JP5260840B2 - Microwave densitometer - Google Patents
Microwave densitometer Download PDFInfo
- Publication number
- JP5260840B2 JP5260840B2 JP2006145791A JP2006145791A JP5260840B2 JP 5260840 B2 JP5260840 B2 JP 5260840B2 JP 2006145791 A JP2006145791 A JP 2006145791A JP 2006145791 A JP2006145791 A JP 2006145791A JP 5260840 B2 JP5260840 B2 JP 5260840B2
- Authority
- JP
- Japan
- Prior art keywords
- microwave
- tube
- antenna
- coaxial
- receiving antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
Description
本発明は、マイクロ波を応用した、例えば、汚泥やパルプ等の種々の懸濁物質や溶解性物質を含む被測定流体の濃度を測定するマイクロ波濃度計に関する。 The present invention relates to a microwave densitometer that applies microwaves and measures the concentration of a fluid to be measured including various suspended substances and soluble substances such as sludge and pulp.
一般に、マイクロ波を、濃度の基準となるゼロ水(例えば、濃度0%とみなせる水道水)へ入射すると、その受信波は、送信波に比べて位相遅れ(θ1)が生じる。 In general, when microwaves are incident on zero water (for example, tap water that can be regarded as having a concentration of 0%) as a concentration reference, the received wave has a phase lag (θ1) compared to the transmitted wave.
また、マイクロ波を、汚泥等の懸濁液へ入射すると、同様にその受信波は、送信波に比べて位相遅れ(θ2)が生じる。これら位相遅れの差(位相差Δθ=θ2−θ1)は、懸濁物質の濃度と液体に溶解している物質の濃度との和に比例する。 In addition, when a microwave is incident on a suspension such as sludge, the received wave similarly has a phase delay (θ2) compared to the transmitted wave. The difference in phase lag (phase difference Δθ = θ2−θ1) is proportional to the sum of the concentration of the suspended substance and the concentration of the substance dissolved in the liquid.
そして、この時の濃度Xを数式で表わすと、次のようになる。
X=C・Δθ=C・(θ2−θ1)
ここで、C:補正係数、
θ1:基準となるゼロ水にマイクロ波を入射した場合の位相遅れ
θ2:懸濁液へマイクロ波を入射した場合の位相遅れ
とする。
The density X at this time is expressed as follows.
X = C · Δθ = C · (θ2−θ1)
Where C: correction coefficient,
θ1: Phase delay when microwaves are incident on zero water as a reference θ2: Phase delay when microwaves are incident on suspension
以上のような測定原理に基づいたマイクロ波濃度計の例が、例えば、特許文献1に開示されている。 An example of a microwave densitometer based on the measurement principle as described above is disclosed in Patent Document 1, for example.
ところで、このような従来のマイクロ波濃度計は、測定管の管軸を横切る形で対向するように、測定管の管壁側面にマイクロ波送信アンテナ、およびマイクロ波受信アンテナを配置する構造(管軸横断型と称す)であるため、測定管の口径が大きい場合には、マイクロ波送信アンテナとマイクロ波受信アンテナとの間の距離が大きくなり、伝播するマイクロ波の減衰が大きくなる。 By the way, such a conventional microwave densitometer has a structure in which a microwave transmitting antenna and a microwave receiving antenna are arranged on the side wall of the measuring tube so as to face each other across the tube axis of the measuring tube (tube). Therefore, when the diameter of the measurement tube is large, the distance between the microwave transmitting antenna and the microwave receiving antenna increases, and the attenuation of the propagating microwave increases.
そのため、ある口径以上の測定管の場合、管軸横断形の構造では測定が難しいという問題があった。 Therefore, in the case of a measuring tube having a certain diameter or more, there is a problem that measurement is difficult with a tube axis crossing structure.
そこで、測定管の口径が大きくなる場合には、測定管の一方の管壁からマイクロ波送信アンテナとマイクロ波受信アンテナとを挿入する(側面挿入型と称す)マイクロ波濃度計が開示されている(例えば、特許文献2参照。)。 Thus, a microwave densitometer is disclosed in which a microwave transmitting antenna and a microwave receiving antenna are inserted from one tube wall of the measuring tube when the diameter of the measuring tube is increased (referred to as side insertion type). (For example, see Patent Document 2).
この側面挿入型のマイクロ波濃度計の管軸方向から見た断面図を図6に示す。図6において、この側面挿入型のマイクロ波濃度計は、マイクロ波送信アンテナ26およびマイクロ波受信アンテナ29のそれぞれを気密構造の筒の中に収納し、濃度測定に必要な所定距離を隔ててマイクロ波送信アンテナ26のマイクロ波発射方向とマイクロ波受信アンテナ29のマイクロ波入射方向とが対向する配置となるように、マイクロ波送信アンテナ26の収納筒24および前記マイクロ波受信アンテナ29の収納筒28を取り付けベースフランジ23に取り付けて、被測定流体20を流す測定管21の測定管フランジ部22に気密構造で固定している。
FIG. 6 shows a cross-sectional view of this side-insertion type microwave densitometer viewed from the tube axis direction. In FIG. 6, this side-insertion type microwave densitometer includes a
このようなマイクロ波濃度計のマイクロ波送信アンテナ26の構造を説明する。(マイクロ波受信アンテナ29の構造は、マイクロ波送信アンテナ26と同じ構造であるので説明を省略する。)。
The structure of the
図7(a)は、方形空洞共振器で構成されたマイクロ波送信アンテナ26の断面図で、マイクロ波送信アンテナ26は、同軸ケーブル27の同軸芯線27aで励振されたマイクロ波を絶縁物製窓25からz軸方向に送信する。
FIG. 7A is a cross-sectional view of a
そして、送信されたマイクロ波は、マイクロ波送信アンテナと26と同じ構造の方形空洞共振器からなるマイクロ波受信アンテナ30で受信され、この受信信号が同軸ケーブル31を介して測定部32に送られる。
The transmitted microwave is received by a
このマイクロ波送信アンテナ26の方形空洞共振器の形状を図7(b)に示す。例えば、共振周波数f(2GHz)、共振波長λの共振器をa>bの方形空洞共振器で構成する場合には、方形空洞共振器の形状(a×b×L1)は下記のようになる。
The shape of the rectangular cavity resonator of the
ここで、管軸と平行な平面をx-y平面、管軸と直交する平面をy-z平面とし、x軸の寸法a、y軸の寸法b、z軸の寸法L1とすると、共振波長λと寸法a、b、L1とは、下記の関係がある。 Here, if the plane parallel to the tube axis is the xy plane, the plane orthogonal to the tube axis is the yz plane, the x-axis dimension a, the y-axis dimension b, and the z-axis dimension L1, the resonance wavelength λ and dimensions a, b, and L1 have the following relationship.
4/λ2=m2/a2+n2/b2+p2/L12
ここで、m、n、pは、夫々、x軸方向、y軸方向、z軸方向の定在波の数を示す。
4 / λ 2 = m 2 / a 2 + n 2 / b 2 + p 2 / L1 2
Here, m, n, and p indicate the number of standing waves in the x-axis direction, the y-axis direction, and the z-axis direction, respectively.
また、z軸の寸法L1は、シングルモードの空洞共振器の場合、例えば、
TEmnp(TE101)の場合L1=aとすると最も形状が小さくなる。このとき、
4/λ2=2/L12 、 ∴L1=λ/21/2
となる。
In the case of a single mode cavity resonator, the z-axis dimension L1 is, for example,
In the case of TE mnp (TE 101 ), the shape becomes the smallest when L1 = a. At this time,
4 / λ 2 = 2 / L1 2 , ∴L1 = λ / 2 1/2
It becomes.
光速をc(=3×108m/秒)、空洞共振器内部の比誘電率をεr=20とすると、寸法L1は、
L1=1/21/2×c/εr 1/2×1/f
=1/21/2×(3×108)/( 201/2×2×109 )
=23.7×10−3(m)
となる。
When the speed of light is c (= 3 × 10 8 m / sec) and the relative dielectric constant inside the cavity resonator is ε r = 20, the dimension L1 is
L1 = 1/2 1/2 × c / ε r 1/2 × 1 / f
= 1/21/2 * (3 * 10 < 8 >) / ( 201/2 * 2 * 10 < 9 >)
= 23.7 × 10 −3 (m)
It becomes.
したがって、測定管21の側面から送信アンテナおよび受信アンテナを対向して取り付けることが可能な最小の測定管21の口径dΦは、図6に示すように、
dΦ≧Lm+2(L1+α)
となる。
Therefore, as shown in FIG. 6, the minimum diameter dΦ of the
dΦ ≧ Lm + 2 (L1 + α)
It becomes.
ここで、(L1+α)はマイクロ波送信アンテナを収納するための余裕寸法αを見込んだz軸方向の寸法、また、Lmは、収納筒24および収納筒28間の寸法とする。
Here, (L1 + α) is a dimension in the z-axis direction that allows for a margin dimension α for housing the microwave transmission antenna, and Lm is a dimension between the
即ち、この側面挿入型が適用可能な最小の口径dΦは、Lmを40mm、αを10mmとすると、少なくとも107.4mm以上となる。 That is, the diameter d [Phi of this aspect insertable minimum applicable is, 40 mm and Lm, when a 10mm to alpha, is at least 107.4mm above.
したがって、この方形空洞共振器を使用したマイクロ波濃度計では、上記のような例では、100mm以下の口径では、適用が困難となる問題がある。 Therefore, in the microwave densitometer using this square cavity resonator, there is a problem that it is difficult to apply at a diameter of 100 mm or less in the above example.
また、このような方形空洞共振器を収納筒に収納してなるマイクロ波送信アンテナおよびマイクロ波受信アンテナでは、測定管側面の開口部は管軸方向にも(L1+α)以上の寸法が必要であり、この収納筒に被測定流体に含まれる懸濁物質が堆積しやすく、堆積物によって測定が困難となる問題もある。
上述したような側面挿入型のマイクロ波濃度計においては、取り付けが可能な測定管は、比較的大きな口径以上のものしか適用できないという問題がある。 In the side-insertion type microwave densitometer as described above, there is a problem that only a tube having a relatively large diameter can be applied as a measurement tube that can be attached.
また、被測定流体が流れる部分にマイクロ波送信アンテナおよびマイクロ波受信アンテナの収納筒の部分が突出し、この部分に懸濁物質が堆積して測定ができなくなる問題もある。 In addition, there is a problem in that the portion of the storage cylinder of the microwave transmitting antenna and the microwave receiving antenna protrudes in the portion where the fluid to be measured flows, and suspended substances accumulate on this portion, making measurement impossible.
本発明は、このような問題点を解決するためになされたもので、マイクロ波送アンテナおよびマイクロ波受信アンテナの形状を小型にして、従来よりも小さな口径の測定管にも取り付けが可能で、且つ、懸濁物質が堆積しにくいマイクロ波濃度計を提供することを目的とする。 The present invention was made in order to solve such problems, the size of the microwave transmitting antenna and the microwave receiving antenna can be reduced in size, and can be attached to a measuring tube having a smaller diameter than the conventional one. Another object of the present invention is to provide a microwave densitometer in which suspended substances do not easily accumulate.
上記目的を達成するために、本発明による請求項1に係るマイクロ波濃度計は、対向して設けられる一対のマイクロ波送信アンテナとマイクロ波受信アンテナとを被測定流体を流す測定管外周側面から挿入し、前記マイクロ波送信アンテナからマイクロ波を送信し、マイクロ波受信アンテナで受けるまでの伝播時間の変化から前記被測定流体の濃度を求めるマイクロ波濃度計であって、前記マイクロ波送信アンテナおよび前記マイクロ波受信アンテナは、同軸共振器型のアンテナであって、夫々のアンテナは、同軸ケーブルの同軸芯導体と、前記同軸芯導体の外部導体を構成し、当該外部導体の外周面を所定の角度範囲で開口される金属筒と、前記金属筒の内部の空間を埋める予め設定された誘電率を有する誘電体と、前記誘電体の表面を蓋う絶縁物と、一方の面に前記同軸ケーブルを、他方の面に、貫通した当該同軸ケーブルの前記同軸芯導体、前記誘電体、及び前記絶縁物を備える前記金属筒を、固定する当該金属筒と同一の材質を有する固定ホルダと、を備え、前記マイクロ波送信アンテナと前記マイクロ波受信アンテとを、夫々の前記同軸芯導体が、前記測定管の管軸と交差する平面上で前記金属筒の開口位置を対向して設けたことを特徴とする。 In order to achieve the above object, a microwave densitometer according to a first aspect of the present invention includes a pair of microwave transmitting antennas and a microwave receiving antenna, which are provided to face each other, from the outer peripheral side surface of a measurement tube that allows a fluid to be measured to flow A microwave densitometer for determining a concentration of the fluid to be measured from a change in propagation time from insertion to transmission of microwave from the microwave transmission antenna to reception by the microwave reception antenna, the microwave transmission antenna and The microwave receiving antenna is a coaxial resonator type antenna, and each antenna constitutes a coaxial core conductor of a coaxial cable and an outer conductor of the coaxial core conductor. A metal cylinder opened in an angle range, a dielectric having a preset dielectric constant filling the space inside the metal cylinder, and a lid covering the surface of the dielectric The metal tube for fixing the insulator, the coaxial cable on one surface, and the metal tube including the coaxial core conductor, the dielectric, and the insulator of the coaxial cable penetrating on the other surface; A fixed holder made of the same material, and the microwave transmitting antenna and the microwave receiving antenna are connected to each other on the plane where each of the coaxial core conductors intersects the tube axis of the measuring tube. It is characterized in that the opening positions are provided facing each other.
上記目的を達成するために、本発明による請求項2に係るマイクロ波濃度計は、対向して設けられる一対のマイクロ波送信アンテナとマイクロ波受信アンテナとを被測定流体を流す測定管外周側面から挿入し、前記マイクロ波送信アンテナからマイクロ波を送信し、マイクロ波受信アンテナで受けるまでの伝播時間の変化から前記被測定流体の濃度を求めるマイクロ波濃度計であって、前記マイクロ波送信アンテナおよび前記マイクロ波受信アンテナは、同軸共振器型のアンテナであって、夫々のアンテナは、同軸ケーブルの同軸芯導体と、前記同軸芯導体の外部導体を構成し、当該外部導体の外周面を所定の角度範囲で開口される金属筒と、前記金属筒の内部の空間を埋める予め設定された誘電率を有する誘電体と、前記誘電体の表面を蓋う絶縁物と、一方の面に前記同軸ケーブルを、他方の面に、貫通した当該同軸ケーブルの前記同軸芯導体、前記誘電体、及び前記絶縁物を備える前記金属筒を、固定する当該金属筒と同一の材質を有する固定ホルダと、を備え、前記マイクロ波送信アンテナと前マイクロ波受信アンテナとを、夫々の前記同軸芯導体が、前記測定管の管軸と平行な平面上で前記金属筒の開口位置を対向して設けたことを特徴とする。 In order to achieve the above object, a microwave densitometer according to a second aspect of the present invention includes a pair of microwave transmitting antennas and a microwave receiving antenna, which are provided to face each other, from the outer peripheral side surface of a measurement tube that allows a fluid to be measured to flow A microwave densitometer for determining a concentration of the fluid to be measured from a change in propagation time from insertion to transmission of microwave from the microwave transmission antenna to reception by the microwave reception antenna, the microwave transmission antenna and The microwave receiving antenna is a coaxial resonator type antenna, and each antenna constitutes a coaxial core conductor of a coaxial cable and an outer conductor of the coaxial core conductor. A metal cylinder opened in an angle range, a dielectric having a preset dielectric constant filling the space inside the metal cylinder, and a lid covering the surface of the dielectric The metal tube for fixing the insulator, the coaxial cable on one surface, and the metal tube including the coaxial core conductor, the dielectric, and the insulator of the coaxial cable penetrating on the other surface; A fixed holder made of the same material, and the microwave transmitting antenna and the front microwave receiving antenna, wherein each of the coaxial core conductors has a plane parallel to the tube axis of the measuring tube. It is characterized in that the opening positions are provided facing each other.
