JP5260843B2 - Vapor deposition system - Google Patents

Vapor deposition system Download PDF

Info

Publication number
JP5260843B2
JP5260843B2 JP2006190100A JP2006190100A JP5260843B2 JP 5260843 B2 JP5260843 B2 JP 5260843B2 JP 2006190100 A JP2006190100 A JP 2006190100A JP 2006190100 A JP2006190100 A JP 2006190100A JP 5260843 B2 JP5260843 B2 JP 5260843B2
Authority
JP
Japan
Prior art keywords
film
vapor deposition
gas particle
forming apparatus
deposition method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006190100A
Other languages
Japanese (ja)
Other versions
JP2008019459A5 (en
JP2008019459A (en
Inventor
伸之 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Sumitomo Electric Industries Ltd
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Research Institute of Innovative Technology for the Earth RITE filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006190100A priority Critical patent/JP5260843B2/en
Publication of JP2008019459A publication Critical patent/JP2008019459A/en
Publication of JP2008019459A5 publication Critical patent/JP2008019459A5/ja
Application granted granted Critical
Publication of JP5260843B2 publication Critical patent/JP5260843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physical Vapour Deposition (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the temperature controllability of a plurality of gas particle generation units having different gas particle generation temperatures in a film deposition apparatus for depositing a film formed of a composite material. <P>SOLUTION: A film deposition apparatus 10 is constituted by arranging a first gas particle generation unit 20, a second gas particle generation unit 21, two partition members 25 arranged between the first and second gas particle generation units 20, 21, and a film deposition unit 30 holding a substrate D to be worked in a vacuum chamber 11. The partition members 25 are cooled with a refrigerant to suppress the temperature rise of the first gas particle generation unit 20 caused by the radiant heat from the second gas particle generation unit 21 on the hot temperature side. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、リチウム二次電池などに用いられる薄膜を成膜するための蒸着法による成膜装置に係り、特に複数の気体粒子生成部を備えたものに関する。 The present invention relates to a deposition apparatus using a vapor deposition method for depositing a thin film used for a lithium secondary battery or the like, and more particularly to a device having a plurality of gas particle generation units.

一般に、リチウム二次電池や、半導体素子、光学素子などの電極等の要素として、複合材料からなる薄膜が用いられることも多い。そして、複合材料からなる薄膜を蒸着法やスパッタ法によって形成する際には、複数の気体粒子生成部が設けられることになる。すなわち、スパッタ,蒸発などを行う気体粒子生成部を複数個設置して、複数の気体粒子を蒸発等させて、被加工物に付着させることになる。   In general, a thin film made of a composite material is often used as an element such as an electrode of a lithium secondary battery, a semiconductor element, or an optical element. And when forming the thin film which consists of composite materials by a vapor deposition method or a sputtering method, a some gas particle production | generation part will be provided. That is, a plurality of gas particle generation units that perform sputtering, evaporation, and the like are installed, and the plurality of gas particles are evaporated and attached to the workpiece.

図4(a),(b)は、特許文献1に記載されている従来の成膜装置の平面図および断面図である。同図に示すように、処理室101を形成する真空チャンバー102内には、ターゲット115と磁石116とを有する3つのスパッタ源112が同心状に配置されている。そして、センターマスク111のベアリング軸受け装置110の中心軸Oの周りに、仮想円Cに中心が位置するように被加工基板Dを回転させながら、3つのターゲット115から相異なる物質をスパッタリングして、気体粒子を生成し、この気体粒子を被加工基板D上に堆積することにより、複合材料からなる膜を成膜するようにしている。被加工基板Dは、搬送ラインLに沿って出し入れされる。   4A and 4B are a plan view and a cross-sectional view of a conventional film forming apparatus described in Patent Document 1. FIG. As shown in the figure, in the vacuum chamber 102 forming the processing chamber 101, three sputtering sources 112 having a target 115 and a magnet 116 are arranged concentrically. Then, different materials are sputtered from the three targets 115 while rotating the substrate D to be centered on the virtual circle C around the center axis O of the bearing device 110 of the center mask 111, By generating gas particles and depositing the gas particles on the substrate D to be processed, a film made of a composite material is formed. The substrate D to be processed is taken in and out along the transfer line L.

特開平2000−282230号公報JP 2000-282230 A

ところで、蒸着法を用いる場合の蒸発温度の相違など、気体粒子を生成するための温度が材料によって異なる場合がある。その場合に、上記従来の成膜装置を利用すると、高温側の気体粒子生成部の温度の影響によって低温側気体粒子生成部の温度が上昇するので、低温側気体粒子生成部における温度制御性が悪化するという不具合がある。   By the way, the temperature for generating gas particles may differ depending on the material, such as a difference in evaporation temperature when using the vapor deposition method. In that case, when the conventional film forming apparatus is used, the temperature of the low temperature side gas particle generation unit rises due to the influence of the temperature of the high temperature side gas particle generation unit. There is a problem of getting worse.

本発明の目的は、生成温度が相異なる複数材料の気体粒子を生成する複数の気体粒子生成装置を備えながら、気体粒子生成装置における温度制御性の優れた蒸着法による成膜装置を提供することにある。 An object of the present invention is to provide a film forming apparatus using a vapor deposition method with excellent temperature controllability in a gas particle generating apparatus while including a plurality of gas particle generating apparatuses that generate gas particles of a plurality of materials having different generation temperatures. It is in.

本発明の蒸着法による成膜装置は、生成温度が相異なる複数材料の気体粒子を生成するために、該複数材料の気体粒子に応じて温度が制御される、複数の気体粒子生成部と、複数の気体粒子生成部で生成された複数材料の気体粒子から基材上に膜を成膜する成膜部と、複数の気体粒子生成部の間に設けられ、冷却されている仕切り部材と、を備え、気体粒子生成部の一つを温度300℃〜500℃としてPの気体粒子を生成するものとし、他の一つを温度900℃〜1300℃としてLiSの気体粒子を生成するものとする。 A film forming apparatus according to the vapor deposition method of the present invention includes a plurality of gas particle generation units whose temperatures are controlled according to the gas particles of the plurality of materials in order to generate gas particles of the plurality of materials having different generation temperatures, A film forming unit for forming a film on a base material from gas particles of a plurality of materials generated by a plurality of gas particle generating units, a partition member provided between the plurality of gas particle generating units and cooled, One of the gas particle generation units is set to a temperature of 300 ° C. to 500 ° C. to generate P 2 S 5 gas particles, and the other is set to a temperature of 900 ° C. to 1300 ° C. to generate Li 2 S gas particles. Shall be generated.

これにより、生成温度が高温側の気体粒子生成部の輻射熱が仕切り部材で遮られるので、低温側の気体粒子生成部の温度上昇が抑制される。また、各気体粒子生成部からの輻射熱を受けても、冷却されている仕切り部材の温度の上昇が抑制されるので、仕切り部材からの輻射熱に起因する低温側の気体粒子生成部の温度上昇が抑制される。したがって、各気体粒子生成部の温度制御性が向上し、形成される膜の特性も向上することになる。   Thereby, since the radiant heat of the gas particle production | generation part whose production | generation temperature is a high temperature side is interrupted | blocked by a partition member, the temperature rise of the gas particle production | generation part of a low temperature side is suppressed. Moreover, even if it receives the radiant heat from each gas particle production | generation part, since the temperature rise of the cooling partition member is suppressed, the temperature rise of the low temperature side gas particle production | generation part resulting from the radiant heat from a partition member will be carried out. It is suppressed. Therefore, the temperature controllability of each gas particle generation unit is improved, and the characteristics of the formed film are also improved.

本発明の蒸着法による成膜装置が、以下の限定事項を有していることにより、さらに付加的な効果を得ることができる。 The film forming apparatus according to the vapor deposition method of the present invention has the following limitations, so that additional effects can be obtained.

仕切り部材が、冷媒が流れる冷却部を有していることにより、さらに効果的に仕切り部材の温度上昇を抑制することができるので、各気体粒子生成部の温度制御性がさらに向上する。   Since the partition member has the cooling part through which the refrigerant flows, the temperature rise of the partition member can be further effectively suppressed, and thus the temperature controllability of each gas particle generation part is further improved.

複数材料のうちの少なくとも1つが、水分と反応する成分を含んでいる場合には、冷媒が非水冷媒であることにより、信頼性が向上する。   When at least one of the plurality of materials includes a component that reacts with moisture, the reliability is improved because the refrigerant is a non-aqueous refrigerant.

形成される膜が蒸着法で形成される固体電解質であることにより、蒸発温度の差が大きい複数の材料を複数の蒸気生成部(気体粒子生成部)で蒸発させる場合にも、低温側の蒸気生成部の温度制御性を良好に保持することができる。   Even when a plurality of materials having a large difference in evaporation temperature are evaporated by a plurality of vapor generation units (gas particle generation units) because the formed film is a solid electrolyte formed by vapor deposition, the low-temperature side vapor The temperature controllability of the generation unit can be maintained well.

特に、固体電解質膜が、リチウム二次電池の一部として用いられるものである場合には、膜の組成比の制御性が向上するので、特性の優れたリチウム二次電池の製造に供することができる。   In particular, when the solid electrolyte membrane is used as a part of a lithium secondary battery, the controllability of the composition ratio of the membrane is improved, so that it can be used for the production of a lithium secondary battery having excellent characteristics. it can.

複数の気体粒子生成部の周囲に、冷却されている防着部材をさらに備えることにより、防着機能を備えつつ、防着部材からの輻射熱に起因する気体粒子生成部の温度制御性の悪化を抑制することができる。   By further providing a cooled anti-adhesion member around the plurality of gas particle generation units, the temperature controllability of the gas particle generation unit is deteriorated due to radiant heat from the anti-adhesion member while having an anti-adhesion function. Can be suppressed.

本発明の蒸着法による成膜装置によると、生成温度が相異なる複数材料の気体粒子を生成する複数の気体粒子生成装置を備えながら、各気体粒子生成装置の温度制御性の向上を図ることができる。 According to the film forming apparatus using the vapor deposition method of the present invention, it is possible to improve the temperature controllability of each gas particle generating apparatus while including a plurality of gas particle generating apparatuses that generate gas particles of a plurality of materials having different generation temperatures. it can.

(実施の形態)
図1は、本発明の実施の形態における蒸着法による成膜装置10の要部を示す側面図である。同図に示すように、本実施の形態の成膜装置10は、真空チャンバー11内に、2つの第1気体粒子生成部20と、1つの第2気体粒子生成部21と、第1,第2気体粒子生成部20,21の間にそれぞれ配置された2つの仕切り部材25と、各気体粒子生成部20,21および仕切り部材25の横方向を囲む筒状防着板27と、各気体粒子生成部20,21および仕切り部材25の上方に設けられ、開口28aを有する板状防着板28と、真空チャンバー11の天井面に取り付けられ、リチウム二次電池の電極用の被加工基板Dが保持されている成膜部30とを配置して構成されている。
(Embodiment)
FIG. 1 is a side view showing a main part of a film forming apparatus 10 by a vapor deposition method in an embodiment of the present invention. As shown in the figure, a film forming apparatus 10 according to the present embodiment includes two first gas particle generation units 20, one second gas particle generation unit 21, and first and first gas generators in a vacuum chamber 11. The two partition members 25 respectively disposed between the two gas particle generation units 20 and 21, the cylindrical protection plate 27 surrounding the gas particle generation units 20 and 21 and the partition member 25 in the lateral direction, and the gas particles A plate-shaped deposition preventing plate 28 provided above the generation units 20 and 21 and the partition member 25, having an opening 28a, and a work substrate D for an electrode of a lithium secondary battery attached to the ceiling surface of the vacuum chamber 11 are provided. The film forming unit 30 that is held is arranged.

第1気体粒子生成部20は、カーボン製のボート20aおよびボート台20bを備えていて、リチウム二次電池の固体電解質膜を形成するためのPの気体粒子(蒸気)(生成温度350°C前後)を生成するものである。第2気体粒子生成部21は、カーボン製のボート21aおよびボート台21bを備えていて、リチウム二次電池の固体電解質膜を形成するためのLiSの気体粒子(蒸気)(生成温度1000°C前後)を生成するものである。本実施の形態における各ボート20aおよび21aは、いずれも抵抗加熱により発熱するものであって、本実施の形態では、抵抗加熱による蒸着法を採用している。ただし、電子ビーム加熱による蒸着法や、加熱を伴うスパッタ法を用いて、気体粒子を生成してもよい。仕切り部材25の高さは、ボート20a,21aの高さ以上であることが必要で、複合材料からなる膜の適正な組成比が得られなくなる高さ未満であることが必要である。 The first gas particle generation unit 20 includes a carbon boat 20a and a boat table 20b, and P 2 S 5 gas particles (vapor) (generation temperature 350) for forming a solid electrolyte membrane of a lithium secondary battery. Around ° C). The second gas particle generation unit 21 includes a boat 21a and a boat table 21b made of carbon, and Li 2 S gas particles (vapor) (generation temperature 1000 ° for forming a solid electrolyte membrane of a lithium secondary battery). Around C). Each of the boats 20a and 21a in the present embodiment generates heat by resistance heating, and in this embodiment, a vapor deposition method by resistance heating is adopted. However, the gas particles may be generated using a vapor deposition method using electron beam heating or a sputtering method involving heating. The height of the partition member 25 needs to be equal to or higher than the height of the boats 20a and 21a, and needs to be less than a height at which an appropriate composition ratio of the film made of the composite material cannot be obtained.

成膜部30に保持される被加工基板Dは、銅箔の上にリチウム金属薄膜を形成したものであり、本実施の形態の成膜装置10は、リチウム金属薄膜の上に固体電解質膜であるLiS−P混合膜を成膜する装置である。 The substrate D to be processed held by the film forming unit 30 is obtained by forming a lithium metal thin film on a copper foil. The film forming apparatus 10 of the present embodiment is a solid electrolyte film on a lithium metal thin film. This is an apparatus for forming a certain Li 2 S—P 2 S 5 mixed film.

図2(a),(b)は、仕切り部材25の側面図、およびII-II線における断面図である。図2(a),(b)に示すように、仕切り部材25は、SUS製の平板25aに、断面形状が矩形のSUS製の冷却パイプ25bを溶接して構成されており、冷却パイプ25bの内部を冷媒が流れるようになっている。冷媒としては、たとえばフッ素系の熱媒体である商品名ガルデン(ソルベイソレクシス株式会社製)のような非水冷媒が適している。PおよびLiS等の硫化物は、水分と反応して有毒ガスである硫化水素を発生するおそれがあるので、非水冷媒を用いることにより、万一冷媒が成膜装置内に漏洩しても、かかる事態を回避することができる。非水冷媒としては、アルゴン、フロンなどの不活性ガス、グリコール、商品名フロリナート(住友スリーエム株式会社製)などの液体がある。また、冷却パイプ25bと、圧縮機,凝縮器とを冷媒配管で接続して冷凍回路を構成し、冷凍回路内に冷媒を循環させることができる。その場合には、冷却パイプ25bは冷凍回路の蒸発器として機能することになる。 2A and 2B are a side view of the partition member 25 and a cross-sectional view taken along line II-II. As shown in FIGS. 2A and 2B, the partition member 25 is configured by welding a SUS cooling pipe 25b having a rectangular cross section to a SUS flat plate 25a. A refrigerant flows through the inside. As the refrigerant, for example, a non-aqueous refrigerant such as a trade name Galden (manufactured by Solvay Solexis Co., Ltd.) which is a fluorine-based heat medium is suitable. Since sulfides such as P 2 S 5 and Li 2 S may react with moisture to generate hydrogen sulfide, which is a toxic gas, by using a non-aqueous refrigerant, the refrigerant should be brought into the film forming apparatus. Even if it leaks, such a situation can be avoided. Non-aqueous refrigerants include liquids such as inert gases such as argon and chlorofluorocarbon, glycol, and trade name Fluorinert (manufactured by Sumitomo 3M Limited). In addition, the cooling pipe 25b, the compressor, and the condenser can be connected by refrigerant piping to form a refrigeration circuit, and the refrigerant can be circulated in the refrigeration circuit. In that case, the cooling pipe 25b functions as an evaporator of the refrigeration circuit.

上述のように、Pの気体粒子(蒸気)の生成温度は350°C前後(300°C〜500°C)である。また、LiSの気体粒子(蒸気)の生成温度は1000°C前後(900°C〜1300°C)である。そして、リチウム二次電池の特性上、固体電解質膜であるLiS−P混合膜の組成比LiS/Pは、モル比で「3」程度であることが求められる。 As described above, the generation temperature of the P 2 S 5 gas particles (vapor) is around 350 ° C. (300 ° C. to 500 ° C.). The generation temperature of Li 2 S gas particles (vapor) is around 1000 ° C. (900 ° C. to 1300 ° C.). Then, the characteristics of the lithium secondary battery, Li 2 S-P 2 S 5 mixture composition ratio Li 2 S / P 2 S 5 of the membrane is a solid electrolyte membrane, determined to be about "3" molar ratio It is done.

このように、第1気体粒子生成部20と第2気体粒子生成部21とでは、気体粒子(蒸気)の生成温度(蒸発温度)が大幅に異なっている。そこで、第1気体粒子生成部20と第2気体粒子生成部21との間に仕切り部材25を設けることにより、高温側気体粒子生成部である第2気体粒子生成部21からの輻射熱に起因する,低温側気体粒子生成部である第2気体粒子生成部21の温度上昇をある程度抑制することができる。ところが、ある程度時間が経過すると、第2気体粒子生成部21からの輻射熱によって仕切り部材25の温度が上昇するので、仕切り部材25からの輻射熱に起因して、第1気体粒子生成部20の温度が上昇するおそれがある。   Thus, the first gas particle generation unit 20 and the second gas particle generation unit 21 have significantly different gas particle (vapor) generation temperatures (evaporation temperatures). Then, by providing the partition member 25 between the 1st gas particle production | generation part 20 and the 2nd gas particle production | generation part 21, it originates in the radiant heat from the 2nd gas particle production | generation part 21 which is a high temperature side gas particle production | generation part. The temperature rise of the second gas particle generation unit 21 that is the low temperature side gas particle generation unit can be suppressed to some extent. However, when a certain amount of time has passed, the temperature of the partition member 25 rises due to the radiant heat from the second gas particle generation unit 21, so that the temperature of the first gas particle generation unit 20 is caused by the radiant heat from the partition member 25. May rise.

ここで、本実施の形態では、仕切り部材25が、冷媒によって冷却される冷却部である冷却パイプ25bを有しているので、仕切り部材25の温度上昇が抑制され、仕切り部材25からの輻射熱に起因する第1気体粒子生成部20の温度上昇を抑制することができる。したがって、第1気体粒子生成部20の温度を、適正範囲である300°C〜500°Cに収めることができる。   Here, in this embodiment, since the partition member 25 has the cooling pipe 25b that is a cooling part cooled by the refrigerant, the temperature rise of the partition member 25 is suppressed, and the radiant heat from the partition member 25 is reduced. The temperature rise of the 1st gas particle production | generation part 20 resulting from it can be suppressed. Therefore, the temperature of the 1st gas particle production | generation part 20 can be stored in 300 degreeC-500 degreeC which is an appropriate range.

なお、本実施の形態においては、仕切り部材25に、冷却部として冷却パイプ25bを設けたが、仕切り部材25の一部(たとえば下端部)がヒートシンクにつながっていて、ヒートシンクとの熱伝導によって冷却される構成となっていてもよい。また、防着板27,28を、冷媒が流れる冷却部を有する構造とするか、あるいはヒートシンクからの熱伝導を利用して冷却する構造にしてもよい。   In the present embodiment, the partition member 25 is provided with the cooling pipe 25b as a cooling part. However, a part (for example, the lower end part) of the partition member 25 is connected to the heat sink and is cooled by heat conduction with the heat sink. It may be configured. Further, the deposition preventing plates 27 and 28 may have a structure having a cooling part through which a refrigerant flows, or may be structured to cool using heat conduction from a heat sink.

図3(a),(b)は、仕切り部材25および第1,第2気体粒子生成部20,21の構造の変形例を示す上面図である。   FIGS. 3A and 3B are top views showing a modification of the structure of the partition member 25 and the first and second gas particle generators 20 and 21. FIG.

図3(a)に示す変形例では、仕切り部材25は、二重管によって構成されていて、図示されていないが、二重管の内部を冷媒が流れる構造となっている。そして、第1気体粒子生成部20は二重管からなる仕切り部材25の外方に配置され、第2気体粒子生成部21は、仕切り部材25の内方に配置されている。この場合、第1気体粒子生成部20と、第2気体粒子生成部21とが円筒の内外に隔離して設置されているので、各気体粒子生成部20,21の個別の温度制御が簡単になるという利点がある。   In the modification shown in FIG. 3A, the partition member 25 is constituted by a double pipe and is not shown, but has a structure in which the refrigerant flows inside the double pipe. And the 1st gas particle production | generation part 20 is arrange | positioned outside the partition member 25 which consists of a double tube, and the 2nd gas particle production | generation part 21 is arrange | positioned inside the partition member 25. FIG. In this case, since the first gas particle generation unit 20 and the second gas particle generation unit 21 are installed separately inside and outside the cylinder, individual temperature control of the gas particle generation units 20 and 21 can be easily performed. There is an advantage of becoming.

なお、図3(a)の破線に示すように、第1気体粒子生成部20が、2カ所だけでなく、4カ所,3カ所など、3カ所以上の複数箇所に配置されていてもよい。また、3つ以上の種類の気体粒子(蒸気など)を生成する場合には、3つ以上の各気体粒子生成部同士の間にそれぞれ仕切り部材を配置することになる。その場合、3つ以上の気体粒子生成部のうちで、生成温度が近い又は等しい2つの気体粒子生成部が隣接している場合に、その間に、仕切り部材が設けられていないか、あるいは、仕切り部材が設けられているとしても仕切り部材が冷却されていない、という構成でもよい。ただし、全ての気体粒子生成部のうち、少なくとも2つの気体粒子生成部の間に、冷却されている仕切り部材が存在する必要がある。   In addition, as shown to the broken line of Fig.3 (a), the 1st gas particle production | generation part 20 may be arrange | positioned not only in two places but in multiple places, such as four places and three places, or more. When three or more types of gas particles (such as steam) are generated, a partition member is disposed between each of the three or more gas particle generation units. In that case, among two or more gas particle generation units, when two gas particle generation units with similar or equal generation temperatures are adjacent to each other, no partition member is provided between them, or the partition Even if a member is provided, the structure that the partition member is not cooled may be sufficient. However, a cooling partition member needs to exist between at least two gas particle generation units among all the gas particle generation units.

図3(b)に示す変形例では、図2(a),(b)に示す構造を有する仕切り部材25の両側に、第1気体粒子生成部20と第2気体粒子生成部21とが1つずつ配置されている。このように、気体粒子生成部の個数が1つずつでもよい。   In the modification shown in FIG. 3B, the first gas particle generation unit 20 and the second gas particle generation unit 21 are 1 on both sides of the partition member 25 having the structure shown in FIGS. It is arranged one by one. Thus, the number of gas particle generation units may be one at a time.

(実施例1)
図1に示すように、本発明の仕切り部材25を配置して、第2気体粒子生成部21の制御目標温度を1000°Cに設定して、LiS−P混合膜(固体電解質膜)を成膜した。この実施例では、防着板27,28は冷却していない。このとき、第1気体粒子生成部20の温度を350°Cに制御することができ、成膜レート0.02μm/sで、組成比LiS/Pが「3」のLiS−P混合膜を形成することができた。成膜されたLiS−P混合膜(硫化物系固体電解質膜)のリチウムイオン伝導度は、1×10−4S/cmであった。
Example 1
As shown in FIG. 1, by arranging the partition member 25 of the present invention, by setting the control target temperature of the second gas particle generator 21 to 1000 ° C, Li 2 S- P 2 S 5 mixture film (solid Electrolyte membrane) was formed. In this embodiment, the adhesion preventing plates 27 and 28 are not cooled. At this time, the temperature of the first gas particle generator 20 can be controlled to 350 ° C, at a deposition rate of 0.02 [mu] m / s, the composition ratio Li 2 S / P 2 S 5 is Li 2 "3" An S—P 2 S 5 mixed film could be formed. The lithium ion conductivity of the formed Li 2 S—P 2 S 5 mixed film (sulfide-based solid electrolyte film) was 1 × 10 −4 S / cm.

(実施例2)
図1に示すように、本発明の仕切り部材25を配置して、固体電解質膜の成膜レートを高くするために、第2気体粒子生成部21の制御目標温度を1200°Cに設定して、LiS−P混合膜(固体電解質膜)を成膜した。この実施例では、第2気体粒子生成部25の温度が実施例1よりも高いので、防着板27,28にも冷媒が流れる冷却パイプを取り付ける構造を採用した。このとき、第1気体粒子生成部20の温度を400°Cに制御することができ、成膜レート0.03μm/sで、組成比LiS/Pが「3」のLiS−P混合膜を形成することができた。成膜されたLiS−P混合膜(硫化物系固体電解質膜)のリチウムイオン伝導度は、1.2×10−4S/cmであった。
(Example 2)
As shown in FIG. 1, the control target temperature of the second gas particle generation unit 21 is set to 1200 ° C. in order to arrange the partition member 25 of the present invention and increase the deposition rate of the solid electrolyte membrane. A Li 2 S—P 2 S 5 mixed film (solid electrolyte film) was formed. In this embodiment, since the temperature of the second gas particle generating unit 25 is higher than that of the first embodiment, a structure in which a cooling pipe through which a refrigerant flows is also attached to the adhesion preventing plates 27 and 28 is employed. At this time, the temperature of the first gas particle generator 20 can be controlled to 400 ° C, at a deposition rate of 0.03 .mu.m / s, the composition ratio Li 2 S / P 2 S 5 is Li 2 "3" An S—P 2 S 5 mixed film could be formed. The lithium ion conductivity of the formed Li 2 S—P 2 S 5 mixed film (sulfide-based solid electrolyte film) was 1.2 × 10 −4 S / cm.

(比較例)
図1に示す構成において、仕切り部材25を冷却せずに、第2気体粒子生成部21の制御目標温度を1000°Cに設定して、LiS−P混合膜(固体電解質膜)を成膜した。このとき、第1気体粒子生成部20の温度は、ボートが通電されていないにもかかわらず、600°Cに達した。形成されたLiS−P混合膜の組成比LiS/Pは「1」であった。そして、成膜されたLiS−P混合膜(硫化物系固体電解質膜)のリチウムイオン伝導度は、1×10−6S/cmであり、目標値1×10−4S/cmを達成することができなかった。
(Comparative example)
In the configuration shown in FIG. 1, the control target temperature of the second gas particle generation unit 21 is set to 1000 ° C. without cooling the partition member 25, and a Li 2 S—P 2 S 5 mixed film (solid electrolyte film) ) Was formed. At this time, the temperature of the first gas particle generation unit 20 reached 600 ° C. even though the boat was not energized. The composition ratio Li 2 S / P 2 S 5 of the formed Li 2 S—P 2 S 5 mixed film was “1”. The lithium ion conductivity of the formed Li 2 S—P 2 S 5 mixed film (sulfide-based solid electrolyte film) is 1 × 10 −6 S / cm, and the target value is 1 × 10 −4 S. / Cm could not be achieved.

(他の実施の形態)
上記開示された本発明の実施の形態の構造は、あくまで例示であって、本発明の範囲はこれらの記載の範囲に限定されるものではない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内でのすべての変更を含むものである。
(Other embodiments)
The structure of the embodiment of the present invention disclosed above is merely an example, and the scope of the present invention is not limited to the scope of these descriptions. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

上記実施の形態においては、成膜のための硫化物等の気体粒子生成部として、抵抗加熱による真空蒸着設備を用いたが、電子ビーム溶解による蒸着法や、蒸着法以外のスパッタリング法などを用いた構造を採ることができる。   In the above embodiment, the vacuum vapor deposition equipment by resistance heating is used as the gas particle generating part such as sulfide for film formation, but the vapor deposition method by electron beam melting or the sputtering method other than the vapor deposition method is used. Can adopt the structure.

上記実施の形態においては、本発明の蒸着法による成膜装置を、リチウム二次電池の固体電解質膜の成膜に適用したが、本発明の蒸着法による成膜装置は、O,Nなどのガスセンサ、燃料電池などの固体電解質膜の成膜にも適用することができる。 In the above embodiment, the film deposition apparatus by deposition of the present invention is applied to formation of the solid electrolyte membrane for a lithium secondary battery, the film forming apparatus according to a vapor deposition method of the present invention, O 2, N 2 The present invention can also be applied to the formation of solid electrolyte membranes such as gas sensors and fuel cells.

上記実施の形態では、成膜部30に板状の被加工基板Dを設置するようにしたが、シート状の基材を供給ロール−巻き取りロール間で送りながら、連続的に成膜する構成を採ることもできる。   In the above embodiment, the plate-like workpiece D is installed in the film forming unit 30, but the film is continuously formed while the sheet-like base material is fed between the supply roll and the take-up roll. Can also be taken.

本発明の蒸着法による成膜装置は、リチウム二次電池、ガスセンサ、燃料電池などの固体電解質膜の成膜に利用することができる。 The film forming apparatus according to the vapor deposition method of the present invention can be used for forming a solid electrolyte film such as a lithium secondary battery, a gas sensor, and a fuel cell.

本発明の実施の形態における蒸着法による成膜装置の要部を示す側面図である。It is a side view which shows the principal part of the film-forming apparatus by the vapor deposition method in embodiment of this invention. (a),(b)は、仕切り部材の側面図およびII-II線における断面図である。(A), (b) is the side view of a partition member, and sectional drawing in the II-II line. (a),(b)は、気体粒子生成部および仕切り部材の変形例を示す上面図である。(A), (b) is a top view which shows the modification of a gas particle production | generation part and a partition member. (a),(b)は、特許文献1に記載されている従来の成膜装置の平面図および断面図である。(A), (b) is the top view and sectional drawing of the conventional film-forming apparatus described in patent document 1. FIG.

10 成膜装置
11 真空チャンバー
20 第1気体粒子生成部
20a ボート
20b ボート台
21 第2気体粒子生成部
21a ボート
21b ボート台
25 仕切り部材
25a 平板
2bb 冷却パイプ
27 筒状防着板
28 板状防着板
28a 開口
30 成膜部
D 被加工基板
DESCRIPTION OF SYMBOLS 10 Film-forming apparatus 11 Vacuum chamber 20 1st gas particle production | generation part 20a Boat 20b Boat stand 21 2nd gas particle production | generation part 21a Boat 21b Boat stand 25 Partition member 25a Flat plate 2bb Cooling pipe 27 Cylindrical adhesion board 28 Plate-like adhesion Plate 28a Opening 30 Deposition part D Substrate

Claims (7)

生成温度が相異なる複数材料の気体粒子を生成するために、該複数材料の気体粒子に応じて温度が制御される、複数の気体粒子生成部と、
前記複数の気体粒子生成部で生成された複数材料の気体粒子から基材上に膜を成膜する成膜部と、
前記複数の気体粒子生成部の間に設けられ、冷却されている仕切り部材と、を備え、
前記気体粒子生成部の一つを温度300℃〜500℃としてPの気体粒子を生成するものとし、他の一つを温度900℃〜1300℃としてLiSの気体粒子を生成するものとする、蒸着法による成膜装置。
A plurality of gas particle generation units, the temperatures of which are controlled according to the gas particles of the plurality of materials in order to generate gas particles of the plurality of materials having different generation temperatures;
A film forming unit that forms a film on a substrate from gas particles of a plurality of materials generated by the plurality of gas particle generating units;
A partition member provided between the plurality of gas particle generation units and cooled,
One of the gas particle generation units is assumed to generate P 2 S 5 gas particles at a temperature of 300 ° C. to 500 ° C., and the other one is generated at a temperature of 900 ° C. to 1300 ° C. to generate Li 2 S gas particles. A film forming apparatus using a vapor deposition method .
請求項1記載の蒸着法による成膜装置において、
前記仕切り部材は、冷媒が流れる冷却部を有している、蒸着法による成膜装置。
In the film-forming apparatus by the vapor deposition method of Claim 1,
The partition member has a cooling unit through which a refrigerant flows, and is a film forming apparatus using a vapor deposition method .
請求項2記載の蒸着法による成膜装置において、
前記複数材料のうちの少なくとも1つは、水分と反応する成分を含んでおり、
前記冷媒は、非水冷媒である、蒸着法による成膜装置。
In the film-forming apparatus by the vapor deposition method of Claim 2,
At least one of the plurality of materials includes a component that reacts with moisture;
The film forming apparatus by a vapor deposition method , wherein the refrigerant is a non-aqueous refrigerant.
請求項1〜3のいずれかに記載の蒸着法による成膜装置において、
前記膜は、蒸着法で形成される固体電解質膜である、蒸着法による成膜装置。
In the film-forming apparatus by the vapor deposition method in any one of Claims 1-3,
The film is a film forming apparatus by vapor deposition , which is a solid electrolyte film formed by vapor deposition.
請求項4記載の蒸着法による成膜装置において、
前記固体電解質膜は、リチウム二次電池の一部として用いられるものである、蒸着法による成膜装置。
In the film-forming apparatus by the vapor deposition method of Claim 4,
The said solid electrolyte membrane is a film-forming apparatus by a vapor deposition method used as a part of lithium secondary battery.
請求項1〜5のいずれかに記載の蒸着法による成膜装置において、
前記複数の気体粒子生成部の周囲に設けられ、冷却されている防着部材をさらに備えている、蒸着法による成膜装置。
In the film-forming apparatus by the vapor deposition method in any one of Claims 1-5,
The film-forming apparatus by a vapor deposition method further provided with the adhesion prevention member provided around the said several gas particle production | generation part and being cooled.
請求項1〜6のいずれかに記載の蒸着法による成膜装置を用いて基材上に成膜する蒸着法による成膜方法。 The film-forming method by the vapor deposition method which forms into a film on a base material using the film-forming apparatus by the vapor deposition method in any one of Claims 1-6.
JP2006190100A 2006-07-11 2006-07-11 Vapor deposition system Expired - Fee Related JP5260843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006190100A JP5260843B2 (en) 2006-07-11 2006-07-11 Vapor deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006190100A JP5260843B2 (en) 2006-07-11 2006-07-11 Vapor deposition system

Publications (3)

Publication Number Publication Date
JP2008019459A JP2008019459A (en) 2008-01-31
JP2008019459A5 JP2008019459A5 (en) 2009-06-18
JP5260843B2 true JP5260843B2 (en) 2013-08-14

Family

ID=39075644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006190100A Expired - Fee Related JP5260843B2 (en) 2006-07-11 2006-07-11 Vapor deposition system

Country Status (1)

Country Link
JP (1) JP5260843B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277565A (en) * 2008-05-16 2009-11-26 Sumitomo Electric Ind Ltd Film-forming method and battery
JP2011117058A (en) * 2009-12-07 2011-06-16 Sumitomo Electric Ind Ltd Film deposition system and film deposition method
GB201400276D0 (en) * 2014-01-08 2014-02-26 Ilika Technologies Ltd Vapour deposition method for fabricating lithium-containing thin film layered structures

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181175A (en) * 1992-12-14 1994-06-28 Fuji Electric Co Ltd Multielement simultaneous deposition system
JP3608415B2 (en) * 1999-01-26 2005-01-12 東洋紡績株式会社 Vapor deposition material holding means and vacuum vapor deposition apparatus
JP3608507B2 (en) * 2000-07-19 2005-01-12 住友電気工業株式会社 Method for producing alkali metal thin film member
JP2004014246A (en) * 2002-06-05 2004-01-15 Sony Corp Organic film forming device and method
JP2004107762A (en) * 2002-09-20 2004-04-08 Ulvac Japan Ltd Evaporation source, and thin-film-forming apparatus using it

Also Published As

Publication number Publication date
JP2008019459A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
US11713506B2 (en) Evaporator, deposition arrangement, deposition apparatus and methods of operation thereof
US8748208B2 (en) Method for fabricating thermo-electric generator
JP5260843B2 (en) Vapor deposition system
JP2010168607A (en) Facing target type sputtering apparatus capable of controlling composition ratio
WO2017169029A1 (en) Sputtering cathode, sputtering device, and method for producing film-formed body
US20120152727A1 (en) Alkali Metal Deposition System
US9299907B2 (en) Thin-film thermo-electric generator and fabrication method thereof
US9732419B2 (en) Apparatus for forming gas blocking layer and method thereof
Kim et al. Improved Performance of All‐Solid‐State Lithium Metal Batteries via Physical and Chemical Interfacial Control
TWI768612B (en) Evaporation source and evaporation device
JP2023551406A (en) protective layer source
JPH01282175A (en) Formation of protective film of superconducting material
JP2013008602A (en) Manufacturing apparatus and manufacturing method of negative electrode for lithium secondary battery
US20140174920A1 (en) Evaporation source
JP2008019459A5 (en)
JP2008195979A (en) Film deposition system and film deposition method
JP2011063823A (en) Sputtering source and sputtering apparatus, and method of producing multi-layered film using the same
US20180195163A1 (en) Cooling and utilization optimization of heat sensitive bonded metal targets
WO2024022579A1 (en) Evaporation source, material deposition apparatus, and method of depositing material on a substrate
JP2011117058A (en) Film deposition system and film deposition method
JPH04116160A (en) Film forming device
TW202419650A (en) Evaporation source, material deposition apparatus, and method of depositing material on a substrate
WO2014017682A1 (en) Magnetron sputtering device equipped with magnetron cooling portion
JP2011150793A (en) Lithium film deposition method, and power generation element
JP2016504485A (en) LAMINATED MATERIAL, ITS MANUFACTURING METHOD AND MANUFACTURING DEVICE, AND USE THEREOF

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees