JP5260012B2 - Method for forming surface oxide film on stainless steel - Google Patents

Method for forming surface oxide film on stainless steel Download PDF

Info

Publication number
JP5260012B2
JP5260012B2 JP2007252801A JP2007252801A JP5260012B2 JP 5260012 B2 JP5260012 B2 JP 5260012B2 JP 2007252801 A JP2007252801 A JP 2007252801A JP 2007252801 A JP2007252801 A JP 2007252801A JP 5260012 B2 JP5260012 B2 JP 5260012B2
Authority
JP
Japan
Prior art keywords
stainless steel
oxide film
ozone gas
gas
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007252801A
Other languages
Japanese (ja)
Other versions
JP2009084602A (en
Inventor
浩一 泉
剛 山本
国彦 小池
吾一 井上
真吾 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Industrial Gases Corp
Iwatani Corp
Original Assignee
Iwatani Industrial Gases Corp
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Industrial Gases Corp, Iwatani Corp filed Critical Iwatani Industrial Gases Corp
Priority to JP2007252801A priority Critical patent/JP5260012B2/en
Publication of JP2009084602A publication Critical patent/JP2009084602A/en
Application granted granted Critical
Publication of JP5260012B2 publication Critical patent/JP5260012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a thick surface oxide film on the surface of stainless steel, not with a large-scaled process such as heat-treating the stainless steel in an oxidative atmosphere, but with a process using ozone gas. <P>SOLUTION: This forming method comprises: accommodating the stainless steel in a treatment chamber 1 and evacuating it with a vacuum pump 4; subsequently producing a wet ozone gas containing ozone of 15 vol.% or more, by introducing an ozone gas of high concentration from an ozone generator 2 through an ozone gas leading-out passage 5, and introducing a wet oxygen gas which has passed through a water-storing device 3 from a feeding passage 8; and treating the stainless steel by heating it to a predetermined temperature with the use of a heater 9a to form the oxide film on the surface thereof. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、ステンレス鋼の表面に酸化膜を形成する方法に関し、特に、オゾンガスの酸化力を利用して処理対象物であるステンレス鋼の表面に酸化膜を形成する方法に関する。   The present invention relates to a method for forming an oxide film on the surface of stainless steel, and more particularly, to a method for forming an oxide film on the surface of stainless steel, which is an object to be processed, using the oxidizing power of ozone gas.

ステンレス鋼の表面に酸化膜を形成するものとして、従来、電解研磨処理を施した被処理ステンレス鋼を酸化性雰囲気中で加熱処理をするもの(特許文献1)や、電解研磨を施したステンレス鋼表面にオゾン/酸素比率が50%以上の高濃度オゾンガスを作用させるようにしたもの(特許文献2)が提案されている。
特開平10−140321号公報 特許第3018029号公報
Conventionally, an oxide film is formed on the surface of stainless steel, and heat-treated stainless steel subjected to electrolytic polishing is heated in an oxidizing atmosphere (Patent Document 1), and stainless steel subjected to electrolytic polishing. There has been proposed a high-concentration ozone gas having an ozone / oxygen ratio of 50% or more on the surface (Patent Document 2).
Japanese Patent Laid-Open No. 10-140321 Japanese Patent No. 3018029

酸化性雰囲気内で加熱処理を施すものでは、被処理材であるステンレス鋼材を400〜500℃という高温で加熱しなければならず、酸化膜形成作業が大掛かりになるという問題がある。一方、高濃度オゾンガスを使用して、酸化膜を形成するものでは、作業性は優れているが、生成された酸化膜の組成が初期の酸化膜の状態に依存する為、場合によっては生成された酸化膜の膜厚があまり厚くならないという問題があった。   In the case where the heat treatment is performed in an oxidizing atmosphere, the stainless steel material to be treated has to be heated at a high temperature of 400 to 500 ° C., and there is a problem that the oxide film forming work becomes large. On the other hand, when an oxide film is formed using high-concentration ozone gas, workability is excellent, but the composition of the generated oxide film depends on the state of the initial oxide film, so it may be generated in some cases. There was a problem that the thickness of the oxide film did not become so thick.

本発明はこのような点に着目してなされたもので、優れた作業性を保ちながら厚い酸化膜を形成することのできる表面酸化膜形成方法を提供することを目的とする。   The present invention has been made paying attention to such points, and an object of the present invention is to provide a surface oxide film forming method capable of forming a thick oxide film while maintaining excellent workability.

上述の目的を達成するために請求項1に記載の発明は、ステンレス鋼の表面に酸化膜を形成するに当り、500ppm〜2vol%の水分で湿潤されているオゾン濃度15vol%以上のオゾンガスを室温〜60℃で処理対象物に作用させることにより、ステンレス鋼製処理対象物の表面に酸化膜を形成することを特徴としている。
In order to achieve the above-mentioned object, the invention described in claim 1 is directed to forming an oxide film on the surface of stainless steel by adding ozone gas having an ozone concentration of 15 vol% or more moistened with water of 500 ppm to 2 vol% to room temperature. It is characterized in that an oxide film is formed on the surface of a stainless steel processing object by acting on the processing object at ˜60 ° C.

又、請求項2に記載の発明は、請求項1に記載した発明において、処理対象物を処理チャンバー内で湿潤させた状態のオゾンガスと作用させるようにしたことを特徴とししている。Further, the invention described in claim 2 is characterized in that, in the invention described in claim 1, the object to be processed is made to act on ozone gas in a wet state in the processing chamber.

さらに、請求項3に記載の発明は、請求項2に記載した発明において、処理チャンバー内に予め湿潤させたオゾンガスを供給することを特徴とし、請求項4に記載の発明は、請求項2に記載した発明において、処理チャンバーに湿潤ガスとオゾンガスとを供給し、処理チャンバー内で湿潤オゾンガスとすることを特徴としている。Furthermore, the invention described in claim 3 is characterized in that, in the invention described in claim 2, ozone gas which has been previously wetted is supplied into the processing chamber, and the invention described in claim 4 is characterized in that The described invention is characterized in that wet gas and ozone gas are supplied to the processing chamber to form wet ozone gas in the processing chamber.

さらに請求項に記載の発明は、請求項に記載した発明において、湿潤ガスが加湿酸素ガスであることを特徴とし、請求項6に記載の発明は、請求項に記載した発明において、湿潤ガスが水蒸気であることを特徴とするものである。
Further, the invention described in claim 5 is characterized in that, in the invention described in claim 4 , the wet gas is a humidified oxygen gas, and the invention described in claim 6 is provided in the invention described in claim 4 . The wet gas is water vapor.

本発明では、500ppm〜2vol%の水分で湿潤されているオゾン濃度15vol%以上のオゾンガスを室温〜60℃でステンレス鋼の表面に作用させることによりステンレス鋼の表面に酸化膜を形成していることから、同じ処理時間でより厚い酸化膜を形成することができる。また、表面に鉄系酸化物を中心とする不動態膜が形成される。さらに、酸化膜の膜厚によって表面発色することから、酸化膜の存在が容易に判断できる。 In the present invention, an oxide film is formed on the surface of stainless steel by causing ozone gas having an ozone concentration of 15 vol% or more wetted with water of 500 ppm to 2 vol% to act on the surface of stainless steel at room temperature to 60 ° C. Therefore, a thicker oxide film can be formed in the same processing time. In addition, a passive film centered on an iron-based oxide is formed on the surface. Further, since the surface color is developed depending on the thickness of the oxide film, the presence of the oxide film can be easily determined.

図1は本発明方法の実施に使用する装置の一実施形態を示し、図中符号(1)は処理チャンバー、符号(2)はオゾン発生装置、符号(3)は加湿用の水を貯蔵した貯水容器、符号(4)は処理チャンバー(1)内を減圧するための真空ポンプである。   FIG. 1 shows an embodiment of an apparatus used for carrying out the method of the present invention. In the figure, reference numeral (1) denotes a processing chamber, reference numeral (2) denotes an ozone generator, and reference numeral (3) stores water for humidification. The water storage container, symbol (4), is a vacuum pump for depressurizing the inside of the processing chamber (1).

オゾン発生装置(2)には、図示を省略したオゾン発生器とオゾン濃縮装置とが配設してあり、オゾン発生装置(2)で生成され、濃縮されたオゾンガスはオゾンガス導出路(5)を介して処理チャンバー(1)に供給されるようになっている。   The ozone generator (2) includes an ozone generator (not shown) and an ozone concentrator. The ozone gas generated and concentrated by the ozone generator (2) passes through the ozone gas outlet (5). And is supplied to the processing chamber (1).

一方、オゾン発生装置(2)に連通接続されている酸素ガス供給路(6)から分岐導出した分岐路(7)が貯水容器(3)に接続されており、この分岐路(7)の貯水容器側端部は容器内に貯留されている加湿用水の内部に開口しており、分岐路(7)を介して供給された酸素ガスが貯水容器(3)内でバブリングすることで湿潤酸素ガスとなり、この湿潤酸素ガスが貯水容器(3)と処理チャンバー(1)とを連通接続する湿潤ガス供給路(8)を介して処理チャンバー(1)に供給されるようになっている。   On the other hand, a branch path (7) branched out from an oxygen gas supply path (6) connected to the ozone generator (2) is connected to a water storage container (3). The container-side end opens into the humidifying water stored in the container, and the oxygen gas supplied through the branch passage (7) is bubbled in the water storage container (3) so that the wet oxygen gas Thus, the wet oxygen gas is supplied to the processing chamber (1) via the wet gas supply path (8) that connects the water storage container (3) and the processing chamber (1).

そして、処理チャンバー(1)と貯水容器(3)とは、それぞれヒーター(9a)(9b)で加温できるように構成してある。   The processing chamber (1) and the water storage container (3) can be heated by heaters (9a) and (9b), respectively.

次に上述の装置を使用しての処理手順を説明する。
まず、処理対象物となるステンレス鋼部材を処理チャンバー(1)内に収容設置して、処理チャンバー(1)を気密封止する。気密封止された状態の処理チャンバー(1)内を真空ポンプ(4)で真空引きするとともに、湿潤ガス供給路(8)を開通させて、貯水容器(3)から湿潤酸素ガスを導入し、処理チャンバー(1)内を所定の圧力(例えば7kPa・abs)にする。
Next, a processing procedure using the above-described apparatus will be described.
First, a stainless steel member to be processed is accommodated and installed in the processing chamber (1), and the processing chamber (1) is hermetically sealed. The inside of the hermetically sealed processing chamber (1) is evacuated by a vacuum pump (4) and the wet gas supply path (8) is opened to introduce wet oxygen gas from the water storage container (3). A predetermined pressure (for example, 7 kPa · abs) is set in the processing chamber (1).

ついで、オゾンガス導出路(5)を開通させて、オゾン発生装置(2)から濃縮した高濃度オゾンガスを処理チャンバー(1)内が所定の圧力(例えば70kPa・abs)になるまで導入してオゾンガスを湿潤させ、所定圧力に達すると気密封止し、処理チャンバー(1)を所定温度(例えば60℃)まで加温する。   Next, the ozone gas lead-out path (5) is opened and high-concentration ozone gas concentrated from the ozone generator (2) is introduced until the inside of the processing chamber (1) reaches a predetermined pressure (for example, 70 kPa · abs). When the pressure reaches a predetermined pressure, the chamber is hermetically sealed, and the processing chamber (1) is heated to a predetermined temperature (for example, 60 ° C.).

処理チャンバー(1)の温度を維持した状態で所定時間(例えば48時間)経過後、処理チャンバー(1)内を再び真空引きした後に大気圧に戻して、処理チャンバー(1)から処理対象物を取り出す。   After elapse of a predetermined time (for example, 48 hours) while maintaining the temperature of the processing chamber (1), the processing chamber (1) is evacuated again and then returned to atmospheric pressure, and the processing object is removed from the processing chamber (1). Take out.

上記の実施形態では、湿潤酸素ガスと濃縮オゾンガスとを処理チャンバー(1)内に封入して処理するいわゆるバッチ処理として説明したが、図1に仮想線で示すように湿潤酸素ガスと濃縮オゾンガスとを流通させながら処理するようにしてもよい。この場合、処理チャンバー(1)の内圧は、大気圧よりも高くても低くてもよい。   In the above embodiment, the so-called batch process in which the wet oxygen gas and the concentrated ozone gas are enclosed in the processing chamber (1) and processed has been described. However, as shown by the phantom line in FIG. You may make it process, distribute | circulating. In this case, the internal pressure of the processing chamber (1) may be higher or lower than the atmospheric pressure.

また、上記の実施形態では、湿潤ガスを導入した後に濃縮オゾンガスを導入するようにしているが、濃縮オゾンガスを導入した後に湿潤ガスを導入するようにしてもよい。   In the above embodiment, the concentrated ozone gas is introduced after the wet gas is introduced. However, the wet gas may be introduced after the concentrated ozone gas is introduced.

図2は、本発明方法の実施に使用する装置の別の実施形態を示し、これは、オゾン発生装置(2)で生成され、濃縮されたオゾンガスを貯水容器(3)内に導入し、濃縮されたオゾンガスを貯水容器(3)内でバブリングさせることにより、湿潤オゾンガスを形成し、この湿潤オゾンガスを湿潤オゾンガス導出路(8a)を介して処理チャンバー内に所定圧になるまで導入して封入し、処理チャンバー (1)を所定温度まで加温し、その温度を所定時間維持させることで処理対象物を処理するようにしたものである。   FIG. 2 shows another embodiment of the apparatus used for carrying out the method of the present invention, which introduces the concentrated ozone gas produced in the ozone generator (2) into the water storage container (3) and concentrates it. The wet ozone gas is formed by bubbling the ozone gas in the water storage container (3), and the wet ozone gas is introduced into the processing chamber through the wet ozone gas lead-out path (8a) until a predetermined pressure is filled. The processing chamber (1) is heated to a predetermined temperature, and the processing target is processed by maintaining the temperature for a predetermined time.

なお、別の実施形態においても、図2中仮想線で示すように、湿潤オゾンガスを流通させながら処理するようにしてもよい。   In another embodiment, as shown by the phantom line in FIG. 2, the wet ozone gas may be processed while being circulated.

図3は、本発明方法の実施に使用する装置のさらに別の実施形態を示し、これは、処理チャンバー(1)と貯水容器(3)とを水蒸気導出路(8c)で連通接続させ、真空引きした処理チャンバー(1)の内圧を貯水容器(3)に作用させることで、貯水容器(3)内で水蒸気を発生させ、この発生した水蒸気を処理チャンバー(1)に所定圧になるまで導入し、ついでオゾンガス発生装置(2)から濃縮されたオゾンガスを処理チャンバー(1)に所定圧になるまで導入して、処理チャンバー(1)内で濃縮されたオゾンガスを湿潤させるようにし、この湿潤したオゾンガスを所定温度まで加温した状態で所定時間封入することで処理対象物を処理するようにしたものである。つまり、この場合には、貯水容器から発生する水蒸気が湿潤ガスとなる。なお、この場合にも、図3に仮想線で示すように湿潤オゾンガスを流通させながら処理するようにしてもよい。   FIG. 3 shows still another embodiment of the apparatus used for carrying out the method of the present invention. This is a method in which the processing chamber (1) and the water storage container (3) are connected in communication with each other through a water vapor outlet path (8c). By causing the internal pressure of the drawn processing chamber (1) to act on the water storage container (3), water vapor is generated in the water storage container (3), and the generated water vapor is introduced into the processing chamber (1) until a predetermined pressure is reached. Next, the ozone gas concentrated from the ozone gas generator (2) is introduced into the processing chamber (1) until a predetermined pressure is reached, and the ozone gas concentrated in the processing chamber (1) is wetted. The object to be treated is treated by enclosing it for a predetermined time with ozone gas heated to a predetermined temperature. That is, in this case, the water vapor generated from the water storage container becomes the wet gas. In this case as well, the treatment may be performed while the wet ozone gas is circulated as shown by the phantom line in FIG.

この実施形態では、湿潤ガスである水蒸気を導入した後に濃縮オゾンガスを導入するようにしているが、濃縮オゾンガスを導入した後に水蒸気を導入するようにしてもよい。   In this embodiment, the concentrated ozone gas is introduced after the introduction of water vapor that is a wet gas. However, the water vapor may be introduced after the introduction of the concentrated ozone gas.

なお、上記各実施態様において、処理チャンバー(1)をヒータ(9a)で加温して処理チャンバー(1)を所定温度まで加温しているが、処理チャンバー(1)の加温は省略するようにしてもよい。また、この処理チャンバー(1)の加温は、処理チャンバー(1)の真空引き前、あるいは、湿潤ガス、水蒸気、湿潤オゾンガス等の導入前に加温してもよい。処理チャンバー(1)内での湿潤オゾンガスによる処理対象物の酸化処理は、室温(大気温)でも酸化するが、よりで短時間に処理を完了させるためには、60℃以下の比較的低温状態に加温することが望ましい。   In each of the above embodiments, the processing chamber (1) is heated by the heater (9a) and the processing chamber (1) is heated to a predetermined temperature, but the heating of the processing chamber (1) is omitted. You may do it. Further, the processing chamber (1) may be heated before evacuation of the processing chamber (1) or before introduction of wet gas, water vapor, wet ozone gas, or the like. The oxidation treatment of the object to be treated with wet ozone gas in the treatment chamber (1) oxidizes even at room temperature (at atmospheric temperature), but in order to complete the treatment in a shorter time, a relatively low temperature state of 60 ° C. or lower It is desirable to heat to

また、貯水容器(3)もヒーター(9b)で加温するようにしているが、これは、湿度を変化させるために行っており、加温のみならず冷却するようにしてもよい。そして、湿潤ガスは処理チャンバー(1)内で結露することがないように、その湿潤度合いは処理チャンバー(1)での処理温度に応じて500ppmから2vol%以下の範囲とすることが望ましい。   Moreover, although the water storage container (3) is also heated by the heater (9b), this is done to change the humidity and may be cooled as well as heated. In order to prevent condensation of the wet gas in the processing chamber (1), the wet degree is preferably in the range of 500 ppm to 2 vol% or less depending on the processing temperature in the processing chamber (1).

さらに、本発明の各実施例において使用している濃縮されたオゾンガスは、オゾンガス発生装置(2)の内部に配置されているオゾン濃縮装置で濃縮されたもので、処理チャンバー(1)内でのオゾンガス濃度が15vol%以上となるように調整してある。   Further, the concentrated ozone gas used in each embodiment of the present invention is concentrated by the ozone concentrating device disposed inside the ozone gas generating device (2), and is used in the processing chamber (1). The ozone gas concentration is adjusted to be 15 vol% or more.

また、図2、図3に示す実施態様にあっては、オゾンガス発生装置(2)としてオゾンガスを貯蔵しているガス貯蔵容器や液体オゾンガス貯蔵容器を使用するようにしてもよい。   In the embodiment shown in FIGS. 2 and 3, a gas storage container storing liquid ozone or a liquid ozone gas storage container may be used as the ozone gas generator (2).

さらに、図1に示す実施態様にあっては、オゾン発生装置(2)に送給する酸素ガスの一部を貯水容器(3)に導入することで湿潤ガスを形成しているが、この湿潤ガスとして水分を搬送するキャリアガスとしては、窒素ガスやヘリウムガス、アルゴンガス等の不活性ガスを利用してもよい。   Further, in the embodiment shown in FIG. 1, wet gas is formed by introducing a part of oxygen gas to be supplied to the ozone generator (2) into the water storage container (3). An inert gas such as nitrogen gas, helium gas, or argon gas may be used as a carrier gas for transporting moisture as a gas.

なお、上述した各実施形態では、処理対象物を処理チャンバー(1)内に収容した状態で、湿潤させたオゾンガスと接触させるようにしているが、処理対象表面が配管や容器の内表面の場合には、処理チャンバーを使用することなく、インラインで処理するようにしてもよい。   In each of the above-described embodiments, the processing object is brought into contact with the wet ozone gas while being accommodated in the processing chamber (1). However, when the processing target surface is the inner surface of a pipe or a container, Alternatively, in-line processing may be performed without using a processing chamber.

処理チャンバー(1)内にSUS316Lの板材を配置し、オゾンガス濃度60vol%(残り酸素)に1.5%の水蒸気を添加した湿潤オゾンガスを導入し、40℃の温度雰囲気で暴露処理した。
図4は処理したSUS316Lの板材をX線光電子分光分析装置(XPS)で深さ方向に分析した結果を示す。この図4から、処理した板材の表面から約8nmの深さまで鉄酸化物系の中心とした不動態膜が形成されていることがわかる。
A SUS316L plate was placed in the processing chamber (1), and wet ozone gas in which 1.5% of water vapor was added to an ozone gas concentration of 60 vol% (remaining oxygen) was introduced and exposed in a temperature atmosphere of 40 ° C.
FIG. 4 shows the result of analyzing the processed SUS316L plate in the depth direction using an X-ray photoelectron spectrometer (XPS). It can be seen from FIG. 4 that a passive film centered on iron oxide is formed from the surface of the processed plate material to a depth of about 8 nm.

図5は、電解研磨しただけの無処理のSUS316Lの板材をX線光電子分光分析装置(XPS)で深さ方向に分析した結果を示し、図6は高濃度オゾンガスを作用させた不動態膜形成処理を施したSUS316Lの板材をX線光電子分光分析装置(XPS)で深さ方向に分析した結果を示す。図5から無処理の場合にはその酸化膜の厚さは約1.5nm、図6から高濃度オゾンガスでの処理の場合には、その酸化膜の厚さは約4.8nm程度であることが分かる。   FIG. 5 shows the result of analyzing an untreated SUS316L plate that has only been electropolished in the depth direction with an X-ray photoelectron spectrometer (XPS), and FIG. 6 shows the formation of a passive film in which high-concentration ozone gas is applied. The result of having analyzed the board | plate material of SUS316L which performed the process in the depth direction with the X-ray photoelectron spectroscopy analyzer (XPS) is shown. In the case of no treatment from FIG. 5, the thickness of the oxide film is about 1.5 nm, and in the case of the treatment with high-concentration ozone gas from FIG. 6, the thickness of the oxide film is about 4.8 nm. I understand.

図7は、電解研磨した板厚2mm、10mm角のステンレス鋼板(SUS316L)に対して、無処理の場合、湿潤オゾンガスを作用させる不動態膜形成処理を施した場合、及びオゾンガス濃度60%(残り酸素)で湿潤オゾンガスを作用させた時と同様の温度・圧力・処理時間の条件で高濃度オゾンガスを作用させる不動態膜形成処理を施した場合とで、100%の塩化水素ガス、0.35MPa・G、120℃、2日間の条件で暴露後、超純水に浸漬した際の溶出金属量を示す。
この結果から、湿潤オゾンガスを作用させて不動態膜形成処理した場合には、高濃度オゾンガスによる不動態膜形成処理と同等の耐食性を得ていることが分かる。
FIG. 7 shows a case where a stainless steel plate (SUS316L) having a thickness of 2 mm and a 10 mm square subjected to electropolishing is subjected to a passive film formation treatment in which wet ozone gas is applied in the case of no treatment, and an ozone gas concentration of 60% (remaining) Oxygen) with 100% hydrogen chloride gas, 0.35 MPa when the passive film formation treatment is performed with high-concentration ozone gas under the same temperature, pressure, and treatment time conditions as when wet ozone gas is applied. G shows the amount of metal eluted when immersed in ultrapure water after exposure at 120 ° C. for 2 days.
From this result, it is understood that when the passive film forming process is performed by applying wet ozone gas, the same corrosion resistance as that of the passive film forming process using the high-concentration ozone gas is obtained.

本発明は、半導体製造分野などで腐食性ガスの配管など、強固な酸化不動態膜が要求される用途におけるステンレス鋼の内表面処理に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for the inner surface treatment of stainless steel in applications where a strong oxidation passivating film is required such as a corrosive gas pipe in the field of semiconductor manufacturing.

本発明方法の実施に使用する装置の一実施形態を示す系統図である。It is a systematic diagram which shows one Embodiment of the apparatus used for implementation of the method of this invention. 本発明方法の実施に使用する装置の別の実施形態を示す系統図である。It is a systematic diagram which shows another embodiment of the apparatus used for implementation of the method of this invention. 本発明方法の実施に使用する装置のさらに別の実施形態を示す系統図である。It is a systematic diagram which shows another embodiment of the apparatus used for implementation of the method of this invention. 本発明で処理したSUS316Lの板材をX線光電子分光分析装置(XPS)で深さ方向に分析した結果を示すグラフである。It is a graph which shows the result of having analyzed the board | plate material of SUS316L processed by this invention in the depth direction with the X-ray photoelectron spectroscopy analyzer (XPS). 無処理状態のSUS316Lの板材をX線光電子分光分析装置(XPS)で深さ方向に分析した結果を示すグラフである。It is a graph which shows the result of having analyzed the board | plate material of the SUS316L of an unprocessed state in the depth direction with the X-ray photoelectron spectrometer (XPS). 高濃度オゾンガスで処理したSUS316Lの板材をX線光電子分光分析装置(XPS)で深さ方向に分析した結果を示すグラフである。It is a graph which shows the result of having analyzed the board | plate material of SUS316L processed with high concentration ozone gas in the depth direction with the X-ray photoelectron spectroscopy analyzer (XPS). 不動態酸化膜を形成したサンプルを純水に浸漬した際の溶出金属量を示すグラフである。It is a graph which shows the elution metal amount at the time of immersing the sample in which the passive oxide film was formed in a pure water.

Claims (6)

ステンレス鋼の表面に酸化膜を形成するに当り、500ppm〜2vol%の水分で湿潤されているオゾン濃度15vol%以上のオゾンガスを室温〜60℃で処理対象物に作用させることにより、ステンレス鋼製処理対象物の表面に酸化膜を形成することを特徴とするステンレス鋼での表面酸化膜形成方法。 When forming an oxide film on the surface of stainless steel, treatment with stainless steel is performed by applying ozone gas with an ozone concentration of 15 vol% or more wetted with 500 ppm to 2 vol% of moisture to the object to be treated at room temperature to 60 ° C. A method for forming a surface oxide film on stainless steel, comprising forming an oxide film on the surface of an object. 湿潤した状態のオゾンガスを処理チャンバー内で処理対象物に作用させる請求項1に記載したステンレス鋼での表面酸化膜形成方法。 The method for forming a surface oxide film on stainless steel according to claim 1, wherein the wet ozone gas is applied to the object to be processed in the processing chamber . 処理チャンバー内に予め湿潤させたオゾンガスを供給する請求項2に記載したステンレス鋼での表面酸化膜形成方法。The method for forming a surface oxide film on stainless steel according to claim 2, wherein ozone gas previously wetted is supplied into the processing chamber. 処理チャンバーに湿潤ガスとオゾンガスとを供給し、処理チャンバー内で湿潤オゾンガスとする請求項2に記載したステンレス鋼での表面酸化膜形成方法。The method for forming a surface oxide film on stainless steel according to claim 2, wherein wet gas and ozone gas are supplied to the processing chamber to form wet ozone gas in the processing chamber. 湿潤ガスが加湿酸素ガスである請求項4に記載したステンレス鋼での表面酸化膜形成方法。The method for forming a surface oxide film on stainless steel according to claim 4, wherein the wet gas is a humidified oxygen gas. 湿潤ガスが水蒸気である請求項4に記載したステンレス鋼での表面酸化膜形成方法。The method for forming a surface oxide film on stainless steel according to claim 4, wherein the wet gas is water vapor.
JP2007252801A 2007-09-28 2007-09-28 Method for forming surface oxide film on stainless steel Active JP5260012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007252801A JP5260012B2 (en) 2007-09-28 2007-09-28 Method for forming surface oxide film on stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007252801A JP5260012B2 (en) 2007-09-28 2007-09-28 Method for forming surface oxide film on stainless steel

Publications (2)

Publication Number Publication Date
JP2009084602A JP2009084602A (en) 2009-04-23
JP5260012B2 true JP5260012B2 (en) 2013-08-14

Family

ID=40658412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007252801A Active JP5260012B2 (en) 2007-09-28 2007-09-28 Method for forming surface oxide film on stainless steel

Country Status (1)

Country Link
JP (1) JP5260012B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106011689B (en) * 2015-03-30 2019-05-03 新日铁住金不锈钢株式会社 Two phase stainless steel containing Ozone Water
JP6936714B2 (en) 2017-11-30 2021-09-22 岩谷産業株式会社 Method of treating the inner wall surface of the object to be treated

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3250002B2 (en) * 1996-01-17 2002-01-28 岩谷産業株式会社 Ozone supply system to ozone using device and passivation method thereof
JP3566069B2 (en) * 1998-03-12 2004-09-15 住金ステンレス鋼管株式会社 Method of forming a coating on the inner surface of stainless steel pipe
JP4015789B2 (en) * 1999-09-10 2007-11-28 株式会社東芝 Manufacturing method of heat transfer tube for feed water heater, heat transfer tube for feed water heater manufactured by the method, and feed water heater using the heat transfer tube
JP4505097B2 (en) * 2000-02-25 2010-07-14 岩谷産業株式会社 Metal surface passivation treatment method

Also Published As

Publication number Publication date
JP2009084602A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP2768732B2 (en) Heat degassing ultrapure water equipment
KR950027986A (en) Manufacturing method and apparatus for semiconductor device
JP5260012B2 (en) Method for forming surface oxide film on stainless steel
US6451130B1 (en) Method for forming Cr2O3 film on stainless steel surface
Hirota Effects of dissolved oxygen in a de‐ionized water treatment on GaAs surface
Kaneko et al. Low Temperature Silicon Surface Cleaning by HF Etching/Ultraviolet Ozone Cleaning (HF/UVOC) Method (II)–in situ UVOC
JP6749090B2 (en) Processing method in processing apparatus using halogen-based gas
US20180291523A1 (en) Development of a passivated stainless steel surface
JP5343449B2 (en) Cleaning method for fluoropolymer parts
JPH0496226A (en) Manufacture of semiconductor device
KR20170103656A (en) Metal contamination preventing method and apparatus and substrate processing method and apparatus using the same
JP2956347B2 (en) Semiconductor substrate cleaning method
KR101908192B1 (en) Method for removing halogen and method for manufacturing semiconductor device
JP2014109059A (en) Hydrogen embrittlement-resistant metal material, and surface treatment method of hydrogen embrittlement-resistant metal material
JPH08337867A (en) Surface treatment of stainless steel member
JPH0529307A (en) Ozone oxidation method
JP2783128B2 (en) Stainless steel member for clean room and method of manufacturing the same
JPH06244174A (en) Formation of insulating oxide film
Aoki et al. Wafer treatment using electrolysis-ionized water
JP4505097B2 (en) Metal surface passivation treatment method
WO2019106880A1 (en) Method for treating inner wall surface of object to be treated
JPH0711421A (en) Stainless steel member for semiconductor manufacturing fquipment
WO1995018880A1 (en) Method and apparatus for solid surface treatment, and apparatus for forming passivation film, and process apparatus
Ottosson et al. Response to the comments by P. Szakálos, T. Åkermark and C. Leygraf on the paper “Copper in ultrapure water, a scientific issue under debate”
Jaswal et al. Electronic structure and surface reactivity of Nd2Fe14B and related compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250