本発明によれば、送信アンテナおよび受信アンテナは、同軸芯導体と、この同軸芯導体の周囲を覆う同心円筒状の絶縁体と、前記絶縁体の対向する一部を開口した金属筒とを備える同軸共振器で構成した。 According to the present invention, a transmitting antenna and a receiving antenna include a coaxial core conductor, a concentric cylindrical insulator that covers the periphery of the coaxial core conductor, and a metal cylinder that opens a part facing the insulator. A coaxial resonator is used.
したがって、同軸共振器の同軸芯導体径aと金属筒内径2bとの同軸管寸法比b/aを調整することで管軸と直交する方向の寸法を小さくするとことができるので、取り付けが可能な測定管の口径が小さくなる。
Therefore, by adjusting the coaxial tube dimensional ratio b / a between the coaxial core conductor diameter a of the coaxial resonator and the metal cylinder
また、このマイクロ波送信アンテナおよびマイクロ波受信アンテナの測定管の管軸と交差する方向からみた断面形状を曲面とし、管軸方向の流体抵抗を小さくしたので、懸濁物質が堆積しにくいマイクロ波濃度計を提供することができる。 In addition, since the cross-sectional shape of the microwave transmitting antenna and the microwave receiving antenna as viewed from the direction intersecting the tube axis of the measurement tube is a curved surface, and the fluid resistance in the tube axis direction is reduced, the microwaves in which suspended substances are difficult to deposit A densitometer can be provided.
以下、図面を参照して、本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.
以下に、本発明による実施例1のマイクロ波濃度計について、図1乃至図2を参照して説明する。 Hereinafter, a microwave densitometer of Example 1 according to the present invention will be described with reference to FIGS.
図1は、本発明のマイクロイ波濃度計の測定管5の管軸方向から見た断面図を示す。
FIG. 1 shows a cross-sectional view of the
図1において、マイクロイ波濃度計の構成は、測定管5の管壁側面で対向して設けられるマイクロ波送信アンテナ1aとマイクロ波受信アンテナ1bと、マイクロ波送信アンテナ1aに励振信号を送信する同軸ケーブル3aと、マイクロ波受信アンテナ1bで受信した信号を測定部2に送信する同軸ケーブル3bと、マイクロ波アンテナ1aに励振信号を送信し、受信したマイクロ波信号を処理する測定部2と、マイクロ波送信アンテナ1aとマイクロ波受信アンテナ1bとを一方の先端部に取り付け、他方の後端部に測定部2を搭載し、測定管5の接合貫通穴部に側面から挿入し、測定管5の側面に固定されるアンテナ取り付け部4とからなる。
In FIG. 1, the microwave densitometer has a configuration in which an excitation signal is transmitted to a
次に、図2を参照して、マイクロ波送信アンテナ1aおよびマイクロ波受信アンテナ1bの構成について説明する。図2は、測定管5の管軸方向から見た断面図である。
Next, the configuration of the
管軸と直交する水平軸に対して上下に対称に対向して取り付けられるマイクロ波送信アンテナ1aとマイクロ波受信アンテナ1bとは、その構成は同じなので、一方のマイクロ波送信アンテナン1aについて説明し、マイクロ波受信アンテナ1bの説明を省略する。
Since the
マイクロ波送信アンテナ1aは、同軸共振器を構成するもので、同軸ケーブル3aの同軸芯導体11と、同軸芯導体11の外部導体となる金属筒14と、金属筒14の内部の空間を埋めるセラミックス等の高誘電率を有する誘電体12と誘電体12を保護するためのポリエチレン等の絶縁物13と、同軸ケーブル3aを一方の面に、他方の面に貫通した同軸芯導体11、誘電体12、および絶縁物13を備える金属筒14と同一の材質からなる固定ホルダ15とからなる。
The
そして、マイクロ波送信アンテナ1aの固定ホルダ15とマイクロ波受信アンテナ1bの固定ホルダ15とは、管軸と直交する水平軸の対し上下方向で対称となるアンテナ取り付け部4の位置に固定され、さらに、アンテナ取り付け部4は測定管5の側壁に設けられる接合貫通穴部の外周側面から挿入されて固定される。
The fixed
また、金属筒14の一部は、図2(b)および図2(c)に示すように、金属筒14の外周面の一部分が所定の角度範囲で開口され、マイクロ波送信アンテナ1aとマイクロ波受信アンテナ1bの夫々の金属筒14は、この開口部が対向する位置で、測定管5の内周方向からアンテナ取り付け部4に固定される。
Further, as shown in FIGS. 2 (b) and 2 (c), a part of the outer circumference of the
次に、この同軸共振器の設定について説明する。例えば、同軸共振器の共振周波数fを2GHz、その共振波長λ、誘電体12の比誘電率をεr=20とすると、この両端が短絡された場合の金属筒の管軸長Lは、一般に、下記のようになる。
L=1/2×λ
=1/2×c/εr 1/2×1/f
=1/2×3×108/(√201/2×2×109)=16.8mm
となる。ここで、cは光速度(3×108m/秒)とする。
Next, the setting of the coaxial resonator will be described. For example, assuming that the resonance frequency f of the coaxial resonator is 2 GHz, the resonance wavelength λ, and the relative dielectric constant of the dielectric 12 is ε r = 20, the tube axis length L of the metal tube when both ends are short-circuited is generally It becomes as follows.
L = 1/2 × λ
= 1/2 × c / ε r 1/2 × 1 / f
= 1/2 × 3 × 10 8 / (√20 1/2 × 2 × 10 9 ) = 16.8 mm
It becomes. Here, c is the speed of light (3 × 10 8 m / sec).
また、この同軸共振器の遮断周波数の最も低いモードTEmn(TE11)で、使用する共振波長λを遮断周波数以下の範囲で使用して高次モードをさけ、同軸芯導体径2aと金属筒14内径2bとの同軸管寸法比b/aを調整する。
Further, in the mode TE mn (TE 11 ) having the lowest cut-off frequency of the coaxial resonator, the high-order mode is avoided by using the resonance wavelength λ to be used within the cut-off frequency or less, and the coaxial core conductor diameter 2a and the metal tube The coaxial tube dimension ratio b / a with the 14
この同軸管寸法比b/aは、例えば、同軸共振器のQを2乃至6の範囲で、同軸共振器のQが最大となる同軸管寸法比b/aを3.6とすると、同軸管の肉厚tを1mm、同軸芯導体径2aを1mmの場合、金属筒14の外形2(b+t)は、5.6mmとなる。
For example, if the coaxial tube dimensional ratio b / a in which the Q of the coaxial resonator is in the range of 2 to 6 and the coaxial tube dimensional ratio b / a at which the Q of the coaxial resonator is maximum is 3.6, the coaxial tube dimensional ratio b / a When the thickness t is 1 mm and the coaxial core conductor diameter 2 a is 1 mm, the outer shape 2 (b + t) of the
したがって、この時の同軸共振器の金属筒14の外形は、管軸長L=18.8mm、管外形が5.6mmとなる。
Therefore, the outer shape of the
したがって、このとき適用可能な測定管5の管径dΦは、マイクロ波送信アンテナ1aとマイクロ波受信アンテナ1bとの測定空間Lmを40mm、とすると、
dΦ≧Lm+2×2(b+t)≒51(mm)
となる。
Thus, tube diameter d [Phi
dΦ ≧ Lm + 2 × 2 (b + t) ≈51 (mm)
It becomes.
即ち、同軸共振器の管軸長Lは長くても、同軸管寸比b/aを適宜調整することで、測定管5の管軸と直交する方向の寸法を小さくすることが出来る。
That is, even if the tube length L of the coaxial resonator is long, the dimension in the direction perpendicular to the tube axis of the
このことから、空洞共振器の場合に取り付けが困難であったより小さな測定管の口径にも取り付けることが可能となる。 Therefore, it is possible to attach to a smaller diameter of the measurement tube, which is difficult to attach in the case of the cavity resonator.
また、管軸長Lの全長を測定管内に挿入する必要はなく、例えば、管軸長Lの半分の長さを挿入しても良く、適宜調整することが可能である。 Further, it is not necessary to insert the entire length of the tube shaft length L into the measurement tube. For example, a length half of the tube shaft length L may be inserted and can be adjusted as appropriate.
したがって、測定管5に突出する金属筒11の寸法も小さく出来るので、被測定流体20の流れに対し懸濁物質の堆積がしにくい構造とすることが容易なマイクロ波濃度計を提供することが出来る。
Therefore, since the size of the
尚、測定空間Lmおよび金属筒14の形状は、詳細には実験によって、マイクロ波受信アンテナ1bで得られる受信信号が適正なレベルとなるように適宜調整することが望ましい。
In addition, it is desirable to adjust suitably the shape of measurement space Lm and the
また、誘電体12と誘電体12を保護するための絶縁物13とは、プラスティク等を一体で成形しても良く、被測定流体20によって適宜選択することが可能である。
Further, the dielectric 12 and the
さらに、マイクロ波送信アンテナ1aは、同軸共振器で構成される場合について説明したが、図2に示すように金属筒14の一端が容量結合された、即ち、同軸芯導体11の一端が開放された半同軸共振器で構成しても良い。
Furthermore, although the
以下に、本発明の実施例2に係るマイクロ波濃度計について、図3を参照して説明する。図3に示す実施例の各部について、実施例1のマイクロ波濃度計の各部と同一部分は同一符号で示し、その説明を省略する。 A microwave densitometer according to Example 2 of the present invention will be described below with reference to FIG. 3 that are the same as those of the microwave densitometer of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
この実施例2が実施例1と異なる点は、実施例1では、被測定流体20の温度を測定する温度センサを備えていなかったが、実施例2では、マイクロ波送信アンテナ1aおよびマイクロ波受信アンテナ1bのマイクロ波が伝播する近傍に温度センサ6を備えたことにある。
The second embodiment is different from the first embodiment in that the temperature sensor for measuring the temperature of the fluid 20 to be measured is not provided in the first embodiment. However, in the second embodiment, the
図3に示すように、この温度センサ6の感温部が接液するようにアンテナ取り付け部4取り付けることで、マイクロ波が伝播する測定空間近傍の液温を容易に測定することができる。
As shown in FIG. 3, by attaching the
したがって、被測定流体20の温度が変化して誘電率が変化した場合でも、この温度センサ6の出力でマイクロ波濃度計の出力を精度良く補正することが可能なマイクロ波濃度計を提供することができる。
Accordingly, it is possible to provide a microwave densitometer capable of accurately correcting the output of the microwave densitometer with the output of the
以下に、本発明の実施例3に係るマイクロ波濃度計について、図4を参照して説明する。図4に示す実施例の各部について、実施例1のマイクロ波濃度計の各部と同一部分は同一符号で示し、その説明を省略する。 Hereinafter, a microwave densitometer according to Example 3 of the present invention will be described with reference to FIG. 4 that are the same as those of the microwave densitometer of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
図4(a)は測定管5の管内側面から見たマイクロ波送信アンテナ1aおよびマイクロ波受信アンテナ1bの正面図で、図4(b)は、そのマイクロ波送信アンテナの1aの管軸と直交する方向から見た断面図である。
4A is a front view of the
この実施例4が実施例1と異なる点は、実施例1では金属筒14の筒部、特に、その先端部分が、被測定流体20が流れる管軸方向に対し大きな流体抵抗となって懸濁物質が付着堆積しやすい構造となっていたが、本実施例3では、流れに接液する部分を曲面形状と被測定流体が流れる方向の流体抵抗を小さくした金属筒14fとしたことにある。
The difference between the fourth embodiment and the first embodiment is that in the first embodiment, the cylindrical portion of the
したがって、被測定流体20の流れを乱すことがなく、懸濁物質が付着堆積しにくい構造のマイクロ波濃度計を提供することができる。 Therefore, it is possible to provide a microwave densitometer having a structure that does not disturb the flow of the fluid 20 to be measured and does not easily deposit and deposit suspended substances.
以下に、本発明の実施例4に係るマイクロ波濃度計について、図5を参照して説明する。図5に示す実施例の各部について、実施例1のマイクロ波濃度計の各部と同一部分は同一符号で示し、その説明を省略する。 A microwave densitometer according to Example 4 of the present invention will be described below with reference to FIG. About each part of the Example shown in FIG. 5, the same part as each part of the microwave densitometer of Example 1 is shown with the same code | symbol, and the description is abbreviate | omitted.
図5(a)は測定管5の管内側面から見たマイクロ波送信アンテナ1aおよびマイクロ波受信アンテナ1bの正面図で、図5(b)は、そのマイクロ波送信アンテナの1aの管軸と直交する方向から見た断面図、また図5(c)は、管軸方向から見た断面図である。
FIG. 5A is a front view of the
この実施例5が実施例1と異なる点は、実施例1では、マイクロ波送信アンテナ1aの同軸芯導体11は管軸と直交する方向でアンテナ取り付け部4に固定されて測定管5に挿入されたが、本実施例4では、同軸芯導体11を管軸と平行する方向となるようにアンテナ取り付け部4に固定して、測定管5に挿入するようにした点にある。
The fifth embodiment is different from the first embodiment in that in the first embodiment, the
すなわち、同軸芯導体11を同軸ケーブル3の挿入方向に対し90度折り曲げてアンテナ取り付け部4に固定するとともに、金属筒14を管軸方向で対向する一部を開口する。
That is, the
また、金属筒14の管軸方向先端部分を曲面として、被測定流体20の流れを乱さない形状に成形する。
Further, the tip of the
このように、同軸芯導体11を管軸方向に平行に備えることで、測定管5の取り付け口径を小さくするとともに、金属筒14の端面を曲面として流体抵抗を小さくしたので、懸濁物資の付着堆積がしにくいマイクロ波濃度計を提供することが出来る。
Thus, by providing the
本発明は、上述した実施例に何ら限定されるものではなく、マイクロ波送信アンテナとして同軸共振器の同軸径の方向の寸法を同軸管寸比b/aを適宜調整をして測定管の管径が小さくなるようにするものであれば良く、また、その外観形状は、被測定流体が流れる方向の流体抵抗が小さくなるように曲面形状とし、同軸共振器の誘電体や絶縁体は被測定流体によって適宜材質を変えても良く、本発明の主旨を逸脱しない範囲で種々変形して実施することができる。 The present invention is not limited to the above-described embodiments, and the dimensions of the coaxial resonator in the direction of the coaxial diameter as a microwave transmission antenna are appropriately adjusted by adjusting the coaxial pipe dimension ratio b / a. As long as the diameter is reduced, the external shape is curved so that the fluid resistance in the direction in which the fluid to be measured flows is small, and the dielectric and insulator of the coaxial resonator are measured. The material may be appropriately changed depending on the fluid, and various modifications can be made without departing from the gist of the present invention.
1a マイクロ波送信アンテナ
1b マイクロ波受信アンテナ
2 測定部
3a、3b 同軸ケーブル
4 アンテナ取り付け部
5 測定管
6 温度計
11 同軸芯導体
12 誘電体
13 絶縁体
14,14f 金属筒
15 固定ホルダ
20 被測定流体
21 測定管
22 測定管フランジ
23 取り付けベースフランジ
24、28 収納筒
25、29 絶縁物製窓
26 マイクロ波送信アンテナ
27、31 同軸ケーブル
27a 同軸芯線
30 マイクロ波受信アンテナ
32 測定部
DESCRIPTION OF
Claims (4)
前記マイクロ波送信アンテナおよび前記マイクロ波受信アンテナは、同軸共振器型のアンテナであって、夫々のアンテナは、
同軸ケーブルの同軸芯導体と、
前記同軸芯導体の外部導体を構成し、当該外部導体の外周面を所定の角度範囲で開口される金属筒と、
前記金属筒の内部の空間を埋める予め設定された誘電率を有する誘電体と、
前記誘電体の表面を蓋う絶縁物と、
一方の面に前記同軸ケーブルを、他方の面に、貫通した当該同軸ケーブルの前記同軸芯導体、前記誘電体、及び前記絶縁物を備える前記金属筒を、固定する当該金属筒と同一の材質を有する固定ホルダと、
を備え、
前記マイクロ波送信アンテナと前記マイクロ波受信アンテとを、夫々の前記同軸芯導体が、前記測定管の管軸と交差する平面上で前記金属筒の開口位置を対向して設けたことを特徴とするマイクロ波濃度計。 Inserting a pair of microwave transmitting antenna and microwave receiving antenna provided opposite to each other from the outer peripheral side surface of the measurement tube through which the fluid to be measured flows, until microwaves are transmitted from the microwave transmitting antenna and received by the microwave receiving antenna A microwave densitometer for determining the concentration of the fluid to be measured from the change in propagation time of
The microwave transmitting antenna and the microwave receiving antenna are coaxial resonator type antennas, and each antenna is
A coaxial core conductor of a coaxial cable ;
Constituting an outer conductor of the coaxial core conductor, and a metal cylinder having an outer peripheral surface of the outer conductor opened within a predetermined angle range;
A dielectric having a predetermined dielectric constant filling the space inside the metal cylinder;
An insulator covering the surface of the dielectric;
The same material as the metal tube for fixing the coaxial cable on one surface and the metal tube including the coaxial core conductor, the dielectric, and the insulator of the coaxial cable penetrating on the other surface. A fixed holder having,
With
The microwave transmitting antenna and the microwave receiving antenna are characterized in that each coaxial core conductor is provided to face the opening position of the metal tube on a plane intersecting the tube axis of the measuring tube. Microwave densitometer.
前記マイクロ波送信アンテナおよび前記マイクロ波受信アンテナは、同軸共振器型のアンテナであって、夫々のアンテナは、
同軸ケーブルの同軸芯導体と、
前記同軸芯導体の外部導体を構成し、当該外部導体の外周面を所定の角度範囲で開口される金属筒と、
前記金属筒の内部の空間を埋める予め設定された誘電率を有する誘電体と、
前記誘電体の表面を覆う絶縁物と、
一方の面に前記同軸ケーブルを、他方の面に、貫通した当該同軸ケーブルの前記同軸芯導体、前記誘電体、及び前記絶縁物を備える前記金属筒を、固定する当該金属筒と同一の材質を有する固定ホルダと、
を備え、
前記マイクロ波送信アンテナと前マイクロ波受信アンテナとを、夫々の前記同軸芯導体が、前記測定管の管軸と平行な平面上で前記金属筒の開口位置を対向して設けたことを特徴とするマイクロ波濃度計。
Propagation until the microwave transmitting antenna and the microwave receiving antenna provided opposite to each other are inserted from the outer peripheral side surface of the measurement tube through which the fluid to be measured flows and the microwave is transmitted from the microwave transmitting antenna and received by the microwave receiving antenna A microwave densitometer for obtaining a concentration of the fluid to be measured from a change in time,
The microwave transmitting antenna and the microwave receiving antenna are coaxial resonator type antennas, and each antenna is
A coaxial core conductor of a coaxial cable ;
Constitute the outer conductor before Symbol coaxially conductor, a metal cylinder that is open to the outer peripheral surface of the outer conductor at a predetermined angular range,
A dielectric having a predetermined dielectric constant filling the space inside the metal cylinder;
An insulator covering the surface of the dielectric;
The same material as the metal tube for fixing the coaxial cable on one surface and the metal tube including the coaxial core conductor, the dielectric, and the insulator of the coaxial cable penetrating on the other surface. A fixed holder having,
With
The microwave transmitting antenna and the front microwave receiving antenna are characterized in that each of the coaxial core conductors is provided to face the opening position of the metal tube on a plane parallel to the tube axis of the measuring tube. Microwave densitometer.
前記絶縁物は、プラスティクとしたことを特徴とする請求項1または請求項2に記載のマイクロ波濃度計。 The dielectric and ceramics,
The insulating material, the microwave densitometer according to claim 1 or claim 2, characterized in that a positive Thich.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006145791A JP5260840B2 (en) | 2006-05-25 | 2006-05-25 | Microwave densitometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006145791A JP5260840B2 (en) | 2006-05-25 | 2006-05-25 | Microwave densitometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007315912A JP2007315912A (en) | 2007-12-06 |
JP5260840B2 true JP5260840B2 (en) | 2013-08-14 |
Family
ID=38849900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006145791A Expired - Fee Related JP5260840B2 (en) | 2006-05-25 | 2006-05-25 | Microwave densitometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5260840B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109642877A (en) * | 2016-08-22 | 2019-04-16 | 巴斯夫欧洲公司 | The method and apparatus identified for the deposit in the pipe-line system to equipment |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5443292B2 (en) * | 2010-07-27 | 2014-03-19 | 株式会社東芝 | Microwave densitometer |
JP5940415B2 (en) * | 2012-08-29 | 2016-06-29 | 株式会社東芝 | Microwave densitometer |
CN108627434B (en) * | 2017-03-17 | 2021-07-09 | 维美德自动化有限公司 | Device for measuring concentration |
DE102020133855A1 (en) | 2020-12-16 | 2022-06-23 | Endress+Hauser Flowtec Ag | Method for determining a pavement property |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2965712B2 (en) * | 1991-01-23 | 1999-10-18 | 株式会社東芝 | Densitometer |
JPH10332606A (en) * | 1997-05-30 | 1998-12-18 | Ikuo Arai | Radio-wave concentration measuring apparatus |
JP2000258361A (en) * | 1999-03-05 | 2000-09-22 | Toshiba Joho Seigyo System Kk | Microwave type densitometer |
JP3730488B2 (en) * | 2000-07-18 | 2006-01-05 | 株式会社東芝 | Densitometer |
JP2002365237A (en) * | 2001-06-06 | 2002-12-18 | Toshiba Corp | Densitometer |
JP3691812B2 (en) * | 2002-07-12 | 2005-09-07 | 株式会社エー・イー・ティー・ジャパン | Method for measuring complex permittivity using a resonator and apparatus for carrying out said method |
JP4247992B2 (en) * | 2003-12-12 | 2009-04-02 | 京セラ株式会社 | Semi-coaxial resonator type measuring jig and method for measuring electrical properties of dielectric thin film |
JP2006029935A (en) * | 2004-07-15 | 2006-02-02 | Toshiba Corp | Microwave-type densitometer |
-
2006
- 2006-05-25 JP JP2006145791A patent/JP5260840B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109642877A (en) * | 2016-08-22 | 2019-04-16 | 巴斯夫欧洲公司 | The method and apparatus identified for the deposit in the pipe-line system to equipment |
CN109642877B (en) * | 2016-08-22 | 2022-08-05 | 巴斯夫欧洲公司 | Method and device for detecting deposits in a pipe system of a plant |
Also Published As
Publication number | Publication date |
---|---|
JP2007315912A (en) | 2007-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5260840B2 (en) | Microwave densitometer | |
US8040274B2 (en) | Apparatus for determining and/or monitoring the level of a medium | |
US6779397B2 (en) | Device for determining the filling level of a filling material in a container | |
US9417111B2 (en) | Parabolic antenna with an integrated sub reflector | |
EP1734348B1 (en) | Horn antenna with composite material emitter | |
CA2265205A1 (en) | Level measuring arrangement | |
US20140047917A1 (en) | Microwave window and level-measuring system that works according to the radar principle | |
US9000775B2 (en) | Fill-level measuring device for ascertaining and monitoring fill level of a medium located in the process space of a container by means of a microwave travel time measuring method | |
US20080003872A1 (en) | Coupling | |
AU2002221867B2 (en) | Horn antenna for a radar device | |
RU2315961C2 (en) | Device for checking container filling level | |
US7106247B2 (en) | Radar level gauge with antenna arrangement for improved radar level gauging | |
US20100123615A1 (en) | Potential Separation for Filling Level Radar | |
JPS6128825A (en) | Method and device for measuring level of fluid material in vessel | |
WO2016001085A1 (en) | Single conductor probe radar level gauge system and tank arrangement | |
JP2003506704A (en) | Level transmitter | |
JPH07500181A (en) | Device for measuring fluid level | |
US20130057366A1 (en) | Microwave-sending device | |
CN108225483B (en) | Tank arrangement | |
CN114222914A (en) | Measuring device for determining dielectric constant | |
CN112332840B (en) | Subminiature atomic frequency standard microwave cavity based on microstrip line structure | |
US6249129B1 (en) | Device for transmission measurement with the aid of microwaves | |
JP2001066177A (en) | Waveguide for microwave-filling level measuring device | |
US20200096378A1 (en) | System and method for determining level and density distribution | |
AU2017353079A1 (en) | Microwave measuring arrangement for determining the loading of a two-phase flow |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110601 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110607 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110728 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20111125 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20111205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120229 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120928 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130426 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160502 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |