の端部側に備えると共に、第1の熱交換風路30aの吹出口36aと第2の熱交換風路30bの吸込口35bを他方の端部側に備える。   The heat exchange element 3A includes a suction port 35a of the first heat exchange air passage 30a and an air outlet 36b of the second heat exchange air passage 30b on one end side, and includes the first heat exchange air passage 30a. The air outlet 36a and the suction port 35b of the second heat exchange air passage 30b are provided on the other end side.

熱交換素子3Aの吸込口35aが形成される面は、第1の熱交換風路30aと対向する部位は開口し、第2の熱交換風路30bと対向する部位は塞がれて、吸込口35aと第1の熱交換風路30aが連通する。   The surface of the heat exchange element 3A on which the suction port 35a is formed is open at a portion facing the first heat exchange air passage 30a, and is closed at a portion facing the second heat exchange air passage 30b. The mouth 35a communicates with the first heat exchange air passage 30a.

また、吹出口36bが形成される面は、第2の熱交換風路30bと対向する部位は開口し、第1の熱交換風路30aと対向する部位は塞がれて、吹出口36bと第2の熱交換風路30bが連通する。   Further, the surface on which the air outlet 36b is formed is open at a portion facing the second heat exchange air passage 30b, is closed at a portion facing the first heat exchange air passage 30a, and the air outlet 36b. The second heat exchange air passage 30b communicates.

熱交換素子3Aの吹出口36aが形成される面は、第1の熱交換風路30aと対向する部位は開口し、第2の熱交換風路30bと対向する部位は塞がれて、吹出口36aと第1の熱交換風路30aが連通する。   The surface of the heat exchange element 3A on which the air outlet 36a is formed is opened at a portion facing the first heat exchange air passage 30a, and is closed at a portion facing the second heat exchange air passage 30b. The outlet 36a communicates with the first heat exchange air passage 30a.

また、吸込口35bが形成される面は、第2の熱交換風路30bと対向する部位は開口し、第1の熱交換風路30aと対向する部位は塞がれて、吸込口35bと第2の熱交換風路30bが連通する。   Further, the surface on which the suction port 35b is formed is open at a portion facing the second heat exchange air passage 30b, is closed at a portion facing the first heat exchange air passage 30a, and the suction port 35b. The second heat exchange air passage 30b communicates.

これにより、熱交換素子3Aは、吸込口35aから吸い込まれた空気が、第1の熱交換風路30aを通って吹出口36aから吹き出す。また、吸込口35bから吸い込まれた空気が、第2の熱交換風路30bを通って吹出口36bから吹き出す。   Thereby, in the heat exchange element 3A, the air sucked from the suction port 35a blows out from the blower outlet 36a through the first heat exchange air passage 30a. Moreover, the air sucked from the suction port 35b blows out from the blower outlet 36b through the second heat exchange air passage 30b.

熱交換素子3Aでは、第1の熱交換風路30aを通る空気と第2の熱交換風路30bを通る空気が対向流となり、第1の熱交換風路30aと第2の熱交換風路30bが隔壁31で仕切られていることで、第1の熱交換風路30aを通る空気と第2の熱交換風路30bを通る空気との間で熱交換が行われる。   In the heat exchange element 3A, the air passing through the first heat exchange air passage 30a and the air passing through the second heat exchange air passage 30b are opposed to each other, and the first heat exchange air passage 30a and the second heat exchange air passage are provided. Since 30b is partitioned by the partition wall 31, heat exchange is performed between the air passing through the first heat exchange air passage 30a and the air passing through the second heat exchange air passage 30b.

このように、熱交換される空気の流れを対向流とすることで、熱交換効率が向上する。   Thus, heat exchange efficiency improves by making the flow of the air exchanged heat into a counter flow.

熱交換素子3Aは、例えば図2に示すように、所定の形状に仕切られて、熱交換給気風路5Aの一部と非熱交換給気風路5Bを構成する断熱材37a,37bに入れられて、筐体38a,38bに組み込まれる。   As shown in FIG. 2, for example, the heat exchange element 3A is partitioned into a predetermined shape, and is put in heat insulating materials 37a and 37b constituting a part of the heat exchange air supply passage 5A and the non-heat exchange supply air passage 5B. Thus, it is incorporated into the casings 38a and 38b.

断熱材37bと筐体38bは、熱交換素子3Aの第1の熱交換風路30aの吹出口36a及び非熱交換給気風路5Bを形成する区画と連通する図示しない開口部と、第2の熱交換風路30bの吸込口35bと連通する図示しない開口部が下面に形成される。   The heat insulating material 37b and the casing 38b include an opening (not shown) that communicates with a section that forms the air outlet 36a of the first heat exchange air passage 30a and the non-heat exchange air supply air passage 5B of the heat exchange element 3A. An opening (not shown) communicating with the suction port 35b of the heat exchange air passage 30b is formed on the lower surface.

これにより、筐体27a,27bの上部に筐体38a,38bが取り付けられると、断熱材37a,37bに組み込まれた熱交換素子3Aは、第1の熱交換風路30aの吹出口36aが、第1の熱交換器21が組み込まれた筐体27aの一方の開口部27cと連通し、第2の熱交換風路30bの吸込口35bが、筐体27aの他方の開口部27dと連通する。また、非熱交換給気風路5Bが筐体27aの一方の開口部27cと連通する。 As a result, when the casings 38a and 38b are attached to the upper portions of the casings 27a and 27b, the heat exchange element 3A incorporated in the heat insulating materials 37a and 37b has the outlet 36a of the first heat exchange air passage 30a. through one communication with the opening 27c of the first heat exchanger 21 is integrated housing 27a, the suction port 35b of the second heat exchange air passage 30b is communicated with the other opening 27d of the housing 27a . Further, the non-heat exchange air supply path 5B communicates with one opening 27c of the casing 27a .

更に、筐体38aと断熱材37aは、熱交換素子3Aの第2の熱交換風路30bの吹出口36bと連通する開口部38c,37cがそれぞれ上面に形成される。   Further, the housing 38a and the heat insulating material 37a are formed with openings 38c and 37c on the upper surface thereof, which communicate with the air outlet 36b of the second heat exchange air passage 30b of the heat exchange element 3A.

そして、断熱材37a,37bに組み込まれた熱交換素子3Aは、図2に示すように、一端側で吸込口35aと吹出口36bが仕切られることで、第1の熱交換風路30aに吸い込まれる空気と第2の熱交換風路30bから吹き出す空気は混合しない。   As shown in FIG. 2, the heat exchange element 3A incorporated in the heat insulating materials 37a and 37b is sucked into the first heat exchange air passage 30a by partitioning the suction port 35a and the blowout port 36b on one end side. The air blown out from the second heat exchange air passage 30b is not mixed.

同様に、熱交換素子3Aの他端側で、吹出口36aと吸込口35bが仕切られることで、第1の熱交換風路30aから吹き出す空気が第1の熱交換器21をショートカットして第2の熱交換風路30bに吸い込まれない。   Similarly, the air outlet 36a and the suction port 35b are partitioned on the other end side of the heat exchange element 3A, so that the air blown out from the first heat exchange air passage 30a can be used as a shortcut to the first heat exchanger 21. 2 is not sucked into the second heat exchange air passage 30b.

次に、各図を参照して、換気空調装置1Aにおける風路の構成について説明する。   Next, with reference to each figure, the structure of the air path in 1 A of ventilation air conditioners is demonstrated.

換気空調装置1Aは、第1の取入口51aと第2の取入口51bが並列された取入口51を備えると共に、第1の取入口51aから取り入れた外気OAを、熱交換素子3Aを通して給気口52から給気SAとして吹き出させる熱交換給気風路5Aを備える。また、換気空調装置1Aは、第2の取入口51bから取り入れた外気OAを、熱交換素子3Aをバイパスさせる非熱交換給気風路5Bを備える。   The ventilation air conditioner 1A includes an intake 51 in which a first intake 51a and a second intake 51b are arranged in parallel, and supplies outside air OA taken from the first intake 51a through the heat exchange element 3A. A heat exchange air supply passage 5A for blowing out as air supply SA from the mouth 52 is provided. Further, the ventilation air conditioner 1A includes a non-heat exchange air supply passage 5B that bypasses the heat exchange element 3A from the outside air OA taken from the second intake port 51b.

取入口51は、例えば図2に示すように、熱交換素子3Aが組み込まれる断熱材37aの前面を開口して構成され、第1の取入口51aの両側に第2の取入口51bが並列される。   For example, as shown in FIG. 2, the intake 51 is configured by opening the front surface of a heat insulating material 37a in which the heat exchange element 3A is incorporated, and the second intake 51b is arranged in parallel on both sides of the first intake 51a. The

熱交換給気風路5Aは、第1の取入口51aと熱交換素子3Aの第1の熱交換風路30aの吸込口35aを連通させる。また、第1の熱交換風路30aの吹出口36aを、ヒートポンプ空調機2Aの第1の熱交換器21を通して第2の熱交換風路30bの吸込口35bに連通させる。更に、第2の熱交換風路30bの吹出口36bを給気口52と連通させる。   The heat exchange air supply passage 5A allows the first intake port 51a and the suction port 35a of the first heat exchange air passage 30a of the heat exchange element 3A to communicate with each other. Further, the air outlet 36a of the first heat exchange air passage 30a is communicated with the suction port 35b of the second heat exchange air passage 30b through the first heat exchanger 21 of the heat pump air conditioner 2A. Further, the air outlet 36 b of the second heat exchange air passage 30 b is communicated with the air supply port 52.

非熱交換給気風路5Bは、熱交換素子3Aの両側に形成された風路によって、熱交換素子3Aの第1の熱交換風路30aをバイパスして、第2の取入口51bをヒートポンプ空調機2Aの第1の熱交換器21より上流の熱交換給気風路5aと連通させる。   The non-heat exchange supply air passage 5B bypasses the first heat exchange air passage 30a of the heat exchange element 3A by air passages formed on both sides of the heat exchange element 3A, and heat pump air-conditioning the second intake port 51b The heat exchange air supply passage 5a upstream of the first heat exchanger 21 of the machine 2A is communicated.

換気空調装置1Aは、熱交換給気風路5A及び非熱交換給気風路5Bで、第1の取入口51a及び第2の取入口51bから外気OAを吸い込んで、給気口52から吹き出させる送風ファン部53を備える。   The ventilation air conditioner 1A sucks outside air OA from the first intake port 51a and the second intake port 51b in the heat exchange supply air passage 5A and the non-heat exchange supply air passage 5B and blows it out from the supply port 52. A fan unit 53 is provided.

送風ファン部53は、例えば図2に示すように、筐体39a,39bに組み込まれる。筐体39bは、送風ファン部53の図示しない吸込口と連通する開口部39cが下面に形成され、熱交換素子3Aが組み込まれた筐体38a,38bの上部に、送風ファン部53が組み込まれた筐体39a,39bが取り付けられると、送風ファン部53の吸込口と、熱交換素子3Aの第2の熱交換風路30bの吹出口36bが連通する。   For example, as shown in FIG. 2, the blower fan unit 53 is incorporated in the casings 39 a and 39 b. The housing 39b has an opening 39c communicating with a suction port (not shown) of the blower fan unit 53 formed on the lower surface, and the blower fan unit 53 is built on top of the housings 38a and 38b in which the heat exchange element 3A is built. When the casings 39a and 39b are attached, the suction port of the blower fan unit 53 and the air outlet 36b of the second heat exchange air passage 30b of the heat exchange element 3A communicate with each other.

また、筐体39a,39bは、筐体39aの上面を開口して単数または複数の給気口52が形成され、給気口52が、筐体39bの内部に備えられるチャンバー39dを介して送風ファン部53と連通する。更に、給気口52には、図示しない給気ダクトと接続されるダクトジョイント39eが取り付けられる。   In addition, the casings 39a and 39b have one or more air supply ports 52 formed by opening the upper surface of the housing 39a, and the air supply ports 52 are blown through a chamber 39d provided inside the housing 39b. It communicates with the fan unit 53. Furthermore, a duct joint 39e connected to an air supply duct (not shown) is attached to the air supply port 52.

換気空調装置1Aは、熱交換給気風路5A及び非熱交換給気風路5Bの双方、例えば図2に示すように、第1の取入口51a及び第2の取入口51bの双方を覆い、通過する空気を清浄するフィルタ40を備えると共に、ガラリ等を有した化粧パネル41を備える。   The ventilation air conditioner 1A covers and passes through both the heat exchange air supply passage 5A and the non-heat exchange supply air passage 5B, for example, both the first intake port 51a and the second intake port 51b as shown in FIG. In addition to the filter 40 that cleans the air, a decorative panel 41 having a louver or the like is provided.

また、換気空調装置1Aは、吸い込んだ外気OAの熱交換給気風路5Aと非熱交換給気風路5Bへの分配比率を調整する風路開閉ダンパ54を備える。風路開閉ダンパ54は風路開閉手段の一例で、本例では、熱交換給気風路5Aと連通した第1の取入口51aと、非熱交換給気風路5Bと連通した第2の取入口51bの双方に備えられる。   Further, the ventilation air conditioner 1A includes an air path opening / closing damper 54 that adjusts a distribution ratio of the sucked outside air OA to the heat exchange supply air path 5A and the non-heat exchange supply air path 5B. The air path opening / closing damper 54 is an example of air path opening / closing means, and in this example, the first intake port 51a communicating with the heat exchange air supply air passage 5A and the second intake port communicating with the non-heat exchange air supply air passage 5B. 51b is provided on both sides.

図6は、風路開閉ダンパの構成例を示す斜視図である。風路開閉ダンパ54は、第1の取入口51aを開閉する第1のダンパ54aの両側に、第2の取入口51bを開閉する第2のダンパ54bを有し、第1のダンパ54aと第2のダンパ54bが、90°位相を異ならせて同じ軸部54cに備えられる。   FIG. 6 is a perspective view illustrating a configuration example of an air path opening / closing damper. The air path opening / closing damper 54 has second dampers 54b that open and close the second intake port 51b on both sides of the first damper 54a that opens and closes the first intake port 51a, and the first damper 54a and the first damper 54a. Two dampers 54b are provided on the same shaft portion 54c with different phases by 90 °.

第1のダンパ54aと第2のダンパ54bは、それぞれ複数の板状の部材で構成され、各ダンパの軸部54cに取り付けられた図示しないギアまたはリンク等によって、複数のダンパが連動する。   The first damper 54a and the second damper 54b are each composed of a plurality of plate-like members, and the plurality of dampers are linked by a gear or a link (not shown) attached to the shaft portion 54c of each damper.

これにより、軸部54cの回転動作で第1のダンパ54aと第2のダンパ54bが作動して、第1の取入口51aと第2の取入口51bの開閉が切り替えられる。   Accordingly, the first damper 54a and the second damper 54b are operated by the rotation of the shaft portion 54c, and the opening and closing of the first intake port 51a and the second intake port 51b are switched.

すなわち、第1のダンパ54aで第1の取入口51aを全開とすると、第2のダンパ54bは位相が90°ずれているので、第2の取入口51bは全閉となる。一方、第2のダンパ54bで第2の取入口51bを全開とすると、第1のダンパ54aで第1の取入口51aは全閉となる。   That is, when the first intake 54a is fully opened by the first damper 54a, the phase of the second damper 54b is shifted by 90 °, and the second intake 51b is fully closed. On the other hand, when the second intake port 51b is fully opened by the second damper 54b, the first intake port 51a is fully closed by the first damper 54a.

また、第1の取入口51aを全開としている状態から、第1のダンパ54aの開度を徐々に閉じていくと、第2のダンパ54bは、第2の取入口51bを全閉としている状態から徐々に開く。一方、第2の取入口51bを全開としている状態から、第2のダンパ54bの開度を徐々に閉じていくと、第1のダンパ54aは、第1の取入口51aを全閉としている状態から徐々に開く。   When the opening of the first damper 54a is gradually closed from the state where the first intake 51a is fully opened, the second damper 54b is in the state where the second intake 51b is fully closed. Gradually open from. On the other hand, when the opening of the second damper 54b is gradually closed from the state in which the second intake 51b is fully opened, the first damper 54a is in the state in which the first intake 51a is fully closed. Gradually open from.

従って、第1のダンパ54aの動作で、図3等に示す熱交換給気風路5Aを通る空気の風量を100%から0%に調整できると共に、第2のダンパ54bが第1のダンパ54aと連動することで、非熱交換給気風路5Bを通る空気の風量を0%から100%に調整できる。   Accordingly, the operation of the first damper 54a can adjust the air volume of the air passing through the heat exchange air supply path 5A shown in FIG. 3 and the like from 100% to 0%, and the second damper 54b is connected to the first damper 54a. By interlocking, the air volume of the air passing through the non-heat exchange air supply path 5B can be adjusted from 0% to 100%.

よって、第1のダンパ54aと第2のダンパ54bの開度によって、外気OAの全てを熱交換素子3Aの第1の熱交換風路30aを通して、第2の熱交換風路30bを通る空気との間で熱交換させる風路構成と、外気OAの全てを非熱交換給気風路5Bを通して、熱交換素子3Aで熱交換を行わない風路構成と、外気OAの所定量を熱交換素子3Aの第1の熱交換風路30aを通し、残部を非熱交換給気風路5Bを通して、外気OAの所定量を熱交換させる風路構成が選択可能となる。   Therefore, depending on the opening degree of the first damper 54a and the second damper 54b, all the outside air OA passes through the first heat exchange air passage 30a of the heat exchange element 3A and the air passing through the second heat exchange air passage 30b. The air path configuration for exchanging heat between them, the air path configuration for not exchanging heat by the heat exchange element 3A through all the outside air OA through the non-heat exchange air supply path 5B, and a predetermined amount of the outside air OA for the heat exchange element 3A. It is possible to select an air passage configuration in which a predetermined amount of the outside air OA is exchanged through the first heat exchange air passage 30a and the remaining portion through the non-heat exchange air supply air passage 5B.

また、1つのモータで、2つの取入口を開閉して風路を切り替えることができるので、低コストで風路を切り替える構成を実現できる。   In addition, since the air path can be switched by opening and closing the two intake ports with one motor, a configuration for switching the air path at low cost can be realized.

次に、各図を参照して換気空調装置1Aにおける除加湿の構成について説明する。   Next, the configuration of dehumidification / humidification in the ventilation air conditioner 1A will be described with reference to the drawings.

換気空調装置1Aは、熱交換素子3A及びヒートポンプ空調機2Aの第1の熱交換器21の下方に水回収手段としてドレンパン60を備える。本例では、空気の通る方向を縦方向とした熱交換素子3Aを上側として、熱交換素子3Aと第1の熱交換器21が上下に配置されており、第1の熱交換器21の下方にドレンパン60を設けている。これにより、熱交換素子3A及び第1の熱交換器21で発生された結露水が、ドレンパン60に滴下されて回収される。   The ventilation air conditioner 1A includes a drain pan 60 as water recovery means below the heat exchange element 3A and the first heat exchanger 21 of the heat pump air conditioner 2A. In this example, the heat exchanging element 3A and the first heat exchanger 21 are arranged up and down with the heat exchanging element 3A with the air passing direction as the vertical direction, and below the first heat exchanger 21. A drain pan 60 is provided. Thereby, the dew condensation water generated by the heat exchange element 3A and the first heat exchanger 21 is dropped onto the drain pan 60 and collected.

なお、ドレンパン60は、筐体27a,27bの内部に取り付けられ、回収した水をドレン配管61から外部に排水できる構成である。   The drain pan 60 is attached to the inside of the casings 27a and 27b, and can collect the collected water from the drain pipe 61 to the outside.

また、換気空調装置1Aは、非熱交換給気風路5Bの合流箇所より下流の熱交換給気風路5Aに加湿手段としての散水装置62を備える。非熱交換給気風路5Bは、ヒートポンプ空調機2Aの第1の熱交換器21より上流で熱交換給気風路5Aと合流しており、本例では、熱交換素子3Aの第2の熱交換風路30bの吸込口35bと、第1の熱交換器21との間の風路に、霧状のミストを噴霧するノズルを備える。   Moreover, 1 A of ventilation air conditioners are equipped with the watering apparatus 62 as a humidification means in the heat exchange air supply air path 5A downstream from the confluence | merging location of the non-heat exchange air supply air path 5B. The non-heat exchange air supply path 5B merges with the heat exchange supply air path 5A upstream from the first heat exchanger 21 of the heat pump air conditioner 2A. In this example, the second heat exchange of the heat exchange element 3A is performed. A nozzle for spraying mist-like mist is provided in the air passage between the suction port 35 b of the air passage 30 b and the first heat exchanger 21.

<第1の実施の形態の換気空調装置の動作例>
次に、各図を参照して、第1の実施の形態の換気空調装置1Aの動作について説明する。
<Operation Example of Ventilation Air Conditioner of First Embodiment>
Next, with reference to each figure, operation | movement of 1 A of ventilation air conditioners of 1st Embodiment is demonstrated.

(1)除湿モード及び衣類乾燥モードの動作例
除湿モード及び衣類乾燥モードでは、風路開閉ダンパ54の動作で第1のダンパ54aを開けて、熱交換給気風路5Aと連通する第1の取入口51aを全開にすると共に、非熱交換給気風路5Bと連通する第2の取入口51bを、第2のダンパ54bによって全閉にして、外気OAの全量を熱交換素子3Aの第1の熱交換風路30aに供給する。なお、以下の説明で外気OAの全量とは、略全量を含む実質的な全量を意味している。
(1) Example of operation in dehumidification mode and clothes drying mode In the dehumidification mode and clothes drying mode, the first damper 54a is opened by the operation of the air path opening / closing damper 54 and communicated with the heat exchange air supply air path 5A. The inlet 51a is fully opened, and the second intake port 51b communicating with the non-heat exchange supply air passage 5B is fully closed by the second damper 54b, so that the entire amount of the outside air OA is reduced to the first temperature of the heat exchange element 3A. It supplies to the heat exchange air path 30a. In the following description, the total amount of outside air OA means a substantially total amount including substantially the entire amount.

また、ヒートポンプ空調機2Aは、四方弁25により冷凍サイクルを構成して圧縮機23を作動させることで、第1の熱交換器21を蒸発器として機能させ、蒸発器による冷媒の吸熱作用で外気OAの冷却を行う。このとき、第2の熱交換器22は凝縮器として機能し、冷媒を冷却して液化させている。   Further, the heat pump air conditioner 2A configures the refrigeration cycle by the four-way valve 25 and operates the compressor 23, thereby causing the first heat exchanger 21 to function as an evaporator, and the outside air by the heat absorption action of the refrigerant by the evaporator. Cool OA. At this time, the second heat exchanger 22 functions as a condenser and cools and liquefies the refrigerant.

以上の状態で、送風ファン部53を作動させると、第1の取入口51aから外気OAが吸い込まれ、外気OAの全量が熱交換給気風路5Aへ供給される。   When the blower fan unit 53 is operated in the above state, the outside air OA is sucked from the first intake port 51a, and the entire amount of the outside air OA is supplied to the heat exchange air supply passage 5A.

熱交換給気風路5Aでは、熱交換素子3Aの第1の熱交換風路30aを外気OAが通り、第1の熱交換風路30aを通った外気OAがヒートポンプ空調機2Aの第1の熱交換器21を通る。そして、冷凍サイクルの蒸発器として機能している第1の熱交換器21を通った外気OAが、熱交換素子3Aに戻り第2の熱交換風路30bを通る。   In the heat exchange air supply passage 5A, the outside air OA passes through the first heat exchange air passage 30a of the heat exchange element 3A, and the outside air OA that passes through the first heat exchange air passage 30a is the first heat of the heat pump air conditioner 2A. It passes through the exchanger 21. The outside air OA that has passed through the first heat exchanger 21 functioning as an evaporator of the refrigeration cycle returns to the heat exchange element 3A and passes through the second heat exchange air passage 30b.

外気OAは、熱交換素子3Aを通ることで、ヒートポンプ空調機2Aで冷却された空気との間で熱交換されて、温度が下げられる。   The outside air OA passes through the heat exchange element 3A, so that heat is exchanged with the air cooled by the heat pump air conditioner 2A, and the temperature is lowered.

また、ヒートポンプ空調機2Aで冷却される空気は、熱交換素子3Aで熱交換されて温度が下げられた外気OAである。このとき、熱交換素子3Aの第1の熱交換風路30aを通る外気OAと、第2の熱交換風路30bを通る冷却された外気OAとの温度差に応じて、第1の熱交換風路30aを通る外気OAが温度低下によって飽和状態となり、第1の熱交換風路30aを通る外気OA中の水分が結露して除湿が行われる。   The air cooled by the heat pump air conditioner 2A is the outside air OA whose temperature has been lowered by heat exchange by the heat exchange element 3A. At this time, the first heat exchange is performed according to the temperature difference between the outside air OA passing through the first heat exchange air passage 30a of the heat exchange element 3A and the cooled outside air OA passing through the second heat exchange air passage 30b. The outside air OA passing through the air passage 30a becomes saturated due to a decrease in temperature, and moisture in the outside air OA passing through the first heat exchange air passage 30a is condensed to perform dehumidification.

更に、外気OAは、冷凍サイクルの蒸発器として機能している第1の熱交換器21を通ることで水分が結露して除湿される。このとき、外気OAは第1の熱交換器21への導入前に温度が下げられていることから相対湿度が上昇しており、ヒートポンプ空調機2Aによる冷却能力を上げることなく、すなわち、消費電力を増加させることなく除湿量を増加させて、夏季では高温中湿の外気OAを、必要以上の温度低下を抑えた中温低湿の空気とする。   Further, the outside air OA passes through the first heat exchanger 21 functioning as an evaporator of the refrigeration cycle, and moisture is condensed and dehumidified. At this time, since the temperature of the outside air OA has been lowered before being introduced into the first heat exchanger 21, the relative humidity has increased, so that the cooling capacity of the heat pump air conditioner 2A is not increased, that is, the power consumption. The amount of dehumidification is increased without increasing the temperature, and the outside air OA having high temperature and medium humidity is made to be medium temperature and low humidity air in which the temperature decrease more than necessary is suppressed in summer.

そして、熱交換素子3A及びヒートポンプ空調機2Aを通って中温低湿となった外気OAは、給気SAとして給気口52から室内に給気される。   Then, the outside air OA that has become intermediate temperature and low humidity through the heat exchange element 3A and the heat pump air conditioner 2A is supplied into the room as an air supply SA from the air supply port 52.

なお、熱交換素子3A及び第1の熱交換器21で発生した結露水はドレンパン60で回収され、室外へ排水される。   In addition, the dew condensation water which generate | occur | produced in 3 A of heat exchange elements and the 1st heat exchanger 21 is collect | recovered with the drain pan 60, and is drained outside.

除湿モード及び衣類乾燥モードでは、外気OAが通る風路を、熱交換素子3Aの第1の熱交換風路30aを通る風路に切り替えることで、給気による室内の換気を行いながら、室内を冷やし過ぎることなく、室内の除湿が可能となり、室内の相対湿度を低下させて、夏季等に涼しさを得られるようにすることができる。また、室内の湿度を下げることで、衣類の乾燥を促進させることができる。   In the dehumidifying mode and the clothes drying mode, the air passage through which the outside air OA passes is switched to the air passage through the first heat exchanging air passage 30a of the heat exchanging element 3A. The room can be dehumidified without being overcooled, and the indoor relative humidity can be lowered to obtain coolness in summer or the like. Moreover, drying of clothing can be promoted by reducing the humidity in the room.

また、熱交換素子3Aとヒートポンプ空調機2Aの作用で除湿を行って、ドレンパン60で結露水を回収することで、給気口52での結露の発生を防ぐことができる。そして、除湿量を増やしても空気の再加熱の必要がないので、ヒータ等が不要であり、装置構成の複雑化を防ぐことができる。   Further, by performing dehumidification by the action of the heat exchange element 3A and the heat pump air conditioner 2A and collecting the dew condensation water with the drain pan 60, the occurrence of dew condensation at the air supply port 52 can be prevented. And even if it increases dehumidification amount, since it is not necessary to reheat air, a heater etc. are unnecessary and the complication of an apparatus structure can be prevented.

なお、除湿モードでは、全閉とした第2の取入口51bを風路開閉ダンパ54によって徐々に開いていくことで、第1のダンパ54aと第2のダンパ54bの開度に応じて熱交換素子3Aでの熱交換効率を低下させ、吹き出す冷風の温湿度を調整することが可能である。   In the dehumidifying mode, the second intake port 51b, which is fully closed, is gradually opened by the air passage opening / closing damper 54, so that heat exchange is performed according to the opening degree of the first damper 54a and the second damper 54b. It is possible to reduce the heat exchange efficiency in the element 3A and to adjust the temperature and humidity of the cold air blown out.

(2)冷房モードの動作例
冷房モードでは、風路開閉ダンパ54の動作で第2のダンパ54bを開けて、非熱交換給気風路5Bと連通する第2の取入口51bを全開にすると共に、熱交換給気風路5Aと連通する第1の取入口51aを、第1のダンパ54aによって全閉にして、外気OAの全量を熱交換素子3Aの第1の熱交換風路30aをバイパスさせる。
(2) Example of operation in cooling mode In the cooling mode, the second damper 54b is opened by the operation of the air path opening / closing damper 54, and the second intake port 51b communicating with the non-heat exchange air supply path 5B is fully opened. The first intake port 51a communicating with the heat exchange supply air passage 5A is fully closed by the first damper 54a, and the entire amount of the outside air OA is bypassed by the first heat exchange air passage 30a of the heat exchange element 3A. .

また、ヒートポンプ空調機2Aは、四方弁25により冷凍サイクルを構成して圧縮機23を作動させることで、第1の熱交換器21を蒸発器として機能させ、蒸発器による冷媒の吸熱作用で外気OAの冷却を行う。このとき、第2の熱交換器22は凝縮器として機能し、冷媒を冷却して液化させている。   Further, the heat pump air conditioner 2A configures the refrigeration cycle by the four-way valve 25 and operates the compressor 23, thereby causing the first heat exchanger 21 to function as an evaporator, and the outside air by the heat absorption action of the refrigerant by the evaporator. Cool OA. At this time, the second heat exchanger 22 functions as a condenser and cools and liquefies the refrigerant.

以上の状態で、送風ファン部53を作動させると、第2の取入口51bから外気OAが吸い込まれ、外気OAの全量が非熱交換給気風路5Bへ供給される。非熱交換給気風路5Bでは、熱交換素子3Aの第1の熱交換風路30aをバイパスして、外気OAがヒートポンプ空調機2Aの第1の熱交換器21へ供給される。   When the blower fan unit 53 is operated in the above state, the outside air OA is sucked from the second intake port 51b, and the entire amount of the outside air OA is supplied to the non-heat exchange supply air passage 5B. In the non-heat exchange air supply path 5B, the outside air OA is supplied to the first heat exchanger 21 of the heat pump air conditioner 2A, bypassing the first heat exchange path 30a of the heat exchange element 3A.

そして、冷凍サイクルの蒸発器として機能している第1の熱交換器21を通ることで冷却された外気OAが、熱交換素子3Aの第2の熱交換風路30bを通り、給気SAとして給気口52から室内に給気される。   Then, the outside air OA cooled by passing through the first heat exchanger 21 functioning as an evaporator of the refrigeration cycle passes through the second heat exchange air passage 30b of the heat exchange element 3A and serves as the supply air SA. Air is supplied into the room through the air supply port 52.

なお、第1の熱交換器21で発生した結露水はドレンパン60で回収され、室外へ排水される。   In addition, the dew condensation water which generate | occur | produced in the 1st heat exchanger 21 is collect | recovered with the drain pan 60, and is drained outside.

冷房モードでは、外気OAが通る風路を、熱交換素子3Aの第1の熱交換風路30aをバイパスさせる非熱交換給気風路5Bに切り替えることで、夏季で温度が高い外気OAと、ヒートポンプ空調機2Aで冷却された空気との間で熱交換が行われない。   In the cooling mode, the air path through which the outside air OA passes is switched to the non-heat exchange air supply path 5B that bypasses the first heat exchange air path 30a of the heat exchange element 3A, so that the outside air OA having a high temperature in summer and the heat pump Heat exchange is not performed between the air cooled by the air conditioner 2A.

これにより、ヒートポンプ空調機2Aで冷却された外気OAの温度上昇を防ぎ、高温の外気OAを、ヒートポンプ空調機2Aの運転能力に応じて中温あるいは低温の空気として給気し、室内の冷房を行うことができる。また、給気による室内の換気を行うことができる。   Thereby, the temperature rise of the outside air OA cooled by the heat pump air conditioner 2A is prevented, and the high temperature outside air OA is supplied as medium or low temperature air according to the operation capability of the heat pump air conditioner 2A to cool the room. be able to. Moreover, indoor ventilation can be performed by supplying air.

なお、冷房モードでは、全閉とした第1の取入口51aを風路開閉ダンパ54によって徐々に開いていくと、第1のダンパ54aと第2のダンパ54bの開度に応じて、所定量の外気OAと、ヒートポンプ空調機2Aで冷却された外気OAとの間で熱交換が行われ、吹き出す冷風の温度を調整することが可能である。また、冷房モードで除湿量を調整することも可能である。   In the cooling mode, when the first intake port 51a, which is fully closed, is gradually opened by the air passage opening / closing damper 54, a predetermined amount is set according to the opening degree of the first damper 54a and the second damper 54b. Is exchanged between the outside air OA and the outside air OA cooled by the heat pump air conditioner 2A, and the temperature of the cool air blown out can be adjusted. It is also possible to adjust the dehumidification amount in the cooling mode.

(3)加湿暖房モードの動作例
加湿暖房モードでは、風路開閉ダンパ54の動作で第2のダンパ54bを開けて、非熱交換給気風路5Bと連通する第2の取入口51bを全開にすると共に、熱交換給気風路5Aと連通する第1の取入口51aを、第1のダンパ54aによって全閉にして、外気OAの全量を熱交換素子3Aの第1の熱交換風路30aをバイパスさせる。
(3) Operation Example in Humidification Heating Mode In the humidification heating mode, the second damper 54b is opened by the operation of the air passage opening / closing damper 54, and the second intake port 51b communicating with the non-heat exchange air supply air passage 5B is fully opened. At the same time, the first intake port 51a communicating with the heat exchange air supply air passage 5A is fully closed by the first damper 54a, and the entire amount of the outside air OA is changed to the first heat exchange air passage 30a of the heat exchange element 3A. Bypass.

また、ヒートポンプ空調機2Aは、四方弁25によりヒートポンプを構成して圧縮機23を作動させることで、第1の熱交換器21を凝縮器として機能させ、凝縮器による冷媒の放熱作用で外気OAの加熱を行う。このとき、第2の熱交換器22は蒸発器として機能し、冷媒を気化させている。   Further, the heat pump air conditioner 2A configures the heat pump by the four-way valve 25 and operates the compressor 23, thereby causing the first heat exchanger 21 to function as a condenser, and the outside air OA by the heat radiation action of the refrigerant by the condenser. Heating. At this time, the second heat exchanger 22 functions as an evaporator and vaporizes the refrigerant.

更に、ヒートポンプ空調機2Aの第1の熱交換器21より下流の熱交換給気風路5Aに、散水装置62によって散水を行う。   Further, water is sprayed by the watering device 62 to the heat exchange air supply air passage 5A downstream of the first heat exchanger 21 of the heat pump air conditioner 2A.

以上の状態で、送風ファン部53を作動させると、第2の取入口51bから外気OAが吸い込まれ、外気OAの全量が非熱交換給気風路5Bへ供給される。非熱交換給気風路5Bでは、熱交換素子3Aの第1の熱交換風路30aをバイパスして、外気OAがヒートポンプ空調機2Aの第1の熱交換器21へ供給される。   When the blower fan unit 53 is operated in the above state, the outside air OA is sucked from the second intake port 51b, and the entire amount of the outside air OA is supplied to the non-heat exchange supply air passage 5B. In the non-heat exchange air supply path 5B, the outside air OA is supplied to the first heat exchanger 21 of the heat pump air conditioner 2A, bypassing the first heat exchange path 30a of the heat exchange element 3A.

そして、ヒートポンプの凝縮器として機能している第1の熱交換器21を通ることで加熱された外気OAが、散水装置62による散水で加湿され、熱交換素子3Aの第2の熱交換風路30bを通り、給気SAとして給気口52から室内に給気される。   Then, the outside air OA heated by passing through the first heat exchanger 21 functioning as a condenser of the heat pump is humidified by watering by the watering device 62, and the second heat exchange air passage of the heat exchange element 3A. The air is supplied into the room through the air supply port 52 as air supply SA through 30b.

なお、散水装置62によって散水された水の余剰分はドレンパン60で回収され、室外へ排水される。   In addition, the surplus water sprinkled by the sprinkler 62 is collected by the drain pan 60 and drained to the outside.

加湿暖房モードでは、外気OAが通る風路を、熱交換素子3Aの第1の熱交換風路30aをバイパスさせる非熱交換給気風路5Bに切り替えることで、冬季で温度が低い外気OAと、ヒートポンプ空調機2Aで加熱された空気との間で熱交換が行われない。   In the humidification heating mode, by switching the air passage through which the outside air OA passes to the non-heat exchange air supply passage 5B that bypasses the first heat exchange air passage 30a of the heat exchange element 3A, the outside air OA having a low temperature in the winter season, Heat exchange is not performed between the air heated by the heat pump air conditioner 2A.

これにより、ヒートポンプ空調機2Aで加熱された外気OAの温度低下を防ぎ、低温低湿の外気OAを、ヒートポンプ空調機2Aの運転能力と、散水装置62の給水量に応じて中温高湿の空気として給気して、室内の加湿暖房を行うことができ、別の加湿装置を設置することなく、室内の過乾燥を防ぐことができる。また、給気による室内の換気を行うことができる。   Thereby, the temperature drop of the outside air OA heated by the heat pump air conditioner 2A is prevented, and the low temperature and low humidity outside air OA is changed into the medium temperature and high humidity air according to the operation capacity of the heat pump air conditioner 2A and the water supply amount of the watering device 62. It is possible to supply air and perform indoor humidification heating, and it is possible to prevent indoor overdrying without installing a separate humidifier. Moreover, indoor ventilation can be performed by supplying air.

更に、ヒートポンプ空調機2Aで加熱された外気OAの温度低下を防ぐことで、給気される空気が飽和状態になることを防ぎ、加湿のために散水した水が結露して排水される無駄を低減することができる。   Furthermore, by preventing the temperature of the outside air OA heated by the heat pump air conditioner 2A from decreasing, the supplied air is prevented from becoming saturated, and the water sprayed for humidification is condensed and drained. Can be reduced.

なお、加湿暖房モードでは、全閉とした第1の取入口51aを風路開閉ダンパ54によって徐々に開いていくと、第1のダンパ54aと第2のダンパ54bの開度に応じて、所定量の外気OAと、ヒートポンプ空調機2Aで加熱された外気OAとの間で熱交換が行われ、吹き出す温風の温度を調整することが可能である。   In the humidification heating mode, when the first intake port 51a, which is fully closed, is gradually opened by the air passage opening / closing damper 54, depending on the opening degree of the first damper 54a and the second damper 54b, Heat exchange is performed between the fixed amount of outside air OA and the outside air OA heated by the heat pump air conditioner 2A, and the temperature of the hot air blown out can be adjusted.

(4)暖房モードの動作例
暖房モードでは、風路開閉ダンパ54の動作で第2のダンパ54bを開けて、非熱交換給気風路5Bと連通する第2の取入口51bを全開にすると共に、熱交換給気風路5Aと連通する第1の取入口51aを、第1のダンパ54aによって全閉にして、外気OAの全量を熱交換素子3Aの第1の熱交換風路30aをバイパスさせる。
(4) Operation example in heating mode In the heating mode, the second damper 54b is opened by the operation of the air passage opening / closing damper 54, and the second intake port 51b communicating with the non-heat exchange air supply air passage 5B is fully opened. The first intake port 51a communicating with the heat exchange supply air passage 5A is fully closed by the first damper 54a, and the entire amount of the outside air OA is bypassed by the first heat exchange air passage 30a of the heat exchange element 3A. .

また、ヒートポンプ空調機2Aは、四方弁25によりヒートポンプを構成して圧縮機23を作動させることで、第1の熱交換器21を凝縮器として機能させ、凝縮器による冷媒の放熱作用で外気OAの加熱を行う。このとき、第2の熱交換器22は蒸発器として機能し、冷媒を気化させている。   Further, the heat pump air conditioner 2A configures the heat pump by the four-way valve 25 and operates the compressor 23, thereby causing the first heat exchanger 21 to function as a condenser, and the outside air OA by the heat radiation action of the refrigerant by the condenser. Heating. At this time, the second heat exchanger 22 functions as an evaporator and vaporizes the refrigerant.

以上の状態で、送風ファン部53を作動させると、第2の取入口51bから外気OAが吸い込まれ、外気OAの全量が非熱交換給気風路5Bへ供給される。非熱交換給気風路5Bでは、熱交換素子3Aの第1の熱交換風路30aをバイパスして、外気OAがヒートポンプ空調機2Aの第1の熱交換器21へ供給される。   When the blower fan unit 53 is operated in the above state, the outside air OA is sucked from the second intake port 51b, and the entire amount of the outside air OA is supplied to the non-heat exchange supply air passage 5B. In the non-heat exchange air supply path 5B, the outside air OA is supplied to the first heat exchanger 21 of the heat pump air conditioner 2A, bypassing the first heat exchange path 30a of the heat exchange element 3A.

そして、ヒートポンプの凝縮器として機能している第1の熱交換器21を通ることで加熱された外気OAが、熱交換素子3Aの第2の熱交換風路30bを通り、給気SAとして給気口52から室内に給気される。   The outside air OA heated by passing through the first heat exchanger 21 functioning as a heat pump condenser passes through the second heat exchange air passage 30b of the heat exchange element 3A and is supplied as the supply air SA. The air is supplied into the room from the mouth 52.

暖房モードでは、外気OAが通る風路を、熱交換素子3Aの第1の熱交換風路30aをバイパスさせる非熱交換給気風路5Bに切り替えることで、冬季で温度が低い外気OAと、ヒートポンプ空調機2Aで加熱された空気との間で熱交換が行われない。   In the heating mode, by switching the air path through which the outside air OA passes to the non-heat exchange air supply path 5B that bypasses the first heat exchange air path 30a of the heat exchange element 3A, the outside air OA having a low temperature in winter and the heat pump Heat exchange is not performed with the air heated by the air conditioner 2A.

これにより、ヒートポンプ空調機2Aで加熱された外気OAの温度低下を防ぎ、低温の外気OAを、ヒートポンプ空調機2Aの運転能力に応じて中温の空気として給気して、室内の暖房を行うことができる。また、給気による室内の換気を行うことができる。   Thereby, the temperature drop of the outside air OA heated by the heat pump air conditioner 2A is prevented, and the room temperature is heated by supplying the low temperature outside air OA as medium-temperature air according to the operation capability of the heat pump air conditioner 2A. Can do. Moreover, indoor ventilation can be performed by supplying air.

なお、暖房モードでは、全閉とした第1の取入口51aを風路開閉ダンパ54によって徐々に開いていくと、第1のダンパ54aと第2のダンパ54bの開度に応じて、所定量の外気OAと、ヒートポンプ空調機2Aで加熱された外気OAとの間で熱交換が行われ、吹き出す温風の温度を調整することが可能である。   In the heating mode, when the first intake port 51a, which is fully closed, is gradually opened by the air passage opening / closing damper 54, a predetermined amount is set according to the opening degree of the first damper 54a and the second damper 54b. Is exchanged between the outside air OA and the outside air OA heated by the heat pump air conditioner 2A, and the temperature of the hot air blown out can be adjusted.

<第1の実施の形態の換気空調装置の作用効果例>
図7は、第1の実施の形態の換気空調装置の作用効果を説明する動作説明図である。
<Examples of effects of the ventilation air conditioner of the first embodiment>
FIG. 7 is an operation explanatory diagram for explaining the effects of the ventilation air conditioner of the first embodiment.

ここで、第1の実施の形態の換気空調装置1Aは、非熱交換給気風路5Bを、図7(a)及び図7(b)に示すように、熱交換給気風路5Aから分岐する構成としても良い。   Here, the ventilation air conditioner 1A according to the first embodiment branches the non-heat exchange air supply passage 5B from the heat exchange supply air passage 5A as shown in FIGS. 7A and 7B. It is good also as a structure.

また、非熱交換給気風路5Bは、熱交換素子3Aの第1の熱交換風路30aをバイパスするように構成したが、図7(a)及び図7(b)に示す非熱交換給気風路5Cのように、熱交換素子3Aの第2の熱交換風路30bをバイパスするように構成しても良い。   Moreover, although the non-heat exchange air supply passage 5B is configured to bypass the first heat exchange air passage 30a of the heat exchange element 3A, the non-heat exchange supply air passage shown in FIGS. 7A and 7B is used. As with the air flow path 5C, the second heat exchange air path 30b of the heat exchange element 3A may be bypassed.

更に、風路開閉ダンパ54は、図7(a)に示すように、熱交換給気風路5Aと非熱交換給気風路5Bとの分岐箇所、または、熱交換給気風路5Aと非熱交換給気風路5Cとの分岐箇所に備える構成としても良い。   Further, as shown in FIG. 7 (a), the air path opening / closing damper 54 is branched from the heat exchange supply air path 5A and the non-heat exchange supply air path 5B or non-heat exchange with the heat exchange supply air path 5A. It is good also as a structure with which it equips with a branch location with the supply air path 5C.

また、風路開閉ダンパ54は、図7(b)に示すように、熱交換給気風路5Aと非熱交換給気風路5Bとの合流箇所、または、熱交換給気風路5Aと非熱交換給気風路5Cとの合流箇所に備える構成としても良い。   Further, as shown in FIG. 7B, the air path opening / closing damper 54 is joined to the heat exchange air supply path 5A and the non-heat exchange air supply path 5B or non-heat exchange with the heat exchange air supply path 5A. It is good also as a structure with which the confluence | merging location with the supply air path 5C is equipped.

風路の分岐箇所または合流箇所に備えられる風路開閉ダンパ54は、送風ファン部53で吸い込まれる空気の全量を熱交換給気風路5Aに通すか、開度に応じて分配して熱交換給気風路5Aと非熱交換給気風路5B,5Cの双方に通すか、全量を非熱交換給気風路5B,5Cに通すかを切り替えられる構成である。   The air passage opening / closing damper 54 provided at the branching or confluence portion of the air passage passes the entire amount of air sucked by the blower fan unit 53 to the heat exchange air supply passage 5A or distributes the heat according to the opening degree. It is configured to switch between passing through both the air air passage 5A and the non-heat exchange air supply passages 5B and 5C or passing the entire amount through the non-heat exchange air supply passages 5B and 5C.

これにより、送風ファン部53で吸い込んだ外気OAの全量を、熱交換素子3Aを通すかバイパスさせるかを切り替えることができる。なお、ここでの外気OAの全量も、略全量を含む実質的な全量を意味している。また、風路開閉ダンパを、熱交換給気風路と非熱交換給気風路のそれぞれに備える構成としても良い。   Thereby, it is possible to switch whether the entire amount of the outside air OA sucked by the blower fan unit 53 is passed through or bypassed by the heat exchange element 3A. The total amount of outside air OA here also means a substantial total amount including substantially the total amount. Further, the air path opening / closing damper may be provided in each of the heat exchange air supply path and the non-heat exchange air supply path.

図8は、比較例としての換気空調装置の動作説明図である。比較例の換気空調装置101では、空気調和機102と熱交換素子103を備えた構成で、熱交換素子103を通る熱交換給気風路105Aから分岐して熱交換素子103をバイパスするバイパス風路105B,105Cに、風路開閉ダンパ106a,106bを備えている。また、空気を加湿する散水装置107を備えている。   FIG. 8 is an operation explanatory diagram of a ventilation air conditioner as a comparative example. In the ventilation air conditioner 101 of the comparative example, a bypass air passage that bypasses the heat exchange element 103 by branching from the heat exchange air supply passage 105 </ b> A passing through the heat exchange element 103 with a configuration including the air conditioner 102 and the heat exchange element 103. 105B and 105C are provided with air passage opening and closing dampers 106a and 106b. Moreover, the watering apparatus 107 which humidifies air is provided.

図9は、冷房(除湿)を行う動作で外気の全量を熱交換素子に通した場合の空気線図である。ここで、通常の熱交換素子は熱(ここでは温度)交換効率が80%程度であるが、ここでは熱交換効率を100%として動作を説明する。   FIG. 9 is an air diagram when the entire amount of outside air is passed through the heat exchange element in the operation of cooling (dehumidifying). Here, an ordinary heat exchange element has a heat (here, temperature) exchange efficiency of about 80%, but here, the operation will be described assuming that the heat exchange efficiency is 100%.

冷房を行う動作で、外気OAの全量を熱交換素子103に通すために風路開閉ダンパ106a,106bを閉じ、散水装置107を駆動しない。   In the operation of cooling, the air path opening / closing dampers 106a and 106b are closed in order to pass the entire amount of the outside air OA through the heat exchange element 103, and the watering device 107 is not driven.

ここで、空気線図において、状態(1)は、熱交換素子103を通る前の外気OAの温湿度、状態(2)は、熱交換素子103を通った後の外気OAの温湿度、状態(3)は、空気調和機102で空気調和されて熱交換素子103を通る前の外気OAの温湿度、状態(4)は、熱交換素子103を通った後の給気SAの温湿度を示す。   Here, in the air diagram, the state (1) is the temperature and humidity of the outside air OA before passing through the heat exchange element 103, and the state (2) is the temperature and humidity of the outside air OA after passing through the heat exchange element 103. (3) is the temperature and humidity of the outside air OA before being air-conditioned by the air conditioner 102 and passing through the heat exchange element 103, and the state (4) is the temperature and humidity of the supply air SA after passing through the heat exchange element 103. Show.

空気調和機102の能力がB[J/kg(DA)]であるとし、状態(1)の外気OAが35℃、20g/kg(DA)で、状態(1)→(2)の経路と状態(3)→(4)の経路による熱交換A[J/kg(DA)]が、100%の効率で行われる。このとき、状態(4)での給気SAは、およそ25℃、10g/kg(DA)の空気となる。   The capacity of the air conditioner 102 is B [J / kg (DA)], the outside air OA in the state (1) is 35 ° C. and 20 g / kg (DA), and the path of the state (1) → (2) Heat exchange A [J / kg (DA)] through the path of the state (3) → (4) is performed with an efficiency of 100%. At this time, the supply air SA in the state (4) is approximately 25 ° C. and 10 g / kg (DA) of air.

図10は、冷房を行う動作でバイパス風路に空気を通した場合の空気線図である。外気OAの全量を熱交換素子103に通す状態から、風路開閉ダンパ106a,106bのいずれかを開けていくと、熱交換素子103の熱交換効率を落とすことになる。図10では、温度の交換効率を50パーセントとした場合の空気線図を示し、状態(4)での給気SAは、およそ22℃、11g/kg(DA)の空気となる。   FIG. 10 is an air diagram when air is passed through the bypass air passage in the cooling operation. If one of the air path opening / closing dampers 106a and 106b is opened from a state where the entire amount of the outside air OA is passed through the heat exchange element 103, the heat exchange efficiency of the heat exchange element 103 is lowered. FIG. 10 shows an air diagram when the temperature exchange efficiency is 50%, and the air supply SA in the state (4) is approximately 22 ° C. and 11 g / kg (DA) of air.

このように、バイパス風路105B,105Cを開けることによって熱交換効率を落とす結果、温度は25℃から22℃に下げることができるが、除湿性能は低下し湿度は10g/kg(DA)から11g/kg(DA)に上がる。   As described above, the heat exchange efficiency is lowered by opening the bypass air passages 105B and 105C. As a result, the temperature can be lowered from 25 ° C. to 22 ° C. However, the dehumidifying performance is lowered and the humidity is reduced from 10 g / kg (DA) to 11 g. Raises to / kg (DA).

図8の構成では、風路開閉ダンパ106aを全開にしてバイパス風路105Bに最大風量の空気を通すようにしても、熱交換素子103の一方の風路に空気が通る。同様に、風路開閉ダンパ106bを全開にしてバイパス風路105Cに最大風量の空気を通すようにしても、熱交換素子103の他方の風路に空気が通る。   In the configuration of FIG. 8, even when the air path opening / closing damper 106 a is fully opened and the maximum air volume of air is passed through the bypass air path 105 </ b> B, air passes through one air path of the heat exchange element 103. Similarly, even if the air path opening / closing damper 106b is fully opened and the maximum amount of air is passed through the bypass air path 105C, the air passes through the other air path of the heat exchange element 103.

図11は、冷房を行う動作で外気を熱交換素子に通さない場合の空気線図である。上述したように、比較例の換気空調装置では、熱交換素子103による熱(温度)交換は必ず行われることになり、図10の空気線図に示すような状態(1)→(2)の経路と状態(3)→(4)の経路による熱交換が存在するため、図11の空気線図に示すような完全な冷房状態を実現することができない。   FIG. 11 is an air diagram when the outside air is not passed through the heat exchange element in the operation of cooling. As described above, in the ventilation air conditioner of the comparative example, heat (temperature) exchange by the heat exchange element 103 is always performed, and the state (1) → (2) as shown in the air diagram of FIG. Since there is heat exchange through the route and the route of the state (3) → (4), a complete cooling state as shown in the air diagram of FIG. 11 cannot be realized.

熱交換素子のどちらか一方の風路に空気が流れないようにすれば、状態(1)→(2)の経路と状態(3)→(4)の経路による熱交換が存在しない完全な冷房状態になり、図11に示すように、状態(1)→(4)の経路で状態(4)における給気SAの温度はおよそ18℃を実現できる。   If air is prevented from flowing through one of the air flow paths of the heat exchange element, complete cooling without heat exchange between the path of the state (1) → (2) and the path of the state (3) → (4) exists. As shown in FIG. 11, the temperature of the supply air SA in the state (4) can be approximately 18 ° C. in the path of the state (1) → (4).

しかし、比較例の換気空調装置では、風路開閉ダンパ106a,106bを全開にしても、熱交換素子103の双方の風路に空気が流れるため、給気SAは、18℃以上の温度にしか下げられない課題があった。   However, in the ventilation air conditioner of the comparative example, even if the air passage opening / closing dampers 106a and 106b are fully opened, air flows through both air passages of the heat exchange element 103, so the supply air SA is only at a temperature of 18 ° C. or higher. There were issues that could not be lowered.

このような課題を解決するため、風路開閉ダンパ106aの空気が通る風路面積を、熱交換素子103の空気が通る風路面積に比べて大きくすれば、熱交換素子103の一方の風路に流れる空気の量を減らすことができるが、一部の空気は熱交換素子103の一方の風路を流れ、状態(1)→(2)の経路と状態(3)→(4)の経路による熱交換が存在する。また、風路開閉ダンパ106aの風路面積を大きくする程に、装置が大型化して設置が困難になる。   In order to solve such a problem, if the air passage area through which the air of the air passage opening / closing damper 106a passes is larger than the air passage area through which the air of the heat exchange element 103 passes, one air passage of the heat exchange element 103 is obtained. The amount of air flowing through the heat exchange element 103 can be reduced, but a part of the air flows through one air passage of the heat exchange element 103, and the route of the state (1) → (2) and the route of the state (3) → (4) There is heat exchange due to. Further, as the air passage area of the air passage opening / closing damper 106a is increased, the apparatus becomes larger and the installation becomes difficult.

一方、熱交換素子103の空気が通る風路面積を、風路開閉ダンパ106aの空気が通る風路面積に比べて小さくすれば、熱交換素子103の一方の風路に流れる空気の量を減らすことができるが、一部の空気は熱交換素子103の一方の風路に流れ、状態(1)→(2)の経路と状態(3)→(4)の経路による熱交換が存在する。また、熱交換素子103の風路面積を小さくする程に、圧力損失が増え、送風ファンの能力を上げるか、ファン回転数を上げる必要が生じるが、送風ファンの能力を上げることは装置が大型化する課題、ファン回転数を上げることは消費電力の増加や騒音の発生という課題が生じる。   On the other hand, if the air passage area through which the air of the heat exchange element 103 passes is made smaller than the air passage area through which the air of the air path opening / closing damper 106a passes, the amount of air flowing through one air passage of the heat exchange element 103 is reduced. However, a part of the air flows in one of the air passages of the heat exchange element 103, and there is heat exchange through the path of the state (1) → (2) and the path of the state (3) → (4). Further, as the air passage area of the heat exchange element 103 is reduced, the pressure loss increases, and it is necessary to increase the capacity of the blower fan or increase the rotation speed of the blower fan. Increased fan rotation speed causes problems such as increased power consumption and noise generation.

図12は、加湿暖房を行う動作で外気の全量を熱交換素子に通した場合の空気線図である。   FIG. 12 is an air diagram when the entire amount of outside air is passed through the heat exchange element in the operation of performing humidification heating.

加湿暖房を行う動作で、外気OAの全量を熱交換素子103に通すために風路開閉ダンパ106a,106bを閉じ、加湿の場合は散水装置107を駆動する。ここで、空気線図において、状態(5)は、空気調和機102で空気調和された外気OAの温湿度を示す。   In the operation of performing humidification and heating, the air path opening / closing dampers 106a and 106b are closed in order to pass the entire amount of the outside air OA through the heat exchange element 103. Here, in the air diagram, the state (5) indicates the temperature and humidity of the outside air OA air-conditioned by the air conditioner 102.

空気調和機102の能力がB[J/kg(DA)]であるとし、状態(1)の外気OAが5℃、2g/kg(DA)で、状態(1)→(2)の経路と状態(3)→(4)の経路による熱交換A[J/kg(DA)]が、100%の効率で行われる。   The capacity of the air conditioner 102 is B [J / kg (DA)], the outside air OA in the state (1) is 5 ° C., 2 g / kg (DA), and the path of the state (1) → (2) Heat exchange A [J / kg (DA)] through the path of the state (3) → (4) is performed with an efficiency of 100%.

このとき、外気OAは空気調和機102によって加熱され、(2)→(5)の状態になる。また、散水装置107を駆動しているので、水の蒸発に伴い空気湿度は(5)→(3)の状態になる。これにより、状態(4)での給気SAは、およそ16℃、11g/kg(DA)の空気となる。   At this time, the outside air OA is heated by the air conditioner 102 to be in the state of (2) → (5). In addition, since the watering device 107 is driven, the air humidity changes from (5) to (3) as the water evaporates. Thereby, the supply air SA in the state (4) becomes air of about 16 ° C. and 11 g / kg (DA).

図13は、加湿暖房を行う動作で過加湿が生じた場合の空気線図である。図8の構成では、空気調和機102で加熱された空気を散水装置107で加湿するが、加湿量が過剰になると、状態(3)で相対湿度が100パーセントになり、熱交換素子103の風路内で結露が発生する。そして、空気調和機102で温度が上げられた空気は、状態(1)→(2)の経路と状態(3)→(4)の経路による熱交換で冷却されることによる温度低下で、加湿された空気が除湿されることになり、無駄が生じると共に、結露水を回収する構成が必要となる。   FIG. 13 is an air diagram when excessive humidification occurs in the operation of performing humidification heating. In the configuration of FIG. 8, the air heated by the air conditioner 102 is humidified by the watering device 107, but when the amount of humidification becomes excessive, the relative humidity becomes 100 percent in the state (3), and the wind of the heat exchange element 103 is increased. Condensation occurs in the road. The air whose temperature has been raised by the air conditioner 102 is humidified due to a temperature drop due to cooling by heat exchange through the path of the state (1) → (2) and the path of the state (3) → (4). The dehumidified air will be dehumidified, resulting in waste and a configuration for collecting condensed water.

図14は、加湿暖房を行う動作でバイパス風路に空気を通した場合の空気線図である。外気OAの全量を熱交換素子103に通す状態から、風路開閉ダンパ106a,106bのいずれかを開けていくと、熱交換素子103の熱交換効率を落とすことになる。図14では、温度の交換効率を50パーセントとした場合の空気線図を示し、状態(4)での給気SAは、およそ18℃、10g/kg(DA)の空気となる。   FIG. 14 is an air diagram when air is passed through the bypass air passage in the operation of performing humidification heating. If one of the air path opening / closing dampers 106a and 106b is opened from a state where the entire amount of the outside air OA is passed through the heat exchange element 103, the heat exchange efficiency of the heat exchange element 103 is lowered. FIG. 14 shows an air diagram when the temperature exchange efficiency is 50%, and the supply air SA in the state (4) is approximately 18 ° C. and 10 g / kg (DA) of air.

このように、バイパス風路105B,105Cを開けることによって熱交換効率を落とす結果、温度は16℃から18℃に上げることができるが、加湿性能は低下し湿度は11g/kg(DA)から10g/kg(DA)に下がる。   As described above, the heat exchange efficiency is lowered by opening the bypass air passages 105B and 105C. As a result, the temperature can be increased from 16 ° C. to 18 ° C., but the humidification performance is reduced, and the humidity is reduced from 11 g / kg (DA) to 10 g. Decrease to / kg (DA).

上述したように、図8の構成では、風路開閉ダンパ106a,106bを全開にしてバイパス風路105B,105Cに最大風量の空気を通すようにしても、熱交換素子103に空気が通る。   As described above, in the configuration of FIG. 8, even if the air path opening / closing dampers 106 a and 106 b are fully opened and the maximum air volume of air is passed through the bypass air paths 105 </ b> B and 105 </ b> C, the air passes through the heat exchange element 103.

図15は、加湿暖房を行う動作で外気を熱交換素子に通さない場合の空気線図である。上述したように、比較例の換気空調装置では、熱交換素子103による熱(温度)交換は必ず行われることになり、図14の空気線図に示すような状態(1)→(2)の経路と状態(3)→(4)の経路による熱交換が存在するため、図15の空気線図に示すような完全な加湿暖房状態を実現することができない。   FIG. 15 is an air diagram in the case where the outside air is not passed through the heat exchange element in the operation of performing humidification heating. As described above, in the ventilation air conditioner of the comparative example, heat (temperature) exchange by the heat exchange element 103 is always performed, and the state (1) → (2) as shown in the air diagram of FIG. Since there is heat exchange through the route and the route of the state (3) → (4), a complete humidification heating state as shown in the air diagram of FIG. 15 cannot be realized.

熱交換素子のどちらか一方の風路に空気が流れないようにすれば、状態(1)→(2)の経路と状態(3)→(4)の経路による熱交換が存在しない完全な加湿暖房状態になり、図15に示すように、状態(1)→(5)→(4)の経路で状態(4)における給気SAの温度はおよそ22℃を実現できる。   If air is prevented from flowing in one of the air flow paths of the heat exchange element, complete humidification without heat exchange between the path of the state (1) → (2) and the path of the state (3) → (4) In the heating state, as shown in FIG. 15, the temperature of the supply air SA in the state (4) can be approximately 22 ° C. in the path of the state (1) → (5) → (4).

しかし、比較例の換気空調装置では、風路開閉ダンパ106a,106bを全開にしても、熱交換素子103の双方の風路に空気が流れるため、給気SAは、22℃以下の温度にしか上げられない課題があった。なお、加湿を行わない暖房運転でも、状態(5)→(4)の経路が無くなるが同様の課題がある。   However, in the ventilation air conditioner of the comparative example, even if the air path opening / closing dampers 106a and 106b are fully opened, air flows through both the air paths of the heat exchange element 103, so the supply air SA is only at a temperature of 22 ° C. or less. There was a problem that could not be raised. Even in the heating operation without humidification, the route of the state (5) → (4) is lost, but there is a similar problem.

このような課題を解決するため、風路開閉ダンパ106bの空気が通る風路面積を、熱交換素子103の空気が通る風路面積に比べて大きくすれば、熱交換素子103の他方の風路に流れる空気の量を減らすことができるが、一部の空気は熱交換素子103の他方の風路を流れ、状態(1)→(2)の経路と状態(3)→(4)の経路による熱交換が存在する。また、風路開閉ダンパ106bの風路面積を大きくする程に、装置が大型化して設置が困難になる。   In order to solve such a problem, if the air passage area through which the air of the air passage opening / closing damper 106b passes is larger than the air passage area through which the air of the heat exchange element 103 passes, the other air passage of the heat exchange element 103 is obtained. The amount of air flowing through the heat exchange element 103 can be reduced, but part of the air flows through the other air path of the heat exchange element 103, and the path of the state (1) → (2) and the path of the state (3) → (4) There is heat exchange due to. Further, as the air passage area of the air passage opening / closing damper 106b is increased, the apparatus becomes larger and the installation becomes difficult.

一方、熱交換素子103の空気が通る風路面積を、風路開閉ダンパ106bの空気が通る風路面積に比べて小さくすれば、熱交換素子103の他方の風路に流れる空気の量を減らすことができるが、一部の空気は熱交換素子103の他方の風路に流れ、状態(1)→(2)の経路と状態(3)→(4)の経路による熱交換が存在する。また、熱交換素子103の風路面積を小さくする程に、圧力損失が増え、送風ファンの能力を上げるか、ファン回転数を上げる必要が生じるが、送風ファンの能力を上げることは装置が大型化する課題、ファン回転数を上げることは消費電力の増加や騒音の発生という課題が生じる。   On the other hand, if the air passage area through which the air of the heat exchange element 103 passes is made smaller than the air passage area through which the air of the air passage opening / closing damper 106b passes, the amount of air flowing through the other air passage of the heat exchange element 103 is reduced. However, a part of the air flows into the other air path of the heat exchange element 103, and heat exchange exists between the path of the state (1) → (2) and the path of the state (3) → (4). Further, as the air passage area of the heat exchange element 103 is reduced, the pressure loss increases, and it is necessary to increase the capacity of the blower fan or increase the rotation speed of the blower fan. Increased fan rotation speed causes problems such as increased power consumption and noise generation.

これに対して、第1の実施の形態の換気空調装置1Aでは、図3等に示すように、熱交換給気風路5Aと連通した第1の取入口51aと非熱交換給気風路5Bと連通した第2の取入口51bに連動する風路開閉ダンパ54を備えるか、図7に示すように、熱交換給気風路5Aと非熱交換給気風路5B,5Cとの分岐箇所、または、熱交換給気風路5Aと非熱交換給気風路5B,5Cとの合流箇所に風路開閉ダンパ54を備えている。   On the other hand, in the ventilation air conditioner 1A of the first embodiment, as shown in FIG. 3 and the like, the first intake port 51a and the non-heat exchange supply air passage 5B communicated with the heat exchange supply air passage 5A. The air passage opening / closing damper 54 linked to the second intake port 51b communicated is provided, or as shown in FIG. 7, a branch point between the heat exchange air supply passage 5A and the non-heat exchange supply air passages 5B and 5C, or An air path opening / closing damper 54 is provided at a junction between the heat exchange air supply path 5A and the non-heat exchange air supply paths 5B and 5C.

これにより、熱交換素子3Aを通る風路を全閉することができ、冷房モードでは、図11に示す状態(1)→(4)の経路で完全な冷房状態を実現できる。また、加湿暖房モードでは、図15に示す状態(1)→(5)→(4)の経路で完全な加湿暖房状態を実現できる。   Thereby, the air path passing through the heat exchange element 3A can be fully closed, and in the cooling mode, a complete cooling state can be realized by the path of the state (1) → (4) shown in FIG. Further, in the humidifying and heating mode, a complete humidifying and heating state can be realized by the route of the states (1) → (5) → (4) shown in FIG.

図16は、第1の実施の形態の換気空調装置と比較例の換気空調装置の温度制御範囲を示す説明図である。   FIG. 16 is an explanatory diagram illustrating temperature control ranges of the ventilation air conditioner of the first embodiment and the ventilation air conditioner of the comparative example.

ここで、熱交換素子を通る熱交換給気風路と、熱交換素子をバイパスする非熱交換給気風路(バイパス風路)の風路面積(圧力損失)を同一として風路開閉ダンパを開いた場合、比較例の換気空調装置では、熱交換効率は最大100%からみなしの熱交換効率が50%に変化する。これに対して、第1の実施の形態の換気空調装置では、熱交換効率は最大100%からみなしの熱交換効率が0%に変化する。   Here, the air path open / close damper was opened with the same heat path area (pressure loss) of the heat exchange air supply path passing through the heat exchange element and the non-heat exchange supply air path bypassing the heat exchange element (bypass air path). In this case, in the ventilation air conditioner of the comparative example, the heat exchange efficiency changes from a maximum of 100% to an assumed heat exchange efficiency of 50%. On the other hand, in the ventilation air conditioner of the first embodiment, the heat exchange efficiency changes from a maximum of 100% to an assumed heat exchange efficiency of 0%.

これにより、冷房時には、比較例の換気空調装置では、温度制御範囲が22℃〜25℃であるのに対して、第1の実施の形態の換気空調装置では、温度制御範囲が18℃〜25℃と広くなる。   Thereby, at the time of cooling, in the ventilation air conditioner of the comparative example, the temperature control range is 22 ° C. to 25 ° C., whereas in the ventilation air conditioner of the first embodiment, the temperature control range is 18 ° C. to 25 ° C. Widens with ℃.

また、加湿暖房時には、比較例の換気空調装置では、温度制御範囲が16℃〜18℃であるのに対して、第1の実施の形態の換気空調装置では、温度制御範囲が16℃〜22℃とやはり広くなる。   Further, during humidification heating, the temperature control range is 16 ° C. to 18 ° C. in the ventilation air conditioner of the comparative example, whereas the temperature control range is 16 ° C. to 22 ° in the ventilation air conditioner of the first embodiment. After all it becomes wide with ℃.

図17は、第1の実施の形態の換気空調装置の風路構成の一例を示す説明図で、符号OA,SA及び(1)〜(6)は図7の符号と対応し、図7に示す構成における全ての風路構成を示す。   FIG. 17 is an explanatory diagram showing an example of the air path configuration of the ventilation air conditioner according to the first embodiment. Reference numerals OA and SA and (1) to (6) correspond to the reference numerals in FIG. All the airway configurations in the configuration shown are shown.

風路構成1は、外気OAを、熱交換素子3Aの第1の熱交換風路と第2の熱交換風路は通し、非熱交換給気風路5B(バイパス1)と、非熱交換給気風路5C(バイパス2)の双方を通さない構成である。   In the air path configuration 1, the outside air OA is passed through the first heat exchange air path and the second heat exchange air path of the heat exchange element 3A, and the non-heat exchange air supply path 5B (bypass 1) and the non-heat exchange supply It is the structure which does not let both air flow path 5C (bypass 2) pass.

風路構成2は、外気OAを、熱交換素子3Aの第1の熱交換風路と非熱交換給気風路5C(バイパス2)は通し、非熱交換給気風路5B(バイパス1)と熱交換素子3Aの第2の熱交換風路は通さない構成である。   The air path configuration 2 passes the outside air OA through the first heat exchange air path of the heat exchange element 3A and the non-heat exchange air supply path 5C (bypass 2), and heats with the non-heat exchange air supply path 5B (bypass 1). The second heat exchange air passage of the exchange element 3A is not passed.

風路構成3は、外気OAを、熱交換素子3Aの第1の熱交換風路と第2の熱交換風路と非熱交換給気風路5C(バイパス2)は通し、非熱交換給気風路5B(バイパス1)は通さない構成である。   The air path configuration 3 allows the outside air OA to pass through the first heat exchange air path, the second heat exchange air path, and the non-heat exchange air supply air path 5C (bypass 2) of the heat exchange element 3A, and non-heat exchange air supply air. The path 5B (bypass 1) is configured not to pass.

風路構成4は、外気OAを、非熱交換給気風路5B(バイパス1)と熱交換素子3Aの第2の熱交換風路は通し、熱交換素子3Aの第1の熱交換風路と非熱交換給気風路5C(バイパス2)は通さない構成である。   The air path configuration 4 allows the outside air OA to pass through the non-heat exchange air supply path 5B (bypass 1) and the second heat exchange air path of the heat exchange element 3A, and the first heat exchange air path of the heat exchange element 3A. The non-heat exchange air supply passage 5C (bypass 2) is not allowed to pass.

風路構成5は、外気OAを、非熱交換給気風路5B(バイパス1)と非熱交換給気風路5C(バイパス2)は通し、熱交換素子3Aの第1の熱交換風路と第2の熱交換風路は通さない構成である。   The air path configuration 5 passes the outside air OA through the non-heat exchange supply air path 5B (bypass 1) and the non-heat exchange supply air path 5C (bypass 2), and the first heat exchange air path of the heat exchange element 3A and the first heat exchange air path 5C (bypass 2). The second heat exchange air passage is not allowed to pass.

風路構成6は、外気OAを、非熱交換給気風路5B(バイパス1)と熱交換素子3Aの第2の熱交換風路と非熱交換給気風路5C(バイパス2)は通し、熱交換素子3Aの第1の熱交換風路は通さない構成である。   The air path configuration 6 allows the outside air OA to pass through the non-heat exchange air supply path 5B (bypass 1), the second heat exchange air path of the heat exchange element 3A and the non-heat exchange air supply path 5C (bypass 2), and heat. The first heat exchange air passage of the exchange element 3A is not passed.

風路構成7は、外気OAを、熱交換素子3Aの第1の熱交換風路と非熱交換給気風路5B(バイパス1)と熱交換素子3Aの第2の熱交換風路は通し、非熱交換給気風路5C(バイパス2)は通さない構成である。   The air path configuration 7 allows the outside air OA to pass through the first heat exchange air path of the heat exchange element 3A, the non-heat exchange supply air path 5B (bypass 1), and the second heat exchange air path of the heat exchange element 3A. The non-heat exchange air supply passage 5C (bypass 2) is not allowed to pass.

風路構成8は、外気OAを、熱交換素子3Aの第1の熱交換風路と非熱交換給気風路5B(バイパス1)と非熱交換給気風路5C(バイパス2)は通し、熱交換素子3Aの第2の熱交換風路は通さない構成である。   The air path configuration 8 allows the outside air OA to pass through the first heat exchange air path of the heat exchange element 3A, the non-heat exchange air supply air path 5B (bypass 1), and the non-heat exchange air supply air path 5C (bypass 2). The second heat exchange air passage of the exchange element 3A is not passed.

風路構成9は、外気OAを、熱交換素子3Aの第1の熱交換風路と非熱交換給気風路5B(バイパス1)と熱交換素子3Aの第2の熱交換風路と非熱交換給気風路5C(バイパス2)の全てを通す構成である。   The air path configuration 9 includes the outside air OA, the first heat exchange air path of the heat exchange element 3A, the non-heat exchange air supply path 5B (bypass 1), and the second heat exchange air path of the heat exchange element 3A and the non-heat. This is a configuration in which all of the replacement air supply path 5C (bypass 2) is passed.

図18は、第1の実施の形態の換気空調装置で実現した風路構成の一例を示す説明図で、図3等で説明した除湿モードと、冷暖房モード及び加湿暖房モードでの風路構成を示す。   FIG. 18 is an explanatory diagram showing an example of the air path configuration realized by the ventilation air conditioner of the first embodiment, and shows the air path configuration in the dehumidification mode, the cooling / heating mode, and the humidifying / heating mode described in FIG. 3 and the like. Show.

除湿モードでは、外気OAを、熱交換素子3Aの第1の熱交換風路と第2の熱交換風路は通し、非熱交換給気風路5B(バイパス1)と、非熱交換給気風路5C(バイパス2)の双方を通さない構成とすることで、除湿量が最大となるようにしている。   In the dehumidifying mode, the outside air OA passes through the first heat exchange air passage and the second heat exchange air passage of the heat exchange element 3A, and the non-heat exchange air supply passage 5B (bypass 1) and the non-heat exchange air supply passage. By adopting a configuration in which both of 5C (bypass 2) do not pass, the amount of dehumidification is maximized.

冷暖房モード及び加湿暖房モードでは、外気OAを、非熱交換給気風路5B(バイパス1)と熱交換素子3Aの第2の熱交換風路は通し、熱交換素子3Aの第1の熱交換風路と非熱交換給気風路5C(バイパス2)は通さない構成とすることで、熱交換を行わず、ヒートポンプ空調機2Aでの冷暖房の能力が最大となるようにしている。 In the cooling / heating mode and the humidifying / heating mode, the outside air OA passes through the non-heat exchange air supply passage 5B (bypass 1) and the second heat exchange air passage of the heat exchange element 3A, and the first heat exchange air of the heat exchange element 3A. By adopting a configuration that does not allow the passage and the non-heat exchange air supply air passage 5C (bypass 2) to pass, heat exchange is not performed, and the air conditioning capability of the heat pump air conditioner 2A is maximized.

さて、ヒートポンプ空調機2Aの能力がB[J/kg(DA)]で冷房運転を行った場合、ヒートポンプ空調機2A単体では、図11の空気線図に示すように、およそ13g/kg(DA)まで除湿できる。これに対して、外気OAの全量を熱交換素子3Aに通して除湿運転を行うと、図9の空気線図に示すように、同じエネルギーを使っておよそ10g/kg(DA)まで除湿できる。   When the cooling operation is performed with the heat pump air conditioner 2A having a capacity of B [J / kg (DA)], the heat pump air conditioner 2A alone is approximately 13 g / kg (DA) as shown in the air diagram of FIG. ) Can be dehumidified. On the other hand, when the dehumidifying operation is performed by passing the entire amount of the outside air OA through the heat exchange element 3A, it can be dehumidified to about 10 g / kg (DA) using the same energy as shown in the air diagram of FIG.

これにより、熱交換素子3Aを使用した方が除湿性能を向上させることができる。一方、ヒートポンプ空調機2A単体で、10g/kg(DA)まで除湿する場合は、エネルギーが多く必要となり、熱交換素子3Aを使用した構成では、省エネルギーが実現できる。   Thereby, the direction using 3A of heat exchange elements can improve dehumidification performance. On the other hand, when the heat pump air conditioner 2A alone is dehumidified to 10 g / kg (DA), a large amount of energy is required, and the configuration using the heat exchange element 3A can realize energy saving.

<第2の実施の形態の換気空調装置の構成例>
図19は、第2の実施の形態の換気空調装置の一例を示す構成図である。第2の実施の形態の換気空調装置10Aは、例えば第1の実施の形態の換気空調装置1Aと、熱交換装置11を備える。
<Configuration Example of Ventilation Air Conditioner of Second Embodiment>
FIG. 19 is a configuration diagram illustrating an example of a ventilation air conditioner according to the second embodiment. The ventilation air conditioner 10A of the second embodiment includes, for example, the ventilation air conditioner 1A of the first embodiment and the heat exchange device 11.

換気空調装置1Aは、上述したように、ヒートポンプ空調機2Aと、熱交換素子3Aを備え、ヒートポンプ空調機2Aで冷却または加熱された空気を、熱交換素子3Aで外気OAと熱交換させる風路と熱交換素子3Aをバイパスさせる風路が運転モードに応じて切り替えられて、除加湿または冷暖房された空気が給気口52から吹き出される。   As described above, the ventilation air conditioner 1A includes the heat pump air conditioner 2A and the heat exchange element 3A, and the air path that exchanges heat of the air cooled or heated by the heat pump air conditioner 2A with the outside air OA by the heat exchange element 3A. The air path that bypasses the heat exchange element 3A is switched according to the operation mode, and the air that has been dehumidified or humidified or air-cooled is blown out from the air supply port 52.

熱交換装置11は、建物201の天井裏、または、図示しないが建物201の壁に設置され、ダクト12を介して接続された換気空調装置1Aから供給された空気を、ダクト13aを介して接続された吹出口グリル13から吹き出す。   The heat exchange device 11 is installed on the back of the ceiling of the building 201 or the wall of the building 201 (not shown), and connects the air supplied from the ventilation air conditioner 1A connected via the duct 12 via the duct 13a. It blows out from the blower outlet grill 13 made.

また、ダクト14aを介して接続された吸込口グリル14から吸い込んだ室内の空気を、ダクト15aを介して接続された排気口グリル15から屋外に排気する。   In addition, the indoor air sucked from the inlet grille 14 connected via the duct 14a is exhausted to the outside from the exhaust grille 15 connected via the duct 15a.

そして、換気空調装置1Aから供給された空気と室内から吸い込んだ空気を、運転モードに応じて熱交換して室内に給気する。   Then, the air supplied from the ventilation air conditioner 1A and the air sucked from the room are heat-exchanged according to the operation mode to be supplied to the room.

図20は、熱交換装置の一例を示す構成図で、図20では、熱交換装置11の内部構成を、模式的な斜視図で示している。   FIG. 20 is a configuration diagram illustrating an example of the heat exchange device. FIG. 20 illustrates a schematic perspective view of the internal configuration of the heat exchange device 11.

熱交換装置11は、換気空調装置1Aから供給された空気と室内から吸い込まれた空気との間で熱交換を行う熱交換素子110を備える。熱交換素子110は、換気空調装置1Aから供給された空気が通る第1の熱交換風路110aと、室内から吸い込んだ空気が通る第2の熱交換風路110bで、空気の流れが例えば対向流とされ、第1の熱交換風路110aの吸込口111aが一方の端部に形成され、吹出口112aが他方の端部に形成される。また、第2の熱交換風路110bの吸込口111bが、第1の熱交換風路110aの吹出口112aと仕切られて他方の端部に形成され、吹出口112bが、第1の熱交換風路110aの吸込口111aと仕切られて一方の端部に形成される。   The heat exchange device 11 includes a heat exchange element 110 that performs heat exchange between the air supplied from the ventilation air conditioner 1A and the air sucked from the room. The heat exchange element 110 includes a first heat exchange air passage 110a through which air supplied from the ventilation air conditioner 1A passes, and a second heat exchange air passage 110b through which air sucked from the room passes. The suction port 111a of the first heat exchange air passage 110a is formed at one end, and the air outlet 112a is formed at the other end. In addition, the suction port 111b of the second heat exchange air passage 110b is formed at the other end parted from the air outlet 112a of the first heat exchange air passage 110a, and the air outlet 112b is formed in the first heat exchange air. It is partitioned from the suction port 111a of the air passage 110a and formed at one end.

熱交換装置11は、熱交換素子110が組み込まれたケース113の一方の側に、吸込口114及び非熱交換給気口115aと、排気口116を備えると共に、ケース113の他方の側に、熱交換給気口115bと還気吸込口117を備える。   The heat exchange device 11 includes a suction port 114, a non-heat exchange air supply port 115 a, and an exhaust port 116 on one side of the case 113 in which the heat exchange element 110 is incorporated, and on the other side of the case 113. A heat exchange air inlet 115b and a return air inlet 117 are provided.

吸込口114は、熱交換素子110の第1の熱交換風路110aの吸込口111aと、非熱交換給気口115aと連通し、図19で説明したダクト12が接続されて、換気空調装置1Aからの空気が、熱交換素子110の第1の熱交換風路110aまたは非熱交換給気口115aに供給される。   The suction port 114 communicates with the suction port 111a of the first heat exchange air passage 110a of the heat exchange element 110 and the non-heat exchange air supply port 115a, and the duct 12 described in FIG. 19 is connected to the ventilation air conditioner. The air from 1A is supplied to the first heat exchange air passage 110a or the non-heat exchange air inlet 115a of the heat exchange element 110.

熱交換給気口115bは、熱交換素子110の第1の熱交換風路110aの吹出口112aと連通し、非熱交換給気口115aと共に、図19で説明したダクト13aが接続されて、熱交換素子110の第1の熱交換風路110aを通った空気または第1の熱交換風路110aをバイパスした空気が、吹出口グリル13から給気SAとして吹き出される。   The heat exchange air inlet 115b communicates with the air outlet 112a of the first heat exchange air passage 110a of the heat exchange element 110, and is connected to the duct 13a described in FIG. 19 together with the non-heat exchange air inlet 115a. Air that has passed through the first heat exchange air passage 110a of the heat exchange element 110 or air that has bypassed the first heat exchange air passage 110a is blown out as the supply air SA from the blowout grill 13.

還気吸込口117は、熱交換素子110の第2の熱交換風路110bの吸込口111bと連通し、図19で説明したダクト14aが接続されて、吸込口グリル14から吸い込まれた還気RAが、熱交換素子110の第2の熱交換風路110bに供給される。   The return air suction port 117 communicates with the suction port 111b of the second heat exchange air passage 110b of the heat exchange element 110, and is connected to the duct 14a described with reference to FIG. RA is supplied to the second heat exchange air passage 110b of the heat exchange element 110.

排気口116は、熱交換素子110の第2の熱交換風路110bの吹出口112bと連通し、図19で説明したダクト15aが接続されて、熱交換素子110の第2の熱交換風路110bを通った空気が、排気口グリル15から排気EAとして排出される。   The exhaust port 116 communicates with the air outlet 112b of the second heat exchange air passage 110b of the heat exchange element 110, and is connected to the duct 15a described in FIG. 19 so that the second heat exchange air passage of the heat exchange element 110 is connected. The air passing through 110b is discharged from the exhaust grill 15 as exhaust EA.

熱交換装置11は、排気口116に排気ファン118を備え、吸込口グリル14から還気RAを吸い込んで、熱交換素子110の第2の熱交換風路110bを通し、排気口グリル15から排気EAを排出する。 The heat exchange device 11 includes an exhaust fan 118 at the exhaust port 116, sucks the return air RA from the suction port grill 14, passes through the second heat exchange air passage 110 b of the heat exchange element 110, and exhausts air from the exhaust port grill 15. EA is discharged.

また、熱交換装置11は、吸込口グリル14に図示しない風路開閉ダンパを備え、換気空調装置1Aから供給された空気を、非熱交換給気口115aか熱交換素子110の第1の熱交換風路110aに分配する。 In addition, the heat exchange device 11 includes an air passage opening / closing damper (not shown) in the suction grill 14, and the air supplied from the ventilation air conditioner 1 </ b> A is used as the first heat of the non-heat exchange air supply port 115 a or the heat exchange element 110. Distribute to the exchange air passage 110a.

<第2の実施の形態の換気空調装置の動作例>
次に、各図を参照して第2の実施の形態の換気空調装置10Aの動作について説明する。
<Operation Example of Ventilation Air Conditioner of Second Embodiment>
Next, the operation of the ventilation air conditioner 10A of the second embodiment will be described with reference to the drawings.

換気空調装置1Aは、除湿モードでは、外気OAと、外気OAをヒートポンプ空調機2Aで冷却した空気が熱交換素子3Aで熱交換され、給気口52から、温度低下が抑えられた除湿された空気が吹き出される。   In the dehumidifying mode, the ventilation air conditioner 1A is dehumidified from the outside air OA and the air obtained by cooling the outside air OA with the heat pump air conditioner 2A by the heat exchange element 3A, and the temperature drop is suppressed from the air supply port 52. Air is blown out.

また、加湿暖房モードでは、外気OAをヒートポンプ空調機2Aで加熱すると共に加湿した空気が、熱交換素子3Aをバイパスして給気口52から吹き出される。   In the humidification heating mode, the outside air OA is heated by the heat pump air conditioner 2A, and the humidified air is blown out from the air supply port 52, bypassing the heat exchange element 3A.

熱交換装置11は、除湿モードでは、ダクト12を介して換気空調装置1Aから供給された除湿された空気と、ダクト14aを介して吸込口グリル14から吸い込んだ室内からの還気RAを熱交換して、換気空調装置1Aから供給された除湿された空気を室温に近づけた給気SAとして、ダクト13aを介して吹出口グリル13から吹き出すと共に、還気RAをダクト15aを介して排気口グリル15から排気EAとして屋外に排出する。   In the dehumidifying mode, the heat exchange device 11 exchanges heat between the dehumidified air supplied from the ventilation air conditioner 1A via the duct 12 and the return air RA from the room sucked from the inlet grille 14 via the duct 14a. Then, the dehumidified air supplied from the ventilation air conditioner 1A is blown out from the outlet grill 13 through the duct 13a as the supply air SA close to room temperature, and the return air RA is exhausted through the duct 15a. 15 is discharged outdoors as exhaust EA.

また、加湿暖房モードでは、ダクト12を介して換気空調装置1Aから供給された加湿された空気を、熱交換素子110をバイパスさせて、室内の空気と熱交換することなく給気SAとして吹出口グリル13から吹き出す。   Further, in the humidification heating mode, the humidified air supplied from the ventilation air conditioner 1A via the duct 12 bypasses the heat exchange element 110, and is blown out as an air supply SA without exchanging heat with indoor air. Blow out from the grill 13.

これにより、夏季の除湿モードでは、換気空調装置1Aで除湿された空気を、室温に近づけて給気することができる。また、冬季の加湿暖房モードでは、室温の影響を受けずに、加湿加温された空気を給気することができる。なお、除加湿機能を使わない場合は、室内の空気と外気を直接熱交換できるような風路に切り替えられる構成を備えてもよい。   Thereby, in the dehumidification mode in summer, the air dehumidified by the ventilation air conditioner 1A can be supplied close to room temperature. In the humidification heating mode in winter, humidified and warm air can be supplied without being affected by the room temperature. In addition, when not using a dehumidification / humidification function, you may provide the structure which can be switched to an air path which can directly heat-exchange indoor air and external air.

<第2の実施の形態の換気空調装置の変形例>
図21は、第2の実施の形態の換気空調装置の変形例を示す構成図である。図21(a)の構成では、換気空調装置1Aから供給された空気を分岐チャンバー120で分岐して、各部屋202に設置した熱交換装置11に供給し、各部屋202毎に室内の空気と熱交換して給気する。これにより、各部屋の温度に合わせて除湿された空気を給気可能となる。
<Modification of Ventilation Air Conditioner of Second Embodiment>
FIG. 21 is a configuration diagram illustrating a modified example of the ventilation air conditioner according to the second embodiment. In the configuration of FIG. 21A, the air supplied from the ventilation air conditioner 1A is branched by the branch chamber 120 and supplied to the heat exchange device 11 installed in each room 202. Heat exchange and supply air. As a result, the dehumidified air can be supplied according to the temperature of each room.

図21(b)の構成では、換気空調装置1Aから供給された空気を、建物201の廊下203等に設置した熱交換装置11で室内の空気と熱交換し、分岐チャンバー120で分岐して各部屋202に給気する。これにより、室内の温度に合わせて除湿された空気を各部屋に給気可能となる。   In the configuration of FIG. 21 (b), the air supplied from the ventilation air conditioner 1A is exchanged with the indoor air by the heat exchange device 11 installed in the corridor 203 of the building 201, and the air is branched by the branch chamber 120. Air is supplied to the room 202. Thereby, the air dehumidified according to the room temperature can be supplied to each room.

<第3の実施の形態の換気空調装置の構成例>
さて、換気空調装置で除湿された空気や加湿された空気を室内に給気した場合、1つの吹出口から吹き出す構成では、夏季に除湿空気を室内に給気すると、除湿空気は部屋の下方に降下する。一方、冬季に加湿空気を室内に給気すると、加湿空気は部屋の上方に上昇する。これにより、室内で湿度の異なる空気の分布が見られる。
<Configuration Example of Ventilation Air Conditioner of Third Embodiment>
Now, when air dehumidified by a ventilation air conditioner or humidified air is supplied into the room, if the dehumidified air is supplied into the room in the summer, the dehumidified air is placed below the room. Descent. On the other hand, when humidified air is supplied indoors in winter, the humidified air rises above the room. Thereby, the distribution of air with different humidity is seen in the room.

これは、水と空気の分子量は水の方が軽く、乾燥空気の方が重いため、水分を含んだ空気の重量差によって分布が発生することによる。   This is because the molecular weight of water and air is lighter in water and heavier in dry air, and therefore, the distribution occurs due to the difference in the weight of moisture-containing air.

このように、室内の上下で湿度に差があることで、人が立ったり座ったりしたときの快適性に差が生じる。   As described above, the difference in humidity between the upper and lower sides of the room causes a difference in comfort when a person stands or sits down.

また、例えば除湿空気も加湿空気も同じ20℃で給気しても、夏季は室内の温度が高く除湿空気は下降し、冬季は室内の温度が低く加湿空気は上昇するために、室内で湿度の異なる空気の分布が発生することになる。このように、密度差だけでなく温度状況によっても分布が生じる。   Further, for example, even if dehumidified air and humidified air are supplied at the same temperature of 20 ° C., the indoor temperature is high in summer, the dehumidified air is lowered, and in winter, the indoor temperature is low and the humidified air is increased. Different air distributions will occur. As described above, the distribution is caused not only by the density difference but also by the temperature condition.

図22は、第3の実施の形態の換気空調装置の一例を示す構成図である。第3の実施の形態の換気空調装置10Bは、例えば第1の実施の形態の換気空調装置1Aと、除湿空気が吹き出される吹出口グリル13Dと、加湿空気が吹き出される吹出口グリル13Wと、空気を吹き出す吹出口グリルを切り替える風路切替ダンパ16と、換気空調装置1Aと各吹出口グリルを接続するダクト17を備える。   FIG. 22 is a configuration diagram illustrating an example of a ventilation air conditioner according to the third embodiment. The ventilation air conditioner 10B of the third embodiment includes, for example, the ventilation air conditioner 1A of the first embodiment, an outlet grill 13D from which dehumidified air is blown, and an outlet grill 13W from which humidified air is blown. The air path switching damper 16 that switches the outlet grill that blows out the air, and the duct 17 that connects the ventilation air conditioner 1A and each of the outlet grills are provided.

吹出口グリル13Dは、部屋202の天井近くの壁または天井に設置され、吹出口グリル13Wは、部屋202の床近くの壁または床に設置される。風路切替ダンパ16は、換気空調装置1Aから吹き出された空気を、運転モードに応じて吹出口グリル13Dに送るか吹出口グリル13Wに送るかを切り替える。 The outlet grill 13D is installed on the wall or ceiling near the ceiling of the room 202, and the outlet grill 13W is installed on the wall or floor near the floor of the room 202. The air path switching damper 16 switches whether the air blown out from the ventilation air conditioner 1A is sent to the blowout grill 13D or the blowout grill 13W according to the operation mode.

<第3の実施の形態の換気空調装置の動作例>
次に、各図を参照して第3の実施の形態の換気空調装置10Bの動作について説明する。
<Operation Example of Ventilation Air Conditioner of Third Embodiment>
Next, with reference to each figure, operation | movement of the ventilation air conditioner 10B of 3rd Embodiment is demonstrated.

換気空調装置1Aは、除湿モードでは、図3等で説明したように、外気OAと、外気OAをヒートポンプ空調機2Aで冷却した空気が熱交換素子3Aで熱交換され、給気口52から、温度低下が抑えられた除湿された空気が吹き出される。   In the dehumidifying mode, the ventilation air conditioner 1A, as described with reference to FIG. 3 and the like, exchanges heat between the outside air OA and the outside air OA cooled by the heat pump air conditioner 2A by the heat exchange element 3A. The dehumidified air in which the temperature drop is suppressed is blown out.

また、除湿モードでは、風路切替ダンパ16は、吹出口グリル13Dに風路を切り替える。これにより、換気空調装置1Aから吹き出された除湿空気は、部屋202の上方で吹出口グリル13Dから給気される。除湿空気は重いため、部屋202内を降下して行き、室内が略均一の湿度になる。   In the dehumidifying mode, the air path switching damper 16 switches the air path to the outlet grill 13D. Thereby, the dehumidified air blown out from the ventilation air conditioner 1 </ b> A is supplied from the blowout grill 13 </ b> D above the room 202. Since the dehumidified air is heavy, the dehumidified air descends in the room 202, and the room has a substantially uniform humidity.

換気空調装置1Aは、加湿暖房モードでは、図3等で説明したように、外気OAをヒートポンプ空調機2Aで加熱すると共に加湿した空気が、熱交換素子3Aをバイパスして給気口52から吹き出される。   In the humidification heating mode, the ventilation air conditioner 1A heats the outside air OA with the heat pump air conditioner 2A and the humidified air blows out from the air supply port 52 bypassing the heat exchange element 3A as described with reference to FIG. Is done.

また、加湿暖房モードでは、風路切替ダンパ16は、吹出口グリル13Wに風路を切り替える。これにより、換気空調装置1Aから吹き出された加湿空気は、部屋202の下方で吹出口グリル13Wから給気される。加湿空気は軽いため、部屋202内を上昇して行き、室内が略均一の湿度になる。   Moreover, in humidification heating mode, the air path switching damper 16 switches an air path to the blower outlet grill 13W. Thereby, the humidified air blown out from the ventilation air conditioner 1 </ b> A is supplied from the outlet grill 13 </ b> W below the room 202. Since the humidified air is light, it goes up inside the room 202 and the room becomes a substantially uniform humidity.

<第4の実施の形態の換気空調装置の構成例>
換気空調装置で加湿された空気を各部屋に給気する場合、暖房していない部屋では室内温度が低いため、部屋の中で加湿空気が結露してしまう。例えば、室温が10℃の部屋に、16℃、11g/kg(DA)の空気を給気すると、10℃の飽和空気は絶対湿度が7.63g/kgであるので、差分の水分が結露する。
<Configuration Example of Ventilation Air Conditioner of Fourth Embodiment>
When air humidified by a ventilation air conditioner is supplied to each room, the room temperature is low in a room that is not heated, so that the humid air is condensed in the room. For example, when air of 16 ° C. and 11 g / kg (DA) is supplied to a room having a room temperature of 10 ° C., the saturated air at 10 ° C. has an absolute humidity of 7.63 g / kg, and therefore moisture of the difference is condensed. .

図23は、第4の実施の形態の換気空調装置の一例を示す構成図である。第4の実施の形態の換気空調装置10Cは、例えば第1の実施の形態の換気空調装置1Aと、換気空調装置1Aと一体または独立した構成の給気装置18を備える。また、換気空調装置1Aからの除湿空気及び加湿空気等が吹き出される吹出口グリル19aと、給気装置18からの空気(外気)が吹き出される吹出口グリル19bと、換気空調装置1Aと吹出口グリル19aを接続するダクト17aと、給気装置18と吹出口グリル19bを接続するダクト17bを備える。   FIG. 23 is a configuration diagram illustrating an example of a ventilation air conditioner according to a fourth embodiment. A ventilation air conditioner 10C according to the fourth embodiment includes, for example, the ventilation air conditioner 1A according to the first embodiment and the air supply device 18 that is integrated with or independent of the ventilation air conditioner 1A. Further, the outlet grill 19a from which dehumidified air and humidified air from the ventilation air conditioner 1A are blown out, the outlet grill 19b from which air (outside air) from the air supply unit 18 is blown, the ventilation air conditioner 1A and the blower A duct 17a for connecting the outlet grill 19a and a duct 17b for connecting the air supply device 18 and the outlet grill 19b are provided.

給気装置18は、図示しない送風ファンを備え、外気を取り入れて室内に換気空気を給気する。吹出口グリル19aと吹出口グリル19bは、それぞれ図示しない風路開閉ダンパを備え、運転モードに応じて換気空気と除加湿空気の風量を制御する。なお、吹出口グリル19bとして、建物の壁に取り付けられるパイプ型換気装置等と称される給気装置を利用し、除加湿空気を混合して給気できるようにした構成でも良い。   The air supply device 18 includes a blower fan (not shown), takes in outside air, and supplies ventilation air into the room. The blower outlet grill 19a and the blower outlet grill 19b are each provided with an air passage opening / closing damper (not shown), and control the air volume of the ventilation air and the dehumidified / humidified air according to the operation mode. The air outlet grill 19b may be configured to supply air by mixing dehumidified / humidified air using an air supply device called a pipe type ventilation device attached to the wall of the building.

<第4の実施の形態の換気空調装置の動作例>
次に、各図を参照して第4の実施の形態の換気空調装置10Cの動作について説明する。
<Operation Example of Ventilation Air Conditioner of Fourth Embodiment>
Next, the operation of the ventilation air conditioner 10C according to the fourth embodiment will be described with reference to the drawings.

換気空調装置1Aは、加湿暖房モードでは、図3等で説明したように、外気OAをヒートポンプ空調機2Aで加熱すると共に加湿した空気が、熱交換素子3Aをバイパスして給気口52から吹き出される。換気空調装置1Aから吹き出された加湿空気は、吹出口グリル19aから室内に給気される。   In the humidification heating mode, the ventilation air conditioner 1A heats the outside air OA with the heat pump air conditioner 2A and the humidified air blows out from the air supply port 52 bypassing the heat exchange element 3A as described with reference to FIG. Is done. The humidified air blown out from the ventilation air conditioner 1A is supplied into the room from the blowout grill 19a.

また、加湿暖房モードでは、吹出口グリル19a,19bの図示しない風路開閉ダンパを、部屋202の室温等に応じて制御して、加湿空気の温度と室温との差により結露が発生しないように、給気される換気空気(外気)の風量が制御される。なお、換気空気として冷暖房された空気を利用する構成としても良い。   In the humidification heating mode, the air path opening / closing dampers (not shown) of the outlet grilles 19a and 19b are controlled in accordance with the room temperature of the room 202 so that condensation does not occur due to the difference between the temperature of the humidified air and the room temperature. The air volume of the supplied ventilation air (outside air) is controlled. In addition, it is good also as a structure using the air cooled / heated as ventilation air.

<第4の実施の形態の換気空調装置の変形例>
図24は、第4の実施の形態の換気空調装置の変形例を示す構成図である。第4の実施の形態の変形例の換気空調装置10Dは、第3の実施の形態の換気空調装置と組み合わせた構成であり、例えば第1の実施の形態の換気空調装置1Aと、除湿空気または換気空気が吹き出される吹出口グリル13Dと、加湿空気または換気空気が吹き出される吹出口グリル13Wを備える。
<Modification of Ventilation Air Conditioner of Fourth Embodiment>
FIG. 24 is a configuration diagram illustrating a modified example of the ventilation air conditioner according to the fourth embodiment. The ventilation air conditioner 10D of the modification of the fourth embodiment has a configuration combined with the ventilation air conditioner of the third embodiment. For example, the ventilation air conditioner 1A of the first embodiment and the dehumidified air or An outlet grill 13D from which ventilation air is blown out and an outlet grill 13W from which humidified air or ventilation air is blown out are provided.

また、吹出口グリル13Dから吹き出される空気の風量を制御する風路開閉ダンパ16aと、吹出口グリル13Wから吹き出される空気の風量を制御する風路開閉ダンパ16bを備える。更に、換気空調装置1Aと吹出口グリル13Dを接続するダクト17cと、換気空調装置1Aと吹出口グリル13Wを接続する17dを備える。   Moreover, the air path opening / closing damper 16a for controlling the air volume of the air blown from the outlet grill 13D and the air path opening / closing damper 16b for controlling the air volume of the air blown from the air outlet grill 13W are provided. Further, a duct 17c that connects the ventilation air conditioner 1A and the outlet grill 13D, and 17d that connects the ventilation air conditioner 1A and the outlet grill 13W are provided.

換気空調装置1Aは、一体または独立した構成の図示しない給気装置を備え、運転モードに応じて、除湿空気をダクト17cに吹き出すと共に、換気空気(外気)をダクト17dへ吹き出す。また、加湿空気をダクト17dに吹き出すと共に、換気空気をダクト17cへ吹き出す。   The ventilation air conditioner 1A includes an air supply device (not shown) that is integrated or independent, and blows dehumidified air to the duct 17c and blows ventilation air (outside air) to the duct 17d according to the operation mode. Further, the humid air is blown out to the duct 17d, and the ventilation air is blown out to the duct 17c.

吹出口グリル13Dは、部屋202の天井近くの壁または天井に設置され、吹出口グリル13Wは、部屋202の床近くの壁または床に設置される。   The outlet grill 13D is installed on the wall or ceiling near the ceiling of the room 202, and the outlet grill 13W is installed on the wall or floor near the floor of the room 202.

次に、各図を参照して第4の実施の形態の変形例の換気空調装置10Dの動作について説明する。   Next, with reference to each figure, operation | movement of 10D of ventilation air conditioners of the modification of 4th Embodiment is demonstrated.

換気空調装置1Aは、除湿モードでは、図3等で説明したように、外気OAと、外気OAをヒートポンプ空調機2Aで冷却した空気が熱交換素子3Aで熱交換され、温度低下が抑えられた除湿された空気が吹き出される。   In the dehumidifying mode, the ventilating air conditioner 1A, as described with reference to FIG. 3 and the like, heat was exchanged between the outside air OA and the outside air OA cooled by the heat pump air conditioner 2A by the heat exchange element 3A, and the temperature drop was suppressed. Dehumidified air is blown out.

除湿モードでは、図24(a)に示すように、除湿空気はダクト17cに吹き出されると共に、換気空気はダクト17dに吹き出されて、換気空調装置1Aから吹き出された除湿空気は、部屋202の上方で吹出口グリル13Dから給気され、換気空気は部屋202の下方で吹出口グリル13Wから給気される。除湿空気は重いため、部屋202内を降下して行き、室内が略均一の湿度になる。   In the dehumidifying mode, as shown in FIG. 24A, the dehumidified air is blown out to the duct 17c, the ventilation air is blown out to the duct 17d, and the dehumidified air blown out from the ventilation air conditioner 1A Air is supplied from the air outlet grill 13D above, and the ventilation air is supplied from the air outlet grill 13W below the room 202. Since the dehumidified air is heavy, the dehumidified air descends in the room 202, and the room has a substantially uniform humidity.

また、除湿空気と換気空気の風量が、風路開閉ダンパ16a,16bで制御されて、部屋202毎に温湿度の制御が行われる。   Further, the air volumes of the dehumidified air and the ventilation air are controlled by the air passage opening / closing dampers 16a and 16b, and the temperature and humidity are controlled for each room 202.

換気空調装置1Aは、加湿暖房モードでは、図3等で説明したように、外気OAをヒートポンプ空調機2Aで加熱すると共に加湿した空気が、熱交換素子3Aをバイパスして吹き出される。   As described with reference to FIG. 3 and the like, the ventilation air conditioner 1A heats the outside air OA with the heat pump air conditioner 2A and blows out the air that bypasses the heat exchange element 3A, as described with reference to FIG.

加湿暖房モードでは、図24(b)に示すように、加湿空気はダクト17dに吹き出されると共に、換気空気はダクト17cに吹き出されて、換気空調装置1Aから吹き出された加湿空気は、部屋202の下方で吹出口グリル13Wから給気され、換気空気は部屋202の上方で吹出口グリル13Dから給気される。加湿空気は軽いため、部屋202内を上昇して行き、室内が略均一の湿度になる。   In the humidification heating mode, as shown in FIG. 24B, the humidified air is blown out to the duct 17d, the ventilation air is blown out to the duct 17c, and the humidified air blown out from the ventilation air conditioner 1A The ventilation air is supplied from the outlet grill 13D above the room 202, and the ventilation air is supplied from the outlet grill 13D. Since the humidified air is light, it goes up inside the room 202 and the room becomes a substantially uniform humidity.

また、加湿空気と換気空気の風量が、風路開閉ダンパ16a,16bで制御されて、部屋202毎に結露が生じないような温湿度の制御が行われる。   Further, the air volumes of the humidified air and the ventilation air are controlled by the air passage opening / closing dampers 16a and 16b, and the temperature and humidity are controlled so that no condensation occurs in each room 202.

<第5の実施の形態の換気空調装置の構成例>
図25は、第5の実施の形態の換気空調装置の一例を示す構成図である。第5の実施の形態の換気空調装置1Bは、空気の冷却及び加熱を行う空気調和機としてのヒートポンプ空調機2Aと、ヒートポンプ空調機2Aで調和される空気の温度調整及びヒートポンプ空調機2Aで調和された空気の除湿等を行う熱交換素子3Aを備える。
<Configuration Example of Ventilation Air Conditioner of Fifth Embodiment>
FIG. 25 is a configuration diagram illustrating an example of a ventilation air conditioner according to a fifth embodiment. The ventilation air conditioner 1B according to the fifth embodiment is harmonized by the heat pump air conditioner 2A as an air conditioner that cools and heats the air, and the air temperature adjustment and the heat pump air conditioner 2A harmonized by the heat pump air conditioner 2A. The heat exchange element 3A which performs dehumidification etc. of the performed air is provided.

換気空調装置1Bは、ヒートポンプ空調機2Aで冷却または加熱された空気を、熱交換素子3Aで外気OAと熱交換させる熱交換給気風路5Aと、熱交換素子3Aをバイパスさせる非熱交換給気風路5Bが運転モードに応じて切り替えられて、送風ファン部53により取入口51から吸い込まれ、除加湿または冷暖房された空気が給気口52から吹き出される。   The ventilation air conditioner 1B includes a heat exchange air supply passage 5A that exchanges heat cooled or heated by the heat pump air conditioner 2A with the outside air OA by the heat exchange element 3A, and a non-heat exchange supply air that bypasses the heat exchange element 3A. The path 5 </ b> B is switched according to the operation mode, and the air that has been dehumidified, humidified, or air-conditioned is blown out from the air supply port 52 by the blower fan unit 53 through the intake port 51.

また、換気空調装置1Bは、熱交換素子3A等に銀イオンを供給する銀イオン供給装置300を備える。銀イオン供給装置300は金属イオン供給手段の一例で、例えば、熱交換素子3Aの第1の熱交換風路30aと第2の熱交換風路30bの双方に金属イオンである銀イオンを供給できる配置で、単数または複数の銀イオン噴霧ノズル301を備える。   The ventilation air conditioner 1B includes a silver ion supply device 300 that supplies silver ions to the heat exchange element 3A and the like. The silver ion supply device 300 is an example of a metal ion supply means, and can supply silver ions, which are metal ions, to both the first heat exchange air passage 30a and the second heat exchange air passage 30b of the heat exchange element 3A, for example. Arrangement includes one or more silver ion spray nozzles 301.

なお、換気空調装置1Bは、空気を加湿する散水装置62を備えると共に、散水装置62から散水された水の余剰分、熱交換素子3Aで発生された結露水、及び銀イオン噴霧ノズル301から噴霧された銀イオンを含む水の余剰分を回収するドレンパン60を備える。   The ventilation air conditioner 1 </ b> B includes a watering device 62 that humidifies the air, and the excess water sprayed from the watering device 62, the condensed water generated by the heat exchange element 3 </ b> A, and the spray from the silver ion spray nozzle 301. A drain pan 60 is provided for recovering surplus water containing silver ions.

図26は、金属イオンである銀イオン供給装置の一例を示す構成図である。銀イオン供給装置300Aは、銀イオン噴霧ノズル301が銀イオン発生装置302Aに接続される。   FIG. 26 is a configuration diagram illustrating an example of a silver ion supply device that is a metal ion. In the silver ion supply device 300A, the silver ion spray nozzle 301 is connected to the silver ion generation device 302A.

銀イオン発生装置302Aは、貯水槽303と、貯水槽303に漬けられた銀イオンペレット304と、貯水槽303内の水を攪拌する回転羽根305と、回転羽根305を回転駆動するモータ305aを備える。 Silver ion generator 302A includes a water tank 303, the silver ions pellets 304 which is immersed in the water storage tank 303, the rotary blade 305 for stirring the water in savings aquarium 303, a motor 305a for rotating the rotary vane 305 .

また、銀イオン発生装置302Aは、貯水槽303に水を供給する給水配管306と、給水量等を制御するバルブ306aを備える。   The silver ion generator 302A includes a water supply pipe 306 that supplies water to the water storage tank 303, and a valve 306a that controls the amount of water supply.

銀イオン発生装置302Aは、貯水槽303に貯められた水に銀イオンペレット304が漬けられていることで、水を流さない状態でも銀イオンが溶け出す。そして、給水配管306から供給される水道圧により、銀イオン噴霧ノズル301から銀イオンを含む水が噴霧される。   In the silver ion generator 302A, the silver ion pellets 304 are immersed in the water stored in the water storage tank 303, so that the silver ions are dissolved even in a state where no water flows. Then, water containing silver ions is sprayed from the silver ion spray nozzle 301 by the water pressure supplied from the water supply pipe 306.

また、給水配管306から供給される水で貯水槽303内に対流を発生させることによっても銀イオンが溶け出し、銀イオンの濃度を上げることができる。更に銀イオンの濃度を上げるためには、回転羽根305を回転させて、貯水槽303内の対流を促進させることで、銀イオンの溶解が促進される。   Further, by generating convection in the water storage tank 303 with water supplied from the water supply pipe 306, silver ions can be dissolved and the concentration of silver ions can be increased. In order to further increase the concentration of silver ions, the rotating blades 305 are rotated to promote convection in the water storage tank 303, thereby promoting dissolution of silver ions.

なお、本例では、水道圧によって銀イオン噴霧ノズル301から銀イオンを含む水を噴霧する構成としたが、銀イオン噴霧ノズル301の手前に図示しないポンプを備え、ポンプによって貯水槽303から水を汲み出す圧力で、銀イオン噴霧ノズル301から噴霧する構成としても良い。   In this example, water containing silver ions is sprayed from the silver ion spray nozzle 301 by water pressure, but a pump (not shown) is provided in front of the silver ion spray nozzle 301, and water is supplied from the water storage tank 303 by the pump. It is good also as a structure sprayed from the silver ion spray nozzle 301 with the pressure to pump.

銀イオンの濃度制御は、バルブ306aの開度を調整することにより、貯水槽303に供給する水道水の流量を調整することで行われる。または、モータ305aにより回転羽根305の回転速度を調整しても良く、図示しないポンプによる貯水槽303内の循環水量を調整しても良い。   The concentration control of silver ions is performed by adjusting the flow rate of tap water supplied to the water storage tank 303 by adjusting the opening of the valve 306a. Alternatively, the rotation speed of the rotary blade 305 may be adjusted by the motor 305a, or the amount of circulating water in the water storage tank 303 may be adjusted by a pump (not shown).

図27は、銀イオン供給装置の他の例を示す構成図である。銀イオン供給装置300Bは、銀イオン噴霧ノズル301が銀イオン発生装置302Bに接続される。   FIG. 27 is a configuration diagram illustrating another example of the silver ion supply device. In the silver ion supply device 300B, the silver ion spray nozzle 301 is connected to the silver ion generation device 302B.

銀イオン発生装置302Bは、銀イオンが含まれる銀イオン水貯水槽307と、銀イオン水貯水槽307に水を供給する給水配管308と、給水量等を制御するバルブ308aと、銀イオン水貯水槽307から銀イオン水を汲み出して、給水配管308から供給される水(水道水)と混合させる2液混合ポンプ309を備える。   The silver ion generator 302B includes a silver ion water storage tank 307 containing silver ions, a water supply pipe 308 that supplies water to the silver ion water storage tank 307, a valve 308a that controls the amount of water supply, and the like. A two-component mixing pump 309 is provided that pumps silver ion water from the tank 307 and mixes it with water (tap water) supplied from a water supply pipe 308.

銀イオン発生装置302Bは、銀イオン水貯水槽307から2液混合ポンプ309で銀イオン水を汲み出して、給水配管308から供給される水と混合させ、水道圧等によって銀イオン噴霧ノズル301から銀イオンを含む水を噴霧する。   The silver ion generator 302B pumps silver ion water from the silver ion water storage tank 307 with a two-liquid mixing pump 309, mixes it with water supplied from a water supply pipe 308, and mixes silver from the silver ion spray nozzle 301 with water pressure or the like. Spray water with ions.

2液混合ポンプ309では、水道水供給量が変化しても、銀イオン濃度を一定とする制御が行われる。ここで、銀イオンペレットを用いる構成の場合、水温や水道水中のカルシウム(Ca)等の不純物の存在で溶解速度が変化するのに対して、液体を一定量で混合できるようした場合、銀イオン濃度をより一定に制御できる。   In the two-liquid mixing pump 309, control is performed to keep the silver ion concentration constant even if the tap water supply amount changes. Here, in the case of a configuration using silver ion pellets, the dissolution rate changes due to the presence of impurities such as water temperature and calcium (Ca) in tap water, whereas when the liquid can be mixed in a certain amount, The concentration can be controlled more uniformly.

<第5の実施の形態の装置の動作例>
次に、各図を参照して、第5の実施の形態の換気空調装置1Bの動作について説明する。なお、除湿モードや加湿暖房モード等の通常の運転モードは、第1の実施の形態の換気空調装置1Aと同じである。
<Example of Operation of Device of Fifth Embodiment>
Next, with reference to each figure, operation | movement of the ventilation air conditioner 1B of 5th Embodiment is demonstrated. In addition, normal operation modes, such as a dehumidification mode and a humidification heating mode, are the same as the ventilation air conditioner 1A of 1st Embodiment.

第5の実施の形態の換気空調装置1Bでは、通常の運転モードに加えて、抗菌モードを備える。抗菌モードでは、銀イオン供給装置300により熱交換素子3Aやダクト等に銀イオンを含む水を噴霧する。そして、銀イオンの噴霧停止後、送風ファン部53を駆動して空気を流すことで装置内を乾燥させ、銀イオンを熱交換素子3Aの風路等に付着させ、抗菌作用を持たせる。   The ventilation air conditioner 1B according to the fifth embodiment includes an antibacterial mode in addition to the normal operation mode. In the antibacterial mode, the silver ion supply device 300 sprays water containing silver ions onto the heat exchange element 3A, the duct, or the like. Then, after the spraying of silver ions is stopped, the blower fan unit 53 is driven to flow air to dry the inside of the apparatus, so that the silver ions are attached to the air path or the like of the heat exchange element 3A and have an antibacterial action.

なお、抗菌モードは、例えば一定時間毎や決まった日時毎に実行されるようにして、銀イオンの付着を定期的に行うようにする。これにより、風路内に汚れが付着したような場合でも、その上から銀イオンを付着させることで、抗菌作用を常に持たせることが可能である。また、抗菌作用があれば、銀イオンでなく他の金属イオンであっても良い。   The antibacterial mode is executed, for example, at regular time intervals or every fixed date and time so that silver ions are adhered regularly. Thereby, even when dirt adheres to the air passage, it is possible to always have an antibacterial action by attaching silver ions from above. Moreover, as long as it has an antibacterial action, other metal ions may be used instead of silver ions.

本発明は、外気を取り入れて室内の除加湿と冷暖房を行う換気空調装置に適用される。   The present invention is applied to a ventilation air conditioner that takes in outside air and performs indoor dehumidification and air conditioning.

第1の実施の形態の換気空調装置の一例を示す構成図である。It is a block diagram which shows an example of the ventilation air conditioner of 1st Embodiment. 第1の実施の形態の換気空調装置の分解斜視図である。It is a disassembled perspective view of the ventilation air conditioner of 1st Embodiment. 第1の実施の形態の換気空調装置の風路構成図である。It is an air-path block diagram of the ventilation air conditioner of 1st Embodiment. 熱交換素子の実施の形態の一例を示す構成図である。It is a block diagram which shows an example of embodiment of a heat exchange element. 熱交換素子の実施の形態の一例を示す構成図である。It is a block diagram which shows an example of embodiment of a heat exchange element. 風路開閉ダンパの分解斜視図である。It is a disassembled perspective view of an air path opening / closing damper. 第1の実施の形態の換気空調装置の作用効果を説明する動作説明図である。It is operation | movement explanatory drawing explaining the effect of the ventilation air conditioner of 1st Embodiment. 比較例としての換気空調装置の動作説明図である。It is operation | movement explanatory drawing of the ventilation air conditioner as a comparative example. 冷房(除湿)を行う動作で外気の全量を熱交換素子に通した場合の空気線図である。It is an air diagram at the time of letting the whole quantity of external air pass to a heat exchange element by the operation | movement which performs air_conditioning | cooling (dehumidification). 冷房を行う動作でバイパス風路に空気を通した場合の空気線図である。It is an air line figure at the time of letting air pass to a bypass wind path by the operation | movement which performs air_conditioning | cooling. 冷房を行う動作で外気を熱交換素子に通さない場合の空気線図である。It is an air diagram in case outside air is not passed through a heat exchange element by operation which performs air conditioning. 加湿暖房を行う動作で外気の全量を熱交換素子に通した場合の空気線図である。It is an air diagram at the time of letting the whole quantity of external air pass to a heat exchange element by the operation | movement which performs humidification heating. 加湿暖房を行う動作で過加湿が生じた場合の空気線図である。It is an air line figure when over-humidification arises by operation which performs humidification heating. 加湿暖房を行う動作でバイパス風路に空気を通した場合の空気線図である。It is an air line figure at the time of letting air pass to a bypass wind path by the operation | movement which performs humidification heating. 加湿暖房を行う動作で外気を熱交換素子に通さない場合の空気線図である。It is an air diagram in case outside air is not passed through a heat exchange element by operation which performs humidification heating. 第1の実施の形態の換気空調装置と比較例の換気空調装置の温度制御範囲を示す説明図である。It is explanatory drawing which shows the temperature control range of the ventilation air conditioner of 1st Embodiment, and the ventilation air conditioner of a comparative example. 第1の実施の形態の換気空調装置の風路構成の一例を示す説明図である。It is explanatory drawing which shows an example of the air path structure of the ventilation air conditioner of 1st Embodiment. 第1の実施の形態の換気空調装置で実現した風路構成の一例を示す説明図である。It is explanatory drawing which shows an example of the air path structure implement | achieved with the ventilation air conditioner of 1st Embodiment. 第2の実施の形態の換気空調装置の一例を示す構成図である。It is a block diagram which shows an example of the ventilation air conditioner of 2nd Embodiment. 熱交換装置の一例を示す構成図である。It is a block diagram which shows an example of a heat exchange apparatus. 第2の実施の形態の換気空調装置の変形例を示す構成図である。It is a block diagram which shows the modification of the ventilation air conditioner of 2nd Embodiment. 第3の実施の形態の換気空調装置の一例を示す構成図である。It is a block diagram which shows an example of the ventilation air conditioner of 3rd Embodiment. 第4の実施の形態の換気空調装置の一例を示す構成図である。It is a block diagram which shows an example of the ventilation air conditioner of 4th Embodiment. 第4の実施の形態の換気空調装置の変形例を示す構成図である。It is a block diagram which shows the modification of the ventilation air conditioner of 4th Embodiment. 第5の実施の形態の換気空調装置の一例を示す構成図である。It is a block diagram which shows an example of the ventilation air conditioner of 5th Embodiment. 銀イオン供給装置の一例を示す構成図である。It is a block diagram which shows an example of a silver ion supply apparatus. 銀イオン供給装置の他の例を示す構成図である。It is a block diagram which shows the other example of a silver ion supply apparatus.

符号の説明Explanation of symbols

1A,1B,10A,10B,10C,10D・・・換気空調装置、2A・・・ヒートポンプ空調機、3A・・・熱交換素子、5A・・・熱交換給気風路、5B・・・非熱交換給気風路、51・・・取入口、51a・・・第1の取入口、51b・・・第2の取入口、54・・・風路開閉ダンパ、54a・・・第1のダンパ、54b・・・第2のダンパ、60・・・ドレンパン、62・・・散水装置   1A, 1B, 10A, 10B, 10C, 10D ... Ventilation air conditioner, 2A ... Heat pump air conditioner, 3A ... Heat exchange element, 5A ... Heat exchange air supply path, 5B ... Non-heat Exchange air supply path, 51 ... intake, 51a ... first intake, 51b ... second intake, 54 ... airway opening / closing damper, 54a ... first damper, 54b ... second damper, 60 ... drain pan, 62 ... watering device

Claims (4)

第1の熱交換風路と第2の熱交換風路が隔壁を挟んで交互に積層されて互いが隔絶され前記第1の熱交換風路を通る空気と前記第2の熱交換風路を通る空気との間で熱交換が行われる熱交換素子と、
空気調和を行う空気調和機と、
第1の取入口と第2の取入口が並列された外気の取入口と、
前記第1の取入口と前記熱交換素子の前記第1の熱交換風路の吸込側を連通させ、前記第1の熱交換風路の吹出側を、前記空気調和機を通して前記第2の熱交換風路の吸込側に連通させ、前記第2の熱交換風路の吹出側を給気口と連通させた熱交換給気風路と、
前記熱交換素子の前記第1の熱交換風路をバイパスして、前記第2の取入口を前記空気調和機より上流の前記熱交換給気風路と連通させた非熱交換給気風路と、
前記熱交換給気風路と前記非熱交換給気風路を開閉して風路を切り替える風路開閉手段とを備え、
前記取入口は、前記第1の熱交換風路と前記第2の熱交換風路が積層された前記熱交換素子で、前記第1の熱交換風路と対向する部位が開口し、前記第2の熱交換風路と対向する部位が塞がれた前記第1の熱交換風路の吸込側と連通した第1の取入口の両側に前記第2の取入口が並列され、
前記非熱交換給気風路は、前記第1の熱交換風路と前記第2の熱交換風路との積層方向に沿った前記熱交換素子の両側に形成され、前記熱交換素子の両側に形成された前記非熱交換給気風路は、前記第1の取入口の両側に並列された前記第2の取入口と連通し、
前記風路開閉手段は、前記第1の取入口を開閉する第1のダンパと、前記第2の取入口を開閉する第2のダンパが、位相を異ならせて同じ軸部に備えられ、前記軸部の回転で前記第1のダンパと前記第2のダンパが作動して、前記第1の取入口と前記第2の取入口の開閉が切り替えられる
ことを特徴とする換気空調装置。
First heat exchange air path and the second heat exchange air path is being isolated from each other are alternately stacked to sandwich the partition wall, the air and the second heat exchange air path through the first heat exchange air path A heat exchange element that exchanges heat with the air passing through
An air conditioner that performs air conditioning;
An outside air inlet in which the first inlet and the second inlet are arranged in parallel;
The first intake port and the suction side of the first heat exchange air passage of the heat exchange element are communicated, and the blowout side of the first heat exchange air passage is communicated with the second heat through the air conditioner. A heat exchange air supply passage that communicates with the suction side of the exchange air passage, and that communicates the outlet side of the second heat exchange air passage with the air supply port;
A non-heat exchange air supply passage that bypasses the first heat exchange air passage of the heat exchange element and communicates the second intake port with the heat exchange air supply passage upstream of the air conditioner; ,
An air path opening / closing means for switching the air path by opening and closing the heat exchange air supply air path and the non-heat exchange air supply air path;
The inlet is the heat exchange element in which the first heat exchange air passage and the second heat exchange air passage are stacked, and a portion facing the first heat exchange air passage is opened, The second intake ports are arranged in parallel on both sides of the first intake port that is in communication with the suction side of the first heat exchange air passage where the portion facing the second heat exchange air passage is blocked;
The non-heat exchange air supply air passage is formed on both sides of the heat exchange element along a stacking direction of the first heat exchange air passage and the second heat exchange air passage, and on both sides of the heat exchange element. The formed non-heat exchange air supply passage communicates with the second intake port arranged in parallel on both sides of the first intake port,
The air path opening / closing means includes a first damper that opens and closes the first intake port, and a second damper that opens and closes the second intake port, and is provided on the same shaft portion with different phases. The ventilation air conditioner characterized in that the first damper and the second damper are actuated by rotation of the shaft portion to switch between opening and closing of the first intake port and the second intake port.
前記給気口から吹き出される空気を分岐して、複数の部屋に給気する分岐チャンバーと、
前記分岐チャンバーで分岐された空気と各部屋の空気との間で熱交換を行い、熱交換された空気を各部屋に給気する熱交換装置とを備えた
ことを特徴とする請求項1記載の換気空調装置。
A branch chamber for branching air blown from the air supply port and supplying air to a plurality of rooms;
The heat exchange apparatus which performs heat exchange between the air branched by the said branch chamber, and the air of each room, and supplies the air by which heat was exchanged to each room was provided. Ventilation air conditioner.
前記給気口から吹き出された空気と所定の部屋の空気との間で熱交換を行う熱交換装置と、
前記熱交換装置で熱交換された空気を分岐して、複数の部屋に給気する分岐チャンバーとを備えた
ことを特徴とする請求項1記載の換気空調装置。
A heat exchange device for exchanging heat between the air blown from the air supply port and the air in a predetermined room;
The ventilation air conditioner according to claim 1, further comprising a branch chamber that branches the air heat-exchanged by the heat exchange device and supplies air to a plurality of rooms.
外気を前記空気調和機で加熱すると共に加湿した空気が前記給気口から吹き出されて部屋に給気される加湿暖房モードで、外気を取り入れて部屋に給気する給気装置により部屋に給気される外気が吹き出される吹出口グリルに設けられた風路開閉ダンパにより、部屋に給気される外気の風量が制御される
ことを特徴とする請求項1,2または3記載の換気空調装置。
In the humidification heating mode in which the outside air is heated by the air conditioner and humidified air is blown out from the air supply port and supplied to the room, the room is supplied with air by an air supply device that takes in outside air and supplies it to the room The ventilation air conditioner according to claim 1, 2 or 3, wherein an air volume of the outside air supplied to the room is controlled by an air passage opening / closing damper provided in an outlet grill from which the outside air is blown out. .
JP2007146267A 2007-05-31 2007-05-31 Ventilation air conditioner Active JP5261988B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007146267A JP5261988B2 (en) 2007-05-31 2007-05-31 Ventilation air conditioner
PCT/JP2008/059812 WO2008146843A1 (en) 2007-05-31 2008-05-28 Ventilating and air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007146267A JP5261988B2 (en) 2007-05-31 2007-05-31 Ventilation air conditioner

Publications (2)

Publication Number Publication Date
JP2008298384A JP2008298384A (en) 2008-12-11
JP5261988B2 true JP5261988B2 (en) 2013-08-14

Family

ID=40075080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007146267A Active JP5261988B2 (en) 2007-05-31 2007-05-31 Ventilation air conditioner

Country Status (2)

Country Link
JP (1) JP5261988B2 (en)
WO (1) WO2008146843A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021783A (en) * 2009-07-14 2011-02-03 Okayama Eco Energy Gijutsu Kenkyusho:Kk Humidity control module, humidity control unit and method of installing the same
CN102032635B (en) * 2010-12-27 2012-10-10 东莞市丰远电器有限公司 Variable-frequency ultrahigh-pressure micro mist humidifier
US9261290B2 (en) 2011-03-29 2016-02-16 Trane International Inc. Methods and systems for controlling an energy recovery ventilator (ERV)
JP5810993B2 (en) * 2012-03-16 2015-11-11 ダイキン工業株式会社 Humidity control device
US9976822B2 (en) * 2012-03-22 2018-05-22 Nortek Air Solutions Canada, Inc. System and method for conditioning air in an enclosed structure
JP6509360B2 (en) * 2015-10-29 2019-05-08 三菱電機株式会社 Heat exchange ventilation system
JP6608343B2 (en) * 2016-08-30 2019-11-20 三建設備工業株式会社 Gas regulator
JP6987241B2 (en) * 2018-06-06 2021-12-22 三菱電機株式会社 Heat exchange ventilator
JP7320699B2 (en) * 2019-03-15 2023-08-04 パナソニックIpマネジメント株式会社 dehumidifier
JP7457229B2 (en) 2019-05-10 2024-03-28 ダイキン工業株式会社 air conditioning system
CN115370545B (en) * 2022-10-21 2023-01-24 北京环都拓普空调有限公司 Ventilation, dehumidification and heat dissipation all-in-one machine for wind power generation equipment and air volume adjusting method

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963441A (en) * 1982-10-01 1984-04-11 Kubota Ltd Damper unit for air conditioner
JPS63135731A (en) * 1986-11-26 1988-06-08 Matsushita Electric Works Ltd Dehumidifier device
JP2631674B2 (en) * 1987-12-22 1997-07-16 株式会社大林組 Air conditioner reheating temperature control method
JP2834232B2 (en) * 1989-11-14 1998-12-09 松下精工株式会社 Ventilation air conditioner
JPH0658587A (en) * 1992-08-10 1994-03-01 Mitsubishi Electric Corp Air conditioning ventilator
JP3425088B2 (en) * 1998-10-05 2003-07-07 松下エコシステムズ株式会社 Desiccant air conditioning system
JP2000317251A (en) * 1999-05-07 2000-11-21 Mitsubishi Electric Corp Stationary dehumidifying/drying device
JP2001353207A (en) * 2000-06-14 2001-12-25 Yutaka:Kk Sterilizing/deodorizing method using silver ion and device therefor
JP3449553B2 (en) * 2000-06-30 2003-09-22 木村工機株式会社 Vertical air-conditioning unit
JP2002333161A (en) * 2001-05-14 2002-11-22 Seibu Giken Co Ltd Dehumidifying air conditioning system
JP2004092956A (en) * 2002-08-30 2004-03-25 Shin Nippon Air Technol Co Ltd Desiccant air conditioning method and desiccant air conditioner
JP2004218951A (en) * 2003-01-15 2004-08-05 Kubota Corp Damper device
JP3786090B2 (en) * 2003-01-20 2006-06-14 ダイキン工業株式会社 Air conditioner and control method of air conditioner
JP4507587B2 (en) * 2003-12-22 2010-07-21 パナソニック株式会社 Dehumidifying dryer
JP2005214541A (en) * 2004-01-30 2005-08-11 Calsonic Kansei Corp Door structure of air conditioner for vehicle
JP2005345047A (en) * 2004-06-07 2005-12-15 Wetmaster Kk Sterilization method of vaporization type humidifier, sterilization and vaporization type humidifier, and silver ion generator for it
JP4308090B2 (en) * 2004-06-15 2009-08-05 三洋電機株式会社 Air conditioner
JP2006105426A (en) * 2004-09-30 2006-04-20 Max Co Ltd Ventilating device and building
JP4694905B2 (en) * 2005-07-11 2011-06-08 鹿島建設株式会社 Air conditioning system
JP4894205B2 (en) * 2005-08-31 2012-03-14 マックス株式会社 Room air conditioner

Also Published As

Publication number Publication date
JP2008298384A (en) 2008-12-11
WO2008146843A1 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP5261988B2 (en) Ventilation air conditioner
JP4816251B2 (en) Air conditioner and building
KR100504503B1 (en) air conditioning system
KR100504489B1 (en) air conditioner
US20010003902A1 (en) High-efficiency air-conditioning system with high-volume air distribution
JP5050687B2 (en) Ventilation air conditioner
KR20070054230A (en) Ventilator and building
WO2006035825A1 (en) Ventilator and building
JP4645529B2 (en) Air conditioner and building
JP2007139333A (en) Ventilating device and building
WO2006035826A1 (en) Ventilator, air conditioner system, ventilation system, and building
JP4997830B2 (en) Air conditioner and building
JPWO2009011362A1 (en) Dehumidifying / humidifying ventilation system
WO2007058260A1 (en) Ventilator and ventilating system
JP5067031B2 (en) Blower
KR20070054227A (en) Ventilating device and building
JP4816253B2 (en) Air conditioner and building
JP4816252B2 (en) Air conditioner and building
JP3432907B2 (en) Air conditioner
JP5040464B2 (en) Ventilation air conditioning system
JP2007139336A (en) Ventilation device and building
JP3855393B2 (en) Air conditioner
JP2007139337A (en) Ventilation air conditioner, air-conditioning system and building
JP4816259B2 (en) Air conditioner
JP2007139338A (en) Ventilation device and building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5261988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150